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Abstract

This technical report describes three approaches for understanding natural language
concepts. The first approach integrates semantic and syntactic constraints for struc-
tural noun phrase disambiguation. Semantic constraints are learned as distributed rep-
resentations in backpropagation networks. These semantic constraints are integrated
with syntactic constraints using localist relaxation networks.

The second approach describes a model for learning semantic relationships in compound
nouns. A connectionist architecture consisting of modular backpropagation networks
can learn and generalize basic semantic relationships in compound nouns.

The third approach is a hybrid model which combines symbolic and connectionist
techniques for understanding noun phrases. A distributed connectionist level provides a
learned semantic memory model. A localist connectionist level integrates semantic and
syntactic constraints. A symbolic level is responsible for restricted syntactic analysis
and concept extraction.

All three approaches were tested in the domain of the physical sciences. The noun
phrases and compound nouns were taken from the Physical Science Laboratory Corpus.
Based on our experiments we conclude that a hybrid connectionist/symbolic approach
can be a potentially powerful mechanism for learning, representing, and disambiguating
noun phrases in real world domains.
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Abstract

A fundamental problem in Natural Language
Processing is the integration of syntactic and
semantic constraints. In this paper we describe
a new approach for the integration of syntactic
and semantic constraints which takes advan-
tage of a learned memory model. Our model
combines localist representations for the inte-
gration of constraints and distributed represen-
tations for learning semantic constraints. We
apply this model to the problem of structural
disambiguation of noun phrases and show that
a learned connectionist model can scale up the
underlying memory of a Natural Language Pro-
cessing system.

1 Introduction

The structural and semantic understanding of noun
phrases and prepositional phrases is one of the most im-
portant tasks for natural language processing systems.
Lately issues of prepositional phrase attachment have
been addressed in different systems for sentence under-
standing (e.g. [Wilks et al. 83], [Schubert 86}, [Dahlgren
and McDowell 86), [McClelland and Kawamoto 86], [St.
John and McClelland 88]). These systems focus on de-
ciding whether a prepositional phrase attaches to a verb
phrase or a noun phrase, for instance [Wilks et al. 85]:

The woman wanted the dress on the rack.
The woman positioned the dress on the rack.

In the first example “on the rack” attaches to the noun
phrase “the dress”, in the second example to the verb
“positioned”. )

All these referenced systems emphasize preposi-
tional phrase attachment in sentences of the form
<S><VP><NP><PP>, and concentrate on the at-
tachment of a single prepositional phrase based on pre-
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dictive verbal knowledge. However, attachment deci-
sions for multiple prepositional phrases have to rely on
syntactic and semantic knowledge associated with nouns
and prepositions as well. The importance of this knowl-
edge about nouns and prepositions is very obvious for
the attachment decisions in isolated noun phrases, as for
example in titles of scientific articles. In this paper we
restrict our efforts to prepositional attachment in noun
phrases using a corpus of titles and scientific articles from
the physical sciences, for instance:

Forces on charged particles of a plasma in a cavity res-
onator.
Irregularities in the drag effects on sputniks.

We describe a two-level architecture for integrating
syntactic and semantic constraints to disambiguate PP-
attachment in noun phrases. The bottom level consists
of backpropagation networks using distributed represen-
tations for the semantic relationships between nouns and
prepositions. The backpropagation networks are trained
with examples of these prepositional relationships for
each preposition, so that the backpropagation networks
learn the underlying semantic constraints. The top level
consists of a relaxation network using localist represen-
tations for the integration of syntactic constraints with
the learned semantic constraints. This approach allows
the disambiguation of noun phrases which the system
has not been trained on.

2 Noun Features for Prepositional
Relationships

Prepositional relationships depend on domain-specific
features of the involved nouns. The noun phrases for our
experiments were taken from the NPL corpus [Sparck-
Jones 76} which contains article titles for scientific and
technical domains. Typical examples in the corpus are:

Pulse techniques for probe measurements in gas dis-
charges.

‘T'he influence of the radiation intensity on discharges in
the Van-Allen-belt.

For cach of the 10 most frequent prepositions in the
corpus, 100 noun phrases were extracted which contained
the specific preposition. The typical structure of the
considered noun phrases is a sequence of up to five noun



groups each separated by a preposition. The head' noun
in the noun group was characterized with semantic fea-
tures. We found the following 16 features useful as a
basic representation for the noun groups in this domain
(see Figure 1).

Features Examples
MEASURING-EVENT Obscevation
CHANGING-EVENT Amphificstion
SCIENTIIAC-FAL.D Mechanics
PROPERTY Intensity
MECHANISM Expeniment
ELECTRIC-OBJECT Transisior
PHYSICAL-OBJECT Earth
RELATION Cause
ORGANIZATION-FORM Laye-

GAS Air
SPATIAL-LOCATION Antarctic
TIME June
ENERGY Radiation
MATERIAL Aluminium
ABSTRACT-REPRESENTATION | Noic
EMPTY Cavity

Figure 1: Features of the Nouns and Examples

Most nouns have a clear preference for one of the 16
features, for example “June” for TIME. Although prepo-
sitional relationships could be defined with one feature
class [Herskovits 86], nouns can have more than one fea-
ture, for example “radiation” can be a form of EN ERGY,
and a CHANGING-EVENT. To account for these mul-
tiple features of single nouns each noun is represented as
a binary vector of length 16.

3 The Structural Disambiguation of
Noun Phrases

The disambiguation of noun phrases relies on two types
of knowledge: first, semantic, domain-dependent con-
straints for the plausibility of prepositional relationships
and second, syntactic, domain-independent constraints
for crossing dependencies and locality.

3.1 The Bottom Level: Learning Semantic
Constraints with Backpropagation
Networks

Semantic constraints based on the plausibility of prepo-
sitional relationships determine how different preposi-
tional phrases in a noun phrase can attach to one an-
other. In many systems semantic constraints are for-
mulated as rules (e.g. [Wilks et al. 85] [Dahlgren and
McDowell 86]). We describe a different approach for
learning the semantic constraints in prepositional rela-
tionships.

Learning prepositional relationships for different
prepositions is defined as learning to differentiate be-
tween plausible prepositional relationships and implau-
sible prepositional relationships. Plausible preposi-
tional relationships are rclationships which can be
true. For instance, the prepositional relationship “radi-
ation in atmosphere” is plausible. Implausible prepo-
sitional relationships are relationships which violate

semantic restrictions. For instance, the prepositional re-
lationship “symposium in ionosphere” violates semantic
restrictions because meetings are not supposed to take
place in the upper atmosphere.

Backpropagation networks are useful to learn the plau-
sibility of prepositional relationships between two nouns
and to generalize the regularities for the plausibility of
pairs of nouns with which the network has not been
trained. We used the backpropagation algorithm as de-
scribed in [Rumelhart et. al 86). One backpropagation
network is used for representing the prepositional rela-
tionships for one preposition. Each network consists of
32 input units, 12 hidden units and one output unit (see
figure 2). The input units represent the binary features
of the two nouns. The output unit is a real value between
0 and 1 representing the plausibility of the prepositional
relationship between two nouns. The hidden units rep-
resent the learned mapping between the noun features
and the plausibility value.

Output  unit
(Plausibility)

Hidden units

Input units (Fcay

[gas discharges in F-almosphercq

Figure 2: Bottom Level: Backpropagation Network for
Learning Prepositional Relationships for the Preposition
“in” (only some connections shown)

The backpropagation networks were trained by pre-
senting about 200 training examples for each specific
preposition. A training example consisted of the fea-
ture representations for the two nouns together with the
plausibility value “1” for “plausible” or “0” for “implau-
sible”. After the backpropagation networks were trained
for 1600 epochs with the training set, each network was
tested with the training set and a testing set. The test-
ing set consisted of 30 examples of prepositional rela-
tionships (cach characterized by 32 features) which the
network had not been trained on. A prepositional rela-
tionship was considered correct on a scale from 0 to 1 if
the value of the output unit was higher than 0.5 for a
desired plausible relationship and smaller than 0.5 for a
desired implausible relationship. The testing results for
three examined prepositions [Wermter 89] showed that
the backpropagation networks learned almost all prepo-
sitional relationships in the training set and most of the
relationships in the testing set. For instance, the network
for the preposition “in” got 93% of the 248 training ex-
amples correct and 83% of 30 unknown testing examples,



3.2 The Bottom Level: Representing Syntactic
Constraints

The first form of syntactic knowledge considered for noun
phrase disambiguation is the locality constraint. The
Locality constraint models the heuristic that a prepo-
sitional phrase in a noun phrase is more likely to attach
1o a close preceding noun than to a distant preceding
noun. For instance in a noun phrase like “techniques
for measurements in discharges™ the prepositional phrase
“in discharges” tends to attach to “measurements”, al-
though “in discharges” could attach to “techniques” as
well.  The locality constraint can be interpreted as a
generalization of Right Association ‘Kimball 73]. While
Right Association for a noun phrase states that a prepo-
sitional phrase attaches to the directly preceding noun,
the locality constraint claims that there is only a strong
tendency for a local attachment to directly preceding
nouns. This tendency decreases with the distance be-
tween noun and prepositional phrase.

