Transformation of Imperative Statements
into Functional Expressions
Tim Sheard and Leonidas Fegaras

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-112
October 25, 1989

Transformation of Imperative Statements into
Functional Expressions

Tim Sheard and Leonidas Fegaras

Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003

October 25, 1989

1 Introduction

During the last few years there has been a strong interest in high level functional
programming languages, such as Hope, Miranda, and ML. In contrast to the impera-
tive programming languages where side effects are supported as the primary method
of changing the state of a task, these languages force referential transparency by
using the lambda abstraction construct as the only way to introduce variable bind-
ings. These functional languages are built on top of the lambda calculus, but they
also provide some advanced features, like polymorphic type checking and pattern
matching, found in modern high level programming languages.

The lambda calculus is as expressive as conventional imperative languages
and has the advantage of a simple, uniform syntax and semantics. Simplicity and
uniformity are highly desirable because they reduce the chances of errors during pro-
gramming and often make the code easy to understand and debug. These features
also facilitate the proofs about programs. Functional languages are also suitable
for concurrent systems, because parallel graph reduction methods are very simple
and efficient. There are some cases though, where imperative programming seems
more appropriate and natural. For example, it is difficult to express in functional
notation a sequence of actions that must be performed in a strict order. To specify
such a sequence of actions a complicated expression with lambda abstractions must
be used, that may hide the programmers intentions and produce unclear code.

In this paper we will present a macro-like language with features similar to
imperative languages, that can be translated to lambda calculus. By providing this
alternative way of programming, we encourage traditionally trained people to work

in a functional environment, gaining all the benefits of using such a model, without
the need to sacrifice the convenience of the imperative style of programming.

Althiough the functional language ADABTPL will be used to give some exam-
ples throughout this paper, and Miranda to describe the program transformations,
these methods can be applied to any functional programming language. ADABTPL
is a strongly typed database specification language that uses type inference algo-
rithms to deduce type checking information.

2 Overview

In this paper we will provide some macro-like capabilities that will improve the
usage of functional languages. Two features will be introduced.

1. The first is an alternative method for explicit function calls that is self-
documented and can reduce the number of lambda abstractions. This feature
is called a keyword expression. An example of a keyword expression is

(ALL x IN s WHERE x>0)

which is translated to the function call
select(s, function(z : number) — boolean (z > 0)).

2. The second feature emulates the imperative style of programming, providing
that all side effects are upon local variables defined in the body of the enclosing
function. Each such function (which is called an imperative function) is
translated into a functional expression. This can be done by gathering all
variables defined in this function, as well as a place holder to keep the result
of the function, into a special vector called the state vector. In this way the
emulation problem is reduced to the problem of finding a lambda abstraction
from the state vector to the state vector such that when it is applied to the
actual parameters of the imperative function it produces a new state vector
describing the state of the function after the application of its body to its
arguments. To get the resulting value of this function, we need to return the
value of the place holder from the new state vector.

Only three primitive constructs are provided for imperative functions: as-
signment statements, begin-end statements, and keyword statements. Key-
word statements are abbreviations of lambda abstractions from a state vector to a
state vector and serve a similar purpose to that of the keyword expressions.

In the database paradigm, transactions are special types of functions that
take the current database as a parameter, as well as some optional parameter values,
and produce a new database. Transactions are like imperative functions, in which

2

the state vector includes the database. This similarity to transfer transactions into
functional expressions is also exploited.

