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Abstract

We study product-shuffle (PS) networks, which are direct products of deBruijn
networks, as interconnection networks for parallel architectures. PS networks can
be viewed as generalizing both butterfly-oriented networks (such as the butterfly
and cube-connected cycles networks) and shuffle-oriented networks (such as the
deBruijn and shuffle-exchange networks), in the sense that

e PS networks can emulate both butterfly-oriented and shuffle-oriented net-
works of any size, via emulations that are work preserving, i.e., preserve the
processor-time product;

o PS networks share many computationally valuable structural features of var-
ious butterfly- and shuffle-oriented networks, including pancyclicity, logarith-
mic diameter, and large complete-binary-tree subnetworks;

o PS networks overcome certain computational deficiencies of butterfly- and
shuffle-oriented networks, by containing as subnetworks moderate size meshes
and meshes of trees, networks which butterfly- and shuffle-oriented networks
cannot emulate efficiently.

Finally, PS networks attain their communication power at modest cost: they are
8-valent, and they enjoy VLSI layouts that consume only modestly more area than
the best layouts of like-sized butterfly- and shuffle-oriented networks.

1. Goals of the Study

The boolean hypercube and its bounded-degree derivatives, such as the butterfly-oriented
butterfly and cube-connected cycles (CCC) networks and the shuffle-oriented shuffie-
exchange and deBruijn networks, are among today’s dominant interconnection networks
for massively parallel architectures. Indeed, architectures based on these networks have
been built in both industry and academia.

Among these interconnection networks, the hypercube is the clear favorite because of
its efficiency on a broad class of algorithms [5, 7, 9, 19] and its structural uniformity that
simplifies programming [18]. The major shortcoming of the hypercube s its high valence.
The technological difficulties attendant to implementing such high-valence networks have
led to the development of several butterfly-oriented bounded-degree “approximations” of
the hypercube, most notably the butterfly and CCC networks [15]. These networks were
constructed with a certain important genre of hypercube-algorithm, called ascend-descend
algorithms [15], in mind and so can emulate the hypercube with little or no slowdown on a

" 1The N-node hypercube has valence (= maximum node-degree) log; N.



large, important class of computational problems. Yet, in a sense, butterfly-oriented net-
works just replace one implementational problem with another, since they use N -log, N
nodes (processors) to emulate the N-node hypercube. Further, algebraic, transformations
[2] of these large networks yield the smaller, shuffle-oriented bounded-degree “approxi-
mations” of the hypercube, most notably the shuffle-exchange? [20] and deBruijn |8, 14]
networks. Shuffle-oriented networks have only as many nodes as does the hypercube,
yet they avoid its large valence; and, on certain computational tasks (including ascend-
descend algorithms) they afford one computational efficiency (roughly) equal to that of

the butterfly and CCC. . -

Butterfly- and shuffle-oriented networks are roughly equivalent approximations of the
hypercube on a broad class of computational tasks, but it is not clear whether or not
one of these network families majorizes the other on general computations. Confusingly
enough, there is evidence that butterfly- and shuffle-oriented networks have incomparable
strengths and weaknesses, and there is countervailing evidence that the two families of
networks are equivalent in power. Distinguishing the two families are properties such as
the following. The N-node deBruijn network has the computationally useful properties
of being pancyclic [22],2 of having diameter exactly log, N, and of containing an (N — 1)-
node complete binary tree as a subnetwork; butterfly-oriented networks enjoy none of
these. In contrast, the butterfly network enjoys both node-transitivity and a recursive
decomposition structure; neither is shared by shuffle-oriented networks. The symme-
try and decomposability of butterfly networks are quite useful in developing efficient
algorithms. For instance, the efficient routing and sorting algorithms for the butterfly
network, in {16] and [17], respectively, exploit the symmetry and recursive structure of
the butterfly, hence are not easily transported to any shuffle-oriented network. Further,
circumstantial evidence separating the two families (and, indeed, suggesting that shuffle-
oriented networks are more powerful than butterfly-oriented ones) arises from studies in
[2, 9] of of emulations of one interconnection network by another. These studies use the
same strong notion of emulation as we do in this paper.

1. (a) Every even-order (resp., odd-order) butterfly and CCC network can be em-
ulated with no time loss (resp., with at most a factor of 2 time loss) by the
smallest hypercube that is big enough to hold it [9];

(b) every known emulation of an N-node shuffle-oriented network by a hypercube
incurs slowdown Q(log V) (which is pessimal).

2. (a) An N-node shuffle-oriented network can emulate a like-size butterfly-oriented
network with slowdown O(loglog N);

. ?The shuffle-exchange network can also be derived directly from the hypercube, via a geometric
transformation.

3That is, the network contains cycles of all lengths < N.



(b) every known emulation of an N-node shuffle-oriented network by a like-size
butterfly-oriented network incurs slowdown Q(log N) (which is pessimal).

Blurring the apparent algorithmic distinctions between the two families of networks is
the recent work in [10] which presents a computational framework wherein either of
the butterfly or deBruijn network can emulate the other efficiently. In particular, these
emulations yield an algorithm for sorting on the deBruijn network that rivals the efficiency
of the Reif-Valiant [17] algorithm for butterfly networks.

The present study is motivated in part by the unresolved questions implicit in the
preceding paragraph: Which, if either, of the butterfly- and shuffle-oriented networks is
the more powerful? Under what circumstances are computationally more complicated
emulations of the type introduced in [10] to be preferred to the purely structure-oriented
emulations of (2, 9], and vice versa?

Remark. The major argument in favor of the structured-oriented framework
is that its emulations yield algorithms that translate programs for the emu-
lated network to equivalent programs for the emulating network. The major
argument in favor of the computationally more complicated framework is that
it significantly expands the class of networks that a given network can emulate
efficiently.