The second form of syntactic knowledge is the No-
crossing constraint. The Ro-crossing constraint states
that the prepositional phrase attachment in a noun
phrase does not show crossing branches (see e.g. [Tait
83]). The following constructed example illustrates a vi-
olated no-crossing constraint. Although “influence on
electrons” and “temperatures in Fahrenheit” are plausi-
ble prepositional relationships. this structural interpre-
tation is considered wrong due to the crossing attach-
ment.

Influence of temperatures on elecirons in Fahrenheit.

3.3 The Top Level: Integrating Syntactic and
Semantic Constraints in a Relaxation
Network

The semantic constraints for the prepositional relation-
ships and the syntactic constraints for no-crossing and lo-
cality are integrated in a relaxation network to allow par-
allel interactions between these different constraints. In
the past, relaxation networks have been shown to be suc-
cessful for integrating different constraints in a variety of
natural language tasks like sentence processing [Waltz
and Pollack 85], word sense disambiguation {Bookman
871, attachment decisions ;Lehnert 89) and lexical access
(Cottrell 88). These approaches depend on the initial-
ization of the input nodes with suitable values but: this
decision is not based on a memory model. [n our new
approach we demonstrate that (1) trained backpropaga-
tion networks supply a more powerful underlying model
for the input of a relaxation network and (2) relaxation
networks are extremely useful for integrating different
constraints for structural noun phrase disambiguation.

First we will describe the interface between our two
levels, then we will outline the overall architecture of the
relaxation network at the top level. This description is

ilustrated with an example of a noun phrase with three
Prepositions:

The influence of the radiation intensity on discharges in
the Van-Allen-belt.

3.3.1 The Interface between the Top and
Bottom Levels

The interface between the two levels is represented
with three types of nodes: semantic nodes, locality
nodes. and no-crossing nodes (see figure 3). In our exam-
ple there are six Semantic nodes representing the se-
mantic constraints for the six possible prepositional rela-
tionships: influence of intensity, influence on discharges,
influence in Van-Allen-belt, intensity on discharges, in-
tensity in Van- Allen-belt, discharges in Van-Allen-belt.

0OBRET

CEEElE
AN ANV

PN

i
ég .—_-"%'e. é:% 23123
|
P > 1 o: ) " " No-crossing Localiy {
Semaantic coastraints Syatactic coastraiats

Noun phrase: Influence of intensity on discharges in Van-Allen-Belt
12 wfluence of wtensity

23:  ntenuity on discharges
13:  wnfluence on discherges

34: duscharges in Van-Allen-Belt
24: antenssty in Van-Allen-Belt,
14: tnfluence 10 Van-Allen-Belt

Figure 3: The Interface between Top Level and Bottom
Level: Input Nodes for Semantic and Syntactic Con-
straints

The input potential for the six semantic nodes in the
relaxation network is based on the output units of the
backpropagation networks described in section 3.1. The
semantic nodes representing “influence of intensity”, “in.
fluence on discharges”, “influence in “an-Allen-belt”,
“intensity in Van-Allen-belt”, and “discharges in Van-
Allen-belt” get high input potential, because these rela-
tionships are plausible. The semantic node for “intensity
on discharges” gets a low input potential, because that
irefationship is implausible.

In addition to the semantic nodes there are seven syn-
tactic nodes representing the syntactic constraints for
locality and crossing dependencies. Tle potential of
the six Locality nodes reflects the distance between
the nouns of a prepositional relationship: the closer the
nouns of a prepositional relationship in the noun phrase,
the higher the potential of the node. For instance, “in-
fluence of intensity™ gets a higher value than “mfluence
in Van-Allen-belt” because the nouns in the first prepo-
sitional relationship are closer. The one No-crossing
node prevents crossing attachments. so that in noun
phrases with three prepositions the :%ird noun cannot
attach to the first noun while the fuurth noun attaches



to the second. The connections of all nodes are described
in the next section.

3.3.2 The Top Level: Architecture of the
Relaxation Network

The relaxation network (see figure 4) consists of nodes
connected via inhibitory and excitatory connections and
can be generated for noun phrases with different lengths.
For noun phrases with three prepositions there are 13
input nodes and six output nodes. The input nodes
for the semantic constraints and locality constraints are
connnected via inhibitory connections if the two prepo-
sitional relationships have the same noun in the second
position of the prepositional relationship and a different
noun in the first position. For example “influence on
discharges” and “intensity on discharges” are connected
via inhibitory connections, because “influence” competes
with “intensity” for “discharges”.

The output nodes represent the six possible structural
interpretations of the noun phrase. Therefore the out-
put nodes will be referred to as Structure nodes. One
structure node can be described as a triple of number
pairs. Each number stands for the position of a noun
in a noun phrase, for instance the triple “1-2,2-3,3-4” is
the representation for “influences of intensity”, “inten-
sity on discharges” and “discharges in Van-Allen-belt”.
All structure nodes are in competition and connected via
inhibitory connections.

The semantic nodes and the locality nodes are con-
nected with the structure nodes via excitatory connec-
tions if the prepositional relationship of the input node
occurs in the structure node. The no-crossing node is in-
hibitorily connected to the structure node “1-2,1-3,2-4"
which represents crossing dependencies.

3.3.3 Processing in the Relaxation Network

The nodes in the relaxation network are initialized
with a potential between 0 and 10. The semantic nodes
receive input based on the output of the backpropaga-
tion networks. They obtain a high start potential of
10 for a plausible prepositional relationship and a low
start potential of 2 for an implausible prepositional rela-
tionship. The initialization values of the locality nodes
depend on the distance between nouns in a noun phrase.
For instance, if the attachment is over 1 preposition we
Initialize with 3, for attachment over 2 prepositions with
2, and for attachment over 3 prepostions with 1. This
ensures that local attachment gets more reinforcement
than distant attachment. The rest of the nodes, the

no-crossing node and the structure nodes, are initialized
with low values of 2.

Once the relaxation algorithm [Feldman and Ballard
82] is staried, nodes update their potential. Incoming
excitatory connections increase the potential of a node,
incoming inhibitory connections decrease the potential.
One cycle consists of updating every node once. Al-
though our implementation of this process is sequential,
the actions within one cycle could be processed in par-
allel. After about 30 cycles the network converges to a

stable state in which the potentials do not change any
more. The structure node with the highest potential
represents the preferred structural interpretation of the
noun phrase.

In our example “The influence of the radiation inten-
sity on discharges in the Van-Allen-belt” the following
structure node had the highest potential of 8.9 at the
end of the relaxation (the other structure nodes had val-
ues around 0.9):

Influence of intensity
Influence on discharges
Discharges in Van-Allen-belt

The network integrated the syntactic and semantic
constraints: the semantic constraint “intensity on dis-
charges” is implausible and therefore the semantic con-
straint “influence on discharges” is found as the preferred
attachment for “discharges”, although the syntactic lo-
cality constraint prefers the local attachment “Intensity
on discharges” compared to “infuence on discharges”.
This example shows how semantic constraints can over-
rule locality constraints.

Looking at the noun “Van-Allen-belt” we notice the
syntactic influence. “Van-Allen-belt” could attach to all
three preceding nouns, because all these prepositional re-
lationships are plausible. At the same time the locality
constraint imposes a preference for a local attachment,
so that “discharges in Van-Allen-belt” is preferred to “in-

fluence in Van-Allen-belt” and “intensity in Van-Allen-
belt”.

4 Discussion

We use two different mechanisms at two levels for the
task of structural noun phrase disambiguation. At
the domain-dependent bottom level we use distributed
representations and backpropagation networks for each
preposition to learn the semantic relationships. At the
domain-independent top level we use localist represen-
tations and a relaxation network to integrate syntactic
and semantic constraints. Although work on related re-
laxation networks has to rely on some initial setting of
the start activation (e.g. [Waltz and Pollack 85], [Book-
man 87], [Lehnert 87}, [Cottrell 88]), our model bases its
initialization on learned memory. While other work on
PP-attachment has mostly concentrated on the attach-
ment of single prepositional phrases in sentences ({Wilks
et al. 85), [Schubert 86], [Dahlgren and McDowell 86],
[McClelland and Kawamoto 86], (St. John and McClel-
land 88]) we have concentrated on the attachment of
multiple prepositional phrases in noun phrases.

