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Abstract

We investigated the use of plans in comprehending natural language paragraphs. We built a
system which reads a paragraph about a tutoring situation and demonstrates its understanding
of the paragraph by answering questions about the situation. For parsing, inference, and knowl-
edge representation, we used SNePS, to which we made modifications and extensions. We did
not use a planner to accomplish plan recognition, but instead depended heavily on context, do-
main knowledge, and Condition-Action pairs representing tutoring strategies to understand the
text. We include our theoretical results in understanding situations, including Model Anaphora,
an extension to theories in anaphora resolution.
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1 Introduction

We investigated the use of plans in comprehending natural language paragraphs. We built a system
that reads a paragraph about a situation in some domain and then demonstrates its understanding
of the paragraph by answering questions about the situation. We chose tutoring as a domain because
its complexity would drive our research: we had to stretch our understanding of planning and
goal-driven behavior, and we were confronted with texts that required new techniques of Natural
Language Processing (NLP). This report reviews our research into Tutoring as Planning (section 2),
and our NLP techniques for Understanding Situations (section 3). Next, it gives an overview of our
implemented program, which we call TOM, for Tutoring Observation Module. Section 4 also covers
our implementation of the grammar, the rules in the knowledge base, and the focussing algorithm.
We then discuss our experiences with using SNePS at a new site, our laboratory at the University

of Massachusetts (section 5). Finally, we review our research conclusions and point to directions
for future research.

2 Tutoring as Planning

One of the original intents of this project was to use plans to understand tutoring paragraphs. It
was felt that Dr. Woolf’s tutoring expertise, the extensive work at SUNY Buffalo on SNePS, and
the availability at UMass of a planning system, GRAPPLE (Huff & Lesser 1987 ), would provide many
of the pieces necessary for putting together a system to read and understand paragraphs describing
tutoring sessions.

Our first several months on this project were spent in an effort to reconcile SNePS and GRAPPLE.
At that time, there was no working SNePS$ system, so we concentrated on designing a way to use
GRAPPLE’s plans to understand tutoring paragraphs.! This effort resulted in our learning several
things, discussed in detail in the rest of this section.

¢ Reading a story about people using plans is not the same as watching people use plans (or
being told how to use plans). GRAPPLE was designed for the latter, but we are working on
the former.

e Natural language input contains information (for example, tense, clausal connectives, dis-
course focussing clues) that requires a recognition mechanism designed to capture and repre-
sent it.

o Tutoring is a complex human activity, not amenable to representation by traditional planning
methodologies. We felt, however, that of all the planning paradigms available, one closer to
that called “reactive planning” best captures the way in which a tutor works, since after each
action, the tutor typically monitors the response of the student and may consult other aspects
of the current context.

* Recognizing a tutor’s goals, through either direct observation or reading paragraphs, is not
furthered by recognizing, for example, that she asked a question. Instead, understanding

1t should be noted that the version of GRAPPLE we examined in 1987 is perhaps quite different from the current
system.



depends heavily on rich knowledge of both tutoring strategies and the subject matter being
taught.

2.1 How GRAPPLE Might be Integrated into TOM

Plan-based Natural Language Understanding usually considers a story to be “understood” if it has
matched a story with a known plan or script so that it can infer actions and subgoals that were not
explicitly mentioned in the text. We had wanted to use GRAPPLE to match the events in the input
paragraph with a known plan. Clearly, GRAPPLE would have been most useful had it been able to
narrow its set of hypotheses to a single plan, and allow us to recover an “instantiated plan,” one
that shows the order and hierarchy of accomplished subgoals and what subgoals were matched with
what actions. Unfortunately, GRAPPLE suffered two deficiencies in this regard: abandoned plans
and erroneous hypotheses that were never purged; and redundant plans, one for each successfully
matched step in the plan. Additionally, GRAPPLE did not keep track of the order in which subgoals
were achieved; for its purposes, it was merely sufficient to know that they all were.

For tutoring, we would need abstracted plans that represent either choice points or loops or
both. As an example of the former, we wanted an abstract plan to cover a topic which includes
questioning the student, and depending on the answer, teaching the topic or moving on to something
different. As an example of the latter, we wanted an abstract plan for presenting (as in a lecture)
a series of examples, without hardwiring the number of examples into the plan.

We came to the conclusion that we would not be able to rely solely on GRAPPLE output for our
understanding task, but would also, in some sense, need to save the parse. “Saving the parse” means
that we would be holding on to more information from our processing of the input paragraph than
the GRAPPLE plan(s) and the obvious instantiations of plan variables such as “Tom” for “student.”
In general, we would need to save information that GRAPPLE had no interest in and would throw
away. More specifically, we came up with two independent reasons for saving the parse.

The first problem arises when GRAPPLE cannot provide us with a single plan, and thus, pre-
sumably, returns us a set of plans. We would still want to be able to answer questions about what
went on: we would want to be able to give a full description of the actions mentioned, even if we
could not characterize the strategies (plans) behind them. It would be very difficult and tedious to
try to recover this description from a bunch of partially instantiated GRAPPLE plans.

Second, there are times when the paragraph will describe all the actions that are to be matched

by GRAPPLE, but in a different order from their occurrence. For example, in our tutoring paragraph,
the first few sentences could be restated thus:

Nancy asked Tom if an inanimate object exerts a force. Nancy pointed to a book on

the table. She asked if the table exerts an upward force on the book. Tom said no to
both questions.

The order of occurrence of events is essential to plan understanding, and GRAPPLE itself has no
way to reorder steps, because it is designed for “real time” plan recognition. Therefore, we would
need to reorder as necessary in our own implementation. Assuming we would be feeding GRAPPLE
information after processing each sentence, we would be faced with the possibility of having to
backtrack in order to correctly order the steps. Alternatively, we could hold onto all the results of
the parse, do a reordering pass, and hand the results to GRAPPLE in the correct order.



The first option would allow us to work incrementally, but would become wasteful when back-
tracking occurred. The second option avoids wasted work, but disallows the possibility of using
GRAPPLE to form any predictions about upcoming input, which could conceivably help the parsing
process.

We found neither of these options attractive, and this situation, in addition to GRAPPLE’s own
problems, persuaded us that GRAPPLE would be of limited benefit to our project. We therefore
decided not to use it and turned our energies toward finding a better-suited planning formalism.

2.2 Condition-Action Pairs

Our study of the tutoring paragraph convinced us that to understand the paragraph our system
need rely only minimally on plans. A tutor may incorporate overarching strategies into her tutoring,
such as “examples are good” and “present easier material before harder,” but when she decides
what action to take next in teaching a student, she typically examines the current context rather
than consults some tutoring schema. This context includes what she has already taught, what she
believes the student understands, what the student’s most recent response was, what material is
yet available to teach on the topic—domain knowledge—and what tutoring strategies may apply for
teaching it.

Domain knowledge of physics, for example, includes information that relates the concept of
“inanimate object exerting a force” to the concrete example “table exerting an upward force on
a book.” The concept is also related to the anchor example (one that a student is expected
to understand because it involves his direct experience) of “hand exerting an upward force on a
book.” The availability of such examples helps guide the tutoring process.

Tutoring strategies can best be conceived of as Condition- Action pairs: for any tutoring situation
or set of conditions, any number of actions may be appropriate; conversely, an action may be
appropriate to any number of situations. A tutor will choose an action based on the conditions. A
system trying to understand a tutor’s activity will match the tutor’s action and attempt to match a
corresponding set of conditions. It is in this weak sense that plans are used in our system. Figure 1
gives some sample conditions and actions.

We believe that the planning formalisms being developed by Dr. Shapiro and his group at
SUNY Buffalo are adequate to represent these Condition-Action pairs. Using their paradigm, the
Condition-Action knowledge is implicitly incorporated in our inference rules.

3 Understanding Situations

” o«

In this section, we discuss the definition and processing of words such as “situation,” “example,”
and “case.” We have concluded that a Situation, the referent of this word, is an aggregate of
model objects picked out by a Situation Indez. Situations are states of affairs characterized by
concreteness and tension. We show further that context must inform the comprehension of this
difficult lexical item.

Words such as “situation” are important because they occur frequently in natural discourse, and
they are interesting because they are like anaphoric terms (“he,” “it”) and deictic terms (“this,”
“that”), but they have a much richer semantics. Consider the following usage:

Penni and Scott are writing an IJCAI paper. Their first draft was shot down by their
fellow researchers. In this situation, they squabbled more than usual.



Condition Action

student doesn’t give anchor example
understand topic (found in KB)
tutor wants to bridge repeat question

go back to an earlier concept

give anchor example

(found in KB)

tutor wants to ask question about topic
introduce topic

give concrete example
tutor wants to of topic
test student’s knowledge
tell student

tutor wants to to explain topic
review a previous topic

Figure 1: sample Condition-Action pairs



Most people would agree that this paragraph contains a description of a situation, and more im-
portantly, that the lexical item “situation” successfully refers to it. However, understanding the
exact reference of the word “situation” is complicated by three factors:

1. “Situation” places significant, but ill-defined, constraints on its possible referents. This ex-
ample shows elements of concreteness (particular people writing a particular paper), states
(a bad first draft), and change (such as increased squabbling). These are much more complex
constraints than the simple number, person, and gender features of pronouns.