3 Alternative Calling Sequences

ADABTPL provides four alternative ways of making function calls: normal prefix,
unary prefix, infix, and keyword expressions. The following examples illustrate
how one can define functions in ADABTPL and call them using different forms of
calling sequences.

function not (x : boolean) : boolean ;

prefix sequence “ x ; prec 450 ;
body

if x then false else true
end ;

In this example function not is defined to be from boolean to boolean. One example
of a normal prefix calling sequence (where the list of arguments follow the function
name) is not(true). The second line indicates that besides the normal prefix calling
sequence, a unary prefix operation form may be used. This line is optional and
may only be used for unary function definitions. The name of the operator in this
example is defined to be ~. In general, unary prefix operators (as well as binary
infix operators) can be any sequence of special symbols or an identifier enclosed in
vertical bars (like |not|). One example of the use of this prefix operator is ~ z,
which is translated to not(z). The prec declaration part denotes that the prefix
operator will have precedence 450. Precedence values run from a low of zero to a

high of 500.

function(alpha)
set_member (elem : alpha ; s : set (alpha)) : boolean ;
infix sequence elem |in| s ;
prec 400 ; associativity nomn ;
body ... end ;

This is an example of the definition of a binary calling sequence for a function
that describes the membership predicate over sets. alpha is a type variable that
can be bound to any type. set_member is a function from alpha x set(alpha) to
boolean, for any type alpha. For example, the type variable alpha in expression
set.member(3,insert(3, emptyset)) is bound to number. The third line describes
the syntax of the alternative infix calling sequence. This form can only be used
for functions that have two parameters. Here [in| is the infix operator. Using
this notation, the last function call may be written as 3 [in| insert(3, emptyset).

The fourth line defines the precedence and associativity of the infix operator. The
associativity of an operator can be left, right, or non. For example, the ‘-’
operator is normally defined with left associativity, because we want to interpret a
sequence like a — b — c as (¢ — b) — ¢ and not as a — (b — ¢) (which is how it would
be interpreted if it had right associativity). If no associativity is wanted then the
associativity non is used (for example, z < y < z is an error since the operation ‘<’
does not associate).

function(alpha)
exists (s : set(alpha) ;
p : function(alpha)->boolean) : boolean ;
keyword sequence EXISTS xQlocal IN s@value WHERE pQfunction(x) ;
body ... end ;

Function ezisis takes a set s as a first argument, and a predicate (a function to
boolean) p as a second argument. ezists returns true if there is an element z in s
such that p(z) is true. An example of a call of such function is: ezists(sn, #oddp),
where sn is of type set(number), and oddp is defined as a function from number
to boolean and returns true if a number is odd. The notation #oddp is used to
emphasize that oddp is a globally defined function (in contrast with the parameter
p of exists whick is a locally defined function). Another example of a call is:
exists(sn, function(z : number) — boolean (z > 5)). Here we use a lambda
abstraction to form a predicate that has not been defined globally. This function
is from number to boolean and returns true if its argument is greater than 5. The
keyword sequence line in this function definition describes an alternative simpler
way of calling this function. Reserved names with all uppercase characters are
keyword names and other names are regular identifiers. Using this notation the last
call can be written as:

(EXISTS z IN sn WHERE 2z>5)

If we compare this with the definition for the keyword sequence attached to the
function ezists, we can see that a local variable z is introduced which is bound
to z, s is a parameter of ezists bound to sn, and p is bound to function(z :
number) — boolean (z > 5). The last binding is inferred by the compiler from
the fact that p is from number to boolean and it is defined as function(z) (a
function that uses the local variable z). The specifiers local, value, and function
in the keyword sequence definition indicate the role of each variable in the pattern.
z@local means that 2 must be bound to a variable name; s@uvalue means that s can
be bound to any expression; and p@ function(z) means that p can be matched with
any expression and that it will be bound to the lambda abstraction with only one
parameter z and the matched expression for its body. The call ezists(sn, #oddp)
can be written as

(EXISTS z IN sn WHERE oddp(z))

4 Imperative Functions

The second feature that ADABTPL provides is imperative function definitions.
For example consider a simple imperative function that makes some arithmetic
computations.

imperative function test (a : number) : number ;
begin test:=a+10;

test:=test*5
end;

Here the name test serves two purposes: as the function name and as a variable
that will hold the result. The above imperative function will be translated into the
following regular function:

function test (a : number) : number ;
body (a+10)*5 end ;

A more interesting example comes from the function union, that returns the union
of two sets. It can be written as follows:

imperative function(alpha)
union (a, b : set(alpha)) : set(alpha) ;

initialize union := a ;
begin

[FOREACH x IN b DO [INSERT x INTO union]]
end ;

