Toward Support for Structural Evolution in
Exploratory Software Development

Philip Johnson

COINS Technical Report 89-110
February 1989

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This work is supported by the Air Force Systems Command, Rome Air Development Center, Griffiss Air
Force Base, New York 13441-5700, the Air Force Office of Scientific Research, Bolling Air Force Base,
District of Columbia 20332, under contract F30602-C-0008, supporting the Northeast Artificial Intelligence
Consortium (NAIC).

Contents

1

Introduction

1.1 Structural Evolution in Exploratory Development
1.2 Organization of the proposal

............

.......................

Problems and Processes of Structural Evolution

2.1 Object Emergence

2.2 Abstract Data Type Emergence.
2.3 Demand-driven typingot e e
2.4 Subsystem Extraction.,
2.5 Software Co-evolution.,

Environmental Support for Structural Evolution

3.1 A multi-grain size
3.2 A multi-grain size

Related research
4.1 Software structure

perspective on software structure
perspective on software process

evolution e e e e e e

411 Workat IST
4.1.2 Pre-proposal research by the author.
4.2 Software development methods

4.3 The software process

4.4 Type systems and

type inference

4.5 Related work in hierarchically evolving systems

Research plan
5.1 Contributions . .

..............................

5.2 Timeline and the To-Do Set

5.3 Ewvaluation. . . .

Summary

..............................

12
12
13

14
14
14
16
16
17
18
20

22
22
23
24
24

25

1 Introduction

1.1 Structural Evolution in Exploratory Development

Structural evolution is common in software, but pervades exploratory software due
to its ezperimental and domain-embedded nature!. Experimental software is a vehicle
for discovering new computable solutions to problems. In contrast, non-experimental
software is simply the implementation of a problem solution that was discovered
before implementation began. Domain-embedded software is software that, once
implemented, changes the nature of the problem to be solved. Experimental, domain-
embedded software exhibits frequent and unpredictable evolution in its behavioral
requirements.

Evolution in behavioral requirements induces structural evolution by establishing
new structural goals. For example, software is normally more easily understood if its
structure corresponds to its behavior. A common motivation for reorganization of
exploratory software is to maintain this structural-behavioral correspondence.

New behavioral requirements for the exploratory system may be shared to some
extent by another system, and the two projects may find it advantageous to develop
or reuse a common subsystem. This goal of exploitation of community resources
normally leads to structural evolution as well.

Yet another way in which behavioral evolution induces structural evolution is
through the desire for developmental asynchrony. Developmental asynchrony occurs
when the structure of the system allows each developer to work autonomously on the
current set of behavioral enhancements without “stepping on one another’s toes.”

Unfortunately, these goals for software structure are often mutually exclusive.
Shared subsystems normally involve compromises on both sides, leading to struc-
tural idiosyncrasies which are tolerated because of the benefits of sharing. Similarly,
the structural organization best suited to asynchronous implementation of the cur-
rent behavioral enhancements is rarely identical to the one which maximizes the
structural-behavioral correspondence.

Ideally, the structure of an exploratory system would be fluid, adapting to the
changing behavioral requirements and the changing goals for the structure. For ex-
ample, when new developers join a project, the structure might evolve into close
structural-behavioral correspondence to ease their transition. As they become famil-
iar with the system, the structure might evolve away from this correspondence and
toward one more supportive of asynchronous development. In reality, however, the
structure of an exploratory system is difficult to change, and evolutionary behavior

!These terms are adapted from [Giddings, 1984].

of this sort rarely if ever occurs.

I believe that there are several important reasons why the structure of exploratory
software fails to fluidly evolve in response to the changing goals of the development
process.

First, there is relatively little support for the process of structural change—
virtually any kind of structural reorganization must be accomplished by hand. Sec-
ond, support for structural change requires representing software structure, and ex-
ploratory languages require different structural representations than extant represen-
tations, which were developed for more traditional languages. Third, changing the
software structure, even to satisfy an important structural goal, means new informa-
tion for developers to assimilate about the software. Highly evolutionary software
structures introduce new overhead in the form of “keeping up” with the changing
structure. In some cases at least, developers might opt for a familiar but idiosyn-
cratic structure over an unfamiliar but “better” one.

This proposal describes the design of an environment to help address these prob-
lems of structural evolution in exploratory software. The environment provides auto-
mated support for common structural transformations in exploratory development,
thus alleviating the overhead of manual change. It employs novel type and module
representation mechanisms amenable to exploratory language features. It helps devel-
opers cope with increased structural fluidity by representing the history of structural
evolution and provide techniques to help developers update their structural model
of the system. Finally, I hope the environment will serve as a knowledge acquisition
tool for processes of structural evolution. This knowledge can be used to develop new
forms of automated assistance, as well as to learn about desirable and undesirable
forms of structural evolution.

Although the structure of a system is intimately related to its purpose, my current
focus for the environment is on domain-independent representations of knowledge
about structure and processes of structural evolution. I believe that much useful
knowledge about structural evolution can be captured in domain-independent form,
and that this form has the advantage of immediate applicability to a wide variety of
developmental contexts. In addition, it does not introduce overhead in specification
and maintenance of semantic information about the purpose of systems and their
components. Automated semantic analysis techniques (for example, [Letovsky, 1988])
can provide some of this information without incurring this overhead, however.

1.2 Organization of the proposal

To motivate my approach, the next section presents several examples of evolutionary
phenomena in exploratory development, the structural problems they pose, and the

forms of automated assistance I hope to provide. The following section discusses the
organization of the environment—the organizing framework for these processes and
structural representations. These two sections together lay out the core of my thesis:
the specific genre of problems for which I hope to provide computable answers.

The next section contrasts my approach to other related work: structural evolu-
tion in software, software development methods, the software process, type systems,
and domain-independent characterizations of evolutionary processes.

The penultimate section presents my research plan. This section outlines the
contributions I expect this research to make, the amount of time I believe I’ll need
to make them, and the methods I intend to use to evaluate the contributions. The
proposal concludes with a brief summary.

