The Mneme Persistent Object Store*

J. Eliot B. Mosst

Coins Technical Report 89-107
October 1989

Object Oriented Systems Laboratory
Department of Computer and Information Science
University of Massachusetts, Amherst
Ambherst, MA 01003

“This project is supported by National Science Foundation Grants CCR-8658074 and DCR-
8500332, and by Digital Equipment Corporation, Apple Computer, Inc., GTE Laboratories, and
the Eastman Kodak Company.
t Address: Department of Computer and Information Science, Lederle Graduate Research Cen-

ter, University of Massachusetts, Amherst, MA 01003; telephone (413) 545-4206; Internet address
Moss@cs.umass.edu.

Abstract

The Mneme project is an investigation of techniques for integrating program-
ming language and database features to provide better support for cooperative,
information-intensive tasks such as computer aided software engineering. We re-
port here on the Mneme persistent object store, discussing the original design,
the construction of the initial prototype, and approaches being considered for
the next prototype. Mneme stores objects, with a simple and general format, and
preserves the identity of the objects and their structural relationships. Mneme’s
goals include portability, extensibility (especially with respect to object manage-
ment policies), and low overhead. The model of memory that Mneme aims to

present is a single, cooperatively shared heap, distributed across a collection of
networked computers.

This paper has been submitted to ACM Transactions on Information Systems.

1 Introduction

The Mneme project is an investigation of techniques for integrating programming lan-
guage and database features to provide better support for cooperative, information intensive
tasks such as computer aided software engineering. We report here on the Mneme persistent
object store. We discuss in turn: goals of the effort, conceptual design of the store, construc-

tion of the prototype, lessons learned, directions for the next prototype, related work, and
our conclusions.

1.1 Goals for the Store

The Mneme project’s overall goal is to provide better support for cooperative, information
intensive tasks (which we sometimes more loosely call design tasks). These tasks include
computer aided design (CAD), ranging from VLSI design through electrical, mechanical,
and architectural design, as well as computer aided software engineering (CASE). They
also include document preparation/publishing and office automation applications, as well
as hypertext and other advanced information systems and tools to support group work.
From the standpoint of storing information, salient features of these applications include
their need to store and retrieve a considerable volume of highly structured information in
a distributed system context, while supporting multiple people cooperating on large, not
necessarily well-defined, tasks. |

The Mneme store effort takes a particular approach to supporting these tasks, namely
to provide the illusion of a large shared heap of objects, directly accessible from the pro-
gramming language used to build the applications. Our hypothesis is that this model is an
adequate foundation; the goal of the Mneme store effort is to produce prototypes that allow
the hypothesis to be tested, by ourselves and by others.

Given the overall goal of the effort, we arrived at the following specific objectives for the

store:

Goals for the Mneme Store

e The store should provide an appropriate notion of an object, such that structure and
identity of objects are preserved.

e The store should have low overhead of use, and high performance for retrieval and
storage.

¢ The store should be portable across a wide range of systems and usable from a variety
of tools and programming languages.

o The store should provide mechanisms whose policies can be changed and extended.

o The store should be distributed, in a heterogeneous client/server workstation environ-
ment, with as much transparency as possible while substantially respecting autonomy
of resources.

e The store should support modularity of data within its heap model.

e The store should support further research into cooperative data sha.ring techniques,
integration with programming languages (i.e., persistent programming languages and
database programming languages), and models incorporating distributed execution as
well as distributed stcrage.

o The store should allow the use of existing lower level storage managers and servers
when that is consistent with the other goals.

We now consider the rationale for each of these goals.

Object Structure. The applications of interest use complex and highly structured data,
which can be thought of as directed graphs where the edges are pointers and the nodes are
“objects”. We must be able to preserve this structure, and it is important that we do so as
simply as possible. The additional features of objects (dynamically invoked methods, inher-
itance hierarchies, etc.) are desirable for many applications. On the other hand, typing and
invocation mechanisms vary considerably across programming languages, even in the object-
oriented realm. For broadest applicability of the store’s features, we restricted its goals to
providing object structure and identity only, not object execution semantics. Thus a Mneme
object is a collections of fields accessed via an object identifier, but Mneme objects have no
types/classes, methods, or inheritance, since we want to allow a variety of type, inheritance,
and invocation mechanisms to be built on top of Mneme. For similar reasons, we restricted
the store’s notion of “edge” or “relationship” to simple pointers. More sophisticated data
models can be built in terms of the simple Mneme objects. This keeps Mneme lightweight
and general (and somewhat “low level”).

Performance. One of the motivations of the overall Mneme project in exploring language-
database integration is the poor performance of non-integrated approaches. (Another is
the relatively poorer functionality and less desirable semantics of non-integrated systems.)
Further, many cooperative, information intensive applications, especially CAD, are quite
demanding. Unpublished estimates® for performance requirements include being able to
do at least 100,000 references per second to fields of objects (to support “dragging” items
on a workstation display screen) and being able to retrieve 10,000 “typical size” objects
per second from external storage into memory. “Typical size” for languages such as CLU
[Liskov et al., 1977; Liskov et al.,, 1981], Smalltalk-80? [Goldberg and Robson, 1983], and

!There are no detailed references for these numbers.
2Smalltalk-80 is a registered trademark of PARC Place Systems, Inc.

Trellis/Owl® [Schaffert et al., 1986] appears to be about 30-40 bytes, but this is rather
informally collected evidence. In any case, the desired retrieval rate is a substantial fraction

of the bandwidth of a magnetic disk on a typical workstation.

