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Abstract

Recently, a number of extensions to the traditional transaction model have been
proposed to support new information-intensive applications such as CAD/CAM and
software development. However, these extended models capture only a subset of inter-
actions that can be found in such applications, and represent only some of the points
within the spectrum of interactions possible in competitive and cooperative environ-
ments. .

ACTA is a formalizable framework developed for characterizing the whole spectrum
of interactions. The ACTA model is not yet another transaction model, but is intended
to unify the existing models. ACTA allows for specifying the structure and the behavior
of transactions as well as for reasoning about the concurrency and recovery properties
of the transactions. In ACTA, the semantics of interactions are expressed in terms of
transactions’ effects on the commit and abort of other transactions and on objects’
state and concurrency status (i.e., synchronization state). Its ability to capture the
semantics of previously proposed transaction models is indicative of its generality. The
reasoning capabilities of this framework have also been tested by using the framework
to study the properties of a new model that is derived by combining two existing
transaction models.

This material is based upon work supported by the National Science Foundation under grant CCR-
8500332



1 Introduction

The need to support compler information systems emerges from the demands of new and
complex applications, such as CAD/CAM, software development environments, object-
oriented databases, stock trading databases, and distributed operating systems. These sys-
tems are typically distributed and object based, i.e., designed in terms of an object-oriented
paradigm. The ability of transactions to mask the effects of concurrency and failures makes
them appropriate building blocks for these complei systems. Although powerful, the trans-
action model found in traditional database systems [5, 7] is found lacking in functionality
and efficiency when used for these new applications. Efficiency is of particular importance
considering the throughput demands placed on these complex information systems. In terms
of functionality, traditional transactions were assumed to be short-lived and were targeted for
competitive environments. Activities in complex information systems tend to access many
objects, involve lengthy computations, and are interactive, i.e., pause for input from the user.
Even in those cases where activities with such characteristics can be modeled as traditional
transactions, they degrade the system performance due to increased data contention, thus
failing to meet the high throughput demands. Furthermore, endless and collaborating activ-
ities which are often found in these systems, cannot be captured by traditional transactions
due to serializability as the correctness requirement. Therefore, the need to capture reactive
(endless), open-ended (long-lived) and collaborative (interactive) activities found in the new
applications suggests the need for more cooperative models. Broadly speaking, whether a
system is characterized as competitive or cooperative depends on how inieractions among
activities in the system are viewed: in competitive environments, interactions are curtailed
whereas they are promoted in cooperative environments.

In order to fill this need for more flexible transaction models, various extensions to
the traditional model have been proposed, referred to herein as complez transactions, which
can support the implementation of efficient systems. For example, Nested Transactions [12]
have been proposed in the context of distributed languages to handle the problem of partial
failures. Nested Transactions support only hierarchical computations similar to the ones
that result from procedure calls. Recoverable Communicating Actions [19] which support
arbitrary computation topologies, have been proposed in the context of distributed oper-
ating systems where interactions are more complex. Cooperative Transactions (3], Split

Transactions [15] and Transaction Groups [6, 18] have also been suggested for capturing the



interactions found in the new applications. Irrespective of how successful these extended
transaction models are in supporting the systems that they were intended for, they merely
fepresent points within the spectrum of interactions possible within competitive and coop-
erative environments. Therefore, they can capture only a subset of the interactions to be
found in any complex information system.

While it is tempting to develop new transaction models that cover some of the re-
maining points in the spectrum, any such work will by necessity be ad hoc and not general.
What will be better is to study the nature of transactions as such and develop a conceptual
framework in which it will be possible to specify the effects of complex transactions and then
reason about their properties.

We have developed such a comprehensive transaction framework, called 4 CTA!, for
characterizing the whole spectrum of interactions. In ACTA, the semantics of interactions
are expressed in terms of transactions’ effects on the commit and abort of other transactions
and on objects’ state and concurrency status (i.e., synchronization state). ACTA allows for
specifying the structure and the behavior of transactions as well as for reasoning about the
concurrency and recovery properties of the transactions. Structure refers, for example, to
the nesting structure of a transaction, and bekavior refers to the operations invoked by a
transaction.

The ACTA model is not yet another transaction model, but is intended to unify the
existing models. Its ability to capture the semantics of previously proposed transaction
models is indicative of its generality. The reasoning capabilities of this framework have also
been tested by using the framework to study the properties of a new transaction model, called
Nested-Split Transactions, that is derived by combining the Nested and Split Transaction
models. » V

In Section 2, we examine the characteristics of complex transactions. AIn Section 3, we
present ACTA, our proposed comprehensive transaction framework and discuss the intuition
underlying the model. Section 4 illustrates the use of the framework by applying it to
model four existing transactions models. In the same section, the reasoning capabilities of
the framework are demonstrated by studying the properties of the Nested-Split transaction

model. Section 5 concludes with a summary and discusses future steps.