Further motivating our study is the fact that the constructions in both [10] and [2]
suggest that efficient emulations of either of these network families by the other are likely
to be rather sophisticated and complicated. There would be value, therefore, in having a
family of networks which retains most of the structural simplicity of both butterfly- and
shuffle-oriented networks, but which can emulate both families of networks simply — the
emulation procedure should be simple to specify — and efficiently — the host architecture
should be able to emulate any of the guest architectures in a work-preserving manner,
i.e., so that the processor-time product is preserved.* In this paper, we study such a -
“least upper bound” family, the product-shuffle (PS) networks; each PS network is a
direct product of two deBruijn networks.

The goals presented thus far can be satisfied by a variety of interconnection networks;
indeed, the most simple such network would just superpose a butterfly-oriented network
on a like-sized shuffle-oriented one. (Formally, this would amount to taking the union
of the edge-sets of the two networks.) Why, then, should we bother with PS networks,
which introduce the additional complication of the direct-product structure? The answer

4More precisely, an emulation of an n-processor architecture A by an (m < n)-processor architecture
B is work preserving if B can emulate any sequence of T computational steps of A in at most ¢(n/m)T
steps, for some fixed overkead constant c.



lies in our willingness to suffer a (very) modest amount of structural complication in
return for a (very) considerable amount of simplicity and efficiency in computation. The
following example should clarify our concerns. It is shown in [4] that neither butterfly- nor
shuffle-oriented networks can emulate meshes (and a variety of other planar networks)
efficiently, using the simple notion of emulation that we study here. This 1s a quite
serious deficiency, given the importance of mesh-oriented parallel algorithms.> We show
that every “reasonably shaped” PS network can emulate moderate-size meshes with no
slowdown, since it contains the meshes as subnetworks. Using the stronger notion of
emulation in [10], one can emulate meshes on butterfly- or shuffle-oriented networks
with only constant-factor slowdown; but, the constants are nontrivial, and the emulation
algorithm is rather complicated. There are further beneficial consequences of the direct-
product structure of PS networks:

¢ PS networks contain moderate-size copies of the computationally important mesh-
of-trees network [12]; cf. Section 3.4.

o The structure facilitates using PS networks to obtain simple and efficient load-

balanced work-preserving emulations of other networks; cf. Sections 2.2.B, 4.1, and
4.2.

o The structure facilitates finding rather compact VLSI layouts for PS networks:; cf.
Section 4.4.

It is not clear that any “superposed,” composite butterfly-plus-shufle network could
match all of the benefits that ensue from the direct-product structure of PS networks.

The remainder of the paper is organized into three sections. In Section 2, we formalize
the topics of our study and present some simple basic results. Section 3 verifies the large
family of 'subnetworks of PS networks, that we have been alluding to. In Section 4,
we compare PS networks with butterfly- and shuffie-oriented networks, demonstrating
efficient work-preserving emulations of the latter two families by the former family, and
indicating the impossibility of efficient converse emulations. These results show that,
within our framework of highly structured emulations (as opposed to the more general
framework of [10]), PS networks are strictly more powerful than either butterfly- or
shuffle-oriented networks, by more than any constant factor. Moreover, the added power
comes at only moderate cost, in that PS networks are 8-valent (in contrast to the 4-valence
of butterfly- and shuffle-oriented networks), and PS networks admit VLSI layouts that

are only modestly bigger than the best layouts of like-sized butterfly- or shuffle-oriented
networks.

The parallel algorithm literature abounds with linear-algebraic and numerical algorithms that con-
form naturally to the structure of a mesh.



We have thus far used the term “shuffle-oriented network” to refer ambiguously to
the deBruijn and shuffle-exchange networks, and the term “butterfly-oriented network”
to refer ambiguously to the butterfly and CCC networks. This ambiguity is justified by
the fact that the deBruijn and shuffle-exchange networks can each emulate the other with
only a factor-of-2 slowdown, and the same is true of the butterfly and CCC networks. We
focus on the deBruijn and butterfly networks in the sections that follow, since they vield
smaller constant factors in our emulations, and they have richer families of subnetworks.

2. The Formal Framework

2.1. Interconnection Networks as Graphs

As is customary in structural studies of parallel architectures, we restrict attention to
arrays of identical processing elements (PEs), and we view the architectures and their
underlying interconnection networks as undirected graphs.

A directed graph G is specified by a set Vg of nodes and a multisubset 4g C
15 x Vg called arcs. One obtains an undirected graph G' from a directed graph
G, by “symmetrizing” the set of arcs: one replaces each arc of G with a pair
of mated arcs having opposing directions. We refer to each mated pair of arcs
as an edge of the graph G'.°

The nodes of the graph represent the PEs of the array, and the edges of the graph
represent the inter-PE communication links. We henceforth use the term “graph”
instead of “network.”

A. Notation and Terminology

e In phrases like “for all n,” n always ranges over the positive integers. For all n,
Zn =aer {0,1,...,n — 1}, and A(n) =qer [logn]. (All logarithms in the paper are
to the base 2.)

e For any set S and positive integer k, S* denotes the set of all length-k strings of
elements of S, and |S| denotes the cardinality of S.

e Given graphs G = (1, Eg) and H = (Vy, Ex), the (direct) product graph G - H
has node-set 1 x V. Let u and v be nodes of G, and let & and y be nodes of H.
Then ((u.z), (v,y)) is an edge of G - H just when either (u,v) is an edge of G and
z =y, or (z,y) is an edge of H and u = v.

SNote that we allow self-loops and parallel edges.



o The degree of node v of graph G is the number of edges of G incident to (1.e.,
involving) v. The valence of G is the maximum degree of any of its nodes.

B. The Graphs of Interest
Let m,n be positive integers.

The order-n deBruijn graph D(n) and the order-n shuffle-exchange graph S(n)
are the undirected versions of the following directed graphs. Both D(n) and S(n) have
the set of nodes Z2. Forall 3€ Z; and z € Z7™":

e In both D(n) and S(n), each node of the form Bz is connected via a shuffle arc to
node zf3.

e Additionally:

— in D(n), each node of the form fz is connected via a shuffle-ezchange arc to
node zg,;

— in S(n), each node of the form z3 is connected via an ezchange arc to node

Figure 1 depicts the (directed version of the) order-3 deBruijn graph D(3).