Portability. In order to justify the effort of building the store, as well as to encourage
others to experiment with it and develop evidence as to the appropriateness and value of the
shared distributed heap approach, the store should be usable on as many systems as possible,
and from a reasonable collection of existing programming languages. While one intent is to
support integration with programming languages, integration should not be required for
effective use of the store.

Extensibility. The applications we wish to support vary considerably in their semantics,
and have performance characteristics and demands that are not well understood. Because
of this variability and lack of knowledge, it is important that the store allow its object
management policies, especially those affecting performance, to be tuned, controlled, and
extended. Such policies include clustering, pre-fetch, caching, and concurrency control. To
the extent possible and consistent with the other goals, the store should also anticipate and

support application specific extensions to its basic semantics.

Distribution. The hardware setting (workstations with local area networks) and general
software framework (the client/server model) are dictated by what is available, both to the
target applications, and to us in our own research environment. Physical distribution per se
is more of an implementation concern. The deeper idsue is supporting and trading off bet ween
sharing (multiple concurrent users) and autonomy (individual control of resources, ranging
from the physical (servers and disks) to the conceptual (subcollections of objects)). Note
that the tradeoff must not be fixed, since different organizations and different applications

have different relative needs for convenient sharing and for autonomy.

Modularity. In a large space of objects it is crucial for users and applications to be able to
identify and manipulate meaningful subsets of objects. It should also be possible to extract
and insert such subsets of objects, so as to send useful collections of data from one place
to another, for backup, etc. Modularity will also tend to support autonomy and reduce the

scope of possible damage to the store by a runaway program.

Basis for further research. To a certain extent, this goal summarizes the overall goal
of the effort to build the store, since that effort is part of a larger project. There are
specific implications, though, deriving from the project direction. The store should be suited
to integration with some programming languages (current efforts include Smalltalk-80 and
Modula-3 [Cardelli et al., 1988]), it should allow experimentation with techniques for sharing
data cooperatively, and it should be a suitable basis for an architecture examining issues of

distributed execution as well as distributed storage.

3Trellis is a registered trademark of Digital Equipment Corporation.

FEzisting storage managers. The main justifications for this goal are preventing dupli-
cation of effort through building on others’ work where possible, and encouraging other
researchers to use and evaluate the store by increasing the chances that they can use it with
their existing software and data. We feel it important, though, that inter-operability with
existing software should not be allowed to compromise the primary research goals of the
effort.

2 Concepts of the Mneme Store Design

Before undertaking implementation of the Mneme store prototype, we considered the
desired concepts and semantics, which we now discuss. We have treated the design as an
ideal to be approached via a series of prototypes, and to be changed as experience is gained
from those prototypes. In presenting the concepts and their semantics below we refer back
to our goals for the store to help explain the rationale for some of the design features and

choices.

2.1 Objects

A Mneme object consists of three parts: slots, bytes, and attributes. The attributes are a
small number of bits (on the order of 8) intended for indicating such properties as whether
an object is read-only. The design does not specify their use—attributes are more of a hook
for extensions, though some specific potential uses will be mentioned. The bytes are simply
a vector of 8-bit bytes, indexed from 0 to b— 1, where b is the numbers of bytes in the specific
object, which is specified when the object is created. The ability to change the size of an
object is not part of the original design; we did not feel it important enough to justify the

design and implementation effort.

The slots part is perhaps the most interesting aspect of an object. This part is a vector
of 32-bit slots, indexed from 0 to s — 1, where s is the number of slots in the object, specified
at object creation time, analogous to the number of bytes. FEach slot contains one of three
things: a distinguished empty value, an immediate 31-bit integer value, or an object identifier
(id). We will have considerably more to say about object identifiers later; for the moment,
it should suffice to know that each object has a distinct identifier, and that the identifier
allows the object to be located and accessed.

We developed this object concept for several reasons, most easily discussed by considering
alternative notions of object. Perhaps the simplest notion of object, used in some well-known
designs (see, e.g., [Skarra et al., 1987; Hornick and Zdonik, 1987; Carey et al., 1986]), is as a

vector of bytes alone. We separate the slots so that we can find and manipulate the object

ids. This allows us to garbage collect in the store. It also allows us to change the stored
form of the identifiers. In short, we had some implementation techniques in mind, which
will be discussed later. Another reason the slots/bytes style of object was appealing is that
it closely matches the requirements of Smalltalk and Trellis/Owl.

Comparing with Smalltalk and Trellis/Owl, our object concept omits any notion of
“class” or “type”. This is not a problem for our format, though, one can simply estab-
lish a convention for those languages that the first slot contains the class/type information.
We omitted any class/type (or for that matter, method or method invocation) mechanism
from the design to keep things simple, and perhaps more importantly, not to impose any
particular type or inheritance model, increasing the number of languages with which the
store could be used conveniently. This is not to say that our object model directly sup-
ports sharing of the same objects between programs written in different languages, since the
variation in language semantics may make that very difficult to do in any automatic and
transparent way, but the Mneme store does nothing to prevent such sharing if the languages
would otherwise support it.

Finally, the contents of slots are tagged. The main reason this was done was to fit with
Smalltalk and Trellis/Owl. However, consider that languages implementable without tags
presumably know types well enough to distinguish pointers from non-pointers at compile-
time. If that is true, then non-pointer types can be stored in the bytes area with no tagging
overhead, and pointer types stored as ids in the slots area (incurring some tag setting and

checking overhead).

Another alternative object format to consider is something along the lines of records in
Pascal, which would match up better with C++ [Stroustrup, 1986] objects, for example,
than our segregated slots and bytes parts. Such a format would mix slots and bytes, and,
since we need to know where the ids are, would require descriptors. We did not feel the

complexity of descriptors was justified.