1 ACTA means actions in Latin.



2 Complex Transactions: Definition and Issues

Traditional transactions are based on the notion of atomicity and thus are often referred to
as atomic transactions. Atomicity is characterized by two properties: failure atomicity and
serializability. Failure atomicity means that either all or none of the transaction’s opera-
tions are performed. Serializability means that concurrent transactions execute without any
interference as though they were executed in some serial order. However, these propertles

combine several important notions such as:

1. Visibility, referring to the ability of one transaction to see the results of another trans-

action while it is executing.

2. Permanence, referring to the ability of a transaction to record its results in the

database.

3. Recovery, referring to the ability, in the event of failure, to take the database to some

state that is considered correct.

4. Consistency, referring to the correctness of the state of the database that a committed

transaction produces.

The flexibility of a given transaction model depends on the way these four notions are
combined. Thus, these notions have to be revisited in order to understand the properties of
complex transactions and to decide on the mechanisms for supporting them. For example,
visibility does not always have to be curtailed, permanence need not require all the results
to be recorded in the database, recovery does not imply the complete restoration of the state
and consistency does not necessarily require serializability.

Complex transactions have properties which relate to the above notions. Generally,
complez transactions can be said to consist of either a set of operations on objects or a set
of complex transactions. This recursive formulation implies that a complex transaction may
exhibit a rich and complex internal structure. In contrast, traditional transactions have a
flat singler level structure. In this sense, the base case in this recursive definition of complex
transactions is similar to a tfaditional transaction. The simplest example of a complex
transaction is Nested Transactions {12].

Complex transactions are distinguishable from the multilevel transactions (13, 11, 1]

* first in that their internal structure is ezplicit and provided as a user facility, and second
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in that their component transactions are not necessarily atomic. Multilevel transactions
have an implicit hierarchical internal structure which is a result of transactions invoking
‘operations on complex objects. Thus, the operations are decomposable into sub-operations.
Both operations and sub-operations are considered atomic. That is, for the user, a multilevel
transaction is nothing but a set of atomic operations similar to a traditional transaction, and
nesting is provided as a system facility.

The way that component transactions are combined to form complex transactions
reflects the semantics of the applications. Such semantics can be exploited in designing
transaction specific concurrency control and transaction specific recovery. The idea is similar
to the use of semantic information about the objects and their operations in designing type
specific concurrency control to enhance concurrency within objects 2, 16, 9, 211

Transaction specific concurrency control allows the definition of new weaker notions of
conflicts among operations not possible with the information available only about objects
and their types. For instance, operations invoked by two transactions can be interleaved
as if they commuted, if the semantics of the application allow the dependencies between
the transactions to be ignored. Clearly, transaction specific concurrency control might not
achieve serializability but still preserves consistency. This seems to be an attractive means
for increasing the performance in a complex information system.

Transaction specific recovery can be designed along the same lines to exploit the seman-
tics of the application in order to minimize the effects of transactions failures. Transaction
specific recovery reduces the cost of recovery by tolerating partial failures and by supporting
both forward and backward recovery. In the event of failure of transaction components, the
failed portions can be isolated, allowing the rest of the transaction to proceed. Failed por-
tions of a transaction can be retried, compensated by attempting another alternative, or even
ignored. Furthermore, complex transactions naturally support user-controlled checkpointing
since the boundaries of component transactions act as checkpoints.

The above observations motivate us to address the following questions in our research:
o How do we capture the semantics of complez transactions?

o How can we reason about the concurrency and recovery properties of complez transac-

tions?

The ACTA model described in the next section is our initial response to these questions.
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Figure 1: Dimensions of the ACTA Model

3 The ACTA Model

The behavior of a transaction system is determined by the behavior of its active components
and the interactions among these components. The active components if our model are
transactions, inherently parallel activities, and the passive components are objects, abstract
entities manipulated by transactions.

Transactions may produce unexpected results if they interact indiscriminately. A cor-
rectness criterion for transactions constrains these interactions to those that produce a result
contained in a set of acceptable results. In order to specify a correctness criterion that pre-
vents some interactions from occurring wkile allowing others, we must be able to express
these interactions. Interactions among transactions are reflected in the effects they cause and
thus, we can express them in terms of these effects: We distinguish between transactions’
effects on each other and transaction effects on the objects that they access.