Qur approach demonstrates progress over related con-
nectionist work [Cosic and Munro 88] by using dis-
tributed representations for nouns, by integrating se-
mantic and syntactic constraints and by allowing for
noun phrases with arbitrary length. We must also point
out that our underlying memory model of prepositional
relationships can be used as part of a full sentence ana-
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I¥zer as well. For example, the sentence analyzer CIR-
CUS [Lehnert 89] can combine our semantic memory

model with predictive knowledge during sentence pro-
cessing.

5 Conclusions

We have described an approach for learning and inte-
grating semantic and syntactic constraints. Backpropa-
gation networks and distributed fepresentations are used
to learn the plausibility of semantic relationships and
to generalize the learned regularities to semantic con-
straints. Relaxation networks and localist representa-
tions are used to integrate these semantic constraints
with syntactic constraints, \We have demonstrated that
a connectionist model supplies a powerful memory model
for the learning and integration of constraints for struc-
tural noun phrase disambiguation.
of learning and integrating constraints occurs I many
other language tasks like word sense disambiguation or
compound noun interpretation,
importance for many Natural |
lems,

Since the problem

our memory model is of
-anguage Processing prob-

ork for the [ntegration of Semantic and Syntactic Constraints

(only some
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Learning Semantic Relationships in Compound Nouns with
Connectionist Networks

Stefan Wermter
Department of Computer and Information Science
University of Massachusetts

Abstract

This paper describes a new approach for understanding compound nouns. Since several approaches
have demonstrated the difficulties in finding detailed and suitable semantic relationships within
compound nouns, we use only a few basic semantic relationships and provide the system with the
additional ability to learn the details of these basic semantic relationships from training examples.
Our system is based on a backpropagation architecture and has been trained to understand com-
pound nouns from a scientific technical domain. The test results demonstrated that a connectionist
network is able to learn semantic relationships within compound nouns.

Introduction

Understanding compound nouns plays an important role in understanding natural language. In the
past, different approaches for understanding compound nouns have been investigated in artificial
intelligence, linguistics, and cognitive science ((Marcus 80) (Finin 80) (McDonald 82) (Lehnert
86) (Arens 87) (Dahl 87)). Most approaches relied on a representation of the words in compound
nouns as frames or semantic features and contained fixed control structures which determined the
semantic relationships between the words. For example, Finin (Finin 80) used frames to predict
the semantic relationships between words and a hierarchy of rules to identify the best relationship.
McDonald’s system (McDonald 82) is based on Fahlman’s parallel semantic network (Fahlman 79)
and used marker passing to find the semantic relationships between word concepts.

These approaches try to understand compound nouns by coding as much knowledge as possible
about the words, semantic relationships, and control structures. In this paper we investigate a
different approach for understanding compound nouns consisting of two words. We use only a few
basic semantic relationships and provide the system with the ability to learn the details of the
basic semantic relationships from training examples. Instead of encoding knowledge structures and
control structures for understanding compound nouns, basic semantic relationships in compound
nouns are learned using a connectionist architecture.

The Domain and the Basic Semantic Relationships

Compound nouns are frequently used in almost every domain. Our domain is the NPL! corpus
(Sparck-Jones 76) which contains abstracts and queries from the physical sciences. From this corpus

'National Physics Laboratory
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we randomly chose 108 compound nouns consisting of two words, e.g. “heat effect”. Each word is
represented as a binary vector of 16 semantic features, which were extracted by using the NASA
thesaurus (NASA 85). For a more detailed description of the process of feature extraction see
(Wermter and Lehnert 89). Figure 1 illustrates the semantic fentures for the compound nouns.

Semantic Features Examples

MEASURING-EVENT Observation, Investigation, Research
CHANGING-EVENT Amplification, Acceleration, Loss
SCIENTIFIC-FIELD Mechanics, Ferromagnetics
PROPERTY Intensity, Viscosity, Temperature
MECHANISM Experiment, Technique, Theorem
ELECTRIC-OBJECT Transistor, Resistor, Amplifier
PHYSICAL-OBJECT Earth, Crystal, Vehicle, Room
RELATION Cause, Dependence, Interaction
ORGANIZATION-FORM Layer, Level, Stratification, F-Region
GAS Air, Oxygen, Atmosphere, Nitrogen
SPATIAL-LOCATION Antarctic, Earth, Range, Region, Source
TIME June, Day, Time, History

ENERGY Radiation, Ray, Light, Sound, Current
MATERIAL Aluminium, Water, Carbon, Vapour
ABSTRACT-REPRESENTATION | Note, Data, Equation, Term, Parameter
EMPTY Cavity, Vacua

Figure 1: Semantic Features of the Nouns and Examples

To represent basic semantic associations between words we use 7 basic semantic relationships. We
specify a Basic Semantic Relationship as a preposition paraphrase (see figure 2). For example,
a “room experiment” has the basic semantic relationship IN-P since the experiment is “in” a room,
and an “excitation mechanism” has the basic semantic relationship FOR-P since it is a mechanism
“for” excitation. Each compound noun can have different basic semantic relationships; for instance,
a “feedback circuit” is a “circuit FOR-P feedback” or a “circuit WITH-P feedback”. Each basic

semantic relationship can have several meanings; for instance, the IN-P is different for “storage
IN-P computer” and “disturbance IN-P atmosphere”.

Basic Semantic Relationships | Examples for the Basic Semantic Relationships
BY-P Impurity Conduction

FOR-P Excitation Mechanism

FROM-P Space Vehicle

IN-P Room Experiment

OF-P Oxygen Emission

ON-P Skin Effect

WITH-P Amplifier Circuit

Figure 2: The Basic Semantic Relationships
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We consider the basic semantic relationships as a first step to differentiate semantic relationships
according to their main properties. This general concept of classifying semantic relationships ac-
cording to preposition paraphrases has been found useful in several studies on compound nouns
(e-8., (Lee 60) (Levi 78) (Finin 80)), since prepositivn paraphrases contain general relationships;
e.g., FROM-P expresses a source, FOR-P expresses a purpose, and IN-P expresses inclusion. Our
goal here is to specify basic semantic relationships as preposition paraphrases and to build a system
which learns the underlying semantic relationships from training examples.

The Architecture

The architecture for learning semantic relationships is a backpropagation network with three layers
(see figure 3). The bottom layer consists of 32 binary input units for the semantic features of the
two words in the compound noun. The hidden layer is a 7 x 12 array of hidden units, 12 hidden
units for each of the 7 basic semantic relationships. The top layer consists of 7 real-valued output
units, one for each of the 7 basic semantic relationships.

Each output unit is connected only to all hidden units of the same basic semantic relationship.
All hidden units are connected to all input units. This modular organization has two advantages:
(1) training and testing for each basic semantic relationship can be done independently, and (2)
adding, deleting and modifying a basic semantic relationship does not require retraining the whole
network.

7 output umits (basic semantic relationships) for the compound noun

BY-P OF-p ON-P IN-P FOR-P FRON-P VWITH-P

7 x 12 hidden
units

2 x16 nput units (semantic teaiures) fdr a 2-word compound noun

Figure 3: The Structure of the Backpropagation Network
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Training the Network

First, 108 compound nouns consisting of two words were randomly selected from the NPL corpus.
Each compound noun was represented with 32 binary features, 16 ior each word. The 108 compound
nouns were divided into 88 compound nouns for a training set and 20 compound nouns for a test
set. Because of the modular architecture the network can be trained in separate modules for the
different basic semantic relationships. For each of the 7 basic semantic relationships the feature
representations of the 88 compound nouns were presented as the input together with a desired
binary plausibility value as the output. The plausibility value indicates if the basic semantic
relationship between the two words is plausible (value‘1) or not plausible (value 0). The following
example shows two of the 88 training examples for the basic semantic relationship IN-P: “Plasma
layer” in the sense of “layer IN-P plasma” is plausible, while “sunspot number” in the sense of
“number IN-P sunspot” is not plausible.

PLASMA LAYER ~> LAYER IN-P PLASMA 1
SUNSPOT NUMBER -> NUMBER IN-P SUNSPOT 0

For each of the 7 basic semantic relationships the semantic features and plausibility values of
the 88 compound nouns were presented for 800 cycles (that is 70400 training examples). The
backpropagation algorithm (Rumelhart et. al. 86) was used to learn the plausibility of each basic
semantic relationship?. To be independent of the random start initialization of the network, three
different runs (each with the 70400 training examples) were conducted for each of the 7 basic
semantic relationships. Within this learning phase the average of the total sum squared error for
all training examples over all 21 runs decreased from 23.2 at the start of the training to 1.4 at the
end of the training.

Evaluation of the Test Results

After training, the network was tested on the training set of 88 compound nouns and the test set of
20 compound nouns. The semantic feature representation of the compound nouns in the test set had
not been part of the training set. The network was tested by presenting the feature representation
of a compound noun, and the system computed the plausibility value for each basic semantic
relationship. A basic semantic relationship is considered correct, if the computed plausibility value
deviates less than 0.49 from the desired value 1 for a plausible basic semantic relationship and from
the desired value 0 for an implausible basic semantic relationship.