Finally, we could have chosen more of an object and relationship model, rather than just
objects and pointers (ids). This would not have matched up well with existing program-
ming languages. It would also have been much more difficult to implement and might have
introduced performance problems. We also felt that such models could be built on top of
the Mneme model—that Mneme provides a low level abstraction of storage, and advanced
features such as relationships and arbitrary properties and attributes can be built in terms
of this structure. Of course an “object” at the higher level of semantics would probably
not correspond directly to a single Mneme object. Our choice is consistent with providing
a low overhead, simple, and general base on which to build, without imposing very specific

semantics.

To summarize, the format we chose for objects embodies the desired structure and min-

imal object semantics—every object has an id, and the object’s slots describe its pointer
relationships to other objects. This structure is simple, general, and efficient in storage and

acCCess.

2.2 Handles

A handle is a data structure providing efficient access to the internals of an object. To
manipulate an object in the Mneme store, one first acquires a handle, by presenting the id
of the object to be accessed. When access is no longer desired, the handle may be destroyed.
The actions of creating and destroying handles serve several purposes. First of all, those
actions delimit a period of time during which an object is actively being accessed and must
be available to the application. This has implications for concurrency control and consistency
management, discussed in more detail later. Creating a handle is the time at which an object
may be fetched from the store, causing what we call an object fault. Of course, the object
may already be resident in main memory. Once a handle is acquired, though, the object is

known to be available, and further checks are not required.

Even when an object is resident, to create a handle the object must be located given only
the id of the object. The handle data structure can embed direct pointers to the parts of
the object, avoiding object id lookup on every slot or byte access. Furthermore, the object
format can be decoded once and the relevant information stored in the handle data structure

in a less compact but computationally more efficient form.

The main drawbacks of handles is their size and the imposition of an additional level
of Emanagement between the application and the object. This level of management is also
a level of abstraction, though, and improves the robustness of the system. Handles appear
to be adequate for direct use of the store by applications, but they may not be the best
approach for tight integration with a programming language. This point is examined more

closely in our critique of the prototype.

2.3 Files and Locality of Ids

Mneme groups objects together into units called files. A file of objects can be separately
named and located within the overall distributed store. A typical implementation of the
concept would associate individual files with servers, though the association could change
with time, and this implementation strategy is not dictated by the Mneme store design.
Every Mneme object resides in a file, and there are no provisions in the interface for moving

objects from one file to another.

Files are a convenient unit for storage, and provide modularity of the object space, one
of the stated goals. We intended that Mneme files, or groups of related files, be reasonable

units of backup, recovery, garbage collection, and transfer betwéen different Mneme stores.
Transfer in particular, and backup and recovery to some extent, depend also on the style of
use by applications, since a file’s objects can refer to objects in other files, and hence such
references might occur out of context if a file is transferred or restored without regard for its

references to/from other files.

In addition to modularity, files allow us to take advantage of locality of reference, and to
provide a substantial degree of autonomy, as follows. Object ids, as stored in objects within
the store, always name objects within the same file as the object containing the id. This
allows ids to be relatively short—on the order of 30 bits. References to objects in other files
are made by referring to forwarder objects within the same file. A forwarder is an ordinary
object with the exception that it has a particular attribute bit set. Because a forwarder is an
ordinary object (except for the setting of the one bit), it can contain arbitrary information
to name and locate the intended target object. Typically a forwarder would indicate the
file and the name of the object within the file. Because of the very general nature of the
forwarder mechanism, we can support a variety of cross file reference techniques, including
ones where the binding is interpreted contextually, similar to UNIX* environment variables
or VAX/VMSS® logical names. Forwarders provide a substantial opportunity for extension of
the basic Mneme store functionality.

To provide autonomy, as well as to support garbage collection, the actual ids of objects
in a file are not used to name the objects from “sutside” of the file. Rather, each file has
a table mapping external names to internal object ids. The external names, together with
some unspecified means for naming files, provide the only form of (potentially) immutable
persistent object identifier in the design. Thus, such a name should be assigned to any
object that an application or user may need to name explicitly at a later time. We do
assume, though, that relatively few objects will need such names. Autonomy is supported
in that the mapping table “shields” the objects inside a file from external manipulation.
The mapping is also a place where extensions can be provided, such as for access control or

pre-fetch of a collection of objects when a particular object is first accessed.

In addition to the table that maps external names to internal ids, each file also has a
distinguished root, a slot that can be set at will to indicate a starting place for retrieving
objects in the file. Note that the root and the mapping table are essential, since ids cannot
simply be synthesized and presented to the Mneme store functions with any reliability. This
is because the ids of objects within a file can be reassigned, allowing reclustering, garbage

collection, reuse of the limited space of ids, and even explicit object deletion.

'There is considerable synergy between the modularity, autonomy, extensibility, and com-

1UNIX is a registered trademark of AT&T Bell Laboratories.
SVAX and VMS are registered trademarks of Digital Equipment Corporation.

pactness (short ids) provided by the Mneme file concept. The concept also maps well onto
existing file systems as well as the client/server model of distributed data storage and access.
In addition, the model is a relatively simple one. It is useful, though, to compare it with

alternative approaches. We have presented more detailed arguments in [Moss, 1989).

One possibility would be a large virtual memory, where the addresses name bytes or
words. Problems with that approach include lack of object semantics, difficulty in garbage
collection, the need for rather long addresses, and poor support for autonomy, modularity,
and extensibility. The main advantages are simplicity and familiarity, though the simplicity
may be only apparent, not real, when we consider administration of a large distributed
store. Most of the problems mentioned occur for any byte/word addressed store, regardless
of whether the virtual memory is more structured, e.g., segmented as on Multics [Organick,
1972] or the Intel 432 system [Intel Corporation, 1981; Organick, 1983).