A transaction has two possible outcomes, namely, commit or abort. Consequently the
effects of one transaction on other transactions are classified as those on the abort of other
transactions and those on the commitment of other transactions.

The effects of a transaction on the objects that it accesses are also categorized into two
classes: The effects of a transaction on the state of objects and the effects of a transaction
on the concurrency status, i.e., synchronization state, of objects. (Henceforth, we refer to
concurrency status as just status).

By taking into account the fact that these effects of a transaction may occur both
during the execution of the transaction and at the termination of the transaction, we further

distinguish them as in-progress effects and termination effects. This taxonomy of effects is



captured in figure 1.
As we shall see, the framework allows us to capture transaction properties as related
to the dimensions of (i) visibility, (ii) failure atomicity (recovery), (ii) permanence and (iv)

consistency.

3.1 Effects of Transactions on other Transactions

Dependencies provide a convenient way of specifying and reasoning about the behavior of
concurrent transactions {8, 16]. By examining the possible effects of interacting transactions
on each other, it is possible to determine the dependencies that may develop between the
transactions. There are two possible dependencies that a transaction may develop on any
other transaction: Commit-dependency and abort-dependency.

Commit-dependency and abort-dependency are collectively known as completion de-

pendencies and are defined as follows:

Commit-Dependency: If a transaction A develops a commit-dependency on another trans-
action B (denoted by A — B), then transaction 4 cannot commit until transaction
B either commits or aborts. This does not imply that if transaction B aborts, then

transaction A4 should abort.

Abort-Dependency: If a transaction A develops an abort-dependency on another transac-
tion B (denoted® by A = B), and if transaction B aborts, then transaction A should
also abort. This neither implies that if transaction B commits, then transaction A

should commit, nor that if transaction A4 aborts, then transaction B should abort.

Commit-dependency and abort-dependency define a commit order which prevents
transactions from prematurely committing, thereby preventing object inconsistencies, given
that transactions preserve the consistency of the database when run in isolation. Depending
on the transaction model and its correctness notion, some dependency cycles may lead to
inconsistencies and hence, they are prohibited, whereas other dependency cycles are accom-
modated. In the latter case, if two transactions form a circular dependency involving the

same type of completion dependency, then both have to commit or neither. In the case that

2The specific direction of the arrows for commit and abort dependencies is chosen for readability reasons.
To reflect the required order of transactions’ commitment, the arrows should be drawn in-the opposite
direction.



two transactions develop a circular dependency involving dependencies of different types,
le., one transaction has a commit-dependency on another transaction which has an abort-
dependency on the first transaction, then the commitment of both transactions must be
synchronized. This does not imply that both transactions have to commit or neither as in
the case above.

It is often necessary for dependencies induced by the structure of transactions to be
qualified either to further strengthen them by attaching to them more restrictions, or to
restrict the scope of their applicability by attaching conditions. As an example of the former,
abort-dependency can be restricted so that a transaction is not allowed to develop an abort-
dependency on more than one other transaction. This stronger version of abort-dependency
is called ezclusive-abort-dependency (denoted =) and is useful in controlling the expansion
of a complex transaction. As an example of restricting the scope of an abort-dependency,
consider weak-abort-dependency where an abort-dependency between two transactions holds
as long as both transactions are executing.

Transitive-abort-dependency (denoted by =) is defined by the transitive closure of
abort-dependencies. A transaction A has a transitive-abort-dependency on every member of
the set of transactions formed by the transitive closure of abort-dependencies starting from
A. Transitive-commit-dependency (denoted by =) is similarly defined.

Completion dependencies between transactions may be a direct result of the structural
properties of the complex transaction formed by the interacting transactions, or may indi-
rectly develop as a result of interactions of transactions over shared objects. Dependencies
formed by the interactions over a shared object are specified by the compatibility table associ-
ated with the object and encodes the object’s synchronization properties. In the traditional
framework, a compatibility table is a simple a binary relation with a yes entry for (0;, 0;)
indicating that the operations O; and O; are compatible, i.e., do not conflict, or a no entry in-
dicating that the two operations are incompatible, i.e., conflict. In our case, an entry (O;, 0;)
could be a condition involving completion dependencies, operation arguments and results.
In particular, an entry could be No-dependency, l.e., the standard yes entry, Form-Abort-
Dependency, Form-Commit-Dependency, Wait, i.e., the standard no entry, Abort, Notify,
Allow-if- Abort-Dependency-already-ezists, Allow-if-Commit-Dependency-already-ezists, etc.
While the other entries are self-explanatory, a Notify entry corresponding to (O;, O;) implies
that transaction invoking O; should be notified of O;’s presence. This generality allows the

framework to capture different types of type-specific concurrency control discussed in the



literature (16, 20, 9, 10, 2].