2 Problems and Processes of Structural
Evolution

In the introduction, I argued that exploratory programming benefits from highly
evolutionary software structure, but that this evolution is hampered by the lack
of automated support. I also claimed that structural (as opposed to behavioral)
knowledge can suffice to provide important forms of automated support for structural
change. While compelling support for these hypotheses requires experience with
these types of mechanisms, this section offers evidence for the plausibility of these
hypotheses through four examples of structural support mechanisms based upon
structural knowledge. Following these examples is a subsection listing some other
promising forms of structural evolution for potential future research.

2.1 Object Emergence.

While some objects? are recognized and implemented as such in the initial implemen-
tation of a system, many others emerge from the convergent evolution of previously
unrelated parts of the system over time.

For example, functions often implement “inline” data objects and operations that
are used once and then thrown away when the function completes. Over time, if new
contexts arise in which these sets of data objects and operations are applicable,
structural aggregation as an object is preferable to simply copying the inline code to
each of the new contexts. Objects provide obvious benefits over multiple occurrences

2] use “object” in the generic sense of an aggregation of functions and data supported through
some structural construct such as defstruct or defclass

of inline code: the localization eliminates multiple updating; the common occurrences
are explicitly recognized; and new instances can be created more easily.

Object emergence can also be induced by the introduction of object constructs
into a language, which has occurred with the Common Lisp Ob ject System, C++, and
Object Pascal. For example, there are many Common Lisp systems which implement
objects conceptually, but without any structural support from the language. A CLOS
implementation would provide many developmental benefits by making these implicit
objects explicit.

While object emergence is a beneficial developmental phenomena, the tasks in-
volved are poorly supported or even unsupported in current environments. First,
there are time-consuming but relatively straightforward “cutting and pasting” tasks:
definition of the structural template; abstraction of inline code into functions and
replacement of the code by function calls; creation and initialization of the structure
instances; and replacement of inline variable references by calls to structure accessor
functions. In addition, analysis is involved in inserting the new object into the exist-
ing object hierarchy: how should the hierarchy be changed in order to accommodate
the new object?

My proposed environment can provide a great deal of support for the process of
object emergence, simply by representing and exploiting structural knowledge about
object language constructs and other forms of code, and by representing the sequence
of tasks required to perform this type of structural evolution. First, the process
has information about object constructs such as structures or CLOS classes, and
how to construct their defining forms. Second, the environment supports a process
based on lambda-abstraction for the creation of functions from inline code. Third, it
encodes information about alternative ways in which an extant object hierarchy can
integrate a new object. This information is integrated into a single emerge-ob ject
process.

The encoding of this knowledge changes the process of ob ject emergence into a col-
laborative process between the environment and developer, rather than an unaided,
manual undertaking. After the developer initiates the emerge-object process, the
environment asks for the kind of structure to be created, labels for slots, sections
of inline code to be transformed into methods, etc. It then creates the new object
definition and replaces the old in-line code with the corresponding object references.
Finally, the occurrence of this evolutionary process and the effect it had on the soft-
ware structure is preserved in the environment as part of the evolutionary history of
the system. These historical mechanisms are discussed further below. An example
of the creation of a CLOS object from an inline function is illustrated in figure 1.

(defclass stack ()
((state :initform nil :accessor state)))

(defmethod push (obj (stk state))
(setf (state stk) (cons obj (state stk))))

(defmethod pop ((stk state))

(prog1
(car (state stk))
(seff (state stk) (cdr (state stk))))

(defun foo ()

(tet (obj (defun foo ()
(state nil (let (obj '
(setf state (cons ‘a state)) (stk (make-instance 'stack)))
(setf obj (car state)) (push ‘foo stk)
(seff state (cdr state)))) (setf obj (pop stk))))

A Stylized, Before and After Example of Object Emergence.

The arrows point out how the inline code was extracted into the object definition.
The original and restructured foo functions appear side by side.

Figure 1: An example of object emergence

2.2 Abstract Data Type Emergence.

Another general class of evolutionary processes relates to the emergence of abstract
data types. While distinguishing between ADTs and objects goes beyond the scope
of this paper, the two basic differences are: (1) the aggregated software entities in
an ADT obey a protocol distinguishing an external public interface from an internal
private representation; and (2) relationships between types are based upon shared
semantics, while relationships between objects are based upon shared code. In ex-
ploratory development, an ADT often emerges from an object as experience with
the object leads to the recognition of which components should be hidden (in order
to ease their re-implementation, for example), and which define the public interface.
ADTs emerge in other ways as well, such as from inline code, or from the union or

fission of other ADTs.

While the emerge-adt process is similar to emerge-ob ject in its general style
of usage—the developer invokes it, the process prompts the developer for required
information, restructures the code appropriately, and records the event—supporting
ADTs in exploratory languages like Common Lisp poses several additional interesting
problems.

While Common Lisp provides defstruct or defclass for object definition, it pro-
vides no constructs for explicit support of abstract data types. This may be a result
of a more general problem: most language constructs for ADT specification are em-
bedded within statically typed languages that, in addition, disallow dynamic function
invocation. Although run-time type and function definition as well as mechanisms
such as funcall, eval, and apply are prized advantages of exploratory languages
like Common Lisp, they complicate enforcement of protocols for defining public and
private interfaces.

Supporting abstract data type definition with the emerge-adt process thus in-
volves representing knowledge about structure and process analogous to that used to
provide automated support for object emergence. In addition, the environment must
provide the structural constructs missing in Common Lisp for ADT definition and
relationships, as well as mechanisms to enforce these protocols. Our environment
provides a relatively simple protocol to distinguish the public and private compo-
nents of an ADT. To enforce this protocol—-in other words, making sure private
components stay private—I are designing a mechanism involving a mixture of static
and dynamic mechanisms termed demand-driven typing.

2.3 Demand-driven typing

Demand-driven typing is a new approach to providing exploratory environments with
the benefits of enforcable abstract interface mechanisms, without requiring everything

to be typed, and without prohibiting dynamic function/type definition and invoca-
tion.

Very briefly, demand-driven typing for the purposes of ADT protocol enforce-
ment proceeds as follows. First, it checks whether structural and type information
obtainable through static analysis is sufficient to show conformance with the cur-
rently defined ADT protocols. It does this through constructing a representation of
the control and data flow in the program which attempts to determine which type
or set of types is passed to or returned by each function, and whether other types
might be returned or passed whose identity cannot be determined through these
static methods. Figure 2 illustrates an example of a function whose types can be
determined through this process, and one whose types cannot be precisely identified.