The order-n butterfly graph B(n) and the order-n cube-connected cycles graph
(CCC, for short) C(n) have the set of nodes 1, = Z,, < Z7. We call £ the level of node
(¢, z) € V5. Foreach £ € Z, and each 3 = Bof; -+ fn-1 € Z7:

e In both B(n) and C(n), each level-£ node v = (£, 3) is connected via a straight-edge

-,

with node {(£ + 1)mod n, 3);
e Additionally:
— in B(n), node v is connected via a cross-edge with node

(£ + 1)mod n, BoBs -~ Be-1BtBrs1 +++ Pr-1);

— in C(n), node v is connected via a level-edge with node

(£, BobBr -+ Be-1BtBes1 - - Ba-1)-

Figure 2 depicts the order-3 butterfly graph B(3).

The order-(m,n) product-shuffle graph (PS graph, for short) P(m,n) is the
product graph D(m) x D(n).

-~



Remark. For brevity, we study only the base-2 versions of our graph families,
by dint of our using Z, as the underlying alphabet of the graphs’ node-sets.
One can easily define arbitrary base-d versions of the graphs’ and extend our
results with only clerical changes. In [2], we deal with the general, base-d
versions of our graph families.

2.2. Emulation via Graph Embeddings

In defining the emulation of one architecture A by another architecture B, we assume
that the PEs of B are sufficiently powerful to emulate the PEs of A step for step — so
no delay is incurred because of computational steps. We restrict attention to emulations
that honor a pulsed computation regimen: Architecture BB alternates phases that emulate
one computatton step of architecture A, with phases that emulate one communication
step of array \A.8 The slowdown incurred by an emulation arises from two sources. First,
we allow emulations that require one PE of B to play the role of several PEs of A,
second, architecture B must emulate on its interconnection graph communication steps
that are tailored to the (possibly very different) structure of the interconnection graph
underlying architecture A. The second type of delay results both from mismatched
adjacency structures and from congested communication lines. Our study of emulations
is based on the following notion of graph embeddings and their costs.

A. Graph Embeddings
An embedding of the graph G in the graph H is specified by:

e a (possibly many-to-one) assignment a of the nodes of G to the nodes of H:
a:lg — 1y
[A PE of H must emulate all of the PEs of G assigned to it via a./

e a routing p of each edge (u,v) of G along a path in H connecting a(u) and a(v).?
[H must emulate each communication along edge (u,v) of G by transmitting the
“message” along the path p(u,v).]

"For illustration, the base-d order-n deBruijn graph has node-set Z; and edges connecting each node
of the form éz, where § € Z; and z € 7)) -1 to all nodes of the form zv € AD

8This regimen of having B mimic the exact form of the computation by A motivates our using the
term “emulate” rather than “simulate.”

9A length-f pathin H from node z € 1% to node y € Vy is a sequence 7 of nodes

Ty Zp ey 2] =Y

»

such that, for each 0 < i < € - 1, (2,,2,41) € Ex. By abuse of notation, we write “(z;,z,41) € 7".



B. Slowdown Incurred by an Emulation

A number of factors induce slowdown when architecture H emulates architecture
G. We account for these factors very conservatively, by assuming that in each step of
an emulated computation, every PE of G performs a computation step followed by a
communication with all of its neighbors. Clearly, most algorithms will not exercise the
resources of G so exhaustively, and so will be emulated by H with less slowdown than
our accounting procedures indicate. Say that we have an embedding (a, p) of G in H.

e The load of the embedding is the maximum number of PEs of G assigned to any

one PE of H:

: load(a, p) = max |a™(v)|
vely

[Load induces slowdown because, in each computation phase of the emulation, each
PE of H must emulate a computation step by each PE of G assigned to it.]

o The dilation of the embedding is the maximum amount that the routing p “stretches”
any edge of G:
dilation(a, p) = max Length(p(x,v))
(uv)eEg
[Dilation incurs slowdown because every message that crosses link e in G must
Iraverse path p(e) in H.]

o The 1/0-congestion of the embedding is the ratio of the valence of H to the valence
of G:

valence('H)

valence(G)

[1/0-congestion incurs slowdown because at each computation step, G needs poll
only valence(G) I/0 ports, while H must poll valence(H) ports.]

1/0-congestion(a, p) =

o The edge-congestion of the embedding is the maximum number of edges of G that
p routes over a single edge of H:

edge-congestion(a, p) = max He' € Eg : e p(e)}
e€Exy

[Edge-congestion incurs slowdown because the messages that want to cross a con-
gested edge must be queued up. (For simplicity. we are giving each edge of H the
same capacity as a single edge of G.)]

The slowdown due to load and I/0-congestion seem to be unavoidable. In contrast, one
can avoid the slowdown due to edge-congestion by increasing the bandwidth of H’s com-
munication links, at the cost of increased hardware and increased layout area. Another



avenue for mitigating the effects of edge-congestion is to orchestrate the communication
phases of H, so that message traffic is spread uniformly along the paths of H that arc
used to emulate the links of G; this ploy, which allows cne to amortize edge-congestion
over the paths that create dilation, is used to decrease the slowdown of the emulations in
[2]. Another form of orchestrating the communication phases of emulations leads to the
following result, which guarantees that load, dilation, and edge-congestion can always
be made to combine additively, rather than multiplicatively (as a naive analysis would
suggest). The main analysis leading to this result appears in [13]; its extension to the
current framework appears in [10].

Proposition 2.1. (10, 13] Say that one can embed the graph G in the graph H, with load
L, dilation D, and edge-congestion C. Then the architecture H can emulate T steps of
the architecture G on a general computation in O(L + C + D)T steps.