3.2 Effects of Transactions on Objects

Each object is characterized by its state and its status. The state of an object is represented
by its contents. The status of an object is represented by the synchronization information
associated with the object. Part of the synchronization information is the compatibility
table that specifies the concurrency properties of the object, i.e. the rules for accessing the
object 16, 20, 9, 10, 2]. In addition, our extension to the compatibility table, discussed in
the last section, allows the specification of the formation of completion dependencies when
operations execute. The state of an object changes when a transaction modifies the contents
of the object. The status of an object changes when a transaction accesses the object.

Transactions’ effects on objects are captured by the introduction of two sets, the View
Set and the Access Set, and by the concept of delegation. Due to space limitation, here we
just provide the intuition underlying these concepts. Their application to specify different
transactions schemes such as Nested and Split Transactions, in the next section, will provide
concrete forms to these concepts.

Transactions’ effects on objects can be restricted by limiting the number of objects
accessible to them. For this reason, every transaction is associated with a set of objects,
called View Set, which contains all the objects potentially accessible to the transaction.
Rules for composing the View Set are determined by the specific transaction model. Specific
examples are given in Section 4.

The effects of a transaction on objects are conditional upon the outcome of the transac-
tion. Objects actually accessed by the transaction are contained in another set, called Access
Set. When a transaction aborts, the state and the status of all objects in the transaction’s
Access Set are restored in its View Set. When a transaction commits, the state of all ob jects
in its Access Set is made persistent, i.e., the changes are effected, in the View Set, while the
status is restored in the View Set.

A transaction may delegate the responsibility for finalizing its effects on some of the
objects in its Access Set to another transaction. This is achieved by removing the delegated
objects from the Access Set of the first transaction (delegator) and adding them to the Ac-
cess Set of the second transaction (delegatee). That is, delegation represents the ability of a
transaction to give up some of its objects which are then taken over by another transaction.

Delegation effectively broadens the visibility of transactions and it is useful in selectively
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making tentative or partial results as well as hints, such as, coordination information, acces-
sible to other transactions.

The notion of delegation defined thus far is related to one of the two dimensions of
objects, namely, the state, and thus is called delegation of state. There is another type of
delegation related to the status of objects. This type of delegation is referred to as delegation
of status. Delegation of status as opposed to delegation of state, implies that the changes
done by the delegating transaction to the delegated objects are undone, before these objects
are added to the Access Set of the delegatee. Effectively, the delegation of status represents
the ability of one transaction to relinquish the control of the visibility of some of its objects
to another transaction.

It is possible for a transaction to delegate some of its objects at termination time.
Delegation at termination time is referred to as inheritance. Inheritance has three forms in
accordance with the three possible termination conditions: inherits at commat, inherits at
abort and inherits at termination, i.e., inherits at commit or abort. The form of inheritance
can be further refined according to the specific type of delegation involved. The notion of
inheritance used in Nested Transactions as proposed in [12] is similar to our first form of
inheritance, whereas in [14] it is similar to our third form of inheritance. To be precise, the
former case corresponds to the inheritance of state at commit, and the latter case corresponds
to the inheritance of status at abort and inheritance of state at commit.

Another form of delegation is limited delegation which makes the changes to the dele-
gated objects persistent in the View Set before adding them to the Access Set of the target
transaction.

In cooperative environments, transactions (components) cooperate by having intersect-
ing Access Sets and View Sets, by delegating objects to each other, or by notifying each other
of their behavior. By being able to capture these aspects of transactions, the ACTA model

1s designed to be applicable to cooperative environments.

4 Modeling Different Transaction Schemes

In this section, the semantics of four transaction models are specified using the ACTA model,
namely, Nested Transactions, Split Transactions, Recoverable Communicating Actions and
Cooperative Transactions. Because of space limitations, the characterization of Transaction

Groups [6, 18] and Multi-Coloured Actions [17] are not included in this paper. Also, the



;;ioperties of a new transaction model resulting from the combination of Nested Transactions
and Split Transactions are studied in order to demonstrate the usefulness of our model in

reasoning about the properties of existing and future transaction models.