Types can be determined Types cannot be determined
(defun foo (bar) (defun foo-2 (baz z)
(cond ((null (car bar)) (funcall baz z))
(cdr bar))
((null bar)
"error”)))

Demand-based typing examples.

For foo, demand-based typing can infer the type of bar as a list, and the returned types
of foo to be either a string or a list .

For foo-2, it can only determine that baz is a function that can be passed a single
argument, and it can infer nothing about z.

If more information than this was necessary to enforce an ADT protocol, it would be
requested from the user.

Figure 2: Examples of Demand Based Typing

If this static analysis of the program is not sufficient to demonstrate that the ADT
protocol is enforced, then the missing type information is requested from the user. If
this additional information is indeed sufficient to enforce the protocol, then run-time
enforcement of the user supplied type information is compiled into the code, and the
process ends there.

If the user is unable to supply enough type information to enforce the protocol,
then as a last resort, the remaining unenforced private functions and variables are
monitored by run-time mechanisms which examine their call stack when they are
invoked, and signal an error if they were not called through the appropriate public
interface functions.

2.4 Subsystem Extraction.

A last example of structural evolution in exploratory development is the extraction
of part of a system for use in a different context. For example, some set of functions
developed for one system might provide behaviors closely related to the requirements
for a different system. Successfully exploiting this form of community resource be-
gins by answering the following “simple” question: Given the set of functions which
implement the “top level” of the desired subsystem, what other functions and data
types are required by this top level set?

In my proposed environment, the extract-subsystem process will provide auto-
mated support for developers answering this question. In traditional (non-exploratory)
languages, this process would simply consist of static analysis of the system to de-
termine the transitive closure of the calling hierarchy generated from the top level
set. Interestingly, two characteristics of exploratory languages like Common Lisp—
dynamic function invocation and polymorphism—make this process more compli-
cated.

First, dynamic function invocation (through funcall, eval, and apply) make it
difficult to place any statically-determinable constraints on the run-time calling hi-
erarchy. Second, polymorphic functions can lead to the transitive closure mechanism
generating a subsystem containing many extraneous functions not actually required
in the new context. For example, a common form of polymorphic function calls dif-
ferent sets of functions depending on the type of object passed to it. For a particular
interface set, only a subset of these types might be passed, resulting in a number of
extraneous functions that the transitive closure technique would include.

Demand-based typing mechanisms again provide means to address these problems
without imposing undue overhead on the development process. When the developer
invokes the extract-subsystem process, she is prompted for the set of functions
that will form the top level of the new subsystem. An augmented form of a transitive
closure mechanism generates the subsystem. This mechanism queries the user for
additional type information in the cases where dynamic function invocation occurs
with insufficient constraints on its arguments to determine which functions should
be included in the extracted subsystem.

The extract-subsystem process is also able to “rewrite” code in a limited sense.
Suppose a given polymorphic function dispatches on the types of its arguments
through a cond clause in the original system. In the extracted subsystem, how-
ever, suppose the polymorphism is reduced—fewer types will be passed, and thus
some of the cond clauses will never be executed. When this situation can be recog-
nized, the extract-subsystem will “extract” a new version of this function with the
vestigial clauses removed. Not only does this result in clearer code, but also a smaller
extracted subsystem, since the functions called within the deleted clauses will not be

10

extracted.

Subsystem extraction is just the first step of a more far reaching process—the
sharing of behavior and code between two systems. Improved support for this larger
process is a possible direction of future research. For example, while the subsystem
extraction process informs the environment that such sharing has begun, what further
support can the environment provide downstream from this event? For example,
should a copy of the code be created for the new system, or should a single instance
of the code be shared? One form of such software coevolution is discussed next.

2.5 Software Co-evolution.

A virtually unexplored area in software development is software co-evolution, where a
set of systems evolve in response to each other. One form of software co-evolution is a
“extract-evolve-abstract” process, whereby a subsystem is extracted from one system
for use in another, each version of the subsystem undergoes subsequent evolution
within the two developmental contexts, and at a later time, an single abstraction of
the two subsystems is created and used in both contexts.

Software co-evolution is a very common event in environments where a large
number of exploratory projects are occurring in similar or identical development
environments, such as the Al research in the University of Massachusetts COINS de-
partment. A typical example of software coevolution which I participated in occurred
last spring between the Environment File Editor system [Hildum, 1988] and the Ada
Restructuring Assistant system [Johnson et al., 1988]. In this case, we discovered
during the development of the ARA system that a suitable graphical interface for
ARA could be similar to EFE’s interface. So, we (manually) extracted the code
relevent to the graphical interface from the EFE system, made a copy, and modified
it for its new context. This process naturally led to a more domain-independent, more
portable user interface code—at least for the version in the ARA system. The next,
“natural” step—creation of a single interface module for both of these systems—was
never taken for a single, simple reason: the high overhead of the process.

Asimplied above, the extract-subsystem process provides useful support for the
first step of this extract-evolve-abstract process of software coevolution. Struc-
tural support for the subsequent evolution and abstraction involves representations
that: (1) help the developers understand what structural modifications occurred as
the two versions evolved independently within their separate contexts; (2) the struc-
tural differences that exist between the two versions of the subsystems at the time
of abstraction; and (3) support for the structural “reconciliation” of the two versions
into a common abstraction.

The representational mechanisms for software coevolution encompass not only the

11

development of a single system, but the entire community of developing systems. In
addition, software coevolution requires representation of code directly shared by two
systems, and “code cousins”—sets of code with a common ancestor but incorporating
adaptations to their own developmental context.

3 Environmental Support for Structural
Evolution

While these examples of evolutionary processes promise aid in attaining structural flu-
idity, creating a supportive environment for their development and application poses
new problems. First, each of these processes require structural representations at a
variety of levels: from the level of entire projects sharing subsystems, to object and
type aggregations, to the clauses making up a cond expression. Second, the processes
aren’t necessarily independent: subsystem extraction may lead to the aggregation of
new objects or types, for example. Third, as indicated in the introduction, support
for structural evolution must not only include mechanisms to automate change, but
also mechanisms to explain how and why change occurred. In this section, I outline
a key facet to be developed in my proposed research: the explicit representation and
manipulation of software structure at multiple grain sizes.