¥The learning rate n was set to 0.01, the weight change momentum o was 0.9 for all experiments.
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Basic Semantic Relationships | Correct in the Training Set | Correct in the Test Set
BY-P 94% 83%
FOR-P 97% 3%
FROM-P 94% 82%
IN-P 96% 73%
OF-P : 93% 7%
ON-P 98% 95%
WITH-P 98% 88%

Figure 4: Basic Semantic Relationships in Training Set and Test Set

Figure 4 illustrates the overall system performance on the training set and on the test set for each
basic semantic relationship. The average percentage of correctly learned training examples for the
three different learning runs is between 93% and 98%, the percentage of correctly generalized test
examples is between 73% and 95%.

Figure 5 shows a more detailed interpretation of representative examples from the test set of new
compound nouns. Each compound noun is shown with the computed plausibility values for each
basic semantic relationship3. We say that a basic semantic relationship for a compound noun exists
if the computed plausibility value is greater than or equal to 0.5.

e
s

Compound Nouns BY-P | FOR-P [ FROM-P | IN-P | OF-P | ON-P | WITH-P
Heat Exchange 0.3 0.0 0.0 0.3 0.9 0.0 0.0
Transistor Life 0.0 04 0.0 0.1 1.0 0.0 0.1
Writing Method 0.0 0.8 0.1 0.0 1.0 0.0 0.0
Wing Motion 0.0 0.1 0.3 1.0 0.5 0.0 0.0
Waveform Solution 0.1 04 0.0 0.1 0.4 0.1 0.0
Earth Satellite 0.0 0.0 0.9 0.9 0.0 0.0 0.7
Transport Theory 0.3 0.1 0.0 0.0 0.9 0.6 0.1
Water Vapour 0.0 0.0 0.6 1.0 0.4 0.0 0.6
Wave Propagation 0.1 0.0 0.2 0.7 0.7 0.1 0.0
Microwave Emission | 0.7 0.1 0.0 0.0 1.0 0.0 0.0

Figure 5: Examples for the Interpretation of Compound Nouns (see text for explanation)

In the first two examples in figure 5 a single basic semantic relationship exists between the two words
in the compound noun: “heat exchange” is interpreted as “exchange OF-P heat”, and “transistor
life" as “life OF-P transistor” (only these basic semantic relationships have a plausibility value
greater or equal 0.5).

3 Again, as in figure 4, the plausibility values shown are the averages over the three different runs for each basic
semantic relationships.
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Although only one basic semantic relationship exists in the first two examples, most test examples
have more than one existing basic semantic relationship. For instance, “writing method” has the
existing relationships “method FOR-P writing” and “method OF-P writing”. The other basic
semantic relationships for “writing method”, like “method BY-? writing” and “method FROM-P
writing”, do not exist. Another example of multiple basic semantic relationships is “wing motion”
(as in airplanes) which is interpreted as “motion OF-P wing” and “motion IN-P wing”. This
example illustrates ambiguous interpretations and context is needed to determine if the wing is the
object which is moving (moti~n OF-P wing) or the location of a motion (motion IN-P wing).

The plausibilty values in Figure 5 indicate unsure interpretations as well. For instance, the plausi-
bility values of the compound noun “waveform solution” are lower than 0.5 for all basic semantic
relationships. The network can not find a basic semantic relationship because similar relationships
had not been in the training set. The results show examples with some incorrect basic seman-
tic relationships as well. For instance “water vapour” is interpreted with 3 existing relationships:
“vapour FROM-P water”, “vapour WITH-P water”, and “vapour IN-P water”. While the first two
relationships FROM-P and WITH-P are plausible, the third is not plausible.

Although our corpus is still fairly small our test results demonstrate the extent to which the learned
basic semantic relationships generalize for new compound nouns. The basic semantic relationships
in our network generalize well for compound nouns whose first and second noun are characterized
with subsets of the following semantic features: Nounl: ENERGY PROPERTY ORGANIZATION-
FORM and Noun2: CHANGING-EVENT PROPERTY MECHANISM. Examples for this class of
compound nouns are “heat exchange” and “wave propagation”. Another class of compound nouns
with good generalizations are subsets of the following features: Nounl: ELECTRIC-OBJECT
PHYSICAL-OBJECT and Noun2: TIME PROPERTY, like in “transistor life”.

Besides these classes of compound nouns with good generalizations, compound nouns with subsets of
the following features do not generalize well: Nounl: PHYSICAL-OBJECT SPATIAL-LOCATION
MATERIAL and Noun2: PHYSICAL-OBJECT GAS MATERIAL. Examples with subsets of these
feature combinations are “earth satellite” and “water vapour”. The reason for the decrease in the
generalization performance for this last class is the restricted use of only 16 semantic features. To
generalize relationships between two physical objects more features are needed. For instance, a
network with a SIZE feature could generalize the WITH-P relationships between physical objects
so that “earth satellite” could not be interpreted as “satellite WITH-P earth” since the earth has
a bigger size than a satellite. The identification of these incorrectly generalized basic relation-
ships is important for deciding which semantic features and basic semantic relationships might be
modified. We make no claim for a “right” classification of semantic features and basic semantic
relationships for our domain but we claim that the adaptive process of identifying better suitable

semantic features and semantic relationships is supported by the learning ability and the modular
architecture.
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Related work

Comparing the performance of our system with existing systems for compound noun analysis is
somewhat difficult, because the techniques, the level of the semantic relationships, and the do-
mains are fundamentally different. McDonald reports about 54% to 64% correct interpretations for
his compound noun system (McDonald 82) using detailed semantic relationships and fixed control
strategies. The performance of Finin’s system is similar to McDonald’s system. Our system de-
termines plausible basic semantic relationships for unknown compound nouns. Although our basic
semantic relationships are not as detailed as McDonald’s or Finin’s, our basic semantic relationships
are automatically acquired. As far as we know there is currently no system which has the ability
to learn the semantic relationships between compound nouns.

Our system has the advantage of learning knowledge for the semantic relationships, while this
knowledge is difficult to acquire in other compound noun systems (e.g. (Finin 80) (McDonald 82)
(Arens 87) (Gay 88)). The knowledge about semantic relationships is represented uniformly in
modular networks. On the other hand, these systems allow compound nouns with more than two
words while we need additional mechanisms to understand longer compound nouns. Currently, we
are investigating the use of recursive autoassociative network architectures ((Pollack 88), (St John
88)) and relaxation networks (Wermter 89) to understand compound nouns of arbitrary length.

Conclusions

One way to approach compound noun analysis is the use of extensive knowledge engineering, as
demonstrated in several computational models. Because of the difficulties of identifying the seman-
tic relationships and control structures, we presented a new approach for understanding compound
nouns. Using a modular connectionist architecture we showed that basic semantic relationships
within compound nouns can be learned. The general concepts of basic semantic relationships,
learning, and modular network architectures demonstrate how uniform memory models can be
built for natural language understanding.
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Abstract

This paper describes a hybrid model which integrates symbolic and connectionist tech-
niques for the analysis of noun phrases. Our model consists of three levels: (1) a
distributed connectionist level, (2) a localist connectionist level, and (3) a symbolic
level. While most current systems in natural language processing use techniques from
only one of these three le\'els, our model takes advantage of the virtues of all three
processing paradigms. The distributed connectionist level provides a learned semantic
memory model. The localist connectionist level integrates semantic and syntactic con-
straints. The symbolic level is responsible for restricted syntactic analysis and concept
extraction. We conclude that a hybrid model is potentially stronger than models that

rely on only one processing paradigm.



1. Introduction

In recent years there has been a growing interest in using connectionist techniques for
natural language processing. While traditionally the analysis, representation, and gen-
eration of natural language were exclusively dominated by symbolic approaches, lately
connectionist techniques have received increased attention because of their attractive
properties including noise resistance, learning behavior, neural plausibility, associative

retrieval, and knowledge integration.

There have been at least two main directions of work in connectionist artificial intel-
ligence: implementation-oriented and task-oriented. Implementation-oriented connec-
tionism tries to show how symbolic representations and computations can be imple-
mented with connectionist techniques. Connectioﬁst systems havé been developed to
implement semantic networks (Shastri 1988), rule-based systems (Touretzky & Hinton
1988) (Shastri & Ajjanagadde 1989), representation languages like KL-ONE (Derthick
1988), hierarchies and tree-like structures (Hinton 1988) (Pollack 1988). Other con-
nectionist systems show how symbolic computations can be implemented, e.g., variable
binding (Touretzky & Hinton 1985), sequential ﬁrocessing (Jordan 1986) (Elman 1988),
and recursion (Pollack 1989). This implementation-oriented research demonstrates that
connectionist models can, at least to a certain extent, implement symbolic structures

and computations.