The name union serves also as the name of the function and as a variable that will
hold the returned value. This variable is initialized to be equal to a. In the body
of the function union every element z from b is inserted into the union. Keyword
statements have a similar form with the keyword expressions. The difference is
that keyword statements are enclosed between square brackets and can have other
statements as components. We will see later how one can define such statement
patterns. In the union definition the last part of the FOREACH statement is an-
other statement. This statement, which inserts an element z into union, is repeated
for every element z in b. Before trying to describe INSERT and FOREACH, it is
useful to see the translation of the union into a regular function:

function(alpha) union (a, b : set(alpha)) : set(alpha) ;
body foreach(b, function($:STATE1(alpha) with [x:alphal)->STATE1(alpha)
([$.a, $.b, insert($.x, $.union)]),
[a, b, a]).union end ;

where STATE] is the state vector of union:
STATE1(alpha) = [a, b, union: set(alpha)] ;

The state vector includes all the parameters of union, as well a place to keep the
result to be returned. The with type constructor extends the state vector with a
value z that will hold the local variable introduced by FOREACH. The function
foreach, appeared in the translation of union, iterates over all elements of the set
dest of type set(alpha), and use a function oper to change the initial value of state
z of type beta. For example, the call foreach({1,2,3}, oper, z) is equivalent with
the expression oper(oper(oper(z with [1]) with [2]) with [3]).

function(alpha, beta)
foreach (dest : set(alpha) ;
oper : function(beta with [ext:alpha])->beta;
x : beta) : beta ;
body
case dest of
emptyset : X
others : foreach(rest(dest), oper, oper(x with [choose(dest)]))
end
end ;

For example, suppose that the function union is called with a = {1,2} and b =
{8,4}. Then, the function foreach is called with

oper = function($:STATE1(alpha) with [x:alpha])->STATE1(alpha)
([$.a, $.b, insert($.x, $.union)])

which remains the same during the execution. Here is a trace of the parameters
dest and z in foreach:

1) dest = {2,4}

x = [{1,2}, {3,4}, {1,2} 1]
2) dest = {4}
x = oper([{1,2}, {3,4}, {1,2}] with [3])
= [{1,2}, {3,4}, inmsert(3, {1,2})]
= [{1,2}, {3,4}, {3,1,2} 1]
3) dest = {}
x = oper([{1,2}, {3,4}, {3,1,2}] with [4])

= [{1,2}, {3,4}, insert(4, {3,1,2})]
[{1,2}, {3’4}) {4,3’1,2}]
-=-> [{1,2}, {3,4}, {4,3,1,2}]

Now we present the imperative statement definition for INSERT.

imperative stmt(alpha)
INSERT a:alphaCvalue INTO s:set(alpha)@component
=== update $ by [s := insert(a,s)] ;

In imperative statement definitions we have a pattern part and a body part (at
the right of symbol ‘==="). The pattern part describes the form of the keyword
statements and it is similar to the keyword sequence definition. In this case, we
need to denote the type of each variable name in the pattern, because imperative
statement definitions are not defined in a context of a regular function definition.
Also the possible roles of variables (from value, local, and function) are extended to
include stmt and component roles. The INSERT imperative statement definition
has the form: INSERT a INTO s, where a is an expression and s is a component
of the state tuple (usually the result variable). When such a statement is found,
the variables a and s are bound and are used to translate the form into its body.
In the body of INSERT, $ means the value of the state vector at this point. The
update statement is an operation that returns a new state vector from the old, after
replacing the component s by the expression insert(a, s). That is, this type of
updates is defined from the following axiom:

The imperative statement definition for FOREACH has the following form:

imperative stmt(alpha)
FOREACH x:alpha®local IN s:set(alpha)@component
DO f:function(state with [ext:alpha])->state®stmt(x)
=== foreach(s,f,$) ;

This imperative statement definition introduces a new local variable z that is used
to hold an element from the set s, when there is an iteration over s. The DO part
of FOREACH is another statement. Therefore, it is a function from state to state
(the name state is the type of the state vector $ at this point). The input state of f
is extended to include z, because this statement may use the value of z. The body
of FOREACH is a function from state to state that calls foreach(s, f, $).