3.1 A multi-grain size perspective on software structure

Software “structure” can refer to many things, such as the structure of a cond clause,
the structure of an object or type hierarchy, the subsystem structure of a system, or
the structure of a set of systems sharing subsystems directly, or even copying code and
modifying it for their own purposes. I believe that environmental support for struc-
tural evolution depends crucially on the use of a representation for software structure
that encompasses at least all of these meanings of structure. To my knowledge, no
environment or language to date provides such a “broad spectrum” structural repre-
sentation language, though separate, non-integrated mechanisms do exist for many
of them. Here is a general overview of my work on such a representation language.

Character. The character grain size is the smallest grain size represented, since it
normally corresponds to the smallest “building block” manipulated by devel-
opers in constructing source code.

Structural relationships at the character level consist of little more than suc-
cessor and predecessor relationships.

Process phenomena also are limited to standard editor functions like insertion,
deletion, formatting, and the like. The character level will be adapted from
and built on top of the Explorer Zmacs editor environment.

12

Expression. Expressions are syntactically legal groupings of characters, which in
Common Lisp correspond to S-expressions. Expressions can be recursively
nested, such as when a cond clause is embedded within a defun expression. Top
level expressions are not embedded within any other expression, and generally
correspond to function and variable definitions.

Structural relationships at the expression level correspond to those recorded by
cross referencing programs, such as calling relationships among functions, and
referencing relationships among functions and variables.

Process phenomena concern the addition, deletion, and migration of expres-
sions, which correspond loosely to compilation/evaluation (for addition), editor
operations (for deletion) and a novel form of very fine-grained version control
mechanism (for migration).

Object/Type. Sets of top level expressions are aggregated into objects and abstract
data types. Classes and ADTs can be aggregated into larger classes and ADTs.
Structural relationships at the object/type level correspond to inheritance re-
lationships between objects, and representations of public and private aspects
of abstract data types.

Process phenomena concern events like object and type emergence, deletion,
and extension, which were discussed above.

System. Sets of objects and abstract data types are aggregated into subsystems,
which are themselves aggregated together into larger subsystems, and so forth
until an aggregation representing an entire development project is represented.
Structural relationships correspond to PIC-style [Wolf, 1985] requires/provides
information, as well as representations for code sharing and code “cousins” with
other systems.

Process phenomena concern events like subsystem extraction, which was dis-
cussed above.

Community. Entities at the community level are entire development projects.
Structural relationships between projects represent shared subsystems, or sub-
systems with a common developmental ancestor.

Process phenomena concern events like the extract-evolve-abstract form of soft-
ware coevolution, discussed above.

3.2 A multi-grain size perspective on software process

Within this framework, each evolutionary process “belongs to” one level, though
it invariably triggers processes at other levels. For example, extract-subsystem
is a system level process, through it might be initiated as part of a community
level process to share two subsystems, and it may in turn eventually impact at the
expression level by initiating a process to delete a cond clause.

13

In addition to supporting the decomposition of and interactions between pro-
cesses, the multiple grain sized perspective allows the evolutionary history of the
system to be viewed at different levels of abstraction. The environment not only
represents the current state of the system, but also all previous states, and the evo-
lutionary processes that produced one state from another. This corresponds in some
ways to a version control facility, but contains significant new information about the
structural events that transformed one version of the system into another. Traditional
version control mechanisms do not store this information at any level of abstraction
higher than the character level. While my proposed environment represents differ-
ences between versions at this level of abstraction, it also represents the differences
between versions as the evolution of expressions, and as the evolution of objects
and types, and as the evolution of subsystems, and as the evolution of relationships
between this system and others in the community.

In addition, the decomposition of the subsystem extraction process into ob-
ject/type and expression level processes means that developers can not only view
the difference between successive versions of the system at the system level, for ex-
ample, but they can also see how the evolutionary phenomena that occurred at the
system level relate to the evolutionary phenomena at other levels.

Of course, evolutionary phenomena might not occur at all of these levels in every
successive version of the system. Finally, the design of a user-friendly interface to
the plethora of structural information stored in this environment is being left to
post-proposal research.

4 Related research

4.1 Software structure evolution

4.1.1 Work at ISI

Research at the USC Information Sciences Institute on the Common Lisp Framework
is closely related to this proposed research. While their environment is oriented

primarily toward support for program synthesis, two papers focus on their approach
to supporting structural change.

[Narayanaswamy, 1988] discusses the use of a static analysis tool embedded within
the Common Lisp Framework [Goldman, 1988]. This tool determines typical cross
referencing information (such as calls, uses, binds, sets, etc.) from analysis of the
source code. It extends the capabilities of cross referencing systems by supporting
“automation rules”. These rules are production rules whose left hand side specify
patterns to be matched against the current static state of the software. Whenever the

14

cross referencing information about the software under development changes (such
as through redefinition of a function, or addition of a new function), any applicable
automation rule is invoked. The author cites applications such as automatic recom-
pilation (such as when a list data structure is changed to a hash table), and various
situations where the tool can inspect the changes made to a function and determine
which other functions the programmer must modify as well.

While Narayanaswamy’s paper focuses on expression level phenomena specific to
Common Lisp, [Balzer, 1985] takes the same tack on object-level structures (a.k.a.
“frame-based knowledge representation languages”). While the structural forms are
different, and the supporting tools less sophisticated, the approach is identical: an-
alyze the difference between two successive versions of the structure, and propagate
the changes automatically if possible, or at least support the programmer in doing it
themselves. Object dependencies are induced primarily through inheritance, and so
the types of changes supported consist mainly of determining the effects of changes
to the set of instance variables or methods of a particular class on all of its subclasses.

Both of these works share my emphasis on the use of structural knowledge to sup-
port evolutionary development. However, I believe that I take a more comprehensive
approach to the representation and application of structural knowledge.