2. “Situation” is nevertheless a weak descriptor, because situations come in so many different
kinds—different sets of entities can be referred to as a situation, depending on the context.

3. Situations might not exist a priori, but instead be created a posteriori. That is, the set
of objects that make up the situation may not previously have been aggregated. The ob-

Jects aggregated by “situation” reside in the Model,2 which is constructed in the process of
understanding the text.

This section attempts to define the semantics and processing of situations.

3.1 Types of Reference

Model Anaphora, which we define to be the determination of the reference of words such as “situa-
tion,” naturally extends other work on anaphora. Many researchers have studied pronoun anaphora
(coreference between a noun phrase and a personal pronoun): Hobbs (1978), Grosz and Sidner
(1986), Hankamer and Sag (1976), and Webber (1983). Work on temporal anaphora (coreference
between temporal expressions) has been done by Partee (1984) and Hinrichs (1986), among oth-
ers. Webber has also worked on the reference of demonstratives such as “this” and “that”; she
has termed this variously as “event reference” (1987) and “discourse anaphora” (1988). The 1987
paper also introduced the notion of individuating reference, which plays a key role in our Model
Anaphora.

Text comprehension involves reference, which we define as the link from an expression in the
text (for example, a noun phrase or a proposition) to a Model Object,® called the referent. The
arrows in figure 2 are examples of such reference links.

Sometimes, the referent of an expression is a set of things in the Model. Such a set acts as an
individual, in that it can be referred to, can have qualities attributed to it, and can participate in
relations. Webber (1987) calls a reference that creates a new individual an individuating reference,
depicted in figure 3. One can also view this as creating a new first-class object, since only first-class
objects can be referred to and predicated.

*This Model is informed by, but is distinct from, our domain models, which contain world knowledge of various
possible domains of discourse. The Model may contain explicit structural or lexical information; this needs to be
saved for some understanding tasks (for example, Webber’s discourse anaphora (1987)), but it is not necessary for
processing situations.

3A Model Object is any first-class object in the Model (essentially, a first-class object is anything that can be
pointed to). Therefore, Model Objects include relations, events, states, and so forth, as well as physical objects.
Recall that the Model records our understanding of the text, and is distinct from domain models.



Figure 2: the reference links from the text to the Model

Figure 3: An expression referring to a set of objects as though it were
an individual. The reference that creates this set is called an
individuating reference.



Not all aggregate model objects are the result of individuating reference: some aggregates
already exist as part of a domain model. For instance, the story of Romeo and Juliet is clearly
an aggregate, being composed of many people and events, but it is easily available as a referent in
discourse without being created anew.

We believe that a situation is represented as an aggregate model object and that the word
“situation” is often used as an individuating reference. There are two issues to address: defining
just what can be termed a situation, and processing a reference to a situation (which may involve

an individuating reference). The next section deals with the problem of a proper definition of this
term, and section 3.3 deals with processing.

3.2 The Definition of Situations

We have identified several factors which influence whether an expression describes a situation. Con-
sider examples (1) through (4) below. When asked to judge which examples can be characterized
as situations, speakers generally agree that (4) can be a situation, but (1) cannot. However, there
is less agreement on whether the intermediate expressions may refer to situations.

(1) running

(2) running the Boston Marathon

(32) James running the Boston Marathon

(3b) James having run the Boston Marathon

(4) James having run the Boston Marathon last April

It is possible to imagine contexts in which any of these phrases describes a situation, but in some
cases, the contexts are more natural and more available than in others. We believe that these
expressions differ by their concreteness.

Concreteness is characterized in the psychological literature by imageability (for example, Paivio
et al., 1968). In our examples, the increasing specificity supplies the details that aid in building
up a mental image. Specificity, however, is not the right measure of a situation. Consider example

(5): ‘

(5a) playing a violin
(5b) playing a Stradivarius

Most people judge these as equally good (or bad) as situations, yet (5b) is clearly more specific,
though it is no more concrete (imageable). This is similar to Rosch’s (1976) notion of basic level
categories; one formulation of a basic level is that it is the highest level for which the prototype is
imageable (hence, concrete). Thus, concepts at or below the basic level are equally concrete, and
therefore their concreteness equally affects judgements of whether something is a situation.

Intuitively, a situation is a state of affairs—a description of the world (or some small part of
it) at some point in time. Note that the questions “What is the situation with X?” and “What
is the state of X?” will elicit similar, if not identical, descriptions. Certainly, the description may
combine present and past actions, especially those that are related (causally or otherwise) to the
current state of affairs:

The situation is that I dialed this long-distance number and it’s been over thirty seconds
and it still hasn’t rung. Strange.



Clearly, this situation includes the past action of dialing the phone. On the other hand, a situation
need not mention past actions. For example, the situation at the beginning of Romeo and Juliet can
adequately be described as the feud between the Montagues and the Capulets, without mentioning
any particular actions.

A situation usually contains tension, which we take as potential for change. In Example (6)
below, (6a) is a better situation than (6b) because there is a greater potential for change. Most
people consider (6b) too uninteresting to be a situation at all. Of course, in certain contexts, (6b)
could be considered a situation: a textbook on erosion might discuss the changes in that situation.

(6a) A boulder teetering on the edge of a cliff.
(6b) A boulder sitting in the middle of a plain.

Example (6) also demonstrates that tension need not result from agents and their goals, as it does
in the Romeo and Juliet situation.

We conclude that situations are states of affairs characterized by concreteness and tension. Con-
creteness reflects how easily people can construct a mental image of the situation. Tension reflects
people’s judgements of the potential for change.! Obviously, Jjudgements of these characteristics

will vary from person to person; nevertheless, they put significant constraints on what can be a
situation.

3.3 Processing

Situations are commonly referenced with phrases such as “the situation with X” or “the X sit-
uation.” Sometimes, depending on X, more specific phrases are used, as with “the situation in
the Middle East,” which is preferable to “the situation with the Middle East.” These modifying
phrases include the situation indez for each of these Situations. A situation indez is a key that
picks the situation out of the Model, distinguishing foreground from background, so to speak.

The situation index is usually some common or unifying aspect of the situation. Thus, if
we speak of “the IJCAI paper situation,” (see our first example), the situation index unites the
situation. This situation is also successfully referred to by “the situation with Penni.” Indeed, the
situation index need not be explicitly mentioned in the text. For example:

I was driving to work with the carpool, as usual, and the engine threw a rod. It’s shot,
so now I've got to get a new one. That’s the situation with my car.

This reference is successful because the mention of “driving” and “engine” bring “car” into focus
(see Sidner 1979). Furthermore, replacing the referring phrase with “the situation with the carpool”
does not as easily refer to the car situation. Therefore, we conclude that, to a first approximation,
it is elements in focus, regardless of explicit mention in the text, that are available as situation
indexes. We have found that the topic of the paragraph is usually what is in focus by the end of
the second sentence, and the topic is the most likely source of the situation index.5

We take references that make explicit mention of the situation index to be the canonical case;
we process other references by first determining the situation index, thereby reducing them to the
canonical case. Thus, processing Model Anaphora has two steps:

*Some situations, unfortunately, seem to be ones in which people nevertheless judge there to be little potential
for change. For example, consider the situation of being trapped in the center of a row at a boring lecture.

®See section 5.1 for an alternative method of finding the paragraph’s topic.
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1. D'etermine the situation index. Where this is explicitly mentioned, the determination is
trivial. Otherwise, the situation index must be computed from the context.

2. Using the situation index, search the Model and look for matches. Since we take as
a departure point the actual result of parsing the text, the search will be through a subspace
of the Model. The matching Model Objects will yield a set of candidates, some of which
will be discarded because they are not states of affairs or because they lack concreteness or

tension. If this does not reduce the set of candidates to a single situation, we choose the most
recent candidate.

Our current research concerns the comprehension of the following paragraph, so we will use it
to illustrate Model Anaphora:

Nancy asked Tom if an inanimate object exerts a force. Tom said no. N ancy pointed
to a book on the table. She asked if the table exerts an upward force on the book. Tom
said no. Nancy placed the book on Tom’s hand. Tom exerted a great force to keep
the book steady. Nancy asked Tom to compare the two situations. Tom said the table
exerted a force on the book.

Nancy sets the topic of the paragraph with her first question to Tom. This marks “inanimate
object exerts a force” as the topic; the Model Objects inanimate object, exerts, and a force
are available as situation indexes. Because of our domain knowledge of physics, we know that her
second question, which is more specific, is subsumed by her first, and does not change the topic.
When Nancy refers to “the two situations” without supplying a situation index, either “inanimate
object” or “force” is probably the index she has in mind.