Another alternative to the Mneme addressing scheme is immutable object identifiers.
Sometimes provision of such identifiers is seen as equivalent to supporting object identity,
though we argue that object identity and persistence of immutable names for objects are dis-
tinct ideas. For further discussion of the concept of identity, see [Khoshafian and Copeland,
1986]. Note that Mneme supports identity, in the sense of preserving the graph structure
defined by object references, without the most frequently used kind of name (object ids) be-
ing immutable. While forwarders and mapping tables can support other semantics as well,
we presume that they provide at least the capability to continue to refer to precisely the
same object, so long as the object is not explicitly deleted. Hence, our design does provide
immutable persistent names when they are required, but avoids their overhead in the many

cases where they are not required.

Immutable object identifiers present two major problems, both related to performance.
First, in a large system, they will have to be long. This might be alleviated if objects are
grouped in a manner similar to our files, but if there is substantial movement of objects from
file to file, performance problems of space (a mapping table) or time (forwarding addresses)
tesults. The other performance problem is retrieval time. If object ids are immutable, as
objects are reclustered over time the ids lose any power they might originally have had to
provide a hint as to where an object is located. In a large store it is likely that two or
more secondary storage accesses will be required to fetch an object: one to determine its
location, and a second to retrieve it. The Mneme store (as we will see) can use object ids
as substantial location hints and eliminate at least one secondary storage access on ob Ject
retrieval, assuming a per-object id-to-location map would be too large to keep in main
memory.

Gehringer has proposed variable length capabilities [Gehringer, 1979) and variable length
names [Gehringer, 1989]. While his schemes obtain many of the advantages of our approach,

they require special support hardware, and it is not clear that, even given the hardware, his
approach would perform as well as ours.

In summary, the Mneme concept of a file as a modular collection of objects, as a local
space of object identifiers, and as a unit of autonomy, supports several of our goals better
than the alternative designs considered.

2.4 Pools and Strategies

While Mneme files are physical and logical units of grouping and naming objects, Mneme
pools are logical, and not directly physical, groups of objects within files, and pools are
not directly involved in object naming. Each Mneme object is associated with (stored in)
exactly one pool, and that pool determines the policy under which the object is managed. A
management strategy is a vector of routines for making individual policy decisions. A strategy
is associated with a pool when the pool is created. Strategies can depend on pool specific
variables, called pool attributes. Thus a strategy can be generic with specific parameters

given by the pool’s attributes.

Let us consider two examples of these concepts in action. First, when an object is to
be created, one specifies the desired number of slots and bytes and the initial attribute
settings. One also indicates the pool in which to store the object, and can provide an
additional parameter to be interpreted by the pool’s object creation policy routine. After
preliminary argument checking, the Mneme object creation routine calls the pool strategy’s
object creation routine, which will choose where to place the new object (which also partially
determines the new object id).

Another example of policy involvement occurs when a handle is requested for an object
(given the object id), and the object is determined not to be resident. In this case, the
object’s pool (strategy) object fault policy routine is called. Clearly the object itself must be
retrieved, but the policy routine can make decisions such as additional data to request (pre-
fetch), how the object should be locked, and the buffer replacement policy to be used. If the
requested object is a forwarder, then further policy and forwarding/ mapping implementation

routines would become involved.

In addition to providing a default strategy, the Mneme store design allows new strategies
to be developed, and specifies means by which strategy routine vectors can be filled in by an
application, so that policies need not be built in to the Mneme store code. If an application
attempts to use an object whose pool strategy vector has not been set up, an error code is

returned.

Pools support policy/mechanism separation and policy esttensibility. The design leaves

open as a research question the detailed design of the strategy routine interfaces. We hope

10

that the pool concept will allow flexible approaches to object clustering, storage allocation,
pre-fetch, concurrency, consistency, buffering/caching, and perhaps even security, versioning,

and other issues not yet considered in detail in the Mneme project.

2.5 Transactions

Since the Mneme store is intended to support exploration of techniques for cooperative
sharing, some kind of concuirency control and resiliency mechanism is required. A question
we are still wrestling with is whether the features to be discussed here form an adequate
basis for such exploration, or whether a more radical approach is needed. In any case it is

useful to consider the design as it stands.

A Mneme store session is a period of interaction with the store, analogous to a login
session with an operating system. A session establishes a context of use, including open
Mneme files and ids of objects in those files. A transaction is a unit of work, concurrency
control, and consistency, within a session. The intent is that so-called “long transactions”
or “design transactions” that may span sessions are implemented at higher levels of ab-
straction, using Mneme store transactions to implement their various atomic steps. Sessions
allow considerable caching of names, objects, and other file related information, increasing
performance and providing a more convenient context of work for applications. Notably, the
design guarantees that object ids (as used by a client) retain their meaning from transaction

to transaction within a session.

The design includes a basic transaction model as well as facilities to build application-
specific, non-serializable, models. The basic transaction model is quite straightforward. The
set of committed transactions is guaranteed to be serializable, and individual transactions are
guaranteed to be all-or-nothing (all effects installed on commit, none on abort). Serialization
is done in terms of individual objects and whether they have been read or written. This
specification allows considerable flexibility. For example, one can use read-write locking or

optimistic concurrency control. With care, different pools can use different strategies.