First, their work represents structure at a single grain size, corresponding to a
collapsing together of my expression grain size and the object half of the object/type
grain size. An obvious difference is thus my representation of structure at the type,
system, and community grain sizes, which allows my environment to represent and
support additional developmental phenomena.

A more subtle difference is the concept of grain size itself: that the structure of
a system, as well as its evolution, can be viewed at these different levels. Thus, a
developer can not only choose to view some portion of the system or its developmental
history at, say, the level of the objects and types in the system, but can also “increase
the magnification” by reducing the grain size to view those same changes at the
expression level.

In addition, the static analysis tool reacts only to the differences between the cur-
rent expression level structure and its immediate predecessor. Evolutionary phenom-
ena that require a sequence of structural changes (such as object or type emergence)
are not currently supported by their mechanisms.

Finally, their work raises a question: within a framework designed to support pro-
gram synthesis (thus requiring higher level semantic specification of system function),
why is this behavioral information not exploited to support structural change?

15

4.1.2 Pre-proposal research by the author.

Although I haven’t always referred to it in that manner, most of my graduate school
research relates to software structure evolution.

In the research reported in [Johnson and Lehnert, 1986), I designed an environ-
ment, the PLUMBER’S APPRENTICE, with “a set of languages which describe the
developing system with different levels and types of abstraction.” The structural
focus of these languages clearly parallels and has influenced the current work. How-
ever, I felt the focus on natural language understanding systems to be artificially
narrow: the phenomena, and the required mechanisms, appeared generic to any kind
of exploratory development.

In [Johnson, 1987], I generalized my focus, and proposed the “type extension” de-
velopment method for structural evolution of object oriented systems. This research
addresses the same issue of this proposal: how to control and represent structural
evolution, but through radical constraints on the development method, rather than
through representation of knowledge about structure and process.

In two recent papers, I explored issues in the restructuring of software at the
subsystem level. [Johnson, 1988] uses weak structural knowledge and a weak cluster-
ing algorithm to perform subsystem creation in an entirely automated fashion. The
rather dismal results of that approach led me to design a system which used some-
what deeper structural knowledge in a collaborative modularization process between
the system and the user. This work is described in [Johnson et al., 1988]. However,
the limitations of that system have convinced me that much greater performance can
be achieved through the exploitation of structural representations at not only the
subsystem level, but at other levels as well. My current research tests this belief.

4.2 Software development methods

By necessity, this research on structural evolution must at least “take a stand” of some
sort on software development methods and the software process (and may ultimately
be viewed as research on development methods and process).

The principle reason for a methodological stance is the fact that some methods
view large-scale structural change as undesirable in or even absent from properly
developed software. The classic “waterfall” software development method [Boehm,
1976} implies that structural change is a result of errors during pre-implementation
life cycle phases. The “design for change” method [Parnas, 1979] takes a slightly
more liberal view, permitting ADT representation re-implementation. However, this

method still requires the types and extent of changes to be designed in prior to actual
implementation.

16

More recent methods like “prototyping” [Bonet and Kung, 1984) and “spiral de-
velopment” [Boehm, 1985] are even more permissive in the kinds of changes possible
over the course of development. However, these changes tend not to occur through
evolution of the original system, but through a succession of re-implementations.

In contrast to these approaches, exploratory development (aspects of which are
described in [Sandewall, 1978; Swartout and Balzer, 1982; Sheil, 1984; Partridge,
1986]) views large scale structural change as acceptable, at least for experimental,
domain embedded systems. Rather than a prescriptive method, exploratory devel-
opment is a descriptive set of design heuristics such as structured growth. These
heuristics are supported by certain language and environmental features such as:
dynamic function and type definition; dynamic function binding and invocation; rep-
resentation of code as a data structure in the language; and a blurred boundary
between what functionality “belongs” to the environment and what belongs to the
application?.

The highly dynamic (both in the run-time and the evolutionary senses of the
word) character of exploratory domains and development features come into direct
conflict with conventional structural representation and enforcement strategies, which
rely upon static analysis techniques. As a result, exploratory environments neglect
to directly support some structural concepts, such as abstract data types, which have
unquestionable benefits.

Thus, exploratory development is a fertile domain for exploration of structural
evolution for two reasons: first, exploratory development exhibits and supports a
wide variety of structural evolution, and second, the attempt to provide structural
representations and support within its dynamic character provides new and interest-
ing research issues.

4.3 The software process

Research on the software “process” differs from software development methods in
the emphasis on the specific actions taken during development (such as: modules
are compiled before executed), in contrast to the abstract strategies prescribed by
methods (such as: step-wise refinement)?. My research can be viewed as a process-
level approach to the description and support of the structural aspects of exploratory
development. The plan-based approach [Huff and Lesser, 1988] and the process
programming approach [Osterweil, 1987] exemplify much of the research.

The plan-based approach employs plan recognition techniques to recognize fea-
tures of the development process from the pattern of tool invocations, such as direc-

3Not all of these elements are needed for exploratory development, of course.
4But see the process programming approach below.

P 17

tory and file creation and deletion, compiler invocation, etc. Once a plan has been
recognized, planning techniques are applied to support the successful completion of
the activity, by automatically carrying out certain tasks, or by detection and possibly
correcting certain classes of errors. For example, the system can keep, track of system
versions, provide certain kinds of developmental summaries, and detect inappropriate
tool invocation (such as editing a file “frozen” as part of a system release).

Process programming also supports certain evolutionary phenomena at this gra.fn
size. Process programming attempts to provide algorithms to implement the abstract
strategies of development methods like step-wise refinement. A piece of a process
program looks something like this:

For case := 1 to numcases do
test(executable, tests[case]);
if "resultOK (result) v
then All_Fn_Perfectly_0K := False;

Process programming differs from the plan-based approach principally by its ori-
entation towards top-down control of the process, while the plan-based approach
offers both top-down control and bottom-up recognition of development. In addi-
tion, process programming currently remains a speculative research idea, with no
reported experiences with an actual implementation.

My proposed research departs from both of these approaches primarily by the
more comprehensive representations of structure and structural change. None of the
evolutionary phenomena described in this proposal, for example, could be addressed
by the current form of the plan-based or process programming approaches.