Aside from its assuring us that proper scheduling can make the costs of an emulation
combine additively rather than multiplicatively, Proposition 2.1 also demonstrates Lhat
our purely graph-theoretic formalism is, indeed, modelling the algorithmic situation that
we want it to.

Proposition 2.1 points out the importance of balancing loads in emulations, i.e., of
keeping the quantity

max [la~}(u)| - Ja~}(v))|
(TR ¥V

bounded by a constant. All of our emulations will have balanced loads.

Since 1/O-congestion is a property only of the structures of G and H, and not of any
embedding of G in H, we shall not mention it further.

Obviously, one strives to make emulations as “efficient” as possible. One can argue
(cf. [10]) that the most important notion of efficiency resides in the notion of work
preservation, which arises from the following reasoning. When the n-PE architecture ¢
operates for T steps, it can perform nT atomic operations. If the (m < n)-PE architecture
H emulates these T steps of G, it requires at least [n/m]|T steps to perform the same
amount of work. Allowing a (hopefully small) constant factor leeway as overhead for the
emulation, we say that the emulation of G by H is work preservingif H can emulate any T
steps of G in at most O([n/m])T steps; cf. footnote 4. We shall strive for work-preserving
emulations throughout.

C. Two Simple Emulations

We are finally in a position to formalize our discussion at the end of Section I,
concerning the “equivalence” of the deBruijn and shuffle-exchange graphs, on the one
hand, and the butterfly and CCC graphs, on the other hand.

10



Proposition 2.2. For all n, we have the following work-preserving emulations:

(a) One can embed either of the shuffle-exchange graph S(n) or the deBruijn graph T(n)
in the other, with load 1, dilation 2, and edgc-congestion 2.

(b) One can embed either of the CCC graph C(n) or the butterfly graph B(n) in the other,
with load 1, dilation 2, and edge-congestion 2.

Proof Sketch. For all four of the indicated embeddings, we employ the identity assign-
ment. Ignoring edges that are shared by the respective pairs of graphs in the embeddings
(hence use the identity routing), we route

e edge (Bz,zB) of D(n) along the following length-2 path in S(n):
Bz « 2B < 23
o edge (zf3,z0) of S(n) along the following length-2 path in D(n):
2B Bz — =3
o edge ({(£,8), (£ + 1)mod n,3")) of B(n) along the following length-2 path in C(n):
(€,8) = (£,8") = (¢ + l)mod n, §")

e edge ((£,0), (¢, ﬁ’)) of C(n) along the following length-2 path in B(n):

-

(£,8) « {(£+ 1)mod n, ") — (£,5")

2.3. Structural Characteristics of the Graphs of Interest

The diameter (maximum inter-node distance) of a graph H bounds above both the dila-
tion of any embedding into H and the time required for any single-node broadcast in .
Therefore, the following table places our emulation results in perspective and provides
an interesting comparisen of P(in,n) with its “competitors.” One noteworthy point is
that PS graphs share diameter (exactly) log, N with deBruijn graphs and hypercubes,
although deBruijn graphs acquire their small diameter with valence 4, while PS graphs
have valence 8 and hypercubes have valence log, N.

11



Proposition 2.3. For all n:

GRAPH SIZE VALENCE DIAMETER

(a) D(n) N =27 4 log N
(b) B(n) N = n2n 4 2log N — 2loglog N
() P(m,n) N =2mtn 8 log N

Proof. Parts (a,b) being well known, we concentrate on part (c). One can proceed from
any node (z,y) of P(m,n) to any other node (z',3') by

1. proceeding from node (z,y) to node (z’,y) in at most Length(z) = m steps by
mimicking the way one would proceed from node z to node z’ in D(m);

2. proceeding from node (z’,y) to node (z',y') in at most Length(y) = n steps by
mimicking the way one would proceed from node y to node y' in D(n).

3. Computationally Important Subgraphs of P(m,n)

PS graphs contain a variety of computationally useful graphs as subgraphs, i.e., as graphs
that can be emulated with unit load, edge-congestion, and dilation, hence can be emulated
with no slowdown.

3.1. Cycles

The n-node cycle C(n) is the graph whose nodes comprise the set Z, and whose edges
connect each node v with node (v + 1) mod n.

It is well known that D(n) is hamiltonian in that it contains the cycle C(2") as a
subgraph. In fact, it satisfies the following stronger property.

Lemma 3.1. (22] For all n, the deBruijn graph D(n) is pancyclic; that is, for all 1 <
k < 2%, the k-node cycle C(k) is a subgraph of D(n).*°

PS graphs share this property, whose computational benefits are exploited in the
emulations in (2| and in our Section 4.

"Since we allow self-loops and parallel edges, it makes sense to talk about cycles of lengths 1 and 2.

12



Theorem 3.1. For all m,n except form = n =1, the PS graph P(m,n) is pancyclic.

Proof. For any choice of m,n other than m = n = 1, and for any integer 1 < ¢ < 2m+n,
we show algorithmically that the cycle C(c) is a subgraph of P(m,n). Our algorithm
assumes that the cycles promised by Lemma 3.1 can be produced algorithmically; cf. (22].
(Note that P(1,1) is (essentially) a 4-cycle, whence its exclusion from the Theorem.)

Assume, with no loss of generality, that m < n (or else, interchange the roles of m
and n in what follows). If the desired cycle length ¢ satisfies 1 < ¢ < 2", then C(c)isa
subgraph of P(m,n), by Lemma 3.1. Let us restrict attention, therefore, to values of ¢
in the range 2" < ¢ < 2™*" in which case we must have m > 0.