Task-oriented connectionism tries to show how specific tasks can be modeled with con-

nectionist techniques. Numerous tasks in natural language processing have been at-
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tacked in recent years, e.g., parsing (Fanty 1985) (Hanson & Kegl 1987) (Howells 1988)
(Kwasny 1988), word sense disambiguation (Cottrell & Small 1983) (Bookman 1987),
anaphor resolution (Allen 1987), compound noun understanding (Wermter 1989b), sen-
tence generation (Gasser 1988), script and concept understanding (Dolan & Dyer 1988)
(Miikkulainen & Dyer 1989), language acquisition (Rumelhart & McClelland 1986), and
role assignment (McClelland & Kawamoto 1986) (St. John & McClelland 1988). These
approaches demonstrate that connectionist models are useful for certain restricted tasks

in natural language processing.

Implementation-oriented and task-oriented connectionism both demonstrate several ad-
vantages and‘disadvantages of symbolic and connectionist processing techniques. Al-
though purely connectionist systems (Waltz & Pollack 1985) (Sejnowski & Rosenberg
1986) (Hanson & Kegl 1987) and purely symbolic systems (Charniak 1983) (Dyer 1983)
(Riesbeck & Martin 1986) (Grosz et al. 1987) (Hirst 1987) have both shown impres-
sive results, it has become obvious that connectionist techniques and symbolic tech-
niques exhibit complementary strengths (Touretzky 1988) (Lehnert 1988) (Dyer 1988)
(Hendler 1989). While symbolic processing has advantages in representing schemata,
recursive structures, variable binding, inheritance hierarchies, and sequential control,
connectionist processing has advantages in associative retrieval, noise resistance, knowl-
edge integration, generalization, and learning. Because of these mutually complemen-
tary properties, hybrid symbolic/connectionist systems promise to be more powerful

than systems operating within only one paradigm.
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In this paper we present a hybrid model for understanding noun phrases. This model
combines localist and distributed connectionist techniques with symbolic techniques.
The model consists of three levels: (1) distributed connectionist networks are used
to learn semantic relationships between nouns, (2) localist connectionist networks in-
tegrate semantic constraints and syntactic constraints, and (3) symbolic techniques
provide a restricted syntactic analysis and concept extraction. In section 2 we describe
our domain and our noun representation, in section 3 the distributed connectionist
level, in section 4 the localist connectionist level, and in section 5 the symbolic level.
We show how a hybrid model can be used to understand noun phrases from a scientific

technical domain.

2. The Domain: Noun Phrases in Scientific and

Technical Sublanguages

Noun phrases are the dominant source of information in scientific and technical sublan-
guages (Hirschman 1986). Because noun phrases are so important, natural language
processing systems in these domains need a powerful and flexible model for under-
standing noun phrases. To investigate such a model we chose noun phrases from the
NPL' corpus (Sparck Jones & Van Rijsbergen 1976) as our domain. The NPL corpus

contains queries and titles of scientific articles from the physical sciences. For example:

Effects of electromagnetic fields on turbulences in gases.

Note on the cause of ionization in the {-region.

1National Physics Laboratory.



Radio emission by plasma oscillations in nonuniform plasmas.
Calculation of fields on plasma ions by collective coordinates.

An iterative analogue computer for use with resistance network analogues.

Syntactic, semantic, contextual, and world knowledge are all necessary for understand-
ing complex noun phrases containing multiple prepositional phrases. In the past, sev-
eral techniques have been developed to describe the problem of attaching prepositional
phrases to the correct constituents (Prepositional Phrase Attachment), for instance,
(Kimball 1973) (Frazier & Fodor 1978) (Ford et al. 1982) (Crain & Steedman 1985)
(Wilks et. al 1985) (Dahlgren & McDowell 1986) (McClelland & Kawamoto 1986)
(Schubert 1986) (Hirst 1987) (Lehnert 1987). Our hybrid approach is different from
these approaches because we integrate distributed connectionist networks, localist con-

nectionist networks, and symbolic techniques for understanding noun phrases.

Now we describe the representation of nouns in our domain of the physical sciences.
We represent a noun as a binary vector of 16 features. This feature representation
was developed as follows. First, we used thesaurus knowledge (NASA 1985) (EJC
67) for classifying the nouns occuring in the noun phrases. We categorized each noun
according to the most general term in the hierarchy that describes the noun. This step
abstracted specific nouns like “carbon resistor”, “noise fluctuation”, and “transistor”
to more general terms like “resistor”, “variation”, and “semiconductor device”. Then,
we grouped these most general thesaurus terms into 16 classes which form the basis of

our feature representation. These 16 features describe the basic meaning of a noun in

our domain.
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For example, the term “carbon resistor” is dominated by “resistor” at the most general
level and “transistor” is dominated by “semiconductor device”. “Resistor” and “semi-
conductor device” belong to the class (and therefore have the feature) ELECTRIC OB-
JECT. Each noun can have multiple features. For instance, the noun “acceleration”
has the features CHANGING-EVENT and ENERGY. Figure 1 shows all features along
with examples taken from the corpus. Having described the domain encoding, we now

turn to a description of our three-part model.

Semantic Features Examples

MEASURING-EVENT Observation, Investigation, Research
CHANGING-EVENT Amplification, Acceleration, Loss
SCIENTIFIC-FIELD Mechanics, Ferromagnetics
PROPERTY Intensity, Viscosity, Temperature
MECHANISM Experiment, Technique, Theorem
ELECTRIC-OBJECT Transistor, Resistor, Amplifier
PHYSICAL-OBJECT Earth, Crystal, Vehicle, Room
RELATION Cause, Dependence, Interaction
ORGANIZATION-FORM Layer, Level, Stratification, F-Region
GAS Air, Oxygen, Atmosphere, Nitrogen
SPATIAL-LOCATION Antarctic, Earth, Range, Region, Source
TIME June, Day, Time, History

ENERGY Radiation, Ray, Light, Sound, Current
MATERIAL Aluminium, Water, Carbon, Vapor
ABSTRACT-REPRESENTATION | Note, Data, Equation, Term, Parameter
EMPTY Cavity, Vacuum

Figure 1: Semantic features of the nouns and examples
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3. Learning Semantic Prepositional Relationships

in Distributed Connectionist Networks

In this section we describe semantic prepositional relationships and examine how they
can be learned. Based on our feature representation, backpropagation networks learn
underlying regularities of prepositional relationships from a corpus of training noun
phrases. The learned regularities are used for attaching prepositional phrases to ap-
propriate constituents within new noun phrases.

3.1 Semantic Prepositional Relationships

Within noun phrases, nouns can be connected with prepositions, as in “Symposium on
hydrodynamics in ionosphere”. Understanding these noun phrases relies on understand-
ing prepositiona,l relationships. A prepositional relationship is the semantic relationship
between fhe features of two nouns which are connected by a preposition. Prepositional
relationships can be either plausible or implausible. Plausible prepositional relation-
ships are possible relationships, such as “symposium on hydrodynamics”. Implausible
prepositional relationships are relationships which are not reasonable. “Symposium in
ionosphere” is implausible because symposiums do not take place in the outer atmo-

sphere.

Knowing about the plausible prepositional relationships “symposium on hydrodynam-
ics” and “hydrodynamics in ionosphere” and knowing about the implausible prepo-
sitional relationship “symposium in ionosphere”, we must interpret the noun phrase

“symposium on hydrodynamics in ionosphere” so that the prepositional phrase “in
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ionosphere” attaches to “hydrodynamics”, but not to “symposium”. Since knowledge
about the plausibility of the prepositional relationship between two nouns can help to
rule out implausible interpretations of the whole noun phrase, we have trained back-

propagation networks to learn the plausibility of prepositional relationships.

3.2 Learning Semantic Prepositional Relationships with

Backpropagation Networks

We use backpropagation networks (Rumelhart et al. 1986) to learn the plausibility
of prepositional relationships within noun phrases. For each preposition there is one
backpropagation network that determines the plausibility of the prepositional relation-
ships (see figure 2). One network consists of 3 layers of units. The input layer consists
of 32 binary units (values 0 and 1) representing 16 features for each of the two nouns.
The single real-valued output unit determines whether the prepositional relationship
is plausible (value 1) or implausible (value 0). 12 real-valued hidden units encode the
mapping from the input units to the output units from a training set. All levels in the
backpropagation network are fully connected. We need one training set of prepositional

relationships for each preposition.

First we concentrated on the three prepositions “in”, “of”, and “on”. We randomly ex-
tracted 50 noun phrases from our corpus which contained only these three prepositions,

for instance:

Note on the cause of ionization in the f-region.