An important point is that our design defines the meaning of abort and commit, but
makes no guarantees concerning which transactions can or will commit. Thus, while read-
write locking on a per-object basis is correct and allows high concurrency, one can lock in
stronger modes (e.g., write lock when an object has only been read, in anticipation of a
possible write) or in larger granularities (physical groups of objects, whole pools, or even
entire files). This can allow simpler and more efficient techniques to be used to boost
performance when the highest concurrency is not required (e.g., when a whole design file is

checked out, it should not be necessary to lock each individual object in the file).

Another point to consider is that any locking or concurrency control is performed im-

11

plicitly in our design, as a side-effect of acquiring a handle, updating slots or bytes, etc.
It remains to be seen if additional “hooks” are necessary for more precise specification of
access to objects, or whether the pool/strategy approach to tailoring concurrency control
and recovery is adequate.

The transaction semantics extension facility aims to provide a small number of minimal,
general, primitives. These primitives supply three basic pieces of functionality: mutual
exclusion, logging, and notification. This functionality is intended to be used to provide
concurrency control, resiliency, consistency, and synchronization as needed. The logging and
notification services have not actually been designed, so the facility is incomplete. There do
not appear to be any fundamental problems in designing those services, though there are a
number of choices to be made among competing approaches. The mutual exclusion facility

is still of interest, though, because it uses other features of Mneme in novel ways.

Mutual exclusion is supported via volatile pools. When an application process acquires
a handle on a volatile object (an object stored in a volatile pool), Mneme gives the process
exclusive access to that object until the handle is released. At that time the object may
be accessed and/or updated from other processes. Thus, handles provide “short locks” on
objects. This primitive is adequate for building any desired concurrency control semantics,
though there are interesting performance questions, such as how best to cache volatile objects.
There are also remaining semantic questions related to resilience. (If there is a crash, what
state should be restored after the crash?)

In sum, the Mneme store design includes a basic transaction facility and a sketch of trans-
action extension facilities. In addition to transactions, which have “traditional” database
system semantics (but are specified so as to allow a variety and mixture of strategies in
implementation), the design also includes the notion of a session. Sessions provide a scope

for naming objects and allow for caching across transactions.

3 The Initial Prototype

We have built a working prototype Mneme store based on the design presented above.
The prototype is written in C [Kernighan and Ritchie, 1978] and has been run on the
VAX/VMS, VAX/Ultrix,® and SunOS? operating systems, and should run under other sys-
tems supporting C, if they have adequate memory and disk capacity. The system is designed
to be highly portable, and the .choice of C was made largely because of the wide availability
of implementations of C, especially within the research community. C also supports the

6Ultrix is a registered trademark of Digital Equipment Corporation.
7SunOS is a registered trademark of Sun Microsystems.

12

type-unsafe operations necessary for such things as imposing object structure on raw bytes

retrieved from a server.

To describe the prototype, we start by presenting the specific interface that we designed—
the C routines available to Mneme store clients and the functionality provided by those rou-
tines. We then describe the internal design of the store, starting with limitations purposely
imposed for this prototype, and continuing with a discussion of the internal concepts, major
data structures, algorithms, and internal interfaces. We close with some brief preliminary

performance results obtained using the prototype.

3.1 The Client Interface

The interface is designed with several programming conventions in mind:

‘e Every routine returns a result code, chosen from a standard list of codes, with negative
codes indicating errors, zero indicating a normal success (when only a success-failure
distinction is needed), and positive codes indicating additional successful conditions.
Hence we will omit mentioning the results of routines unless we wish to point out
particularly interesting cases.

o Any routine that must return data of unknown size allocates that data itself, setting a
client-supplied pointer variable; it is the client’s responsibility to free the storage when
it is no longer needed. Fixed size result items are always allocated by the client, to
allow efficient static or stack allocation. The client passes the address of these items
to the Mneme routines as required.

e While C does not support data abstraction, several types are considered abstract
in the Mneme interface. That is, client code should not make assumptions about
how those types are represented. These types include FILEID, POOLID, STRATID,
STRAT_EVENT, ID, SLOT, HANDLE, and FILENAME.

In the presentation below we will label the routine arguments to make their role more
clear, using IN to indicate a read-only value, INOUT to indicate a variable that may be read
and/or updated, and OUT to indicate a variable that is writien but not read (i.e., will contain
a result if the routine completes successfully). In the INOUT and OUT cases C requires that
an address be passed, so an integer variable appears as int *, etc. For those routines that
return informational values in their result codes, we use the notation = to indicate the kind
of information provided. We omit descriptions of a few non-essential routines in the interest
of brevity.

Object and Handle Operations

There are a few operations related to objects that use object ids, but most use handles.
We first consider the ones oriented towards ids.

13

MnObjectCreate (IN FILEID f, POOLID p,
int numSlots, int numBytes, int attrs, ID nearld,
OUT HANDLE *handle, ID *id)
MnObjectDestroy (IN ID id)
MnObjectExists (IN ID id) = boolean
MnObjectCompare (IN ID id1, ID id2) = boolean

MnObjectCreate creates a new object, returning both the id and a handle on the new
object. It turned out to be convenient to require that the file as well as the pool be specified,
to eliminate the need for a global pool table. One also specifies the desired number of slots
and bytes, and the initial value for the attributes. The nearld argument gives a location
hint, suggesting that the new object be allocated “close to” the object named by nearld. The
pool policy routine can take this hint into account in determining where physically to place
the new object. nearld may be the null object id, indicating no hint. One may also pass a
null pointer for the address of either the handle or the id to be returned, indicating that the

corresponding item is not to be returned.