Supposing we take “force” as the situation index, we search in the Model for Model Objects
that match it. We find the first situation because “an upward force ” is a kind of force and Nancy
has asked Tom whether the books exert an upward force on the table. Hence, the books on the
table is a situation. The second situation is found again because force is explicitly mentioned,
hence the books on Tom’s hand is also a situation.® Although force is mentioned in the first
sentence, “if an inanimate object exerts a force,” this is discarded as a situation because it lacks
concreteness.

3.4 Summary

We have outlined the two phases of processing Model Anaphora and have shown how we can find
the referents for “situation” in a sample text. The first step in the process is finding a situation
index, which we have defined as the key that picks the situation out of the Model. The second step
involves searching the Model for occurrences of the situation index and determining whether any
of these is part of a situation.

In conclusion, we claim that situations are states of affairs that exhibit concreteness and ten-
sion, and that the process of referring to them involves a situation index. We believe that Model
Anaphora is a phenomenon common to a large class of nouns, including “case,” “disaster,” and “ex-
ample.” These nouns differ somewhat in their semantics, but they all make individuating references
to sets of Model Objects.

®Both situations are larger than we have described them here. For instance, Nancy would include in her represen-
tations the forces involved in the two situations. Tom will, too, once he understands the concept.
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4 Implementation of TOM

Our program, ToM (Tutoring Observation Module), reads a paragraph, using the SNePS Aug-
mented Transition Network (ATN) to parse the sentences and represent their meaning with SNePS
nodes, which are automatically integrated into the SNePS network. Next, the Sidner Focussing
Algorithm is executed. This algorithm tracks the focus movement through the paragraph, that is,
as the focus changes from some element of the previous sentence to some element of the current sen-
tence. The focussing algorithm was originally designed to work sentence by sentence and, although
we considered implementing more dynamic focussing, we decided to stay with sentence-based pro-
cessing. This required us to make the focussing algorithm a separate stage after the parser, since
the ATN might backtrack at any time. Because paragraphs in the tutoring domain will contain
many indirect questions, we decided not to trigger question-answering within the ATN. Instead,
we look at the topmost node that represents the meaning of the current sentence and, if it’s a
question, we invoke the inference engine to deduce the answer. When this is completed, the answer
is printed. Since the research is not concerned with Natural Language Generation, the answer
is printed simply by looking up a sentence corresponding to the answer that was deduced. This
technique is obviously deficient in the long run, but it enabled us to concentrate on the primary
task of text comprehension. We believe that the SNePS generator will eventually be able to handle
our generation demands. A flowchart of TOM’s organization appears in figure 4.

4.1 Implementing the Grammar

The paragraph that we have studied most extensively and that ToM can now read contains very
natural English, and that presented some problems. Some phenomena are simply outside the scope
of this research and are among the open problems in AI and NLP today. For example, the original
paragraph made great use of modals: “Tom had to exert...” rather than “Tom exerted....” To
properly represent these meanings would demand representing possible worlds and intentions of
agents, which would have been extremely complex. Therefore, we simply rewrote these sentences
in simpler language.
The first sentence originally read:

1. Nancy asked Tom if an inanimate object, such as a table, can exert a force.

The parenthetical expression “such as a table” presented unexpected difficulties. It could be parsed,
but there was much controversy over the meaning of the expression, the representation of its
meaning, and the ultimate effect of that meaning. Eventually, we decided that the effect of “such
as” phrases is to focus the attention of the human listener or, by analogy, to advise the computer’s
inference engine so that it can focus its inferences in a particular way. In a way, it’s as if the
speaker expects that the hearer will attempt to answer the question by using a case-based approach:
examining cases of inanimate objects and deciding if any of them can exert a force. The “such as”
phrase prompts particular kinds of cases to be examined. Consider asking a naive student whether
a hammer or an anvil can exert a force. The student is likely to say that the hammer can and
the anvil cannot, simply because the hammer is active and the anvil passive. Thus, the “such as”
expression focusses the hearer’s attention on passive inanimate ob Jects, without articulating that
concept. Once we agreed that this is the correct view of the “such as” phrase, we also knew that
it could have no effect on the SNePS inference engine, since the SNeP$S inference engine is not

12



Read a sentence

Call ATN to
parse it

Call Focussing
Algorithm to
update focus

Is
sentence

a question
?

Deduce answer

Print
corresponding
sentence

Figure 4: a flowchart of ToM’s organization
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Figure 5: the parser’s representation of the meaning of “Tom said no”

case-based and has no attentional mechanisms. Therefore, we dropped the phrase; we would be
parsing it to no purpose.
The second sentence is both very simple and very interesting.

2a. Tom said no.
Actually, the original sentence was

2b. Tom said he didn’t think so.

We changed it because we considered the latter simply a needlessly complicated idiomatic expression
with essentially the same semantics as the former. The most important difference in semantics
is that the latter expression conveys Tom’s doubt is his belief—a difference we could not have
accounted for, since the SNePS inference engine is a symbolic logical system, not a probabilistic
system with degrees of belief. Still, “Tom said no” is more than interesting enough, because the
key problem is determining what he said no about. He is negating some proposition, but what
proposition? We call this problem Propositional Anaphora.” Properly understanding this sentence
requires awareness of the continuity of sentences at the discourse level, higher than the sentence
level. In section 4.2 we discuss how we use an extension to Sidner’s focussing algorithm to handle
Propositional Anaphora.

Because the focussing algorithm is executed after the ATN has finished parsing the sentence, the
representation of the meaning of “Tom said no” is as depicted in figure 5. The “#some-proposition”
is just a convenient label for what is an atomic base node, meaningful only by what points to it; for
our purposes, it’s just a placeholder. So, the network reads “Tom said that <some proposition> is
equivalent to False.” “False,” of course, is a constant in the network. At this point, we don’t know
what he said was false. Later, after the focussing algorithm runs, we get the network fragment in
figure 6. You can see the need for the placeholder node, as it is the connection between ‘False’ and
the node M12, which is the focussed element.

"The same issue arises, of course, with affirmative sentences such as “John said yes.”

14
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Figure 6: the representation of the meaning of “Tom said no” after the focussing algorithm runs

The next interesting sentence is the following

7. Tom exerted a great force to keep the book steady.

In current linguistics literature, the phrase “to keep the book steady” is known as a rationale clause
(Huettner 1989). Rationale clauses are deemed to attach directly to the S node, rather than to
VP, as a relative clause would, yet they are like relative clauses in that there is usually a trace—a
item which is deleted because it is identical to something in the main clause. In this rationale
clause, the trace is the agent, Tom, who is the one keeping the book steady. This sentence also
exhibits a small clause, namely the phrase “the book steady.” We parse this into the proposition
steady(book), which is then the object of “keep.” It makes sense for “keep” to take a state (the
steadiness of the book) as its object. We do not claim that our ATN can handle all small clauses
and rationale clauses, but we have gotten it to handle, in a robust and general way, sentences like
sentence 7.
The most difficult sentence we faced is the next one:

8. Nancy asked Tom to compare the two situations.

This has already been discussed at length in section 3. The sentence also posed a slight parsing
problem, because the phrase “to compare the two situations” can be read as a rationale clause. We
were forced to be much more rigorous in annotating verbs with features to say what arguments they
can or must have. In this case, we solved the problem by having “ask” require a VP as its object.
By adding features to items in the lexicon to direct the ATN, we improved its parsing ability, but
this continues to be a weakness of the system. Ideally, the system would have a fairly complete set
of subcategorization frames and thematic grids, with a mapping from the former to the latter, and
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Figure 7: the representation of the meaning of “Why did Nancy ask Tom about the book on the
table?”

have the subcategorization frames take a much stronger role in the parsing, rather than letting the
structure of the ATN control the parsing.
The last grammatical problem we tackled was parsing the questions that follow the paragraph:

Q1. Why did Nancy ask Tom about the book on the table?
Q2. Why did Nancy place the book on Tom’s hand?
Q3. Why did she ask him if inanimate objects exert a force?

Previous SNePS implementations had concentrated on “wh-questions,” such as “what did Lucy
pet,” which would, as a side-effect of parsing, cause SNeP$S to search the network and reply, for
example, “Sweet Lucy petted a yellow dog named Rover.” Because we believe indirect questions—
statements such as “Nancy asked Tom what the book weighed”—are common in our domain, we did
not want the system to answer every question it read. Therefore, we chose a simple representation
for questions, and then, after the parsing, if the topmost node of the representation of a sentence
is a question node (which means the sentence is a direct question, not an indirect question), we
answer the question. Figure 7 shows the representation for the first question.