4.1 Nested Transactions

In the Nested Transaction model (12}, transactions are composed of subtransactions or child
transactions designed to localize failures within a transaction and to exploit parallelism
within transactions. A subtransaction can be further decomposed into other subtransactions,
and thus, the transaction may expand in a hierarchical manner. Subtransactions execute
atomically with respect to their parent and their siblings, and can abort independently
without causing the abortion of the whole transaction. However, if the parent transaction
aborts, all its subtransactions have to abort. The parent transaction cannot commit until
all its subtransactions have terminated.

A subtransaction can potentially access any object that is currently accessed by one
of its ancestor transactions. In addition, any object in the database is also accessible to
the subtransaction. When a subtransaction commits, its objects are made accessible to its
parent transaction. However, the effects on the objects are made persistent in the database
only when the root transaction commits.

Here is the characterization of Nested Transactions in the ACTA model. We use C to

denote a child transaction of a parent transaction P.

In-Progress Effects:

o Dependency Specifications :

-VC,C3 P

-VC, P-C
The abort-dependency of a child on its parent guarantees the abortion of the child
transaction in the case that its parent aborts. Furthermore, the exclusive-abort-

dependency prohibits a child transaction from having more than one parent; this

ensures the hierarchical structure of the nested transactions.

- The commit-dependency of the parent on its children guarantees that the parent does

not commit before all its children have terminated.
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e View Set Specifications®
- VC, ViewSetc = {UAccessSets|C = A} U {System DB}

System DB stands for the system database.

The ability of a subtransaction to access any object currently accessed by one of its
ancestor transactions is expressed by defining the View Set of the subtransaction in
terms of the Access Sets of its ancestor transactions. The transitive-abort-dependency

uniquely specifies the ancestors of a subtransaction.

Termination Effects:

o Delegation Specifications*
— VYC, P inherits at commit from C

The inheritance specification states that, at commit, the child transaction’s objects are
delegated to its parent transaction. This effectively makes the effects of the committing
child transaction selectively visible to its parent and to the parent’s descendants (by

the visibility specification above).

4.2 Split Transactions

In the Split Transaction model {13}, it is possible for a transaction A to split into two
transactions, B and C, where B is the original transaction. B and C transactions may be
independent, in which case they can commit or abort independently, or they may be serial,
in which case B must commit in order for the C to commit. Whether B and C transactions

are independent or serial depends on the objects accessible to them.

3In our notation, U is an ordered union. More precisely, if C = A U B, then C contains all the elements
of A and B as in a set union. However, if there is an element in A duplicated in B, C contains the element
from A. We need this for the following reason. Suppose an object O in System DB is modified by P and
is then accessed by R. Then only the modified version of O should be accessible to R. Note that this
notion of versions is different from object versions maintained explicitly for application-dependent reasons.
We propose to capture them latter by viewing such versions as different objects. Versions in the current
situation exist only until the root transaction terminates.

“In the case of [14) the delegation specification should state in addition: YC, P inherits of status at abort
from C.
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4.2.1 Independent Split Transactions

Here is the characterization of independent Split Transactions in the ACTA model:

In-Progress Effects:
o Delegation Specifications

— A delegates objects in DelegateSet to B where:
AccessSetp = AccessSet 4 - DelegateSet

AccessSete = DelegateSet

The independence of the two transactions is guaranteed by having B and C operate
on disjoint sets of objects. Delegation leaves C the responsibility of making persistent

all the changes made by A to delegated objects up to the split.
Termination Effects:

Independent transactions after the split behave like traditional transactions and so the

termination of B and C have no effect on the other.

4.2.2 Serial Split Transactions
Now we characterize Serial Split Transactions which have more complicated semantics than

independent Split Transactions.

In-Progress Effects:

o Dependency Specifications
-C % B

The abort-dependency guarantees that transaction C aborts if B aborts and that C’s
commitment is delayed until B commits. The exclusive-abort-dependency prevents
C from joining (see below) a third transaction®. Note that this does not prevent

transactions B and C from joining,.

SThis constraint can be removed if the join operation requires that the joint transaction develops the
same dependencies as the joining transaction.
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o View Set Specifications

Split Transactions were proposed in the context of the Read-Write database model.
Hence the view sets of B and C can be specified in terms of the set of objects that they

can read or write.

— ViewWriteg = ViewWritey

— ViewReadg = ViewRead,

- ViewWritec = {z|z ¢ WriteSetg A C_WriteLast(z)} U {System DB}
- ViewReadc = {zjz ¢ WriteSetg A C_CanRead(z)} U {System DB}

WriteSetp contains the objects that A has changed up to the split and may change
after the split when executing as B. That is, WriteSet g is a subset of the Access Set of
A. The C_WriteLast specifies the objects that can be updated last by C. Similarly,
C_CanRead specifies the objects that C can read but they are not delegated to C.