MnObjectDestroy allows explicit destruction of objects. If an object is destroyed and a
later attempt is made to obtain a handle on the object, an error code is returned, provided
that the id has not yet been “recycled” and used for another object. Thus, it is the client’s
responsibility not to use any dangling references. This decision allows efficient, direct, ob-
ject reclamation in those cases where it is safe. This feature might be used by a garbage
collector. Since objects can be destroyed, we provide MnObjectExists to check if the object
corresponding to a given id still exists. Because forwarders allow objects to be aliased (to
have more than one distinct name), we provide MnObjectCompare for checking if two objects

are the same after following any forwarders.

Here are the interfaces to the handle oriented object routines:

MnObjectFile (IN HANDLE h, OUT FILEID *f)
MnObjectPool (IN HANDLE h, OUT POOLID *p)
MnObjectNumSlots (IN HANDLE h, OUT int *ns)
MnObjectNumBytes (IN HANDLE h, OUT int *nb)
MnObjectVolatile (IN HANDLE h) = boolean
MnObjectModified (IN HANDLE h) = boolean

MnObjectGetSlots (IN HANDLE h, int first, int count, SLOT *slotPtr)
MnObjectGetSlot (IN HANDLE h, int which, OUT SLOT *s)
MnObjectSetSlot (IN HANDLE h, int which, SLOT s)

MnObjectSetSlots (IN HANDLE h, int first, int count, SLOT *slotPtr)
MnObjectGetBytes (IN HANDLE h, int first, int count, BYTE *bytePtr)
MnObjectSetBytes (IN HANDLE h, int first, int count, BYTE *bytePtr)
MnObjectAttrs (IN HANDLE h, int andMask, int xorMask, OUT int *attr)

14

The first group of routines are simple inquiries. The second group allows access to the three
parts of an object. There are operations to get and set single slots as well as a series of
slots, because we felt that might commonly be done. The byte operations always operate
on a series of bytes (but one can always specify a count of 1). Note that the operations on

multiple bytes or slots take a pointer to a client specified buffer area.

The MnObjectAttrs operation needs a little further comment. If the current value of the
attributes of the object is v, the result (which is also stored in the object as the new value for
its attributes) is® (v A andMask) @ xorMask. This formulation allows any of the four boolean
operations on a single bit value (set, clear, invert, nothing) to be performed individually to

each attribute bit, all at once, requiring only one attribute manipulation routine.

Recall from the design that a slot can be empty, contain an id, or contain immediate
data. The three operations below allow these cases to be distinguished. Since a slot has a
known fixed size, there is no use (in C anyway) in providing coercion operations between
slots and the three kinds of items they contain. We did provide C macros that reduce to
type casts (not illustrated here).

MnSlotlsEmpty (IN SLOT s) = boolean
MnSlotisData (IN SLOT s) = boolean
MnSlotlsid (IN SLOT s) = boolean

' Finally, there are three operations on handles themselves: to create them, destroy them,
and obtain the id of the object to which they are bound. Note that destroying a handle does
not affect the object to which the handle is bound, except perhaps to allow other access in
the case of volatile objects. .

MnHandleCreate (IN ID id, OUT HANDLE *h)
MnHandleDestroy (INOUT HANDLE *h)
MnHandleld (IN HANDLE h, OUT ID *id)

Pool and Strategy Operations

Recall that pools (and files) have associated attributes, allowing them to have arbitrary
client-specified (and strategy-specific) parameters. In the initial prototype, these attributes
are realized as name-value pairs where both the name and the value are strings. One can get,
set, and remove individual attributes, and get all the attributes of a pool at once. Here we
used STRING for the representation of an attribute, which is actually char * in the prototype.
MnPoolGetAllAttrs allocates and returns two parallel arrays, one for the attribute names and

one for the values; count indicates the number of elements in these arrays.

8@ is the exclusive-or operator.

15

MnPoolCreate (IN FILEID f, STRATID s, OUT POOLID *p)
MnPoolDestroy (IN FILEID f, POOLID p)
MnPoolGetAllAttrs (IN POOLID p, FILEID f,

OUT STRING (*attrs)[], STRING (*vals)[], int *count)
MnPoolGetAttr (IN POOLID p, FILEID f, STRING attr, OUT STRING *val)
MnPoolSetAttr (IN POOLID p, FILEID f, STRING attr, STRING val)
MnPoolRemAttr (IN POOLID p, FILEID f, STRING attr)

There is only one routine related to strategies; it allows the client to indicate the routine
to be executed when a particular strategy event occurs for a given strategy. A strategy event
is a particular occurrence, such as creation of an object. The set of events is not considered
part of the Mneme client interface per se; it is part of the strategy interface, which we will
discuss later.

MnStrategySetRoutine (IN STRATID s, STRAT_EVENT e, int (*routine()))

File and General Operations

To support the extension of options related to file handling, such as the “mode” in which
to open a file, the prototype provides a session-wide collection of options. These are name-
value pairs, where the name and value are both strings. While options are similar to the
attributes attached to pools (and files), options are not associated with data structures, but
with the current session. They are similar to Unix environment variables. Each file operation
(or, for that matter, any server or policy routine) can examine options relevant to it. Here

are the various routines, analogous to the pool attribute routines:

MnOptionGet (IN STRING option, OUT STRING *value)

MnOptionSet (IN STRING option, STRING value)

MnOptionRem (IN STRING option)

MnOptionGetAll (OUT STRING (*options)[], STRING (*values)]], int *count)
MnOptionSetAll (IN STRING (*options)[], STRING (*values)|], int count)

The basic file manipulation operations, and the file attribute routines, are also straight-

forward. Macros are provided (not illustrated here) to set up and examine variables of type

FILENAME.