A more complex example is the intersection function that returns the set
of all common elements in a and b. This function uses the IF-THEN imperative
statement.

imperative function(alpha)
intersection (a, b : set(alpha)) : set(alpha) ;
initialize intersection := emptyset ;

begin
[FOREACH x IN a DO
[IF x |in] b THEN [INSERT x INTO intersection]]]

end ;
where the IF-THEN imperative statement is defined as:

imperative stmt
IF cond:boolean@value THEN thens:function(state)->state@stmt
=== if cond then “thens($) else $;

intersection is translated into the following function:

STATE2(alpha) = [a, b, intersection : set(alpha)] ;

function(alpha) intersection (a, b : set(alpha)) : set(alpha) ;
body foreach(a, function($:STATE2(alpha) with [x:alphal)->STATE2(alpha)
(if $.x lin] $.b
then [$.a, $.b, insert($.x, $.intersection)]
“with [$.x]
else $),
[a, b, emptyset]).intersection

end ;

REMOVE and UPDATE are examples that use imperative statement definitions
with functional parameters.

imperative function testit (a : set(number)) : set(number) ;
initialize testit := a ;
begin [REMOVE x FROM testit WHERE x<0] ;
[UPDATE x IN testit WHERE x<8 BY x+1]
end ;

where REMOVE and UPDATE are defined as:

imperative stmt(alpha)
REMOVE x:alpha@local FROM s:set(alpha)@component
WHERE test:function(alpha)->boolean@function(x)
=== update $ by [s := remove(s, test)] ;

imperative stmt(alpha)
UPDATE x:alpha@local IN s:set(alpha)@component
WHERE test:function(alpha)->boolean@function(x)
BY oper:function(alpha)->alpha®@function(x)
=== ypdate $ by [s := update(s, oper, test)] ;

testit is translated into the following function:

function testit (a : set(number)) : set(number) ;

body update(remove(a, function(x:number)->boolean (x<0)),
function(x:number)->number (x+1),
function(x:number)->boolean (x<8))

end ;

5 Transactions

Transactions use the database definition as an implicit defined parameter. One
example of a transaction is the following:

database DBtype : [a, b : set(number)] ;

transaction test (z : number) ;
begin

[INSERT z INTO b] ;

[FOREACH x IN a DO [INSERT x INTO b]]
end ;

The database type DBtype defines a collection of all objects that one want to
be persistent. This collection is the only persistent variable that can be defined
in a program (a database definition must be appeared only once in a program).
Transaction test is used to perform some side effects to the database object. Every
component of DBtype can be accessed and/or changed inside the body of a trans-
action, by using its name. Transaction test can be translated into the following
imperative function:

imperative function test (DB : DBtype; z : number) : DBtype ;
initialize test := DB ;
begin
[INSERT z INTO test.b] ;
[FOREACH x IN test.a DO [INSERT x INTO test.b]]
end ;

6 Translation and Role Playing in Keyword Ex-
pressions

The translation of keyword expressions to lambda calculus is straightforward. When
a keyword expression is found, it is unified with the definition of a keyword sequence.

The selected candidate definition is the one whose list of keywords is the same as
the keys in the'expression. To test whether there is a perfect match one may use
the function call MATCH K P L. In this call, K is the keyword expression which
is a list of keys and expressions; P is the pattern which is the keyword sequence
of the candidate definition that forms a list of keys and variable specifications; and
L is a list of bindings of all variables in the keyword sequence definitions found so
far. MATCH returns a new list L, which is the list of bindings of all variables
in P bound to the expressions in K. If the matching fails then M ATCH returns
the value fail. MATCH will be described using a notation similar to that used in
Miranda language. In that notation, if the parameters of a function call matches
with the pattern in the left side of a definition (which is written as an equation),
then all variables that appeared in this pattern are bound and used to execute the
right part of the equation.