4.4 Type systems and type inference

My proposed demand-based typing technique adapts abstract data type definition
constructs to the exploratory development environment through the use of type in-
ferencing techniques. This adaptation requires certain trade-offs, which I will describe
through comparison to other type systems.

All current abstract data type mechanisms are implemented within statically
typed or strongly typed languages. Statically typed languages, such as Ada, require
every variable and function in the source code to be assigned a type through static
analysis. In languages like Ada, type assignment is normally done through explicit
type declarations in the source code, though a small amount of type inference may
be performed.

Strongly typed languages, such as FUN [Cardelli and Wegner, 1986] and ML
do not require the types of all variables and functions to be identified explicitly.
Instead, these languages require type conformancy—the ability to prove through

18

static analysis that types are used consistently. In other words, rather than determine
the exact type of an entity, these languages simply determine what constraints the
use or implementation of the entity imposes on its type, and then proves that these
constraints hold. Thus, for example, the length function in these languages takes
an argument of type list (a)—where a is any type at all.

‘The major advantage of strongly and statically typed languages is that type
inconsistencies are caught during compilation, eliminating the risk of these classes of
errors escaping into the production environment. Second, little or no type checking
needs to be performed at run time, allowing faster compiled code.

The disadvantage is that these mechanisms which completely check type infor-
mation statically is that they exclude many expressive exploratory language fea-
tures. First, constructs like funcall, eval, and apply are used to define and invoke
functions and types at run-time—obviously problematic for static type mechanisms.
Second, static mechanisms must represent the surface syntax of the language, yet
constructs like the Common Lisp macro facility allow this syntax to be extended
dynamically. Third, the equivalent representation of data and procedure in Lisp is
problematic for type mechanisms: is

(lambda (x) (+ 1 x))

a list or a function? Obviously, it is both, yet no current type mechanism allows
an object to be typed as both a data object and a function object at the same time.
Finally, most object definition constructs rely upon run-time type determination and
dispatching mechanisms.

My demand-based typing approach attempts to provide exploratory development
environments with some of the robustness offered by these typing mechanisms, with-
out disallowing the expressive power of exploratory language constructs. It accom-
plishes this by relaxing the completeness and static criteria of static and strong typing
mechanisms. The completeness criteria is relaxed by not requiring all functions and
variables to be typed, but only those whose types are necessary to enforce any ADTs
defined in the system. Second, this enforcement need not be obtained solely through
static means, but may extend into the dynamic environment if necessary.

Demand-based typing allows exploratory systems to be initially implemented with
little or no type checking, but as the system evolves and “matures”, increasing num-
bers of abstract data types can be introduced. Ultimately, an exploratory system
could evolve to the point of using only abstract data types, which would provide
much of the benefits of strong and static type checking mechanisms.

19

4.5 Related work ih hierarchically evolving systems

My approach to software structure evolution is influenced greatly by research in other
fields related on evolutionary phenomena, and the effects of evolution on system
organization.

My multiple grain size representation of software structure corresponds to a “hi-
erarchy of control” [Grene, 1987]. Hierarchies of control are “systems that consist
of smaller units contained in larger ones, in such a way that the lower level units
provide material for the arrangements at upper levels and the upper level arrange-
ments constrain and thus control the activities of the lower levels”. Polyani refers
to these hierarchies as “systems of dual control”—while the activities at lower levels
are constrained by the upper levels, the upper levels depend upon the lower levels
for their very existence [Polyani, 1968).

Although understanding systems of dual control seems to involve only interactions
at two levels, three adjacent hierarchical levels must actually be studied, since any
single level is both constrained by the level above it and produced by the level below
it. [Salthe, 1985] terms this the “triadic perspective”, and claims it is essential to
understanding any evolving hierarchical system.

The necessity of the triadic perspective is recapitulated by [Beer, 1985], this time
in the context of business organizations. Beer views healthy business organizations
as organized into a hierarchy of control, where at least some of the systems at each
level must be “viable”. Viable systems can exist in at least some environments
other than the system in which they are currently found. In the context of business
organizations, one viable system is a department that could be sold off and whose
required goods and services could be obtained from an independent firm. Viable
systems are necessary because it is only these that actually “produce” the system at
the next level; the other, non-viable systems exist to stabilize the environment for
the viable systems.

While these works make statements about the utility of hierarchical structure for
complex systems, [Simon, 1962) goes even farther in claiming their necessity. In so do-
ing, Simon introduces a subtly different constraint on component systems than Beer:
rather than viability, he emphasizes stability, and supports this with the parable of
Tempus and Hora. Tempus and Hora were two harried watchmakers whose assembly
technique differed only by the presence of stable subassemblies. Hora. produced 10
stable subparts of 10 pieces each, arranged ten of those into a stable subassembly of
100, and so on. When interrupted, only the last incompleted subassembly would fall
apart. Tempus, on the other hand, had only one stable assemblage—the completed
watch—and thus needed to start over each time he was interrupted. Recast in Beer’s
terms, Hora created a series of viable subsystems which could exist in an environ-
ment outside that of a completed watch, while Tempus’s watch had no internal viable

20

subsystems.

Simon’s concept of stable subsystems has been applied to the domain of soft-
ware development on at least two occasions. {Wegner, 1983] claims that the module
construct is the software analogue of a stable subsystem, while [Fischer and Lemke,
1988] makes the same claim for objects and the inheritance hierarchies constructed
from them.

I believe that these analogies miss the mark in an important sense, at least for
exploratory development. Although stable subsystems are often reified through ob-
jects or modules, these structures do not comprise sufficient conditions for stability.
The same logical error arises from claiming that molecules are stable subsystems for

biological systems—although many types of molecules are stable, many others are
not.

In exploratory development, stable subsystems can be constructed from modules
or objects or types, but their crucial property is their stability in the face of change
in the desired behavior for the system. Unstable subsystems can also be constructed
from modules, objects, or types, but they end up either discarded or dismantled and
reconstructed over the course of development.

As Tempus and Hora illustrate, stable subsystems catalyze evolution, speeding
the generation of more complex behaviors. For this reason, stable subsystems are
often created by decree, such as in the standardization of Common Lisp and other
programming languages. At some point, the benefits obtained from stability outweigh
the disadvantages of an imperfectly adapted language. This dynamic tension between
stability and adaptation pervades exploratory development.