International symposium on fluid mechanics in the ionosphere.
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Figure 2: Backpropagation network for the prepositional relationships of “in”

Based on these 50 noun phrases, we built one training set for each preposition. Each
training example in the training set consists of two feature vectors for the two nouns
together with the binary plausibility value for the prepositional relationship between
these nouns. The plausibility value is set to 1 if the prepositional relationship in the
training set is plausible and is set to 0 otherwise. From now on and where the context is
clear, we will use the term prepositional relationship for both the semantic relationship
between the two nouns and the representation of this semantic relationship as a training
instance. Each noun in the 50 noun phrases is stored in a leﬁcon with its name and
the associated 16 features. The following examples show two nouns with their features

using the same feature order as in figure 1 in section 2.

F-region (0000001011100000)

Ionization (0101100000000000)
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Now we will describe the training for the prepositional relationships for “in”. There
were 124 prepositional relationships for the preposition “in” in the 50 noun phrases.
Since most of these prepositional relationships in the 30 existing noun phrases are
plausible prepositional relationships, most training examples would be plausible prepo-
sitional relationships®. We added the 124 inverse prepositional relationships to the 124
prepositional relationships so that the training set for “in” consists of 248 prepositional
relationships. An inverse prepositional relationship is a prepositional relationship in
which the order of the two nouns is changed. Including inverse prepositional relation-
ships in the training set prevents the network from being overloaded with too many
plausible relationships since most of the inverse prepositional relationships are im-
plausible. We illustrate the prepositional relationships and the inverse prepositional
relationships for the preposition “in” for our example “Note on céuse of ionization in

f-region” together with their plausibility values:

Prepaositional Relationships Inverse Prepositional Relationships

Note in f-region 0 | F-region in note 0
Cause in {-region 1 | F-region in cause 0
Ionization in f-region 1 [ F-region in ionization 0

13

2Implausible prepositional relationships like “symposium in ionosphere” in the noun phrase “sym-

posium on hydrodynamics in ionosphere” occur less frequently in existing noun phrases than plausible

prepositional relationships.



3.2.1 Training results for the prepositional relationships for “in”

Now we show the results for the training set with the 248 prepositional relationships
for “in”. We conducted three runs training three backpropagation networks with the
prepositional relationships for “in”. The three different runs show that our training
does not depend on a fortuitous initialization of the weights in the network. In each
run the backpropagation network was trained for 1600 epochs (396800 prepositional
relationships) with the learning rate 7 = 0.01 and weight change momentum o« = 0.9.

The weights in the backpropagation network were updated after each complete epoch.

After the training phase was completed, the trained networks were tested with the
training set. To interpret the tests we introduce the terms “error tolerance”, “error
rate”, and “total error”. The error tolerance determines how much the actual out-
come of the output unit could deviate from the desired outcome 0 for an implausible
prepositional relationship and from the desired outcome 1 for a plausible prepositional
relationship and still be considered correct. The error rate is the percentage of incor-
rectly classified prepositional relationships in the training set or in the test set. The

total error is the total sum squared error on the complete training set as defined in

(Rumelhart et al. 86, p. 323).

For the training set, the three networks of the three runs showed an error rate between
6.5% and 6.9% using an error tolerance of 0.49, and between 7.3% and 7.7% using an
error tolerance of 0.3 (see figure 3). A network which was not trained at all was tested

with the training set and showed an error rate of 54.0% for the error tolerance 0.49,
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and an error rate of 73.4% for the error tolerance 0.3. These tests with the training
examples demonstrate that an effective representation for prepositional relationships

can be learned.

Run 1 2 3 | No learning
Total error at the start of the training | 77.8 | 62.5 | 70.1 -
Total error at the end of the training 66( 7.1 8.1 -

Error rate for the training set for 69| 6.5 6.9 54.0
error tolerance 0.49
Error rate for the training set for 77| T3 7.7 73.4

error tolerance 0.30

Figure 3: Test results for the training set for the prepositional relationships of “in”

After the networks had been tested with the 248 training examples, we tested the
networks with 30 new test examples which were not part of the training set. For the
test set we chose 15 plausible and 15 implausib'le prepositional relationships from our
corpus with the only constraint that the prepositional relationships in the test set were

not part of the training set. Examples from the test set are shown in Figure 4.

Plausible Prepositional Relationships | Implausible Prepositional Relationships
Effect in ferromagnetics Japan in investigation
Distortion in amplifier Power-supply in diode

Figure 4: Examples of the test set for the prepositional relationships for “in”

The test results with 30 new prepositional relationships showed an error rate between

16.7% and 26.7% for the error tolerance 0.49 and between 20% and 30% for the error
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tolerance 0.3 (see figure 5). The performance of the trained network on the new test ex-
amples can be demonstrated by comparing the described error rates with an untrained
network. Training for 1600 epochs reduces the error rate for test examples which were
not in the training set from 53.3% to 16.7% for an error tolerance of 0.49, and from

70.0% to 20.0% for an error tolerance of 0.3.

Run 1 2 3 | No learning
Error rate for the test set for error tolerance 0.49 | 16.7 | 26.7 | 16.7 53.3
Error rate for the test set for error tolerance 0.30 | 20.0 | 30.0 | 20.0 70.0

Figure 5: Test results for the test set for the prepositional relationships of “in”

To sum up the results for training the backpropagation networks with prepositional
relationships for “in”, we have shown that for an error tolerance 0.49 trained networks
provide the plausibility value of a prepositional relationship correctly in about 93% of
the prepositional relationships in the training set and in about 83% of the prepositional

relationships in the test set.

3.3 Learned Internal Representations for the Prepositional

Relationships for “in”

After training had been completed we examined the internal representation in the
backpropagation network. Figure 6 illustrates the activation values of the hidden units
for 10 training examples. The first 5 rows show the hidden units for training examples
with a plausible prepositional relationship, the last 5 rows show the hidden units for

‘training examples with an implausible prepositional relationship.
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Figure 6: The hidden units for prepositional relationships from the training set

Each row contains the 12 hidden units for one training instance. The hidden units
have activation values between 0 (white) and 1 (black). Comparing the internal repre-
sentations of the plausible prepositional relationships and the implausible prepositional
relationships we found that plausible relationships correlate with a low value for hidden
unit 2 and a high value for hidden unit 12. Implausible relationships correlate with
a high value for hidden unit 2 and a low value for hidden unit 12. We do not claim
that these two units are exclusively responsible for the distinction between plausible
and implausible prepositional relationships. However, there is a strong tendency for
these two units at least to play an important role in the internal representation of this

distinction.
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After looking at the hidden units with respect to the plausibility of a prepositional
relationship we asked if the hidden units represent different word senses for plausible
prepositional relationships. We used a simple clustering algorithm to cluster the vectors
of 12 hidden units of the plausible prepositional relationships. This clustering algorithm
takes a set of prototype vectors as its input and classifies all instances according to the
minimal distance to the given prototype vectors. An instance is assigned to the class
with the; smallest distance to the prototype vector. This distance is computed as the
sum of the squared differences between the feature vector of the current instance and
the feature vector of the prototype. Although this simple clustering method relies on
knowing “good” prototype vectors, this method serves as a first approximation for a

classification of the hidden units.

In figure 7 we show examples of the internal representation for 3 clusters. The proto-
types for the 3 clusters are the prepositional relationships “effect in rectifier”, “radiation
in atmosphere”, and “effect in beam”. These prototypes were chosen because they il-
lustrate different interpretations of “in”: “in a physical/electrical object”, “in a spatial
location/gas”, and “in energy”, respectively. In comparing the hidden units of these
clusters, we found that units 6 and 9 essentially contain the information for differentiat-
ing these interpretations. In the first cluster, unit 6 has a low activation value and unit
9 has a high activation value; in the second cluster, unit 6 has a high activation value
and unit 9 has a low activation value; and in the last cluster, both units 6 and 9 have

low activation values. Although we found a few instances in the training set which use

different units to distinguish between these clusters, most prepositional relationships
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Figure 7: The hidden units for plausible prepositional relationships from 3 clusters

in the three clusters can be differentiated solely based on the units 6 and 9.

To sum up, we have shown that specific hidden units in the distributed internal repre-
sentation of the learned prepositional relationships are involved in encoding the plau-
sibility of a relationship and in encoding specific interpretations for the prepositional

relationship “in”.

Backpropagation networks which are trained for 1600 epochs can
learn effective distributed representations of prepositional relationships. We demon-
strated that these network representations currently reach a performance of about 93%
(error rate about 7%) on the training set of prepositional relationships and about 83%
(error rate about 17%) on the test set of prepositional relationships. Although we
describe in detail only the training results for the prepositional relationships for “in”

b

we showed elsewhere (Wermter 1989b) that other prepositional relationships behave
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very similarly. Experiments with semantic relationships for seven prepositions (by, for,
from, in, of, on, with) demonstrate that the results for the prepositional relationships

“in” hold for other prepositional relationships as well.