Now, every integer c in the indicated range admits a unique representation in the
form
c=a2"+b

with 0 < ¢ < 2™ and 0 < b < 2. The overall strategy of our algorithm is to “hook
together” hamiltonian cycles from a of the 2™ copies of D(n) that comprise P(m,n),
together with a length-b cycle from one additional copy of D(n) whenever b > 0. (In
fact, technical difficulties in “hooking up” these cycles will cause us to deviate from this
strategy slightly.) To the end of implementing this strategy, we invoke Lemma 3.1 to
find a length-d cycle in D(m), where

_ a ifb=0
T le+1 ifb>0,

and we use this cycle in the natural way to select and order d “consecutjve” copies of
D(n), from the 2™ copies that comprise P(m,n); call the selected copies Dy, D, . .. ,Da_y.

We describe the mechanism for “hooking the cycles together” via an analysis of cases.
Case 1: b =0, sod=a

This is the easiest case, since we have only to “hook together” a set Co,C),...,C,-,
of cycles, each C; being a copy within D; of a hamiltonian cycle C of D(n). We start by
selecting any two independent edges (z,y) and (u,v) of D(n), that both lie on the cycle
C; since n > 2, we are sure that these edges exist. Next, we let @, y;,u;,v; (0 < i < a)
denote the instances of the nodes =, y, u, v, respectively, in copy D; of D(n). Assume that
the nodes x,y,u, v lie in clockwise order around the cycle C in D(n), so that each cycle
C’; has the form

| Yi, Piyui,vi, Qi i
where P; and Q; are the intermediate paths that define the cycle.

We are now ready to find a length-c cycle in P(m,n).

13



1. Trace the cycle Co in Dy in clockwise order, from node yo to node z, leaving out
the edge that connects the two nodes.

2. Trace the following path to complete the cycle:

.'l'o(v—a le ‘*Ql u--)vl q——avzanzt—azngmSHQsHva - .
“ Ga-1 & Qa—l P Tg_] ¢ Sq-1 < Pa—l —lgy e e

ua"*PaHya*"yz‘—’PzHquul*—’PlHyl‘—’yo

where
g5t = z,v,u,y respectively, if a is even
T v,z,y,u respectively, if a is odd.

The paths P; and Q; and the edges (z;,y:) and (u;,v;) come from the copies of D(n),
while the edges (i, zi+1), (¥i, ¥is+1), (i, xis1), and (vi, vig1) come from the copy of D(m)
we used to order the copies of D(n).

The reader should be able to fill in details, with the help of Figure 3. O-Case 1
Case 2: b>0,sod=a+1and a <2™

The added challenge in this case arises from the need to append a cycle of length b
to the chain of a hamiltonian cycles created in Case 1. The mechanism we use depends
on the value of b. '

Case 2.a: b >3

We must alter the procedure of Case 1 in two ways: we must find a copy of a length-b
cycle in copy Dgyq of D(n), and we must ensure that we can “hook” this new cycle to
the chain of hamiltonian cycles. The first of these tasks is trivial, by Lemma 3.1; let us
call the length-b cycle B. In order to accomplish the second task, we invoke a strong
property of D(n):

Claim. For any path z — y < z in D(n) involving three distinct nodes, there is a
hamiltonian cycle of D(n) that contains either the edge (z,y) or the edge (y, z).

Verification. The Claim follows from standard facts about deBruijn graphs.

Fact 1. For all n, D(n) is the line-graph of D(n — 1).

Fact 2. As a consequence of Fact 1, one can construct a hamiltonian cycle in D(n) from
any eulerian cycle in D(n — 1).

Fact 3. Given any eulerian graph ¢ and any 2-edge path 7 in G whose removal does not
disconnect §, one can construct an eulerian cycle in G which contains .

14



Flact 4. The only 2-edge paths whose removal disconnect D(n) are the paths both of
whose edges are incident to either node 0 or node 1.

Because of Fact 1, a 3-node path

Ty ez
in D(n) results from a 3-edge path
WeoelleYoeZ

in D(n — 1). Since at most two of these edges can both be incident to either node 0 or
node I in D(n — 1), it follows by Facts 3 and 4 that there is an eulerian cycle in D(n — 1)

passing through either the path

e XYaeV
or the path

XY e Z

Fact 2 assures us that, in the former case, there is a hamiltonian cycle in D(n) passing
through edge (z,y), while in the latter case, there is a hamiltonian cycle passing through
edge (y, z). O-Claim "

By dint of the Claim and the fact that b > 3, we can find an edge e of the length-b
cycle B in D,yq, that lies on a hamiltonian cycle of D(n). Let us choose edge e as the
edge (z,y) of Case 1 if a is even or as the edge (u,v) of Case 1 if a is odd. We then
alter the trajectory of the length-c cycle after the initial path within Dy, by replacing the
length-2 path

Ta-1 € Sa-1
with the path

Ta—1 3 Tq <& S > Sq “ Sa-1

where r, s are as in Case 1, and S is the path within cycle B that connects nodes r, and
8 in D, once edge (74, 34) is removed. O-Case 2.a

Case 2.b: b =2

We proceed exactly as in Case 1, except that we alter the trajectory of the length-c
cycle after the initial path within Dy, by replacing the length-2 path

Fg—1 v 8-

with the length-4 path

Ta-1 € Tq ¢ Sg 2 8ag-1

where r, s are as in Case 1. O-Case 2.b
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Case 2.c: b=1
We branch immediately on the value of n.

Case 2.c.i: When n = 2, we proceed exactly as in Case 1, until we have to deal with
copies @ — 1 and a of D(n). At that point we replace the path

Ga-1 = Qacy 2 Tgq = 8q-1 & Py oty

from Case 1 with a length-5 path (note that 5 = 2" + 1) of the form

Ga-1 < P1 < P2 < p3 — ta)

in the subgraph of P(m, n) induced on copies a—1 and a of D(n). An exhaustive analysis
which depends on the independence of edges (z,y) and (u, v) assures us that this length-5
path exists. 0O-Case 2.c.i

Case 2.c.iit When n > 2, we alter Case 1 by insisting that at least one of the
independent edges (z,y) and (u,v) not touch either node 0 or node 1 of D(n). (Note
that this is impossible when n = 2.) Say, without loss of generality, that node 0 is not
touched by either edge.