Note that the verb in figure 7 is “ask-about.” We felt that “ask...about” could be treated as
a verb-particle combination, rather than a simple verb with a prepositional phrase. Technically, it
should be the latter, since “about” does not undergo particle movement (one of the key diagnostics
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of a true particle construction). The change was motivated primarily on semantic grounds, because
we wanted “the book on the table” to be the object of the sentence, so that it would fulfill the
requirement that the verb “ask” take an object. (See the discussion of sentence 4.1, above.) More-
over, several other functions also look for the object of the sentence, and this change makes those
functions simpler. The problem arises because the system conflates syntactic and semantic roles in
the label object. While our solution works, it is not sufficiently general, and a uniform distinction
between syntactic positions (of subcategorization frames) and thematic roles (of thematic grids)
would solve the fundamental problem. Then, at the syntactic level, “the book on the table” can
be the object of the preposition “about,” and yet be mapped to theme at the semantic level, and
all semantic functions can uniformly refer to theme rather than object.

Parsing the questions also required us to substantially rewrite the grammar so that it could
handle the inversion, auxiliary-insertion and other syntactic phenomena of questions in English.
The resulting grammar has been tested on a large suite of sentences and is quite robust. The whole
ATN grammar is included in appendix A.

4.2 Implementing Sidner’s Focussing Algorithm

As described in section 3, a major concern of our research has been developing a theory of Model
Anaphora. Since we considered this effort an extension of other theories of anaphora resolution,
and since, in particular, our theory depended on the notion of focus, we decided to incorporate
Sidner’s focussing algorithm (1979) into our system. Her work remains one of the cornerstones of
focussing theory, and since her algorithm is so well-known, we thought it would be well-understood
and easy to customize for our own purposes.

Unfortunately, several difficulties arose from our assumptions. While implementations are re-
puted to exist, we could not find someone actually able to give us one; Sidner’s thesis itself contains
only an English version of the algorithm, which is obscure in some places. Further, it became
apparent that someone else’s implementation would probably not help us too much, since the im-
plementation naturally depends greatly on the structure of both the knowledge representation and
the parser. So we eventually decided to implement the algorithm from scratch, using the thesis as
a guide. This exercise proved instructive of the pitfalls of such an endeavor.

Sidner’s focussing algorithm was motivated by a need to find ways to constrain the search for
cospecifications of anaphora in multi-sentential text. An anaphor is a lexical item that derives
its “meaning,” or specification in a knowledge base, through association with some other lexical
item. The most common anaphora are definite noun phrases—pronouns and noun phrases (NPs)
with definite articles (such as “the”). Such NPs cospecify with other NPs in the text.® Thus, for
example, in the following text “she” cospecifies with “Nancy” and “the book” cospecifies with “a
big red book.”

Nancy was leafing through a big red book. She remembered fondly the time she used
the book to tutor Tom about physics.

The idea behind focussing is that only one item in the text can be in focus at a time. What is in

8Most researchers refer to this phenomenon as coreference rather than cospecification; Sidner prefers the latter
because in a program no referring to the real world is happening, only specification of particular items in a knowledge
base.
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focus constrains the resolution of anaphora; conversely, use of anaphora signals either continuation
of the focus or the movement of the focus to some other item in the text.®

The algorithm works by processing one sentence at a time. For each sentence, an ordered list is
constructed of all items that may come into focus at some point. For the first two sentences, this
is the Default Expected Focus list (DEF); for all subsequent sentences, this is the Potential Focus
list (PFL), which differs from the DEF by not including the agent of the sentence. Each sentence’s
Alternative Focus List (ALFL) is the DEF or PFL from the previous sentence. The processing of
each sentence results in either confirming the focus or moving it; the ALFL is one set of possible
new focuses. If the focus is moved, the old focus is pushed onto the focus stack. The focus stack is
another source of new focuses. If the focus is moved to one of these (that is, back to an item that
has already been in focus), the items above it in the stack are discarded. There is no focus for the
first sentence, since focus is a property of multi-sentential text. Processing for the second sentence,
then, is a matter of establishing the focus, rather than confirming or moving it.

The focussing algorithm has a companion focussing algorithm for actors that handles the reso-
lution of personal pronouns. We did not implement this because this issue is tangential to our main
concerns and a simplistic solution was already available by use of the SNePS Uniqueness Principle.
We did not implement the entire focussing algorithm, either, since some of it was not needed for the
paragraph we were understanding. Our implementation also includes several extensions for cases
not covered in the original, as described below.

The interface between SNePS and the focussing algorithm is not very clean. The algorithm is
called after each sentence is parsed, and handed a list of SNePS nodes corresponding to phrases.
Unfortunately, the algorithm depends on the syntactic roles of each of the phrases in a sentence
as well as the actual linear order in which the phrases appear. The SNePS parser, on the other
hand, is only concerned with the semantic roles played by elements of the sentence, and therefore in
principle does not save any syntactic information. Hence, the first task of the focussing algorithm
is to recover as much of this information as possible. We also had to add to the parser a mechanism
for explicitly recording the definiteness of each NP, something to which SNePS is indifferent but
which is clearly crucial to the algorithm.

The rest of this section briefly sketches some of the interesting aspects of the algorithm, as it
functions in our tutoring paragraph, reproduced here.

(1) Nancy asked Tom if an inanimate object exerts a force. (2) Tom said no. (3) Nancy
pointed to a book on the table. (4) She asked if the table exerts an upward force on
the book. (5) Tom said no. (6) Nancy placed the book on Tom’s hand. (7) Tom
exerted a great force to keep the book steady. (8) Nancy asked Tom to compare the
two situations. (9) Tom said the table exerted a force on the book.

Sentence (2) immediately presents us with a type of anaphora not covered in the original
algorithm. When Tom says “no,” he is negating some proposition, and to understand the sentence
we need to find out which proposition this is; thus, we call this Propositional Anaphora. Following
the principles of the focussing algorithm, we believe that the proposition being negated will be the

one in focus, and indeed, “if an inanimate object exerts a force” is the predicted focus at the second
sentence.

®For a much fuller discussion of these ideas, see Sidner 1979.
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This example demonstrates another extension we made to the algorithm: Sidner’s version did
not account for sentences with subordinate clauses. We decided that subordinate clauses, including
the rationale clause in sentence (7), fill roles similar to those filled by NPs, and so we could treat
them equivalently. However, we also felt that the constituents of a subordinate clause should be
available to the focussing algorithm as well, so these are also included in the DEF/PFL.

Our most interesting use of the algorithm occurs in sentence (8). Previously, the topic of the
paragraph was determined, at the second sentence, to be the element in focus, that is, “an inanimate
object exerts a force.” The word “situations” triggers a part of the focussing mechanism responsible
for resolving such Model Anaphora (see section 3). Any of the elements of the topic, namely exert,
inanimate object, and force, may be used as the situation index; the current implementation
uses the first of these. “The two situations” is thus found to specify the aggregate of table exerts
an upward force on the book and Tom exerts a great force to keep the book steady.
Each of these situations is itself an aggregate of the entire situation and all of its elements.

At this point in the paragraph, during the processing of sentence (8), the focus is the book
cospecified by “the book” in sentence (7). The focussing algorithm includes a step by which if a
definite noun phrase in the current sentence (here, “the two situations”) implicitly cospecifies the
focus, the focus is confirmed. Sidner defines implicit cospecification as a case in which the definite
NP specifies a Model Object that is closely related to the specification of the focus. In this example,
the book is a situation element of one of the two situations; this relationship is close enough to
warrant confirmation of the book as the focus.

Implementing Sidner’s focussing algorithm and making the necessary extensions to it proved
to be more work than we had anticipated and in retrospect was probably a poor design decision.
The apparent appeal of an “off the shelf” algorithm was offset by the difficulty of engineering the
interface with SNePS, as well as the limited coverage of the original algorithm. In fact, we learned
the hard way that an off the shelf algorithm is a far cry from off the shelf software, and we would
have been better off in this case building a mechanism of our own rather than trying to fit an
algorithm to our needs.

4.3 Implementing the Knowledge Base

TOM’s knowledge of tutoring and physics is represented as inference rules, stored in the SNePS$
network and executed by the SNePS inference engine. They are triggered by the need to answer
questions asked of the system. Calling the inference engine results in new nodes being asserted and
returned, whereupon these nodes are mapped to sentences that answer the user’s question. This
section will review the deductions involved-in answering the first question.

The representation of the first question, “Why did Nancy ask Tom about the book on the
table?” was shown in figure 7 (page 16). “Why” questions are taken to ask what goal some action
or plan is subserving. Therefore, we turn that question into the following deduction:

(deduce plan (build agent bi
verb ask-about
indirect-object b2
object b9)
goal v1)

The node “V1” is a new variable node, which will be bound to the node which is deduced to be
the answer to the question, which is essentially “what is the goal of this plan.” The call to DEDUCE
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initiates the backward-chaining ability of the SNePS inference engine. It creates a pattern node
which matches the consequent of rule 1, shown in figure 8.