MATCH[||L=1L (1)
MATCH (key : k) (key : p) L = (MATCH kpL), Keyp(key) (2)
MATCH (e : k) ({zQualue} : p) L = MATCH kp L[z = €] (3)

MATCH (v : k) ({z@local} : p) L = (MATCH k p L[z = v]), Varp(v) (4)
MATCH (e: k) ({z@function(vy,...)} : p) L

= MATCH kp Lz = (Avy.Av,... €)/ L] (5)
MATCH zy L = fail (6)

In this set of rules, as well as in the following rules, we will use squiggly brackets
to inclose pieces of ADABTPL programs. Everything else is in Miranda form. The
notation L[z = e] means that the binding [z = €] is added to L. The ‘:’ operator
is the infix list constructor, while the ‘/’ operator is the substitution operator (for
example, e/L uses the binding list L to change the variables in e).

One can see that MAT'CH is a simple tail-recursive pattern matcher that
checks whether an element in the keyword expression and the corresponding element
in the pattern matches. The first rule describes the trivial case where we finish
comparing the elements of the two lists. In that case the list of bindings that has
been accumulated up to here as the parameter L is returned back. The second rule is
redundant because it tests if a keyword in the expression matches with the associated
keyword in pattern. This rule is fired whenever an identifier key satisfies the Keyp
predicate, that is whenever it is a keyword. Rules three, four, and five use the roles
of variables in the pattern to extract meaningful bindings. More specifically, the
third rule indicates that variable has been assigned the role value, which means
that it expects any expression e. In that case the binding [z = €] is added to L.
The fourth rule indicates that z plays a role of a local variable. In that case v must
be a variable name (that satisfies the predicate Varp) which must not be defined
previously as a loca.l variable in the same keyword expression. The fifth rule make
explicit some implicit lambda abstractions. Here ¢ must be defined as a function

10

with some of the local variables defined previously as parameters. z is not bound
to e but to the lambda abstraction that has body e. The last rule catches every call
that does not fall into any of the previous categories, and returns fail.

Suppose now that the candidate keyword sequence for the keyword expression
K is defined in the context of the function:

function N (vy : Th; coov, : T) : T

then K is translated into N(vy, ...v,)/(MATCH K P []), where P is the keyword

sequence definition of function N.

For example, the keyword expression (EXISTS z IN sn WHERE z>5) has
the same keys with the keyword sequence in function ezists. Therefore, exists is
used as the candidate function. In that case, a trace of the MATCH function is:

MATCH [EXISTS,z,IN,sn,WHERE,z>5]

[EXISTS,x@local,IN,s@value, WHERE ,p@function(x)] [J (2)
MATCH [z,IN,sn,WHERE,z>5] [x@local,IN,s@value,WHERE,p@function(x)] [] (4)
MATCH [IN,sn,WHERE,2z>5] [IN,s@value,WHERE,pOfunction(x)] [x=z] (2)
MATCH [sn,WHERE,z>5) [s@value,WHERE,p@function(x)] [x=z] (3)
MATCH [WHERE,z>5] [WHERE,pQ@function(x)] [s=sn,x=z] (2)
MATCH [2>5] [p@function(x)] [s=sn,x=z] (5)
MATCHE [1 [J [p=l z.(2>5),s=sn,x=z] (1)

=> [p=1 z.(2>5),s=sn,x=z]
Therefore the keyword expression is translated to:
ezists(s, p)/[p = Az.(2 > 5), s = sn, z = 2]

which is ezists(sn, Az.(z > 3)).