4. Integration of Semantic Relationships with Syn-

tactic Constraints in Localist Connectionist Net-

works

While the last section focused on learning semantic prepositional relationships with
backpropagation networks, we now turn to a description of the localist network level.
First, we will briefly describe some syntactic constraints in noun phrases. Then, we
will show how simple syntactic constraints and learned semantic constraints can be

integrated in a localist connectionist network for disambiguating noun phrases.

4.1 Syntactic Constraints

The two syntactic constraints we consider are the locality constraint and the no-crossing
constraint. The locality constraint says that a prepositional phrase is more likely to
attach to a close preceding noun than to a distant preceding noun. For instance, in the
noun phrase “Techniques for measurements in discharges” the prepositional phrase “in
discharges” might attach to “measurements” or to “techniques”. The locality constraint

suggests that “in discharges” attaches to “measurements” because “measurements” is

closer than “techniques”.
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The no-crossing constraint (Tait 1983) for noun phrases means that branches for attach-

ment do not cross. The following (constructed) example shows a violated no-crossing

constraint:

Influence of the temperature on the electrons in Fahrenheit

4.2 Localist Connectionist Networks for the Integration of

Multiple Constraints

Localist networks have been used for a number of tasks to integrate multiple constraints
in natural language processing, for instance for sentence understanding (Waltz & Pol-
lack 1985) (Lehnert 87) (Lehnert 88), for word sense disambiguation (Bookman 1987),
and for lexical access (Cottrell 1988), We have demonstrated elsewhere that localist
networks are useful for integrating semantic and syntactic constraints for noun phrase
disambiguation (Wermter 1989a). In this section we describe the most important prop-
erties of an efficient localist network that performs noun phrase disambiguation with

fewer nodes (see figure 8).

Qur localist network consists of three types of nodes: noun nodes represent the nouns in
a noun phrase, semantic nodes represent the plausibility of prepositional relationships
between nouns, and locality nodes represent the distance between two nouns in a noun
phrase. Each node has an activation potential between 0 and 10. A semantic node

in the localist network is initialized with the plausibility value of the output unit of
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Figure 8: Localist network for the integration of multiple constraints
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the appropriate backpropagation network (multiplied by a factor of 10 to get values
between 0 and 10). The higher the plausibility value of a prepositional relationship, the
higher the initialization value for the semantic node. The initialization of the locality
nodes is based on the relative distance between the nouns. The closer two nouns are
in a noun phrase, the higher the initialization value for the locality node between these
nouns. It is important to point out that the initialization of the locality nodes is
fairly independent of specific values (e.g., 6,4, and 2 in figure 8). Other initialization
values (e.g., 3,2,1 or §,4,2) work as well as long as there is a monotonically decreasing
relationship for the distances between the nouns, and as long as all the values are
not too close to the upper and lower bounds of the nodes. Noun nodes are initialized
with 0 activation since they serve only as the framework to which semantic nodes and
locality nodes connect. The semantic constraints are encoded as the semantic nodes,
the locality constraints as the locality nodes, and the no-crossing constraints as specific

inhibitory connections between semantic nodes in crossing attachment links (see figure

8).

All nodes are connected via inhibitory and excitatory connections, as figure 8 shows for
a network with three prepositions. Each noun node has excitatory attachment links to
each noun node of preceding nouns. The semantic nodes in competing attachment links
are inhibitorily connected. The locality nodes provide excitation to semantic nodes de-
pending on the distance of the attachment. The inhibitory connection from a semantic
node to a locality node prevents the locality node from sending too much excitation to

the semantic node. Networks for noun phrases with a different number of prepositions
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are built in exactly the same systematic manner. The input nodes are initialized and
activation spreads through the network according to a standard relaxation algorithm
(Feldman & Ballard 1982). After about 20 to 30 cycles the localist network settles
in a global interpretation, and the semantic nodes with the highest activation values
determine the preferred structural interpretation. We will see examples of this process
and for the interaction of the localist network with the symbolic structures in the next

sections.

5. Symbolic Level

The last two sections explained the connectionist networks for learning semantic re-
lationships and for integrating semantic and syntactic constraints. In this section we

describe the symbolic level of our model for noun phrase understanding.

In the last two sections we have assumed that the noun phrases for the connectionist
networks only consist of nouns and prepositions. However, as our examples in section 2
showed, noun phrases often contain other parts of speech as well, including adjectives,
adverbs, and determiners. Although these parts of speech might contain significant in-
formation they are usually less important for the representation of the essential concept
of a noun phrase and the structural disambiguation of the noun phrase. Therefore, the
purpose of the symbolic level is to extract the essential sequence of nouns and prepo-
sitions from the complete noun phrase. Then, this essential reduced noun phrase has

the canonical form of nouns and prepositions required for our connectionist levels.

The first mechanism is an analysis of the noun phrase with respect to its syntactic
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constituents. This restricted syntactic analyis is provided by a subsystem of CIRCUS
(Lehnert 1988) which uses a stack-based architecture to recognize simple syntactic
constituents. Since we want to extract the essential reduced noun phrase from the
complete noun phrase and since we do not need complete parse trees for this extraction,

the restricted syntactic analysis in CIRCUS is sufficient for our purpose.

This subsystem uses a syntactic dictionary and syntactic predictions for identifving
constituents. The syntactic predictions are encoded as requests and the request packet
mechanism of McELI (Schank and Riesbeck 1981) is used to process the predicted
next constituents. Before we begin to analyze a noun phrase, an initial syntactic
prediction for the head noun will be on top of the stack. This prediction allows us
to skip possible intervening constituents like adjectives, adverbs, and determiners and
stores the head noun in a global buffer. At this point the current request is removed
from the stack. If a preposition follows, then a new request is pushed on the stack for
the following prepositional phrase. As soon as the next noun is identified it is stored
in another global buffer for this prepositional phrase. This process of adding syntactic
predictions, removing the predictions, finding the desired constituents (prepositions
and nouns), and storing them in global buffers is continued until the noun phrase is

completely processed.

Although it might seem that a simple pattern matching algorithm which identifies nouns
and prepositions using a syntactic dictionary might be sufficient, such a simple approach
does not account for more complicated noun phrases with associated subclauses or

participle constructions. For instance, for the noun phrase “the man in the satellite
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which blinked in the sun” we only want to extract “man in satellite” and not “man in
satellite in sun”, which would be constructed in a simple pattern matching approach
based solely on parts of speech. Using a syntactic prediction for a new subclause
associated with the relative pronoun “which”, it is possible to detect and skip this

subclause so that only syntactically desired constituents are extracted.

While the restricted syntactic analysis transforms a noun phrase into a reduced noun
phrase based on syntactic predictions, a second mechanism can extract the essential
part of this reduced noun phrase based on semantic predictions. The semantic predic-
tions are associated with words in the semantic dictionary. Semantic predictions are
fulfilled if the current part of speech in the noun phrase is considered essential. The
question of what is considered essential depends on the application and the domain.

For instance, in an information retrieval context we might have queries like:
Information on papers about turbulences in gas.

In this domain it is not wise to include the nouns “information” and “papers” in
a concept representation since they do not contribute any important ;iistinguishing
information. For this information retrieval task only the nouns that are important
for the domain can fulfill the semantic predictions. In our example these nouns are
“turbulence” and “gas”, but not “information” and “papers”. Therefore “turbulence
in gas” is extracted as the essential part of the noun phrase in this application. In
general, these semantic predictions are fulfilled if the current constituent is an essential

part of the noun phrase or if a preceding constituent was identified as an essential part.
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Both semantic and syntactic predictions allow us to extract the essential part of a noun

phrase. We will see specific examples of this level in the next section.

6. Operation of the System

In this section we describe the operation of our whole system and show some examples

of its performance. First, we focus on how a typical noun phrase is processed in detail:
Note on a new cause of increasing ionization in the F-region.

The symbolic level extracts the sequence of nouns and prepositions from this noun

phrase and provides the following noun phrase:
Note on cause of ionization in F-region.

This symbolic level could also skip relative clauses as in “ionization in the F-region
which is close to the Antarctic” or participle constructions as in “ionization in the
F-region surrounding the Antarctic”. Then all possible prepositional relationships for

the reduced noun phrase are computed:

Note on cause

Cause of ionization
Note of ionization
Ionization in F-region
Cause in F-Region

Note in F-region
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The feature representation of each noun in the prepositional relationships is looked up
in the lexicon. Based on these features, backpropagaiion networks at the distributed
level are initialized for each prepositional relationship. The output of the backpropa-
gation networks are the plausibility values for the prepositional relationships. These
plausibility values initialize the semantic nodes in the network at the localist level. Lo-
cality nodes and noun nodes are initialized as well. Then the localist network starts
processing, integrates the syntactic and semantic constraints, and stabilizes in a global
interpretation of the noun phrase. The activation of the semantic nodes in the local-
ist network determines the preferred structural interpretation of the noun phrase. In
our example there are three semantic nodes that have high activation values after the

relaxation. These nodes correspond to the following interpretation:

Note on cause of jonization in F-region.