This rule is essentially knowledge about tutoring, for it concerns asking someone about specific
examples of a topic in order to probe his knowledge of the topic. Note that the agent, “x,”
which in this case is Nancy, is mentioned several times in the rule: Nancy did the asking, so
it’s Nancy who wants (Nancy) to know Tom’s knowledge of the topic. The use of the agent
is a philosophical difference between UMass Amherst and SUNY Buffalo, since we believe it is
important to mention the agent, so that the agent can constrain the inferences and be represented
in the answer. The SUNY Buffalo research group, on the other hand, believes it is important
to represent the commonality of different agents’ plans and not mentioning the agent in a rule
produces more general inferences. We believe this rule demonstrates the correctness of our view,
since the agent, “x,” is so crucial in the representation of the goal, but the Buffalo researchers may
have an alterna,tlve solution to this problem.

Once the inference engine has matched the consequent of rule 1, it wants to prove the antecedents
of that rule. The first antecedent is just the act itself and so is trivially true.!® The second
antecedent is that “B9” is a situation index for some (as yet unknown) situation “e.” B9 is a
situation index (we determined so when processing the Model Anaphora in “Nancy asked Tom to

compare the two situations”), and so “e” is bound to the corresponding situation, the node B19,
shown in figure 9.

Antecedent 3 is that “e” is a situation. This follows straightforwardly from its having situation
elements such as B9, so we won’t go into this. The fourth antecedent, however, is somewhat
complicated, as it determines whether “e” is an example of statics. That matches the consequent
of rule 4, shown in figure 10, with “z” unified with “statics.”

This rule captures some of the program’s knowledge of physics, since it defines conditions
sufficient for an example of statics. The first antecedent is that “s” (which is our “e” from rule
1) is a situation; we already know this is true. Second, we check that “s” has situation elements
“x” and “y.” This binds “x” to B9 and “y” to B10. Next, we check that both “x” and “y” are
physical objects. The variable “f,” in the next antecedent, is open and will be bound to something
deduced from yet another rule (one which deduces that if “x” supports “y,” then there exists a
force, “f,” between them). We check that “f” is a force exerted by “x” on “y” and by “y” on “x.’
This completes the backward chaining through rule 4, and we can now return to rule 1.

The next two antecedents of rule 1 involve a variable “k” which can be thought of as the pupil’s
(“y’s”) knowledge of statics. The variable “k” gets bound to a node built by another rule, part of
the program’s general world knowledge, that says there always exists a node to represent someone’s
knowledge of something. The backward chaining through rule 1 is now complete. The consequent
is asserted, which lets the system state that Nancy wanted to know Tom’s knowledge of statics.

This section has concentrated on part of one inference, the one which answers the first question,
in order to demonstrate the general technique, and to show the representation of tutoring knowledge

and physics knowledge in the SNePS formalism. We include here a summary of our work on the
other questions.

19 Actually, it’s not quite so trivial. The act is true because the parser asserted it to be true; that is, the parser
takes the statements it reads to be true. One could imagine a more suspicious system that might well answer this
question: “I'm not certain that Nancy did ask about the books on the table.” This is & minor quibble, as most Al
systems believe what they’re told, but it’s worth mentioning why this proposition is true.
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(assert

forall ((new-variable-node x) ... ¥y, 2, e, si, k)

gant ((build agent (node-named x)
verb ask-about
indirect-object (node-named y)
object (node-named si))

(build argl (node-named si)
rel situation-index
arg2 (node-named e))
(build argl (node-named e)
rel situation)
(build argl (node-named e)
rel specific-example-of
arg2 (node-named z))
(build argl (node-named y)
rel (build lex know)
arg2 (node-named k))
(build argl (node-named z)
rel in-domain
arg2 (node-named k)))

cq (build plan (build agent (node-named x)
verb ask-about
indirect-object (node-named y)
object (node-named si))

goal (build argl (node-named x)
rel (lex want)
arg2 (build argi (node-named x)
rel (build lex know)
arg2 (node-named k)))))

Figure 8: Rule 1 from the Knowledge Base
If x asks y about si, which is a situation-index to the situation e, a specific example of z (and
there’s a node k, which is y’s knowledge of z), then the asking-about was a plan for that goal.
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Figure 9: The representation of “e,” the example referred to in the first question with the phrase
“the book on the table?”

The representation of the second question, “Why did Nancy place the book on Tom’s hand?”
is shown in figure 11 (page 24). The question is interpreted as requesting the deduction:

(deduce plan mi45 goal v1)

“M145” is the node representing the declarative form of the question. The variable node “V1” will
be bound to the node which is deduced to be the answer to the question.

The pattern node created matches the consequent of rule 7, shown in figure 12. Like the first
rule, this rule is essentially knowledge about tutoring. It states that an anchor example of a topic
can be provided to a student by performing a suitable action which results in the student having
direct physical evidence of the laws of the topic domain.

The first and third antecedents of this rule concern the action, namely that it be an action, and
that the action have a particular topic. Here the action is “place,” which has “statics” as its topic.

The second and fourth antecedents concern the student: The second antecedent requires that
the object which experienced the action directly (“w”) be a part of a sentient entity (“u”). The
fourth antecedent requires that this sentient entity have direct physical evidence of the topic, i.e.,
of “statics.”

The rules underlying the second and fourth antecedents are shown in figures 13 and 14. For the
question posed, the object is “B21” (Tom’s hand), for which the sentient entity is “B2” (Tom).

The rule underlying the fourth antecedent requires that the sentient entity (Tom) sense an
example of the domain (statics). Rules concerning such sensing are domain-specific. We will not go
into further detail than to say that Tom senses an example of statics because he senses an example

of forces, because a force is being exerted on a part of him, and because that part is capable of
sensing forces.
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(assert forall ((new-variable-node s)
(new-variable-node x)
(new-variable-node y)
(new-variable-node £f))

&ant  ((build argl (node-named s)
rel situation)
(build argl (node-named s)
rel situation-element
arg2 ((node-named x)
(node-named y)))
(build member (node-named x)
isa Physical-Objects)
(build member (node-named y)
isa Physical-Objects)
(build member (node-named f)
isa forces)
(build rel exerts
argl (node-named x)
arg2 (node-named y)
arg3 (node-named f))
(build rel exerts
argl (node-named y)
arg2 (node-named x)
arg3 (node-named f£)))
cq (build argi (node-named s)
rel specific-example-of
arg2 statics))

Figure 10: Rule 4 from the Knowledge Base
If s is a situation, and x & y are elements of s and are Physical-Objects, and f is a force, and
exerts(x,y,f) and exerts(y,x,f) then s is a specific example of statics.
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Figure 11: the representation of the meaning of “Why did Nancy place the book on Tom’s hand?”
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(assert

forall ((new-variable-node u) ... v, w, x, y, z)

gant  ((build argl
rel

arg2

(build argl
rel

arg?2

(build argl
rel

arg?2

(build argi
rel

arg?2

(node-named v)
has-property
action)
(node-named u)
sentient-head
(node-named w))
(node-named v)
has-topic
(node-named z))
(node-named u)
has-direct-evidence-of
(node-named z)))

cq (build plan (build agent (node-named x)

verb (node-named v)
object (node-named y)
phys-relation (node-named w))

goal (build agent (node-named x)

verb (build lex provide)
indirect-object (node-named u)
object (node-named z))))

Figure 12: Rule 7 from the Knowledge Base

If v has an action property and topic z, and if w is a part of sentient being u which has evidence
of z, then x’s carrying out v with y such that a physical relation is established with w could be a
plan to provide the sentient being u with knowledge of z.
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(assert
forall ((new-variable-node x))

ant (build member (node-named x)
isa sentient-thing)
cq (build argil (node-named x)

rel sentient-head
arg2 (node-named x)))
(assert
forall ((new-variable-node x)
(new-variable-node y))
gant  ((build argl (node-named y)
rel (build lex is-part)
arg2 (node-named x))
(build member (node-named x)
isa sentient-thing))
cq (build argl (node-named x)
rel sentient-head
arg2 (node-named y)))

Figure 13: Rules 8 and 9 from the Knowledge Base

If x is a sentient-thing, then it is its own sentient-head. If y is part of a sentient-thing x, then
x is y’s sentient-head.

(assert .
forall ((new-variable-node x)
(new-variable-node y)
(new-variable-node z)
(new-variable-node k))
&ant  ((build argl (node-named z)
rel in-domain
arg2 (node-named k))
(build argl (node-named y)
rel example
arg2 (node-named z))
(build agent (node-named x)
verb  (build lex sense)
object (node-named y)))
cq (build argl (node-named x)
rel has-direct-evidence-of
arg2 (node-named k)))

Figure 14: Rule 10 from the Knowledge Base
If x senses y, an example of z, which is in domain k, then x has direct evidence of k.
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All the antecedents of rule 7 having been satisfied, TOM can now assert that Nancy wanted to
give Tom an example of statics.