The ViewWritec (ViewReadc) contains all the objects that C can potentially write
(read) after the split. In this way, some of the changes to the objects up to the time
of the split become visible to C. Not delegating these objects to C ensures that the
changes to the objects up to the split are not lost if C aborts®. '

o Delegation Specifications

— A delegates objects in DelegateSet to C where
AccessSetg = AccessSet 4 — DelegateSet

AccessSetc = DelegateSet

Any changes to objects in DelegateSet up to the split are left to C to be made persistent
to the database.

Termination Effects:

e Delegation Specifications

6Furthermore, in this way, B can regain access to these objects after the abortion of C. Note that this is
not supported by the original notion of Split Transactions [15], although it might be appropriate for some
applications.
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— Limited delegation of objects in DelegateSet' occurs from B to C:

DelegateSet = AccessSetp N ViewSetc

When B commits while C is still executing, it delegates limited responsibility of the
objects to C that C could potentially access but it did not. In this way, all the changes
to these objects are made persistent to the database while C still has access to these

objects.

If B aborts then C is also aborted, given that C has an abort-dependency on B. All

the objects acquired by both transactions are restored to the system.

By comparing the characterizations of the independent and serial split transaction in
ACTA, one can infer that the source of the abort-dependency in the case of serial split
transactions is due to the View Set specifications and in particular, to the information flow
allowed by the View Set specifications. A closer study of the View Set specifications reveals
that in the case that C is not allowed to read any object that is not delegated to it or is not
in the database (i.e., ViewRead¢ = {SystemDB}), the abort-dependency of C on B can
be substituted by a commit-dependency which avoids cascading aborts while still ensuring

serial commitment of B and C.

4.2.3 Joint Transactions

In the Split Transactions model, it is also possible for two transactions to join into one. This
is called the joint transaction. The joint transaction is either of the original ones. When the
transactions join, they release their objects to the joint transaction.

The characterization of Joint Transactions in the ACTA model is straight forward:

Termination Effects:
¢ Dependency Specification
- quning transaction % Joint transaction
o Delega,tién Speciﬁcationv

— Joint transaction inherits at commit from Joining transaction.

14



4.3 Nested-Split Transactions

In order to test the reasoning capabilities of the framework, we created a new model by
combining the Nested and Split Transaction models presented in the previous section. The
framework was then used to check whether this new model retains the properties of the two
original models.

Note that, given a nested transaction, it is possible to split a leaf node, an internal
node, or a root node. The split nodes could execute independently or serially. Figure 2.
captures the effects for all possible combinations. The dependencies shown follow from the
specifications of dependencies for nested and split transactions. In these figures a dotted
arrow denotes a commit-dependency and a solid arrow denotes an abort-dependency.

When a node, say C (figure 2b), splits into two subtransactions, say C1 and C2,
where C1 is the original subtransaction C, the dependencies between subtransaction C and
transaction A are assumed to hold between C2 and A. Since both nested and split transac-
tions involve exclusive-abort-dependencies (recall that exclusive-abort-dependency prevents
a transaction from having an abort dependency on more than one other transaction), a node
splitting may result in a subtransaction that has exclusive-abort-dependencies on two other
subtransactions (figure 2b, After the Serial Split). Such inconsistencies may be resolved by
means of consistency preserving rewrite rules. In general, consistency preserving re-write
rules are used to simplify the structure of a complex transaction by eliminating redundant
dependencies. Figure 2a shows four such rewrite rules of which re-write 2 resolves the in-
consistency mentioned above.

After applying the rewrite rules (in these cases only re-write 2 is applicable), we examine
the remaining dependencies for each type of nested-split transaction to see if the resulting
structure preserves the semantics of the Nested and Split transactions models. We conclude
that in only one case the properties of the two models are preserved. This case involves
the splitting of the leaf node into two independent subtransactions. In all other cases the
model either establishes dependencies which destroy the structure of the nested transactions
or eliminates some of the dependencies required by the nested transactions. For example, in
figure 2b (After Applying Re-write Rule), the exclusive-abort-dependency of subtransaction
C2 on subtransaction A is eliminated.