7 Translation of Imperative Functions

In order to translate imperative functions into regular functions one has to de-
fine program transformation rules that will translate any statement into a function
(lambda abstraction) from state to state. This is done with the function TS S L T.
Here § is the statement to be translated; L is the list of bindings of variables in
keyword statements that have been defined before S; and T is the state vector (an
ADABTPL type). In order to make the produced lambda expressions more read-
able, the lambda calculus is extended to include tuples. The form < e;, e,,... >
is used to denote tuple construction. It is translated into the lambda expression:
Az.(if ¢ = 1 then e, else ... else if = = n then e, else (error)). Using this
notation, projections like z.a; become (z). The function call (setval A I E) takes
an array A, an index I, and an expression F and returns a new array that has the
same elements with A4, except the I, element which is set to E.

11

FindPattern and FindBody return the pattern and the body of the imper-
ative statement definition that matches the keyword statement. In order to avoid
name conflicts, a copy of the imperative statement definition with new parame-
ter names is always returned. The M ATC H function that compares the keyword
statement and the pattern is very similar to that used for the keyword expressions.

TS {begin Send} LT=TSSLT (1)
TS {begin S1; ... Snend} LT

= Az. (TS {begin Sy; ... Spend} LT) (TS S LT) = (2)
TS{D := D}LT=)zz (3)
TS{a; := E}L{[ay: Ty ... a;: T ...ar, : T,)]}

=Az.<(z1), .. E/lay = (2 1),...,an = (z n)}, ..(z m) > (4)
TS{D.a; := E}L{[a::Th; ... a; : T3 ...]}

=A.<(z1), ..(TS{D := E}LT)(z1), ... > (5)

TS {D[I] := E} L {array |Ty] of T,} = TS{D := (setval DIE)} LT, (6)
TS {{K]} LT = (BODY (FindBody (Name K)) T

(MATCH K (FindPattern (Name K)) L T)) (M
TSSLT=error (8)

For example the call TS {begin n := 3; m[10] := n + 1 end} [] {[n : number; m :
array[1..100] of number|} produces the lambda expression:
Az.dz. < (z 1), (setval (22)10((z 1) +1)) > Iz. <3, (z2) > =.

The first two rule of T'S describe how compound statements (formed by
the begin-end construct) are translated into lambda abstractions. The first rule
is the base case, where we have a compound statement with only one component
S. In the second rule there are more than one statements. In that case we return
the function composition of the translation of the compound statement without
the first statement, with the translation of the first statement. The rules three
through six are used to compile assignments of the form dest := source where
dest is a component of the state vector while source is any expression. The third
rule returns the identity lambdea expression whenever the source and the dest are
the same. This will cause the state vector to remain the same. The fourth rule
examines the case where the destination is a simple component of the state tuple
(the i, component). In that case a lambda expression is constructed that returns
a new state vector. This vector must have the same elements with the old state
vector, except of the i,; element which must be set to the value of source. Note
that every component name that appears in the source must be substituted with
its real value, that is with the proper projection of the state vector. The fifth rule
describes a projection for a destination. Here the projection name a; must be a
component of the state vector. In that case we take T}, the type of a;, as the new
state vector and try to find a lambda expression for D := E. Again a new state
vector similar to the old need to be returned, except for the %;, element which must

12

be the application of the lambda abstraction for D := E to the old i,, element of
the state. The sixth rule describes the case of an array reference in the destination.
Here the assignment is changed in that way that the destination will become the
whole array D instead of an array reference, and the source will return a new array
that has the same elements with D except for the 7., element which is set to E. The
seventh rule is the most interesting one. This rule translates a keyword statement
K into a lambda abstraction. (NAME K) returns the list of keywords in the body
of K. These keywords will help to identify the right imperative statement definition
to match this expression. Finally, the last rule catches all errors.

The MATCH function is very similar to the matcher for keyword expres-
sions. In this case though, the state vector T must be passed as a parameter.