Question 3 appeared to be solved until very recently, when we realized that answering the
question was much more complicated than we had thought. While we no longer have time to devise

and program a complete revised solution, we can sketch out our thoughts on the problem.
Essentially, to answer the question

Q3. Why did Nancy ask Tom if inanimate objects exert a force?

the system must understand that Tom’s knowing the domain of statics is sufficient for him to
answer Nancy’s question, and therefore the question is a good one for probing his knowledge of the
domain. We would like to be able to say that is it necessary and sufficient that one know a domain
in order to answer a question about it. However, this is clearly not always the case; for example,
Tom could cheat.

For the system simply to know that the question is about statics is difficult, because it is not
enough to know that each term in the question is in the domain, since the terms may be related
in such a way that the composite meaning falls outside the domain. Now, to some extent we can
control which relations appear in the composite meaning representation, via our control of the
ATN, but this would be an unsatisfactory ad hoc solution.

Because a realistic depth of understanding in the knowledge representation is so difficult to
achieve, we have simply chosen to leave this question for possible subsequent studies.

5 Using SNePS at UMass

Any time two research groups from different institutions attempt to cooperate there will be diffi-
culties as well as advantages. The benefits of working with the SUNY Buffalo group were primarily
intellectual: we were able to discuss our approach to problems with interested, knowledgeable,
and objective researchers. It was particularly refreshing to work with a group that comes from a
different background and therefore challenged many of our assumptions about possible solutions.
In retrospect, we feel the two groups should have met more often than twice a year so as to derive
greater benefit from this interaction. While we were pleased with the intellectual interaction, we
were disappointed with the interaction involving implementation issues. This section details some
of the experiences we had with SNePS.

We expected to benefit greatly from getting SNePS, a working system that could handle our
needs for representation, parsing, inference, and generation. However, SNePS was too immature a
system to meet our expectations: releases of SNePS tended not to work, and SNePS was difficult
to debug when it did fail.

We encountered major implementation bugs, for example in the ATN’s restoration of registers
when backtracking and in the use of TI Common Lisp’s!! “displacing” macros. We were also tripped
up by philosophical differences in coding style. The Buffalo group’s adoption of conventions that
usurp the Common Lisp language, including important characters such as # and *, and functions
such as DESCRIBE, PUSH, POP, ASSERT, +, *, and = made our own coding very difficult. We
believe that such idiosyncratic practices should be avoided in any code that is meant to be shared
between two or more research groups.

the implementation of Common Lisp on the Texas Instruments Explorer
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We had particularly frustrating difficulty with the Inference Engine under development by the
Buffalo researchers. Some problem causes the conjunction of several antecedents, each of which is
itself true, to be false. The exact source of this bug is as yet unknown and still being investigated.
The very fact that this bug is so difficult to track down is indicative of how opaque the Inference
Engine is, particularly to users at sites other than Buffalo.

We believe that the lesson to be learned from this experience is that for one research group to
fruitfully use another research group’s program, either the software should be relatively mature,
stable, and likely to work, or the two groups should work very closely together.

5.1 Future Directions: Understanding More Complex Paragraphs

We would like to conclude this report by describing a promising extension to this research. In
general, the goal of our work in paragraph understanding is to comprehend ever more complex
text. Here, we show preliminary work on a paragraph which involves processing Model Anaphora
and appreciating complex human interactions and motivations. We believe that a system based on
our current framework can handle such text.

We have shown that processing Model Anaphora requires more complex representation and
more subtle inference than other sorts of anaphora. Anaphora that involve human interaction,
plans, and goals are more complex and subtle yet. The paragraph below is typical of such text.

(1) Last week, 32 shabby peasants appeared at the gates of the U.S. embassy in Moscow.
(2) They put a startling request to American diplomats: help us get out of Russia.
(3) Local authorities in Siberia had threatened to imprison the adult members of the
peasants’ religious group. (4) With the vague notion that a foreign embassy might
help them, the Siberians had come by train to Moscow. (5) The Americans listened
sympathetically, but Ambassador Foy Kohler had to stick to regulations. (6) He called
the Soviet Foreign Ministry, explained the situation and asked that the peasants be
removed. (7) Embarrassed by the whole thing, the U.S. officials prevented foreign
correspondents from photographing or speaking with the visitors.

Two distinct Model Anaphora are used in this paragraph: “the situation” in sentence (6) and
“the whole thing” in sentence (7). Notice that “the whole thing” is more inclusive than “the
situation.” Since our algorithm resolves each Model Anaphor in the course of processing the
sentence in which it appears, the additional structure that is part of “the whole thing” will be built
after “the situation” has been resolved, thus capturing this difference.

As described in section 3.3, we find the situations by first finding the situation index, which is
generally the topic of the paragraph. In the tutoring paragraph, the topic was determined to be
what was in focus by the second sentence; this happened to be the indirect question of the first
sentence, namely, “if an inanimate object exerts a force.” However, the topic of a paragraph need
not always be given in the first sentence, so we need a more sensitive mechanism for recognizing it
than checking the focus at a particular moment.

Often, the topic is strongly marked by some action. This may be, for example, a demonstative
action, such as pointing, or, as in the tutoring paragraph, a speech act (Nancy asking a question).
In the current paragraph, the topic is also marked by a speech act:

(1) Last week, 32 shabby peasants appeared at the gates of the U.S. embassy in Moscow.
(2) They put a startling request to American diplomats: help us get out of Russia.
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(1) None.

(2) Peasants Goal

Plan

(3) Authorities Goal

Plan
Peasants Goal
Plan

(4) Peasants

Plan

be out of Russia
ask American authorities for help

preventing peasants’ religious practices
threaten peasants

keeping religion
77

Subgoal ask a foreign embassy for help

go to embassy in Moscow

(This is an elaboration of the plan in (2).)

(5, 6) Americans Goal
Plan

Goal
Plan

(7) Americans Goal
Plan

stick to regulations
ask Russians to remove peasants

be nice to peasants
act sympathetic

cover up embarrassment
keep reporters away

Figure 15: Plans and Goals in the “Shabby Peasants” paragraph

To put a request is to perform a speech act; the object of the request is a likely candidate for
the topic of the paragraph and is selected as the topic because it is the earliest candidate in the
text.

This analysis shows that the topic is determined functionally, rather than just structurally. To
get a better grasp on how “topic” is defined and how the topic of a paragraph is determined, as
well as related issues in resolving Model Anaphora, we suggest that future research include testing
modifications to the structure of the paragraph to discover how different rhetorical or syntactic
structures result in different specifications for the Model Anaphora.

In figure 15 we present our preliminary research into the goals and plans that may be present
in this paragraph. Future research should include refinement and implementation of this work.
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A Grammar

A.1 Verbal Elements in the SNePS ATN

This section explains the way the SNePS ATN processes words that part of the verb, meaning the
main verb and any auxiliaries, negatives and such. We call such words “verbal elements.” Since
the SNePS ATN as delivered did not handle verbal elements correctly, and since we could not
understand the code that seemed like it ought to handle them, we threw out the old code and
completely reimplemented it.

Our first attempt at handling verbal elements was a failure. We were trying hard to go forward
in a principled way, from CFG + TG rules to either a pure CFG or an FSM.!?2 The problems
mostly arose because as we multiply out the CFG + TG rules, we first get a huge increase in the
number of rules, which then must be reduced by looking for identities or similarities between rules
or states. Similarities between rules or states don’t really result in any reduction in the number
of rules or states, but there is a reduction in the size of the N OTATION, because rules or states
can be parameterized, yielding an identity can then be collapsed. But this is still really hard, and
properly collapsing the notation was very confusing.

This grammar presents a new approach, by trying to go directly from the CFG + TG rules to
an ATN, which is in consonance with the original intention of Woods’ ATN formalism (1970). In
fact, we will end up parameterizing the rules even more than they are already! These rules are
primarily drawn from Akmajian and Heny (1975).

We start with:

S — NP VS VP-REST

VS — (MODAL) (have) (be) V

plus the TG rules of Aux-Hopping, Negation, and Question Forma-
tion. And don’t forget DO-support.

First, we note that for each of the auxiliaries, much the same thing is happening on the resulting
ATN arc, to wit: if the auxiliary is of the right category (MODAL, ‘have,’ or ‘be’), and the auxiliary
is in the right form (does it have the suffix which has hopped in from the left?), traverse the arc.
So let’s simplify the CFG rule and add a constraint.

VS — AUX*V

AUX — MODAL | have| be

Constraint: No auxiliary appears more than once. Auxiliaries go in
the following order: MODAL, ‘have,’ and ‘be.’

The rule of Negation adds that if the auxiliary is the first one, it can be followed by a negative
morpheme. That simply goes into the constraint:

VS - AUX |not *V

AUX — MODAL | have | be

Constraint: No auxiliary appears more than once. Auxiliaries go
in the following order: MODAL, ‘have,’ and ‘be.” Optionally, ‘not’
immediately follows the first auxiliary.