Beer’s concept of viability relates to the desire for communal resource exploitation
in exploratory development. For software resources to be shared between developing
systems, they must be viable—able to exist within both environments. Mechanisms
to identify viable subsystems can also be applied to the problem of team develop-
ment: developers working on independent viable systems can more easily represent,
understand, and control the effects of their modifications on the other’s work. The
extract-subsystem process provides some support for the creation of new viable
subsystems.

Finally, Salthe’s triadic perspective generates a viewpoint on how understand-
ing (and thus representation) of the interactions between hierarchical levels could be
organized. Change at one level of software structure can only occur when the struc-
tural context at the next higher level allows it, and has as an effect the inducement
of structural change at the next level below it. The triadic perspective provides an
organizing principle for the design of structural levels, evolutionary processes, and
their interactions. For example, the emerge-ob ject process must have as a precon-
dition an appropriate system grain size organization, and must induce appropriate

21

conformance at the expression level below.

The triadic perspective, stability, and viability are intriguing concepts to explore
within my research, as my domain and environment provides the first opportunity
to explore their computational encoding. However, I currently desire to leave this
research avenue open for post-thesis efforts, and the next section outlines the chunk
of work I intend for my immediate future.

5 Research plan

This research begins with the claim that frequent and unpredictable change is an
inevitable consequence of exploratory development—the developmental strategy re-
quired for experimental, domain-embedded software. I believe that structural change
is a significant component of the overall evolution of exploratory software, and that,
furthermore, representation of structural knowledge can suffice to provide important
new support for the process of exploratory development. What sets this research
approach apart from much other research on software structure is its focus on the ex-
ploratory development process, and the implications of this process and its languages
on the forms of software structure to be represented, and the types of support to be
offered. Let me try to be more specific.

5.1 Contributions

This proposal outlines a research agenda that should yield the following contributions
the subarea of artificial intelligence and software engineering;:

¢ Integration of structural representations. Current structural representations
stay basically within one grain size. By representing structure across several grain
sizes, I can represent and (in some cases) automate the impact that changes to
one grain size (such as the subsystem organization) make upon another grain size
(such as the clauses in a cond clause). No other research to date has explored the
structural knowledge and representations required for this form of integration. In
addition, no other research has explored structural representations at the commu-
nity level of abstraction.

¢ Representation of developmental history at multiple (structural) levels
of abstraction. In exploratory development, it becomes much more important
to understand how the system has changed, and to provide that information in
an comprehensible manner. My multiple grain sized environment supports an
automated documentation facility for display of the structural history at different

22

levels of abstraction. No other research to date has explored the use of structural
information for automated documentation at different grain sizes.

¢ Representation of ADTs within an exploratory environment. Abstract
data type facilities and the accompanying interface control mechanisms have long
been acknowledged as important software engineering tools for the development
of robust systems. However, these facilities have always been deployed within
languages deemed unsuitable for the needs of most of the exploratory development
community (i.e. Al software developers.) This research is the first to date to
attempt to provide abstract data type facilities within an exploratory development
environment.

o A “demand-based” type system. In service of the implementation of ADTs
in an exploratory environment, this research hopes to contribute a new form of
type mechanism which provides an interesting blend of features that bridges the
relatively large gulf now separating strong and weakly typed langauges.

e Automation of exemplar evolutionary phenomena at each grain size of
structure. Support for structural evolution is currently at the level of Narayanaswamy’s
static analysis system, which can only detect phenomena like changes to func-
tion arguments. While such facilities are undeniably useful and significant, the
evolutionary phenomena I propose to implement, emerge-ob ject, emerge-adt,
extract-subsystem, and extract-evolve-abstract offer much more sophisti-
cated support for structural evolution.

5.2 Timeline and the To-Do Set

Support for these contributions requires implementing the following parts of a pro-
totype environment:

1. An integrated set of representations for expressing the structure of a Common
Lisp program at the character, expression, object, type, system, and community
grain sizes. The precise form of these representations will depend upon (2) and
(3) below.

2. The demand-based typing mechanism (whose precise form will depend to some
extent upon (1) above.)

3. The emerge-ob ject, emerge-adt, extract-subsystem, and extract-evolve-abstract
processes (whose precise form will depend upon (1) and (2) above.)

4. A system utilizing the multiple grain size structural representations to docu-
ment the structural history of a Common Lisp program (whose precise form
will depend upon (1) and (3) above.)

23

In addition, the thesis needs to be written. 1 expect to need about 6 months for
programming, and 6 months for writing, which corresponds to a February 1990 grad-
uation date.

5.3 Evaluation

I propose to evaluate my implementation through exercising each of the mechanisms
in the following manner:

1. The multiple grain sized representations. These representations will be
used to document aspects of the structure of certain exploratory systems in
the department, such as the GBB system or the Environment File Editor.
Interviews with the designers of the systems will be used to assess how well the
representations express the structural relationships in these programs.

2. The evolutionary processes. These processes will be applied to the ex-
ploratory systems represented during the evaluation of the multiple grain sized
representations, or to other representative system structures. The robustness
‘and generality of these processes will be assessed through this experimentation.

3. Demand-based typing. This typing mechanism will be evaluated through
analysis of its functionality. For example, can it function in the presence of
any legal Common Lisp program, or are certain language constructs (such as
macros) disallowed? How can the run-time performance penalties of this mech-
anism be described?

4. Documentation of structural evolution. The documentation mechanism
will be evaluated by its utilization on a small example of exploratory develop-
ment, and the (subjective) assessment of the utility of the levels of abstraction,
as well as an analysis of how informative strictly structural history is for pro-
gram understanding.