A

In the following we show more examples of noun phrases and their structural interpre-

tation:

(1) Effect of field on turbulence in gas ~-->

CONCEPT: effect
OF~REL: field
ON-REL: turbulence

IN-REL: gas
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(2) Dependence of amplification in phosphor on intemsity -->

CONCEPT: dependence
OF-REL: amplification
IN-REL: phosphor

ON-REL: intensity

(3) Distortion in amplifier on satellite in Van-Allen-belt -->

CONCEPT: distortion
IN-REL: amplifier
ON-REL: satellite
IN-REL: Van-Allen-belt

(4) Experiment on diffraction of ray in layer =--=>

CONCEPT: experiment

ON-REL: diffraction
OF-REL: ray

IN-REL: layer

The last example (4) shows that not all attachments are necessarily wrong for an
interpretation to be considered incorrect. The first two attachments are correct but “in

layer” should attach to “diffraction” rather than to “ray”. Nevertheless, we consider
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structural interpretations with at least one wrong attachment to be incorrect. Using
this strict and conservative evaluation we tested our system with 80 noun phrases
containing up to three prepositions. A correct structural interpretation was assigned
for 88% of 50 noun phrases that contained prepositional relationships from the training
set and for 77% of 30 noun phrases that contained prepositional relationships which
were not in the training set. Prepositional phrases can attach to several nouns if
only semantic constraints are considered. The overall strategy is to prefer semantic
constraints over syntactic constraints (locality and no-crossing of branches) and to use

syntactic constraints to favor one of several possible semantic interpretations.

7. Discussion

In this section we first compare our hybrid model with other symbolic models for
structural noun phrase disambiguation. Then we focus on the single levels of our

model and explain why we chose a hybrid 3-level model.

Recently there has been a lot of interest in attacking the problem of structural ambigu-
ity, especially in prepositional phrase attachment (Wilks et al. 1985) (Schubert 1986)
(Dahlgren & McDowell 1986) (Jensen & Binot 1987) (St. John & McClelland 1988).
All these approaches focus on attaching a single prepositional phrase within a sentence
of the form <NP> <VP> <NP> <PP>. Our approach focuses on attaching multiple
prepositional phrases within noun phrases. Attaching multiple prepositional phrases

in noun phrases is a much harder problem since we cannot rely on predictive verbal

knowledge alone.
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Most previous work on prepositional phrase attachment relies on an intuitive devel-
opment of symbolic heuristic rules (Wilks et al. 1985) (Schubert 1986) (Dahlgren &
McDowell 1986) (Hirst 1987). Since prepositional phrase attachment can not reason-
ably be attacked without semantic knowledge, these rules have to encode the semantic
knowledge and have to be redesigned for new domains. Our model attacks this prob-

lem by learning and generalizing over semantic constraints and eliminating knowledge

which has to be handcoded.

Another approach for reducing the amount of knowledge engineering can be found
in (Jensen & Binot 1987). This approach tackles the problem of acquiring semantic
knowledge for attachments by using definitions in an on-line dictionary. Although this
symbolic approach was shown to attach correctly a single prepositional phrase in some
sentences, this method depends on suitable definitions in the lexicon. While using
on-line dictionaries is a very reasonable attempt, it appears that much more work is
required in standardizing semantic knowledge in on-line dictionaries before we can use

them to support disambiguation in a general manner.

Very recent work on symbolic prepositional phrase attachment (Dahlgren 1988) reports
a success rate above 93% for the attachment of single prepositional phrases. These re-
sults were obtained by hand-testing intuitively developed rules on several small corpora.
Our approach reaches 88% on the training set and 77% on the test set of new noun
phrases. Although our results might be even better with further training we believe
that our current results already demonstrate the effectiveness of our approach for two

reasons. First, multiple prepositional phrase attachment is a much harder problem
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than Dahlgren’s single prepositional phrase attachment. In our experiments we consid-
ered noun phrases with up to three prepositional phrases. Second, our model did not
rely on intuitively developed rules but learned part of its knowledge. In general, we
believe that our hybrid model has a lot of potential compared with traditional purely
symbolic methods since our hybrid model attacks a much harder problem, acquires
part of its knowledge by learning, and already comes close to the best performance of

purely symbolic approaches that attack a significantly simpler problem.

We now turn to the discussion of the three levels in our hybrid model and give rea-
sons for the design of each individual level. The symbolic level performs a restricted
syntactic analysis and extracts the essential concept (the sequence of nouns and pre};o-
sitions) of a noun phrase for the attachment decision. A symbolic approach is more
suitable for this level since the extraction of the essential concept based on syntac-
tic and semantic predictions is a sequential control problem - it has to decide which
constituenfs to process. In a symbolic mechanism, syntactic and semantic predictions
for this extraction can be formulated easily. In contrast, in a connectionist framework
localist networks would have to be designed or distributed networks trained to per-
form the extraction. Although there has been some success using recurrent networks
for processing restricted sequential structures (Pollack 1988) (St. John & McClelland
1988) (Elman 1988), these recurrent networks do not seem to be powerful enough for
this high level sequential control problem. Since symbolic techniques are particularly
suitable for dealing with sequentiality and control, they are more useful for dealing

with the variety of constituents as they occur in noun phrases in real world examples.
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The localist level performs the integration of syntactic and semantic constraints. The
links in the localist network implement the possible attachments and their mutual
competition. The localist model considered here is more efficient in the number of
nodes than the localist model for attachment in (Wermter 1989a). That model used
one structure node for each possible structural interpretation of a noun phrase. While
that architecture was useful for short noun phrases, the number of structure nodes
increased exponentially with the length of the noun phrase. In our present model the
total number of nodes in the network increases only quadratically with the length of

the noun phrases.

A similar localist network for prepositional phrase attachment in noun phrases can be
found in (Touretzky 1989). While Touretzky uses a similar attachment architecture,
he implements locality constraints only.in a restricted way by reducing the specific
threshold for the unit representing the “nearest neighbor” noun. In our model we
implemented locality constraints explicitly in a more general way with locality nodes
for the relationship to everv preceding noun. For the locality nodes, we found empir-
ically that initialization values should decrease monotonically with the length of the

attachment and they should be well under the upper threshold for the nodes®.

The initialization of the semantic nodes is based on the distributed level. The dis-

3For example. for a noun phrase with three prepositions initialization values of 3,2,1 for the different
attachments implement a small syntactic locality effect. The values 6.4,2 implement a moderate syntactic

influence. If the values are too high, e.g., 10,98, the network gets overloaded with excitation from. the

locality nodes.
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tributed backpropagation networks learn and gencralize the semantic prepositional re-
Jationships and provide a semantic memory model for the initialization of the localist
network. Other work on learning relationships between constituents (Hinton 1986)
(Cosic & Munro 1988) can not be directly used to provide this memory model. Hinton
attacks a completion task that finds a specific relative given a person and a family
relatio?xship. Cosic and Munro tackle a completion task which determines the meaning
of a preposition based on the lexical item of the preposition and two nouns. Although
this work deals with learning relationships, these architectures can not be directly used

to support the initialization of single nodes in localist networks.

Furthermore, both architectures (Hinton 1986) (Cosic & Munro 1988) have all con-
stituents and all relationships encoded in one backpropagation network. While this
might be sufficient for small applications, one huge network can not be expected to be
efficient in terms of training time and generalization behavior for scaling up to bigger
applications. Therefore, we have one backpropagation network for each preposition.
Apart from less training time and better generalization, this modular architecture also
allows us the modification and addition of individual prepositions without retraining

the whole network.

Another interesting design issue is the number of units in the backpropagation networks.
The number of input units was determined by our choice of 16 features for representing
each noun. There is one output unit for the plausibility value. More interesting is our
choice of 12 for the number of hidden units. Increasing the number of 12 hidden units

led to better performance on the training set, but worse performance on the test set.
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Decreasing the number of hidden units decreased the performance on the training set
and test set. Apparently, there is a tradeoff between memorization and generalization

and we found our best results with a hidden laver that had slightly less than half the

number of input units.

8. Conclusion

We have described a hybrid symbolic/connectionist system for noun phrase disambigua-
tion. The symbolic level supplies input for the connectionist networks by extracting
the sequence of nouns and prepositions from a noun phrase. The localist connectionist
network integrates semantic and syntactic constraints for noun phrase disambiguation
and computes a preferred structural interpretation. Distributed connectionist networks
learn semantic relationships between nouns, allow for generalizations of the learned re-
lationships, and provide a semantic memory for initializing nodes in the localist connec-
tionist networks. This hybrid three-level model of distributed connectionist networks,
localist connectionist networks, and symbolic concepts allows for the combination of
'
learning and generalization. the integration of competing constraints, and the symbolic
e:{traction of concepts and makes this hybrid model potentially stronger than models

relying on techniques from only one of the three processing paradigms.
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