Having thus restricted the choice of these edges, we proceed exactly as in Case 2.b
(b = 2), with the following exception. Once having found the cycle produced in Case 2.b
—- which cycle has length c+1 — we remove the instance of node 0 of D(n) from whichever
of P,_; or Q4.1 contains an instance of 0. (One must, because of our restriction.) Since
every hamiltonian cycle in D(n) contains the path

10 = 0 o 01,
the elision of node 0 does not cut our cycle: it just shortens it, as desired. O-Case 2.c.ii

This case analysis completes the proof. O

Very little of the proof of Theorem 3.1 depends on properties that are peculiar to
deBruijn graphs. In fact, F. Annexstein and M. Baumslag [personal communication|
have observed that an altered version of the proof will establish the following.

Proposition 3.1. Let G and H be pancyclic graphs, one of which — say G — has an
even number of nodes. Suppose that for every integer 2 < € < |G|, G has a length-f cycle
that shares an edge with a hamiltonian cycle. Then the product graph G x H is pancyclic,
crcepl when |G| - [H| - 2.

16



3.2. Meshes

The m x n (toroidal) mesh M(m,n) is (isomorphic to) the product graph C(m) ~ C(n).

One corollary of the main result in [4] is that no butterfly- or shuffle-oriented graph
G can emulate meshes with only constant slowdown (using our notion of emulation); it
follows, of course, that G cannot contain a large mesh as a subgraph. In contrast, PS
graphs contain moderate size meshes as subgraphs, as indicated in the following corollary
of Theorem 3.1.

Corollary 3.1. For all m,n and all p < 2™ and q < 2", the PS graph P(m,n) contains
the mesh M(p, q) as a subgraph.

3.3. Complete Binary Trees

The height-n complete binary tree T(n) is the graph whose 2" — 1 nodes comprise
the set URZy Z¥ of binary strings of length < n and whose edges connect each node z of
length < n — 1 with nodes z0 and z1.

Complete binary trees are very useful computational structures, most obviously for
broadcasting, but also for emulations [4]. Thus, the following obvious result points out
one of the most useful properties of deBruijn graphs; cf. [14].

Lemma 3.2. For alln, the deBruijn graph D(n) contains the complete binary tree T (n)
as a subgraph, rooted at node 01.

While PS graphs cannot match the fact that the N-node deBrui Jjn graph contains the
(N - 1)-node complete binary tree, they do come within a factor of 2 of matching it.

Theorem 3.2. For all m,n, the PS graph P(m,n) contains the complete binary tree
T(m+ n —1) as a subgraph.

Proof. We find an instance of 7(m + n — 1) rooted at node vy = (01,01) of P(m, n), as
follows. We first invoke Lemma 3.2 to find a copy of T(n) in “copy 01” of D(n), rooted
at node vo and having leaves of the form (01, z) for some z € Z3. We then invoke Lemma
3.2 once for each “copy” of D(m) (27! times in all) to find a copy of T(m) rooted at
each of these leaves. D

To place Theorem 3.2 in perspective, the efficient embedding of complete binary trees
in butterfly graphs presented in [4] promises only constant (as oppose to unit) dilation
and utilizes only roughly one-eighth of the nodes of the host butterfly. (These constants
can be improved somewhat, but not to unity.)
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3.4. Meshes of Trees

The m x n mesh of trees M7 (m,n) (m and n being powers of 2) is obtained from the
m » n mesh by

o eliminating all mesh edges

o erecting a copy of the complete binary tree T(\(m)) along each column, using the
column nodes as leaves of the tree

e erecting a copy of the complete binary tree T(A(n)) along each row, using the row
nodes as leaves of the tree.

Mesh of trees graphs have been shown to be quite powerful computationally [12]. One
can prove, using Lemma 3.2, that PS graphs contain at least moderate size such graphs
as subgraphs.

Theorem 3.3. Forallm,n and all powers of 2 p < m/2, ¢ < n/2, the PS graph P(m,n)
contains the mesh of trees MT(p, q) as a subgraph.

Proof. Let us denote by z;, 1 < i < p, the i*h leaf leaf of T(A(2p)) and by y;, 1 <
i < g, the i*" leaf of T(A(2g)). By Lemma 3.2, P(m,n) contains the product graph
T(A(2p)) » T(A(29)) as a subgraph. Consequently, P(m, n) contains as a subgraph every
tree of the form {z;} > 7(A(2q)), as well as every tree of the form T(A(2p)) x {v:}. The
union of all of these subgraphs is MT(p,q). O

4. PS vs. Butterfly vs. deBruijn Networks

In this section we demonstrate that, relative to our notion of network emulation, PS
graphs have strictly more communication power than either shuffle- or butterfly-oriented
graphs. Our demonstration consists of efficient embeddings of both deBruijn graphs
(Section 4.1) and butterfly graphs (Section 4.2) in PS graphs, followed by a proof that
PS graphs cannot be embedded efficiently in either of the other two families (Section
4.3). We close with a discussion in Section 4.4 of the price one pays for the additional
power of PS graphs.

Our embeddings of deBruijn and butterfly graphs in PS graphs are presented in two
stages, the first assuming that the guest and host graphs in the embedding have the samc
number of nodes and the second assuming that the host PS graph is smaller than the
guest.
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4.1. PS Networks Emulating deBruijn Networks

We consider first the (technically) easier problem of emulating deBruijn graphs on PS
graphs.

Lemma 4.1. For all m and n, one can embed the deBruijn graph D(m + n) in the PS
graph P(m,n), with load 1, dilation 2, and edge-congestion 2.