5.4 Future Directions

In researching general characterizations of structural evolution, I was struck by how
well they apply to the process of exploratory development. While my thesis research
uses this literature only to support my choice of a multiple grain sized architecture as
appropriate for investigatling evolutionary phenomena, I am very interested at some
point in going the other way—attempting to utilize my framework to further these
general concepts through their elucidation in a specific domain. For example:

[Salthe, 1985] claims that evolving biological systems are triadic systems. Tri-
adic systems have two principle qualities: representation at multiple grain sizes and

24

constraints upon inter-grain size interaction (such as grain sizes may only directly
interact with their directly adjacent neighboring grain sizes.) Can triadic constraints
be viewed as beneficial “design criteria” for the implementation of the processes of
structural evolution such as type emergence, object emergence, and subsystem ex-
traction? If not, what features of structural evolution invalidate the application of
this model?

[Simon, 1962] claims that evolution is catalyzed by the presence of stable sub-
systems. Can stable software subsystems be identified or declared in the proposed
environment? How can the concept of stable subsystems be exploited in exploratory
software development?

[Beer, 1985] claims that organizations should be recursively composed of viable
systems. Can viable software subsystems be identified or declared in the proposed
environment? How can the concept of viable subsystems be exploited in exploratory
software development?

6 Summary

Exploratory software development can benefit from better environmental support for
structural change. Supporting structural change requires addressing a number of
issues—What structural changes occur in exploratory development? What kinds of
structural representations are needed? How can developers be helped to understand
the types of changes that occurred? When is structural change appropriate? What
are desirable and undesirable forms of structural change?

Fully answering these questions requires not only a deep understanding of the
meaning of the software itself, but also of the motivations, goals, and relationships
among the developers. However, even if this information were available, it would be
of little use without support for the practical matters involved in actually changing
the software structure. I believe that software to support structural evolution is
experimental and domain-embedded: not only is its existence necessary to evaluate
it, but its existence will also change the types of structural evolution that occur.

References

[Balzer, 1985} R. Balzer. Automated enhancement of KR systems. In Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, 1985.

[Beer, 1985] S. Beer. Diagnosing the System for Organizaiions. John Wiley and
Sons, 1985.

25

[Boehm, 1976] B. Boehm. Software engineering. IEEE Transactions on Computers,
C-25(12), December 1976.

[Boehm, 1985] B. Boehm. A spiral model of software development and enhancement.
Technical Report 21-371-85, TRW, 1 Space Park, Redondo Beach, CA 90278, 1985.

[Bonet and Kung, 1984] R. Bonet and A. Kung. Structuring into subsystems: the
experience of a prototyping approach. Software Engineering Notes, 9(5):23-27,
1984.

[Cardelli and Wegner, 1986] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys, 17(4), December 1986.

[Fischer and Lemke, 1988] G. Fischer and A. Lemke. Construction kits and design
environments: Steps toward human problem-domain communication. Human-
Computer Interaction, 3:179-222, 1988.

[Giddings, 1984] R. V. Giddings. Accomodating uncertainty in software design.
Communications of the ACM, 27(5):428-434, May 1984.

[Goldman, 1988] N. Goldman. The common lisp framework: Reference manual.
Technical report, USC/Information Sciences Institute, 1988.

[Grene, 1987] M. Grene. Hierarchies in biology. American Scientist, 75, September
1987.

[Hildum, 1988] D. Hildum. Graphical specification of DVMT environments. Mas-
ter’s thesis, University of Massachusetts, Department of Computer and Information
Sciences, Amherst, MA, March 1988.

[Huff and Lesser, 1988] K. Huff and V. Lesser. A plan-based intelligent assistant that
supports the software development process. In P. Henderson, editor, Proceedings of
the ACM Sigsoft/SigPlan Software Engineering Symposium on Practical Software
Development Environments, November 1988.

[Johnson and Lehnert, 1986] P. Johnson and W. Lehnert. Beyond exploratory pro-
gramming: A methodology and environment for natural language processing. In
Proceedings of the National Conference on Artificial Intelligence, 1986.

[Johnson et al., 1988] P. Johnson, D. Hildum, A. Kaplan, C. Kay, and J. Wileden.
An Ada restructuring assistant. In Proceedings of the Fourth Annual Conference
on Artificial Intelligence and Ada, November 1988.

[Johnson, 1987] P. Johnson. Object orientation as a software engineering technique
for artificial intelligence systems, 1987. Unpublished manuscript.

[Johnson, 1988] P. Johnson. Inferring software system structure. Technical Report
88-46, University of Massachusetts, Department of Computer and Information
Science, April 1988.

26

[Letovsky, 1988] S. Letovsky. Plan Analysis of Programs. PhD thesis, Yale Univer-
sity, New Haven, CT., December 1988.

[Narayanaswamy, 1988] K. Narayanaswamy. Static analysis-based program evolu-
tion support in the common lisp framework. In Proceedings of the Tenth Interna-
tional Conference on Software Engineering, 1988.

[Osterweil, 1987] L. Osterweil. Software processes are software too. In Proceedings
of the Ninth International Conference on Software Engineering, pages 2-13, 1987.

[Parnas, 1979] David L. Parnas. Designing software for ease of extension and con-
traction. IEEE Transactions on Software Engineering, SE-5(2):128-138, March
1979.

[Partridge, 1986] D. Partridge. Engineering artificial intelligence software. Artificial
Intelligence Review, 1(1):27-41, 1986.

[Polyani, 1968] M. Polyani. Life’s irreducible structure. Science, 160, 1968.

[Salthe, 1985] S. Salthe. Evolving Hierarchical Systems. Columbia University Press,
1985.

[Sandewall, 1978] E. Sandewall. Programming in an interactive environment: The
Lisp experience. Computing Surveys, 10(1), 1978.

[Sheil, 1984] B. Sheil. Power tools for programmers. In D.R. Barstow, H.E. Shrobe,
and E. Sandewall, editors, Interactive Programming Environments. McGraw Hill,
Inc., 1984.

[Simon, 1962] H. Simon. The architecture of complexity. Proceedings of the Ameri-
can Philosophical Society, 106, 1962.

[Swartout and Balzer, 1982] W. Swartout and R. Balzer. On the inevitable inter-
twining of specification and implementation. Communications of the ACM, July
1982.

[Wegner, 1983] P. Wegner. Varieties of reusability. In ITT Proceedings of the Work-
shop on Reusability in Programming, 1983.

[Wolf, 1985] A. Wolf. Language and Tool Support for Precise Interface Control. PhD
thesis, University of Massachusetts, 1985.

27