Even if splitting of nodes is restricted only to the independent splitting of leaf nodes,

nested-split transactions is a useful new transaction model in a cooperative environment.
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Figure 2: Splitting a Nested Transaction
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Observe that an internal node becomes a leaf node any time that it has no active child sub-
transactions. That is; in nested-split transactions, a node may split at any point after all its
child subtransactions have terminated and before activating any new subtransactions. For
example, in figure 2c (Initial Nested Structure), when subtransaction D terminates, node
C can be split into two independent subtransactions C1 and C2 as in figure 2b (After the
Independent Split of C). C'1 may continue the execution of C spawning new subtransactions,
while C2 may commit delegating its objects to 4. Since all the objects accessible to 4 are
potentially accessible to all of its descendants (by View Set specifications of nested trans-
actions), the objects delegated to A by C2 are potentially accessible to B. This effectively
achieves cooperation between the original siblings C and B while they are still executing. In
nested transactions, two siBlings cannot cooperate while both siblings are active, since sub-
transactions delegate their objects to their parent only at commit time. Thus, nested-split
transactions support higher level of visibility between subtransactions than nested transac-
tions do.

This exercise showed us the efficacy of the ACTA model in determining the properties

of new transaction models, in this case, one derived by combinating existing models.

4.4 Recoverable Communicating Actions

In the context of long and cooperative transactions, the Recoverable Communicating Actions
(RCA) model has been proposed to deal with the problem of non hierarchical computations
[19]. In this model, an action, the sender, is allowed to communicate with another action,
the receiver, by exchanging objects, resulting in an abort-dependency of the receiver on the
sender. If the sender aborts then the receiver must abort as a result of the dependency.

By developing abort-dependencies, RCAs form a recoverable computation a self-
contained task or activity which has the semantics of an atomic update. For this reason,
actions belonging to the same recoverable computation require synchronized commitment.
That is, even in the case of a sender which has no dependencies on any other action, the
sender cannot commit independently. However, partial failures are tolerated since an action
may abort without aborting the action with which it has developed an abort-dependency.
In short, a recoverable computation can dynamically expand through the development of
dependencies and shrink due to abortion of actions.

Here is the characterization of RCAs in ACTA:
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In-Progréss Effects:
o Dependency Specifications

~ Receiver = Sender

— Sender — Receiver

The circular dependency involving different completion dependencies between sender
and receiver guarantees the required synchronized commitment of the sender and re-

ceiver actions.

The abort-dependency guarantees that the effects of aborted actions are not reflected
in the database. Neither the abort nor the commit dependencies prevent an action from
developing any new dependencies. It is even possible for an action to be both a sender
and a receiver at the same time. In this manner, RCAs can produce non-hierarchical

structures.

o View Set Specifications
— ViewSetpeceiver = {2| Ezchanged(z)} U ViewSet g, ;..

Primed sets denote old sets and unprimed sets denote new sets. Ezchanged(z) specifies

that the sender transfers object z to the receiver, where, z € AccessSet ender-

Given the complete characterization of Split and RCA models in ACTA, one can im-
mediately observe that the two models involve different completion dependencies. This
difference is sufficient to demonstrate that one model does not subsume the other. Another
difference is that the notion of delegation does not exist in RCAs. Just as in the case of
nested-split transactions, using ACTA is easy to demonstrate that in spite these differences

the two models are compatible, in the sense that it is possible to combine and use them.

4.5 Cooperative Transactions

Cooperative Transactions [3] were proposed in the context of CAD /CAM and design applica-
tions supported by the checkin/checkout access date model. In the Cooperative Transaction
model, transactions are decomposed into subtransactions, each with its own semantics and

types. The model supports three distinct types of subtransactions: project transactions are
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decomposed into cooperative transactions; cooperative transactions are composed of a set of
subcontractor transactions; and subcontractor transactions may either have a structure simi-
lar to cooperative transactions in which case the client cooperative transaction acts as a local
project transaction, or have the structure of an atomic transaction called short transactions.

Cooperative transactions have a hierarchical structure similar to nested transactions,
but they do not support object inheritance in the same manner as in nested transactions. In
cooperative transactions object flow is supported only between adjacent levels through inter-
mediate semi-public or subcontractor databases. This does not imply that the transactions
are prevented from accessing objects in the database. A semi-public database is similar to a
subset of an Access Set in the ACTA model.

The characterization of cooperative transactions in the ACTA model is very close to the
one for nested transactions due to the similarities in their structures. A Project transaction
corresponds to the root or top transaction in the nested transaction model.

In-Progress Effects:

For short, we use coop to denote a cooperative transaction and contractor to denote
a subcontractor transaction. We also use subscripts to denote the components or children
transactions of a transaction. For example, short;; refers to the jth child of the ith cooper-

ative transaction which is of type short.

¢ Dependency Specifications

— Vi, Coop; = Project

— Vi, Project — Coop;

- Vi,j, Contractor;; S (client) Coop;

~ V1,3, (client) Coop; — Contractor;;

- V1,3, Short;; = Coop;

- Vi,3, Coop; — short;;
The hierarchical structure of cooperative transactions is expressed using the universally
quantified completion dependencies.