Proof. Each node z of D(m + n) is a length-(m + n) binary string. Let (), denote the
length-m prefix of this string, and let [z, denote the length-n suffix of this string. The
assignment function of the desired embedding is given by:

a(z) = {(z)m, [z]n)
for all z € Z5**". Each edge of D(m + n) has the form (Bw, w8) for B € Z,, w € Z7t"!,

and § € {B3,8}. Let us write each w € Z**""! in the form w = uwyv, with v € 2",
v € Zy, and v € Z7~!. Then the routing function p of the embedding realizes the edge

(Bw,wd) = (Buyv, uyvd)
via the following length-2 path in P(m,n):
a(Bw) = a(Buyv) = (Bu,yv) < (uy,yv)
o (uy,v6) = a(uyvé) = a(wé)
This embedding clearly has dilation 2. The claimed edge-congestion follows from the facts
that the first edge in the length-2 path identifies the edge of D(m + n) being emulated,

up to the identity of §, while the second edge identifies the edge being emulated, up to
the identity of 8. O

Theorem 4.1. For all n and all p and q with p + ¢ < n, one can embed the deBruijn
graph D(n) in the PS graph P(p,q), with load 2”79, dilation 4, and edge-congestion
27‘”‘“*2. This leads to a work-preserving emulation of D(n) by P(p,q).

Proof. We use Lemma 4.1 to embed D(n) in P(n - p — q,p + q), with load 1, dilation
2, and edge-congestion 2. '

We then use a projection embedding to embed P(n — p — ¢q,p + q) in D(p + q), with
load 2"7?79, dilation 1, and edge-congestion 2"~P~?. The projection embedding assigns
each node (z,y) of P(n —p—gq,p+q) to node y of D(p + q) and routes edges in the naive
(edge-to-edge) way.

Finally, we use Lemma 4.1 a second time, to embed D(p + q) in P(p, q), with load 1,
dilation 2, and edge-congestion 2.

Since our cost measures multiply when embeddings are composed, we can invoke
Proposition 2.1 to complete the proof. O
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4.2. PS Networks Emulating Butterfly Networks

Lemma 4.2. (2] For all n, one can embed the buiterfly graph B(n) in the PS graph
P(A(n),n), with load 1. dilation 2, and edge-congestion 2.

Proof. We sketch the proof from [2]. By the pancyclicity of deBruijn graphs (Lemma
3.1), it suffices to embed B(n) in the product graph C(n) x D(n), with unit load, dilation
2 and edge-congestion 2.

We label the nodes of B(n) with strings from Z3 via the following inductive procedure

that is implicit in [2]; cf. Figure 4.

1. Label node (0,0} of B(n) with the string 0.

2. If level-£ node v (£ ¢ Z,) is labelled with string L(v), then label the straight-edge
(resp., the cross-edge) neighbor of node v on level (£ + 1) mod n with the shuffle
(resp., the shuffle-ezchange) of L(v).

Now, isolate any two consecutive levels of the labelled B(n), together with the 2"*!
edges that connect the levels; cf. Figure 5. Produce the 2"-node graph G, from the
isolated levels by identifving like-labelled nodes and eliminating self-loops. Our labelling
procedure guarantees that:

Claim. For any two consecutive levels of B(n), the graph G, is isomorphic to D(n).
The result is now direct: To embed B(n) in C(n) x D(n):

o Assign level-£ node v of B(n) to node L(v) of copy £ of D(n), where L(v) € Z7 is

the label assigned to node v by the indicated procedure.
e Route edge ((€,z), (', y)) of B(n) within C(n) x D(n) via the length-2 path:
(¢, L(1¢,2))) = (£, L((€,y))) — (¢, L({£',y))).

Thus, we first route within a copy of D(n) and then between copies.
The described embedding clearly has unit load and dilation 2. The claimed edge-

congeslion is incurred because nodes in both D(n) and B(n) have two “successors” and
two “predecessors.” O

Theorem 4.2. For all n and all p and q with ¢ < n and Mq) < p < n, one can embed

the butterfly graph B(n) in the PS graph P(p,q), with load and edge-congestion [n/q]2""9
and dilation 2. This leads to a work-preserving emulation of B(n) by P(p,q).
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Proof. Our embedding proceeds in stages.

We begin by embedding B(n) in a graph G(n,q) which is defined implicitly via the
following embedding, (ay,p1), where both a; and p; are surjective mappings. For each
node (£,z) of B(n),

al((g’ :l))) = (E’ [m]lI>
(Recall that [z], is the length-g suffix of the string 2.) p; routes each edge of B(n) naively,
via an edge of G(n,q). The embedding thus defined has load and edge-congestion 279
and unit dilation.

In order to see what the next stage of our composite embedding needs to accomplish,
let us consider what the graph G(n, ¢) looks like. G(n, q) consists of n levels. The induced
graph on levels 0,1, ...,q of G(n, q) is (isomorphic to) the induced graph on the first ¢+ 1
levels of B(¢+ 1). The remainder of G(n, ) consists of 27 node-disjoint length-(n — ¢ +1)
paths, each path having the form

(q,.’l)) « (q+ lim) A s (Tl - 17$) “« (07:1:)
for some length-q binary string z.

Now we embed G(n,q) in G(p,q), by “folding” the “dangling paths” at levels p,p +
l,...,n of G(n,q) into the top p levels of the graph, and then identifying levels 0 and p
of the graph. The “folding” is accomplished via the assignment function a, defined by:

ax((g+k,2)) = ao({n — k,z)) = (k mod n, z)

for all € Z7 and all ’
n - p+((n—p) mod2)
2 1
when n — p is even, the definition of a, must be completed by the assignment

o ((552)) = (57 mod n.z).

Once again, we employ the naive (edge-to-edge) routing to complete the specification of
the embedding. One verifies easily that this embedding has load and edge-congestion
O([n/p]) and unit dilation.