MnFileExists (IN FILENAME fn) = boolean

MnFileCreate (IN FILENAME fn, OUT FILEID *f)
MnFileDestroy (IN FILENAME fn)

MnFileRename (IN FILENAME oldname, FILENAME newname)
MnFileOpen (IN FILENAME fn, OUT FILEID *f)
MnFileClose (INOUT FILEID *f)

16

MnFileGetAllAttrs (IN FILEID f,

OUT STRING (*attrs)[], STRING (*vals)[], int *count)
MnFileGetAttr ~ (IN FILEID f, STRING attr, OUT STRING *val)
MnFileSetAttr (IN FILEID f, STRING attr, STRING val)
MnFileRemAttr (IN FILEID f, STRING attr)

A number of additional file inquiries are provided, whose use should also be fairly obvious.
MnFileGetRoot returns a handle and/or an id, similarly to MnCreateHandle. MnFileSetRoot

allows the root object to be set from a handle, or, if the handle pointer is null, an object id.

MnFileGetRoot (IN FILEID f, OUT HANDLE *h, ID *id)
MnFileSetRoot (IN FILEID f, HANDLE *h, ID id)

MnFileName (IN FILEID f, OUT FILENAME *fn)

MnFileld (IN FILENAME fn, OUT FILEID *fid)
MnFileGetPools (IN FILEID f, OUT POOLID (*pids)]], int *count)

Finally there are a two global operations that manipulatc all the open files, and the

initialization routine (called once only, at the beginning of a Mneme session).

MnFileGetAllOpen (OUT FILEID (*fids)]], int *count)
MnFileCloseAll ()
Mnlnit 0O

Transaction Operations

The collection of routines provided is simple and straightforward. In addition to begin,
commit, and abort routines, there are routines to check if the session is currently in a trans-
action (MnTxnExists; note that no object operations are allowed outside of transactions),
to check if the current transaction appears to be committable (MnTxnOk; may involve in-
teraction with a server), and to commit the current transaction and immediately start a
new one (MnTxnAgain; provided to give a hint that objects manipulated by the committing

transaction are likely to be used by the new transaction as well).

MnTxnBegin ()
MnTxnCommit ()
MnTxnAbort ()
MnTxnAgain ()
MnTxnExists () = boolean
MnTxnOk ()

17

To give some support for associating session specific temporary information with Mneme
objects (e.g., heap versions of objects for direct use by a programming language), Mneme
supports the association of an integer with an object id. These associations are flushed
at every transaction commit (since the objects may be acquired by other users and the
associated information such be reconstructed). Since efficient langnage integration demands
that the programming language be more tightly integrated with Mneme (i.e., the language
run-time system should usually access Mneme objects in the Mneme buffers rather than

making a copy of them), these routines are likely to be reworked or dropped.

MnTxnGetinfo (IN ID id, HANDLE *h, OUT int *info)
MnTxnSetinfo (IN ID id, HANDLE *h, int info)

Profiling Operations

The interface includes several operations for acquiring statistics and counts. Two data
types are provided: FILEDATA is a structure giving various size aspects of a Mneme file, and
PROFDATA is a structure containing counts of various operations and times. These are not
client extensible, but are designed to be easily extended in the future. For each structure
operations are provided to print the structure on the standard output (whatever the C printf
library routine does). The Copy routines sample file or profile data into a client-supplied
structure, and the Reset routine resets the profiling counters and timers.

MnFilelnfoPrint (IN FILEID fid)
MnFilelnfoCopy (IN FILEID fid, OUT FILEDATA *d)

MnProfileReset ()
MnProfilePrint ()
MnProfileCopy (OUT PROFDATA *pd)

3.2 Implementation

As previously mentioned, the initial prototype does not implement the complete client
interface. We first discuss the limitations intentionally imposed on the initial implementation,
and then consider relevant aspects of the detailed design of the prototype (concepts, data

structures, algorithms, and internal interfaces).

Limitations of the Implementation

We were most concerned with the performance of the Mneme id and object manipulation

routines. Hence, in the first prototype we ignored transaction issues, and a number of

18

more advanced features not relevant to basic retrieval and access performance. Specifically,
options, pool and file attributes, multiple files, and cross-file references were not implemented.
We also imposed a limit on the total number of objects within a file to 1024 ~ 1024. This

limit simplified the implementation of some internal data structures.

Design Concepts: Logical Segments

A logical segment in the Mneme internal design is a set of object ids that have the same
high-order bits and vary only in the low order bits. In the initial prototype the logical
segment size is 1024 object ids. Thus, any two object ids that differ only within their 10
least significant bits are in the same logical segment. A logical segment of ids is the analog
(in object id space) of a virtual memory page (in a virtual address space). We require that
objects in the same logical segment be located “in the same place”; what this means will
be made more clear in a moment. The key feature of logical segments is that they allow us
to locate objects using a table or index that is much smaller than if we allowed each object
to be placed independently. In the initial prototype, the logical segment map is 1024 times
smaller than a per-object map would be. This smaller size will allow the map to fit in main
memory when a per-object map would not, and thus the logical segment grouping allows an
object fault to be satisfied with one disk retrieval. We also require that objects in the same
logical segment be co-resident in main memory, so logical segments are a unit of clustering,

too.

Given the various sizes mentioned, we can now indicate the format of an object id as it
is considered by Mneme; see Figure 1. The file number part was reserved for implementing

multiple files. In the prototype type that field is set to zero.