Cooperative transactions also support situations in which there is a partial ordering
that constrains the acceptable orderings of subcontractor and short transactions exe-

cutions. These situations can be easily expressed via commit-dependencies in ACTA.
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For example, if the 3rd subcontractor of the ith cooperative transaction should happen
before the 4th one, these semantics can be specified as:

Contractor;s — Contractor;;

¢ View Set Specifications

— ViewSetproject = {System DB}

— ViewSetcoop = {AccessSetpryject|Coop = Project} U {System DB}

— ViewSetshore = {DesignersSetcoop Short = Coop} U {System DB}

— ViewSetcontractor = {ContractorsSetcomp|Contractor = Coop} U {System DB}
~ AccessSetcop = DesignersSetcop U ContractorsSetcoop

— DesignersSetcop N ContractorsSetco,, = @

Objects in the DesignersSet can only be moved to ContractorsSet and vice versa by

the cooperative transaction whose Access Set is formed by these sets.

The View Set definitions of the short and subcontractor transactions specify that these
transactions can only access objects currently accessed by their parent transaction. The
View Sets of the short and subcontractor transactions are further constrained to be
the DesignersSet and ContractorsSet respectively. That is, the View set of a short
transaction is the DesignersSet, a subset of the Access Set of its parent cooperative
transaction. The View Set of a subcontructor transaction is the ContractorsSet, a

subset of the Access Set of its parent cooperative transaction.

Termination Effects:
¢ Delegation Specifications

— Vi, Project inherits at commit from Coop;

~ Vi, Project inherits (status) at abort from Coop;

- Vi, j’, Coop; inherits at commit from Short,;

= Vi, j,Coop; inherits (status) at abort from Short,;
~ V4,3, Coop; inherits at commit from C ontractor;;

— Vi, j, Coop; inherits (status) at abort from Contractor;
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As in the case of nested transactions, the delegation specification states that at com-
mit, the child (cooperative, short, or subcontractor) transaction’s objects are delegated
to its parent (project, or cooperative) transaction. However, in the case of short and
subcontractor transactions the delegated objects are added to the respective Designers-
Set and ConstractorsSet (by the visibility specification above). This effectively makes
the effects of the committing child transaction selectively visible to its parent, and
forces the parent’s short transactions to cooperate through the objects contained in
the DesignersSet and the parent’s subcontractors to cooperate through objects in the

ContractorsSets.

In the case of abort, the child transaction’s objects are delegated to its parent after

the state changes done by the child on the objects are nullified.

5 Conclusion

ACTA, the comprehensive transaction model proposed in this paper, captures the spec-
trum of interactions among transactions in competitive and cooperative environments. Each
point within the space of interactions is expressed in terms of transactions’ effects on the
commit and abort of other transactions and on objects’ state and concurrency status (i.e.,
synchronization state).

ACTA allows for specifying the structure and the behavior of transactions as well as
for reasoning about the concurrency and recovery properties of the transactions. The ACTA
model is not yet another transaction model, but is intended to unify the existing models. Its
ability to capture the semantics of previously proposed transaction models is indicative of
its generality. The reasoning capabilities of this framework have also been demonstrated b;v
using the framework to study the properties of a new model that is derived by comiining
the Nested and Split transaction models.

We are currently investigating a formalism that will allow us to precisely characterize
the correctness properties of a set of transactions or a transaction model. Such a model will,
for example, allow us to determine whether or not the given model produces oﬁly'sefializable
computations, and if not, whether the computations are consistency preserving, i.e., whether
the interactions in the computations do not conflict in such a manner as to produce object
inconsistencies.

In order to explore the practical impact of being able to develop new transaction
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models using this framework, we are also examining the development of a canonical model
for implementing object managers and transaction managers to design type specific and
application specific concurrency control and recovery mechanisms.

Overall, we believe that our framework will lead to a better understanding of the na-
ture of interactions between transactions and the effect of transactions in environments that
require transaction models that are not supported well by the traditional transaction model.
Further, with the proposed framework, it should be possible to precisely specify the type of
interactions and effects allowable in a particular‘ application, and explore ways for achieving
cooperation. The concurrency and recovery properties of transactions in the given applica-
tion can then be studied using the reasoning capabilities built into the framework. Finally,
by including an examination of the implementation mechanisms required to support complex
transactions within its purview, our work also intends to provide answers concerning the in-
creased complexity entailed by the improved flexibility in constructing complex transaction

models.
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