Finally, we embed G(p. g) in P(p, q). This can be done indirectly by invoking the proof
(rather than statement) of Lemma 4.2. In that proof, B(n) is embedded in C(n) x D(n)
with unit load and with dilation and edge-congestion 2. Precisely the same reasoning
embeds G(p, q) in C(p) » D(q) with the same costs. Qur embedding of G(p, q) in P(p,q)
is completed by noting that, by Lemma 3.1, C(p) ~ D(q) is a subgraph of P(p.q).

0-<k<

Since our cost measures multiply when embeddings are composed, we can invoke
Proposition 2.1 to complete the proof. O
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4.3. The Converse Emulations

In the framework of our strong notion of emulation, PS graphs are strictly more powerful
than either butterfly or deBruijn graphs, in the sense of the following result. Note how
much stronger the result is for butterfly graphs than for deBruijn graphs, both in terms
of quantification and dilation.

Theorem 4.3. (a) For all m,n, any embedding of the PS graph P(m,n) in any butterfly
graph must have dilation Q(min(m,n)).

(b) For all m,n, any embedding of the PS graph P(m,n) in the deBruijn graph D(m + n)
maust have dilation Q(log min(m,n)).

Proof. Let A = 2min(mn) By Corollary 3.1, P(m,n) contains the A x Al mesh

M(M, M) as a subgraph. It is proved in [4] that any embedding of M(A, M) in any

butterfly graph must have dilation Q(log Af). It is also proved there that any embedding "
of M(A, M) in a like-sized deBruijn graph must have dilation Q(log M). O

The lower bounds of Theorem 4.3 grow faster than any constant, thus justifying our
assertion about the power of PS graphs; however, each of these lower bounds is smaller
than the best known corresponding upper bound. We do not know at this point whether
to believe that the upper bounds can be lowered or that the lower bounds can be raised.

4.4. Area-Efficient VLSI Layouts of the Networks

The additional power of PS graphs over both butterfly and deBruijn graphs comes at
modest cost. First, and obviously, PS graphs are 8-valent while their competitors are
4-valent. Less obviously, PS graphs admit VLSI layouts which are only modestly more
consumptive of area than the most efficient layout of either of the other two graphs. We
refer the reader to {6, 21] for background on the formal framework and techniques of
analysis for VLSI layouts.

We begin with the layout requirements of deBruijn and butterfly graphs.

Theorem 4.4. (a) |11] The deBruijn graph D(m + n) admits a VLSI layout in a “boz”

of dimensions
m+n m+n
0 ( 2 ) 0 ( 2 ) .
m4in m+n

(b) [21] Any VLSI layout of the deBruijn graph D(m 4 n) consumes area
m+n
o) (i
(m + n)?
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(¢) |21] The area-minimal VLSI layouts of the butterfly graph B(n). which has N = n2"

nodes, consume area An)
2 4n+ n
o) -o(22)
log* N n

Now we turn to the layout area of PS graphs.

Theorem 4.5. The PS graph P(m,n) admits a VLSI layout of area
m+n
0(4 ).
mn

Proof. We use the layouts guaranteed by Theorem 4.4(a) and by the following Lemma
to obtain a VLSI layout of P(m,n) with the advertised area.

Lemma 4.3. [6] The deBruijn graph D(n) admits a collinear VLSI layout in a “boz” of
dimensions o
0(—)xomw,

n
t.e., a layout in which all nodes are laid out in a line.

Assume, with no loss of generality, that m < n. Stack 2™ copies of the area-efficient
layout of D(n) from part (a) of Lemma 4.3, aligned so that, for each node v of D(n),
all copies of v are lined up in the same vertical track. For each node v of D(n), allocate
2™ /m new vertical tracks, and use these tracks to route a collinear layout of D(m) via
the layout of Lemma 4.3(b), using the copies of v as nodes. Easily supplied details turn
this schematic description into a layout of P(m, n), whose area satisfies the bound of the
Theorem. O

5. Concluding Remarks

Permutation Routing. Proposition 2.3 indicates that PS networks can match the
efficiency of deBruijn networks and exceed the efficiency of butterfly networks on single
point-to-point communications and on single-source broadcasts. Recent work [1] shows
PS networks to be competitive with the other two networks also on (deterministic, off-
line) permutation routing.



Proposition 5.1. [1] Therc is a deterministic algorithm that routes any permutation on
the PS network P(m,n) in time

< 2(m + n) + 2min(m,n) - 3.

Further Challenges. Among the unresolved problems in the study of hypercube-
derivative networks, the most inviting seek definitive answers to the questions of how
efficiently the hypercube and its derivatives (including PS graphs) can emulate one an-
other. Although certain of these questions have been resolved within the more compre-
hensive framework of [10], there are practical, as well as intellectual, reasons to determine
whether or not our simpler framework yvields the same answers to these questions. Even
after all of these individual questions have been answered, it will still be an interesting
challenge to adduce underlying principles that explain the answers (along the lines of the
algebraic development in [2]).
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Figure 1. The (directed version of the) order-3 deBruijn graph D(3).



0,000 0,100 0,010 0,110 0,001 0,101 0,011 0,111

1,000 1,100 1,010 1,110 1,001 1,101 1,011 1,111

!

2,000 2,100 2,010 2,110 2,001 2,101 2,011 2.111
0,000 0,100 0,010 0,110 0,001 0,101 0,011 0,111

Figure 2. The order-3 butterfly graph B(3) with level 0 replicated to aid visualization.
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Figure 3. A schematic view of the cycle constructed in Theorem 3.1.



000 100 010 110 001 101 011 111

000 001 100 101 010 011 110 111
000 010 001 011 100 110 101 111
000 100 010 110 001 101 011 111

Figure 4. B(3) with the shuffle-oriented labelling of Lemma 4.2; level 0 is replicated to
aid visualization.



000 100 010 110 001 101 011 111

000 100 010 110 001 101 011 111

Figure 5. Two consecutive levels of B(3) with the shuffle-oriented labelling; “columns”
are permuted to help visualize the identification.