12CFG = Context-Free Grammar; TG = Transformational Grammar; FSM = Finite State Machine.

31



Let’s throw in DO-support:

VS — AUX |not *V
AUX — do | MODAL | have | be
Constraint: No auxiliary appears more than once. Auxiliaries go in

the following order: MODAL, ‘have,’ and ‘be.” If ‘do’ is an auxiliary,
then it is the first and only auxiliary (if you don’t believe in DO-
support for positive declaratives, then ‘do’ must be followed by ‘not’).
Optionally, ‘not’ immediately follows the first auxiliary.

The second step is going to look weird, but bear with me. We want to handle Question
Formation. So, let’s eliminate the ordering of subject and auxiliary from the CFG rules and
put it into the constraint:

S — VS VP-REST

VS — NP | AUX | not *V

AUX — do | MODAL | have | be

Constraint: No auxiliary appears more than once. Auxiliaries go in
the following order: MODAL, ‘have,’ and ‘be.’ If ‘do’ is an auxiliary,
then it is the first and only auxiliary (if you don’t believe in DO-
support for positive declaratives, then ‘do’ must be followed by ‘not’).
Optionally, ‘not’ immediately follows the first auxiliary. NP appears
exactly once and precedes or follows the first auxiliary (together with
‘not’).

The third step is to convert this stuff into an ATN. We only need two states to deal with the
VS rule (the S rule is obvious), with the second of those states being trivial (it reads the V). The
arcs of the first state are: PUSH NP, CAT V, CAT NEG, and JUMP. Why the JUMP? That’s
because many of these items are optional, and the JUMP is like an epsilon transition in an NFA.

The constraints are implemented via registers in the ATN, plus lisp code in the tests and actions
on the arcs. The information about modals and auxiliaries is available when the node is finally
built (in VP-END), but is discarded at that point, since we don’t know how to represent tense,
aspect and modal information. If someone has an idea, the information is all there.

A.2 The ATN

This section contains all of the actual code of the ATN.
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(s
;; The words ‘no’ and ‘yes’ can 'be sentences on their own
(Wrd (yes no) t
(setr ‘propositional-anaphor [*|)
(to YES-ND))

(cat wh-adjunct t
(initialize-vs-machine)
(setr mood :why-question)
(to VS))

(jump VS t
(initialize-vs-machine)))

(YES-NO (pop (progn
(1isp: :push (cons ’contains-propositional-anaphora? ’t)
sneps::*sentence-factsx)
(setr net
(build equivl (lisp-escape (new-base-node some-proposition))
equiv2 (lisp-escape
(if (string-equal
llyesll
(getr propositional-anaphor))
(build lex true)
(build lex false)))))
(getr net))
t))
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(Vs (PUSH NP (and (null (getr subj))

(CAT

(CAT

(CAT

(CAT

(CAT

(member (length (getr auxes)) ’(0 1)))
(sendr v v)
(setr prev (getr |*]))
(setr subj (getr [*]))
(new-case-frame :agent ’[*|)
(if (and (null (getr auxes))
(null (getr v)))
(setr mood :declarative)
(if (null (getr mood))
(setr mood :yes-no-question)))
(TO VS))
MODAL (acceptable-verbal-element? :modal)
(process-auxiliary :modal)
(TO VS))
V (acceptable-verbal-element? :do)
(process-auxiliary :do)
(TO VS))
V (acceptable-verbal-element? :have)
(process-auxiliary :have)
(TO VS))
V (acceptable-verbal-element? :be)
(process-auxiliary :be)
(TO VS))
NEG (and (eql (length (getr auxes)) 1)
(member (getf ctgy (getr prev)) ’(v modal))
;3 the following means the ATN doesn’t allow double negatives,
;3 such as ‘John can’t not go to the party.’ or
;3 ‘John can’t be not going to the party.’
(null (getr neg)))
(setr prev *current-words)
(setr neg t)
(TO Vvs))

(CAT V (and (acceptable-verbal-element? :v)

;3 The only main verbs that can appear before the subject are
;; ‘have’ and ‘be.’ See the test suite for examples.
(or (not (null (getr subj)))

(member (getr [*|) ’("have" "be") :test #’string-equal)))
(talk 2 "main verb")

(setr v (get-lexical-feature ’root (getr features)))
(when (null (getr auxes))

(internal-setr neg (get-lexical-feature :negative (getr features))))
(if (and (null (getr subj))
(null (getr mood)))
(setr mood :yes-no-question))
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(To v8))
(JUMP VP-ARGS (and (not (null (getr subj)))
(not (null (getr v)))
(typep (getr mood) ’legal-mood))))
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;33 This node collects arguments of the verb.

(vp-args
(push np (or (getf trans v) (getf obj+pplocative v))
(sendr v v)
(setr obj I*])
(new-case-frame :object ’'|x|)
(to vp-args))
(wrd if (getf condv v)
(to vp-if))
(cat adj (equal (getf root (getr v)) "be")
(setr predicate |*|)
(setr type :predicate-adjective)
(to vp-adjuncts))
(push scomp (getf infinitive-scomp v)
(sendr case-frames case-frames)
(sendr subj obj)
(setr iobj obj)
(setr obj |x|)
(new-case-frame :object ’|x|)
(new-case-frame :indirect-object ’iobj)
(to vp-adjuncts))
(push s (getf scomp v)
(sendr case-frames case-frames)
(setr obj |x|)
(new-case-frame :object ’|x|)
(to vp-adjuncts))
(cat prep (member (getr I*|) (getf :particles (getr v))
:test #’string-equal)
(setr particle |*])
(to vp-particle))
(push pp t
(sendr v (getr v))
(addr vmods |*|)
(let ((node (cadr (getr [*[)))
(role (intern (the (and symbol (not null)) (car (getr |x])))
*keyword-package*)))
(new-case-frame role node))
(to vp-args))
(jump vp-adjuncts t))
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;35 This node ought to collect adjuncts to the verb, such as time/location
;;: NPs and PPs or rationale clauses. It only does the last, since the PPs
;33 are treated uniformly as vmods, and therefore are collected in the
;33 VP-ARGS node.
(vp-adjuncts
(push rationale-clause t
(sendr subj (getr subj))
(sendr case-frames case-frames)
(setr rationale |*]|)
(to vp-end))
(jump vp-end t))

;33 This node assumes that if you have two NPs, the one preceding the
;33 particle is the IOBJ and the one following is the OBJ.
(vp-particle
(push np t
(sendr v v)
(setr iobj obj)
(setr obj [x*])
(new-case-frame :object ’|x*]|)
(setf (car (member :object (getr case-frames))) :indirect-object)
(to vp-args))
;; For sentences like ‘‘call John up’’
(jump vp-args t))
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(vp-end
(pop (progn
(setr net
(lisp-escape
(if (eq (getr type) :predicate-adjective)

(eval
‘ (build
,Q(if *increment-time?x*
‘(stime ,(node-named sneps::stm)
etime ,(node-named sneps::etm)))
Tel ,(build lex (lisp-escape (getr predicate)))
argl ,(lisp-escape (getr subj))))
(eval
‘(build
,@(if *increment-time?*
‘(stime ,(node-named sneps::stm)
etime ,(node-named sneps::etm)))
agent (lisp-escape (getr subj))
verb ,(if (getr particle)

(sneps-symbol
(string-append
(getr v) "-" (getr particle)))
’(build lex (lisp-escape
(getr v))))
;3 if an arc would point to NIL, it’s not built
indirect-object (lisp-escape (getr iobj))
object (lisp-escape (getr obj))
rationale (lisp-escape (getr rationale))
,(lisp-escape (getr vmods)))))))
(if (not (null (getr neg)))
(setr net (lisp-escape
(eval
‘(build rel (build lex not)

argl ,(getr net))))))
(setr net

(lisp-escape
(ecase (getr mood)

(:declarative (getr net))

(:yes-no-question (eval ‘(build rel (build lex truth-value)
argl ,(getr net))))

(:why-question (eval ‘(build rel (build lex why)
argl ,(getr net))))

(:how-question (eval ‘(build rel (build lex how)

argl ,(getr net)))))))
(new-case-frame :case-frame ’net)
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(liftr case-frames case-frames)
;s This works because VP-END will be the last node executed, so the
i3 case-frames register will be right.