MATCH [|[|LT=1L (1)
MATCH (key : k) (key :p) LT = (MATCH kp L T), Keyp(key) (2)
MATCH (e: k) ({z : To@ualue} :p) LT = MATCH kp L[z =¢] T (3)
MATCH (v:k) ({z : To@local}:p) LT

= (MATCH kp Llz =v|T), Varp(v) (4)
MATCH (v:k) ({z : To@component} :p) L T

=(MATCH kp Lz =) T), Componentp(v, T) (5)
MATCH (e: k) ({z : function(v; : Ty;...) > To@function(v,...)} : p) L T

= MATCH k p Liz = (Avy.Avy... €)/L] T (6)

MATCH (s : k) ({z : function(state with [ny : T1;...])
— state@stmi(vy,...)} :p) LT
= MATCH kp Lz = (TS s L {T with [v; : Tn;..]/L})] T (7)
MATCH zy LT = fail (8)

One can see that there are two new roles for variables. Rule five says that variable
¢ must be a component of the state vector. This rule is similar to the fourth
rule, but here we have to check if v is actually a component of the state. The
fifth rule describes the case where there is another statement as a component of
a keyword statement (one example is nested keyword statements). In that case s
must be translated to a lambda expression that will construct a new state vector.
Therefore, function T'S must be used again to translate s. Note that the role of
is stmt(v,,..), where v; is a local variable defined before. This role is similar to the
function role, with the only difference that now the implicit lambda abstraction is
from state to state. The old state vector need to be expanded to include places for
the values of the local variables. This is done with the with construct that form
the new T in the call of T'S.

BODY is the translation of the right part (after the symbol ===) of the

13

imperative statement definition. It has the rules:

BODY {update$ by [a := E]}{[a; : Th; ...a; : T} ..]} L

=Xz. < (z1), ... (E/L[$ = z])/{a, = (z 1),...], ... >, where a; =a/L (1)
BODY {update$ by [D.a := E]}{la;: Th; ... a;: T}5 ..]} L

=Az. <(z1), ...(BODY {update$ by [D := E|}T; L) (z 7), ... >,

where a; = a/L (2)
BODY {update $ by [D[I] := E]} {array [Ti] of T5} L
= BODY {update $ by [D := (setval DI E)}} T, L (3)
BODY E{la;:Th; ...a;: T;; ..]} L
= %a.(B/L[S = 2]}/l = (= 1),..] (@)

The first three rules in the BODY are very similar to the rules four through six in
T'S, because we need to change a component of the state vector again. The fourth
rule describes the case where the body of an imperative statement definition is any
expression other than update. In that case the lambda abstraction that has body
E is returned.

The general form of an imperative function is the following:

imperative function N (v : T35 .. v, T},) : T
var by : LTy := ey} ... var L, : LT, := ep;
tnitialize N := e;

S;

Here the second line with the var definitions, introduces some local variables that
are mainly used to hold temporary results. Each such variable I; has type LT} and
it is initialized to value e;. The state vector is 1 : T wovn : Ty by 2 LT vl
LT.; N : T). The initial value of this vector is < vy, ... vn, €1, ... €n, € >.
Therefore, the translation of § is:

SIMPL((TS S| {[v1:Th5 «o.vn : Ty &y : LTY; oo by : LT; N : T}
< Uiy oo Uny €1y oo €y €)M+ 1+ 1)

where SIMPL is a simplification function that uses the following rules:

SIMPL Az.z e = SIMPL e

SIMPL Az.e; e = e1/[z = (SIMPL e,)], when the right part is shorter than the left
SIMPL < e, €, ...e, > i =SIMPL¢;

SIMPL (if cthen e, else e;) i = SIMPL (if c then (e, i) else (e, 1))

SIMPL Az.e = Az. SIMPLe

SIMPL e, e; =(SIMPL ¢,) (SIMPL e,)

SIMPL <ey, ...en >=<(SIMPLye,), ...(SIMPL e,) >

SIMPL if cthen e, else e; = if (SIMPL c) then (SIMPL e,) else (SIMPL e,)
SIMPLe=e

14

Here is an example of how one may use some of the above rules to translate the
imperative function union:

1) TS {begin [FOREACH,x,IN,b,DO,[INSERT,x,INTO,union]] end} [] [a,b,union:set(alpha)]
2) Ts {[FOREACH,x,IN,b,DO, [INSERT,x,INTO,union]]1} [] [a,b,union:set(alpha)]
3) MATCH [FOREACH,x,IN,b,DO, [INSERT,x,INTO,union]]
[FOREACH,x1:alpha®Qlocal,IN,s1:set(alpha)@component,
DO,f1:function(state with [extl:alpha])->state@stmt(x1)]
[] [a,b,union:set(alpha)]
MATCH [x,IN,b,DO, [INSERT,x,INTO,union]]
[x1:alpha@local,IN,s1:set(alpha)@component,
DO,f1:function(state with [exti:alpha])->state@stmt(x1)]
[0 [a,b,union:set(alpha)]
MATCH [IN,b,DO, [INSERT,x,INTO,union]]
[IN,s1:set(alpha)@component,DO,
fi:function(state with [exti:alphal)->state®stmt(x1)]
[x1=x] [a,b,union:set(alpha)l
MATCH [b,DO, [INSERT,x,INTO,union]]
[s1:set(alpha)@component,DO,
f1:function(state with [ext1:alphal)->state@stmt(x1)]
[x1=x] [a,b,union:set(alpha)l
MATCH [DO, [INSERT,x,INTO,union]]
[DO,f1:function(state with [exti:alphal)->state@stmt(x1)]
[s1=b,x1=x] [a,b,union:set(alpha)]
MATCH [[INSERT,x,INTO,union]]
[f1:function(state with [exti:alpha])->state@stmt(x1)]
[s1=b,x1=x] [a,b,union:set(alpha)]
4) TS {[INSERT,x,INTO,union]} [s1=b,x1=x] [a,b,union:set(alpha);x:alpha]
5) MATCH [INSERT,x,INTO,union]
[INSERT,a2:alpha@value,INT0,s2:set(alpha)@component]
[s1=b,x1=x] [a,b,union:set(alpha);x:alphal
MATCH [x,INTO,union] [a2:alpha@value,INTO,s2:set(alpha)@component]
[s1=b,x1=x] [a,b,union:set(alpha);x:alpha]
MATCH [INTO,union] [INTO,s2:set(alpha)@component]
[a2=x,s1=b,x1=x] [a,b,union:set(alpha);x:alphal
MATCH [union] [s2:set(alpha)@component]
fa2=x,s1=b,x1=x] [a,b,union:set(alpha);x:alpha]
MATCH [0 [1 (s2=union,a2=x,s1z=b,xi=x] [a,b,union:set(alpha);x:alphal
§--> [s2=union,a2=x,s1=b,x1=x]
5) BODY {update $ by [s2 := insert(a2,s2)]} [a,b,union:set(alpha);x:alpha]
[s2=union,a2=x,s1=b,x1=x]
§--> 1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)>
4--> 1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)>
MATCH [0 [1 [£f1=1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)>,si=b,xi=x]
[a,b,union:set(alpha)]
3--> [f1=1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)>,s1=b,x1=x]
3) BODY foreach(s1,f1,$) [a,b,union:set(alpha)]
[f1=1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)>,s1=b,xi=x]
3--> 1 x. (foreach (x 2) 1 x. <(x 1), (x 2), (insext (x 4) (x 3)), (x 4)> x)
2--> 1 x. (foreach (x 2) 1 x. <{(x 1), (x 2), (insert (x 4) (x 3)), (x 4)> x)
1--> 1 x. (foreach (x 2) 1 x. <(x 1), (x 2), (insert (x 4) (x 3)), (x 4)> x)

15

Therefore, the statement in the body of union is translated into:
A:c‘.(forea.ch (z 2) Az. < (z 1), (z 2), (insert (z 4) (= 3)), (z 4) > =)
The initial vector is < a, b, @ >. So the body of the function union is:
(Az.(foreach (2 2) Az. < (z 1), (2 2), (insert (¢ 4) (2 3)), (z4)> z) <a, b,a>)3
whjch can be simplified into: |

(foreach bAz. < (:n 1), (2 2), (insert (z 4) (¢ 3)), (z4) > <a, b, a >)3

16