[F = File # (10 bits) | L = Logical Segment # (10 bits) | O = Object # (10 bits) |

Figure 1: Mneme Object Id Format

As stored within a file, the file number part of the id is always zero. When an id is
fetched from a slot, the file number is filled in with the number of the file containing the
object from which the id is being fetched. This number is simply the index of the file in
a (per session) open file table. When storing ids into slots, the file number part is zeroed

(cross file references are not implemented).

Each file has a logical segment table. The permanently stored version indicates (indirectly)
where each logical segment is on disk. When the file is open, the session maintains a map of

the resident logical segments. Thus, finding an object from its id proceeds by indexing the

19

session’s file table with the id’s file number, and then the file’s logical segment table with
the id’s logical segment number. A logical segment begins with an array of pointers to its
objects (a kind of object table), so the last step in locating a resident object is to index that
array with the object number from the id. This two-level direct map scheme for locating
objects is illustrated in Figure 2. We contrast it with other schemes later. Of course, the
lookup procedure can fail if the logical segment is not resident, in which case the logical
segment’s disk location is known, the logical segment is retrieved, the tables updated, and
finally the object is available as if it had been resident all along.

F| -]

\

—1
Object
Data

]

Logical File Table Logical Segment Table Object Table

Figure 2: Two Level Direct Map Object Lookup Scheme

Design Concepts: Physical Segments

A Mneme physical segment is a byte string that contains one or more logical segments of
objects. Physical segments are the items of discourse with servers, and it is generally assumed
that a physical segment is stored contiguously, allowing efficient retrieval and storage of the
segment as a unit. Our physical segments are analogous to the pages of database systems,
except that physical segments do not have any fixed size. Reasonable sizes for physical

segments probably range from a substantial fraction of a disk track up to a disk cylinder.

When an object fault occurs, we always retrieve a complete physical segment (a policy
routine could request additional segments). Thus the physical segment is the true unit of
clustering in Mneme. A file’s logical segment map merely indicates for each logical segment
the physical segment containing it. There is also a physical segment map that gives the
scrver id for each physical segment. This id is presented to the server interface to fetch or
store bytes of the segment. In the simplest server implementation, a server id is merely the
offset of the start of the segment within the operating system file that implements the Mneme
file containing the segment. Within Mneme, physical segments are identified by their index

20

within their file’s physical segment table. The internal version of the physical scgment table
includes the address of the physical segment’s data when the physical scgment is resident.

Objects are associated with Mneme pools via the physical (and hence logical) segments
that contain the objects. What this means is that each physical segment belongs to exactly
one pool, and that a pool thus manages a collection of physical and logical segments. This
makes considerable sense since a pool needs unambiguous control over the placement and
retrieval of its objects, and the management of the physical resources used to implement the

objects.

In sum, a physical segment implements a sef of logical segments along with their objects,
providing a unit of clustering, transfer, update, and interchange with back end servers. In
contrast, a logical segment is a group of object ids (and by implication a group of objects)
that are always located, stored, and retrieved as a unit. A logical segment can be viewed
abstractly as a piece of address space (actually, object id space), or concretely as a piece of

an object table (which is never assembled as a single contiguous table).

Data Structures

While our discussion of the logical and physical segment concepts has introduced impor-
tant parts of the Mneme prototype data structures, it is helpful to review the entire data
structure now that those concepts have been introduced. We will distinguish between the
sesston structures or forms and the disk structures or forms. The session structures are built
and used in main memory during a session. They access and update the disk structures,
which persist from session to session.

File tables. The logical file table (LFT) is a session structure. Mneme FILEID values
are integers that index the LFT. When a file is opened, its file header is copied into main
memory, and a field of the LFT entry for the file refers to the file header. The file header gives
the physical segment ids of the file’s physical and logical segment tables, etc. These tables
are retrieved from the server and copies kept in main memory as long as the file is open. For
simplicity, the in memory versions of the tables are always allocated at the maximum size,
though the disk resident version uses only as much space as necessary for the used entries.
The file header also indicates the file’s root object, gives the heads of various free lists, and

contains a variety of counters (e.g., how many objects are stored in the file).

Physical segment tables. There are in fact two segment tables associated with each Mneme
file in the prototype. The system physical segment table (SPST) contains entries for the
physical segments that contain internal table information (including the physical segment
tables themselves). These physical segments are exceptional in that they do not contain

logical segments or objects, but only specialized system data. This data is implemented in

21

terms of physical segments in order to maintain a uniform interface to the servers and to
allow the tables to change in size more conveniently (physical segments may be re-allocated
to accommodate size changes). The user physical segment table (UPST) contains entries for
the physical segments that contain client objects. The reasons for separating the physical

segment table into two tables are obscure and uninteresting.

The entries in the SPST and UPST are rather large in the prototype. They contain
the following information: the server id for the physical segment; the size of the segment,
its block size, number of blocks, and number of new blocks that have been added to the
segment since it was read in; the number of objects (actually, number of object table entries
among the logical segments) in the segment; several free pointers for managing storage in
the segment; the pool to which the segment belongs, that pool’s strategy, and a field used to
link together the segments of the pool; referenced and modified flags; and a pointer to the
data of the segment (if the data is resident).

Logical segment tables. There is a logical segment table (LST) for each file, and its entries
contain: the index (in the UPST) of the physical segment that contains the logical segment,
the index of the logical segment within the physical segment (recall that a physical segment
may contain many logical segments); a pointer to the object table entries of the segment (if
the segment is resident); and a pointer to the Txninfo data for objects in this logical segment

(if there is any Txninfo).

Pool allocation tables. Every file has a pool allocation table (PAT) whose purpose is to
record information about the pools in the file. A Mneme POOLI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>