(setq sneps::*case-frames* (getr case-frames))
(when *increment-time?*

(build after (new-base-node sneps::nstm)

before (node-named sneps::stm))
(build after (new-base-node sneps::netm)
before (node-named sneps::etm))

(remember-node (node-named sneps::netm) sneps::etm)
(remember-node (node-named sneps::nstm) sneps::stm))
(getr net))
;3 an incredible amount of conmsistence-checking here:
(or (and (getf intrans v)
(nullr obj)
(nullr iobj))
(and (getf trans v)
(not (nullr obj))
(nullr iobj))
(and (getf scomp v)
(not (nullr obj))
(nullr iobj))
(and (getf infinitive-scomp v)
(not (nullr obj))
(not (nullr iobj)))
(and (getf obj+pplocative v)
(not (nullr obj))
(nullr iobj)
(not (nullr vmods))
(contains-locative-pp? (getr vmods)))
(and (getf small-clause v)
(not (nullr obj))
(nullr iobj))
(and (getf condv v)
’what??)
(and (getf prop-att v)
’what?7))))
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(vp-if
(push s t

(sendr case-frames case-frames)

(setr type ’tv)

(setr iobj obj)

(setr obj (lisp-escape (build argl (lisp-escape (getr [*|))
rel (build lex truth-value))))

(new-case-frame :if-obj ’obj)

(sneps::= (lisp-escape (find arg2- (lisp-escape (getr obj))))

some-proposition)
(to vp-args)))

(scomp
(jump scomp-subj t))

(scomp-subj
(vrd to t

;3 This is much like (initialize-vs-machine), but omits some things
;3 because we’re in a more constrained situation.
(setr neg nil)
(setr mood nil)
(setr v nil)
(to scomp-to)))

(scomp-to

i; the following means the ATN doesn’t allow double negatives in infinitive

;; complements, such as ‘Mary requested John to not not go to the party.’
(CAT NEG (null (getr neg))

(setr neg t)
(TO SCOMP-TO))
(CAT V ([ulmember :infinitive
(get-lexical-feature :untensed-forms (getr features))

englex:*legal-untensed-formsx*)
(setr v [|x])

(setr mood :declarative)
(to scomp-v)))
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(scomp-v
(push vp-args t

(sendr subj subj)
(sendr v v)
(sendr neg neg)
(sendr mood mood)
(sendr case-frames case-frames)
(setr predicate |*])
(to scomp-end)))

(scomp-end
(pop (progn (liftr case-frames)
(getr predicate))
t))

(comp
(cat v ([ulmember :infinitive

(get-lexical-feature :untensed-forms (getr features))
englex:*legal-untensed-forms*)

(setr v [*])

(to vp-args)))
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;33 The following deals with rationale clauses

(RATIONALE-CLAUSE
(wrd to t
(to rationale-clause-v)))

(rationale-clause-v
(cat v ([ulmember :infinitive
(get-lexical-feature :untensed-forms (getr features))
englex:*legal-untensed-forms*)
(setr v |*])
(to rationale-clause-args)))

;; doesn’t deal with double-object verbs:
(rationale-clause-args
(push np (and (getf trans v)
(not (getr obj)))
(sendr v v)
(setr obj |[*])
(new-case-frame :rat-obj ’obj)
(to rationale-clause-adjective))
(jump rationale-clause-adjective t))

(rationale-clause-adjective
(cat adj (getf small-clause v)
(progn "to deal with elided small-clause subjects, as in
‘john lifted weights to keep <John> strong’"
(if (null (getr obj))
(setr obj subj)))
(setr obj
(build rel (build lex (lisp-escape (getr |*|)))
argl (lisp-escape (getr obj))))
(to rationale-clause-adjuncts))
(jump rationale-clause-adjuncts t))

(rationale-clause-adjuncts
(push pp t
(sendr v v)
(addr vmods |*|)
(to rationale-clause-adjuncts))
(jump rationale-clause-end t))
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(rationale-clause-end
(pop (progn (setr rc
(lisp-escape
(eval ‘
‘(build agent (lisp-escape (getr subj))
verb (build lex (lisp-escape (getr v)))
object (lisp-escape (getr obj))
. ,(lisp-escape (getr vmods))))))
(new-case-frame :rationale-clause ’rc)
(liftr case-frames)
(getr rc))
t))
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;33 The following deals with Noun Phrases. The naming is confusing: np-X
;3; usually means that the X was read by the preceding state--you have
;3; read the code to figure out what the current node does.

(NP
(cat det t
(setr art |*]|)
(to np-art))
(jump np-art t))

(np-art
(cat quant t
(setr quant |*]|)
(to np-quant))
(jump np-quant t))

(np-quant
(cat adj t

(addl adjs I*| (if (get-lexical-feature ’pos (getr features)) :pos :adj))
(to np-quant))

(jump np-adj t))
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;33 Dealing with the head noun

(np-adj
(cat npr t ; Teal noun
(setr nh
(find named-
(lisp-escape
(or (find (sneps::compose sneps::name sneps::lex)
(lisp-escape (getr |*])))
(build named (lisp-escape (new-base-node dummy))
name (build lex (lisp-escape (getr |*[))))))))
(lisp:assert (atom (getr nh)) (getr nh)
"NH should be a single node, not a list: “s" (getr nh))
(case (get-lexical-feature ’gen (getr features))

(m (sneps::=-fun (getr nh) ’most-recent-male))
(f (sneps::=-fun (getr nh) ’most-recent-female))
(T nil))

(setr n [*])
(setr n-type :proper-noun)
(setr nu (get-lexical-feature ’num (getr features)))
(to np-n))
(cat pron t
(setr nh (case (get-lexical-feature ’gen (getr features))
(m (node-named most-recent-male))
(f (node-named most-recent-female))
(n (error "We don’t deal with ‘it’"))
(t (error "Unknown gender feature"))))
(lisp:assert (not (null (getr nh))) ()
"Couldn’t find reference for pronoun.~ %~
Have we encountered a proper noun of the right gender yet?")
(setr n [*])
(setr n-type :pronoun)
(to np-n))
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(cat n t ; Teal noun
(setr n [*])
(setr n-type :common-noun)
(setr noun-class (lisp-escape (class-name (getr |*|))))
(if (equal (getr art) "the")
(setr nh (lisp-escape
(eval ‘(let ((node (find (sneps::member- sneps::class)
, (getr noun-class))))
(lisp:assert
(null (cdr node)) (node)
"¢The X’ should yield only one node: “s" node)
(if node
(progn (eval ‘(assert rel definite
defarg ,node))
node)
(progn (assert class ,(getr noun-class)
member (new-base-node dummy))
(assert rel definite
defarg (node-named dummy))
(node-named dummy)))))))
(setr nh (lisp-escape
(eval ‘(progn (assert class ,(getr noun-class)
member (new-base-node dummy))
(assert rel indefinite
defarg (node-named dummy))
(node-named dummy))))))
(case (get-lexical-feature ’gen (getr features))

(m (sneps::=-fun (getr nh) most-recent-male))
(f (sneps::=-fun (getr nh) most-recent-female))
(T nil))
(setr nu (get-lexical-feature ’num (getr features)))
(to np-n))
(cat n nil ; for complex noun?

(setr n [x])
(addl adjs |*| :noun)
(to np-adj)))
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;s In certain circumstances, proper nouns and pronouns can take PP modifiers
;3 (e.g. “‘Tom in the next room’’ or ‘‘You with the nose,’’ but allowing this
;3 usually means that the first parse is an unwanted parse, so we are
;; disallowing PP modification of nouns other than common nouns. SDA 5/10/89
(np-n
(push pp ;; hack alert!
(and
(eq (getr n-type) :common-noun)
;; either both can apply to a physical object, or neither (hack!)
(eq (get-lexical-feature ’non-physical (getr features))
(get-lexical-feature ’non-physical (getr n))))
(sendr v v)
(build argl (lisp-escape (getr nh))
rel (lisp-escape (car (getr |*[)))
arg2 (lisp-escape (cadr (getr |*]))))
(to np-n))
(pop (progn
(lisp:assert (not (null (getr nh))) () "register NH is null")
(do* ((adjs (getr adjs) (cddr adjs))
(word (car adjs) (car adjs))
(prop (cadr adjs) (cadr adjs)))
((null adjs))
; because of odd behavior by ADDL
(eval ‘(assert argl ,(getr nh)
rel (build lex ,(case prop
((:adj :noun) ’has-property)
(:pos ’is-part)))
arg2 (build lex ,word))))
(getr nh))
;; adjs - adjectives -- associate via hasproperty-link
;; the predicate DETAGREE tests for agreement between
;3 the ART and N registers to screen out ‘‘a books’’ and ‘‘an table’’
(detagree)))
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. s .
» )

(pp

The following deals with prepositional phrases.

(cat prep (not (member (getr |x|) (getf :particles (getr v))

:test #’string-equal))

:: This code converts the prep to a relation
(setr tmp |*|)
(if (not (stringp (getr tmp)))

(error "preposition is not a string: ~s" (getr tmp)))
(setr tmp (string-upcase (getr tmp)))
(setr tmp (intern (getr tmp) (find-package ’sneps)))
(if (not (relation? (getr tmp)))

(error "preposition is not a relation: “s" (getr tmp)))
(setr prep tmp)
(to pp-prep)))

(pp-prep
(push np (member (getf ctgy) ’(n npr det adj))

(pp-np

; predicate fails if the next word cannot begin an NP
(sendr v v)

(setr np I*1)

(to pp-np)))

(pop (list (getr prep) (getr np))

t))
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