-

Automatic Graph Generation in a Unix Environment.

Lory D. Molesky
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

COINS Technical Report 89-122
July 5, 1989

This research supported in part by the National Science Foundation under grants MCS-8306327, DCR-8318776, and

DCR-8500332.

Automatic Graph Generation in a Unix Environment.

Lory D. Molesky

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

ABSTRACT
Two utilities for generating and visualizing graphs are presented. Randog generates random

graphs for use in multiprocessor scheduling simulations. Xgraph generates a plot of a graph from
an adjancency list. Both tools are written in C, and run on various types of Unix machines.

This research supported in part by the National Science Foundation under grants MCS-8306327, DCR-8318776, and
DCR-8500332.

Contents

1. Randog 1
1.1 Imtroduction. i i i e e e e e e e e e e 1
1.2 Topology of Task Graphs i nnenenn. 2
1.3 Elementary Groupst i it e e e e e e e e 3
1.4 Construction of Elementary Groupsot ittt v, 5
1.5 Construction of Periodic Relationships in Task Groups 6
1.6 Summary e e e e e e e e 9

2. Xgraph 10
21 VisualInterfaces e 10
22 Layout Algorithm e 11

23 Summary e e e e e e e 11

List of Figures

1 Structureofa Task Graph i e 2
2 Typesof Elementary Groups o v v it it ittt bt e e 4
3 Generating an Elementary Group i i e e e e e 6
4 Task Graph with Labeled Deadlines 7
5 Task Graph with Labeled Communication Times ([510)) 8
6 A Cube with Adjacency List Input 11
7 A Directed Multi-graph e e 12
8 A CompleteBinary Tree i it ittt e 12

1. Randog 1

This technical report describes two utilities for graph generation. Xgraph constructs a layout of
a graph from an adjacency list. Randog generates random directed acyclic graphs. Both programs
are written in the C programming language. The Randog program runs on DEC Microvaxes and
Sequent Symmetries, Xgraph runs on any machine supporting X windows (version 10).

Section 1 describes Randog, section 2 describes Xgraph. Throughout both sections of this
document, graphs generated with Xgraph are used for illustrations.

1. Randog

1.1 Introduction

Randog (RANDOm Graph) was developed for use in multiprocessor scheduling experiments.
Researchers wishing to use simulation techniques to evaluate the performance of real-time schedul-
ing algorithms can use Randog for generating their input task sets. Randog generates a periodic
task graph - an arrangement of tasks with precedence constraints and deadlines. Vertices of the
output graph represent tasks, while an edge between two tasks represents a communication path.

The directed edges impose a partial order on the task graph. The existence of a communication
path from a task a to a task b implies that task a must complete its execution prior to the execution
of task b. The terms communication path, edge, and precedence constraint are used interchangeably
throughout this document.

Task computation times, task communication times and deadlines impose timing constraints
on the graph. Each task in the graph has a computation time, while each directed edge has an
associated communication cost. Some tasks in the task graph will have deadlines. Experiments per-
formed in [4] illustrate the use of such precedence constrained graphs in the evaluation of scheduling
algorithms. The terms vertex, node, and task are used interchangeable in this document.

The Randog user supplies a data file describing certain attributes of the task graph. Some graph
properties, such as the total number of tasks, are precisely specified by the user. Other properties
are defined as a probability. For instance, the computation time of all tasks is specified as a range,
then for each task, a random value is drawn from this range over a uniform distribution.

Elementary groups are the building blocks of a task graph. The Randog user specifies char-
acteristics of the elementary group, such as the number of tasks and the general interconnection
scheme. Elementary groups are replicated to facilitate the imposition of periods at regular intervals
in the task graph.

Section 1.2 describes the topology of task graphs. Sections 1.3 and 1.4 describe the construction
of elementary groups. Section 1.5 describes the periodic relationships in task groups, illustrating
example Randog output. Section 1.6 summarises Randog.

1. Randog 2

1.2 Topology of Task Graphs

In order to understand the potential range of Randog graph outputs, it is necessary to un-
derstand the topology of the task graph. Elementary groups are the basic building blocks of task
graphs. The shape and size of elementary groups are specified by the user. To impose periodic
relationships on the task graph, Randog constructs Periodic Task Groups (PTG’s) from elementary
groups. A PTG contains one or more elementary groups and has a deadline at the leaf nodes (the
leaf nodes of the last elementary group in the PTG). Task groups are constructed from one or more
PTG’s. Finally, Randog constructs the task graph by composing task groups.

Fictitious start and end vertices are added to the top and bottom of the task graph. These
vertices serve only to connect the various task groups into a single graph. A fictitious vertex
contains no resource constraints; this vertex (task) has a computation time of 0, and all edges to
and from this vertex have a communication cost of 0. Figure 1 illustrates the relationship between
the elementary group, task group, and the task graph. The vertices inside dashed rectangles are
the elementary groups of the graph. Vertices inside solid rectangles are the task groups.

Figure 1: Structure of a Task Graph

Randog constructs a task graph which contains N different task groups. N, the number of
task groups in the task graph, is specified by the user. PTG’s are composed of elementary groups.
Task group ¢ has N — i + 1 PTG’s, where each PTG is composed of lem(1,2,...,N)/(N —i + 1)
elementary groups. Computing the lem(1,2, ..., N) allows the construction of N task groups with
periods (1,2,3,...N). For instance, if the user specifies 2 task groups, the lem(1,2) is computed,
yielding 2. Task group 1 has (2- 1 + 1), or 2 PTG’s. Task group 2 has (2-2 + 1), or 1 PTG’s.
PTQG1 is composed of 1 elementary group, while PTG2 is composed of 2 elementary groups.

The example illustrated in figure 1 shows how a task group is generated from elementary groups.

1. Randog 3

parameter type description

number-task-groups | integer [The number of task groups in the task graph.
task-group-type integer | This integer represents chain, general, riree or tree.
group-size integer | Number of tasks per group.

layer-size-ratio float The fractional metric of tasks per layer.
successors-per-task | float Mean successors for each task.

cross-edge-fraction | float Probability that a task has an edge to a distant layer.
comp-low comp-high | integer | Defines the range of computation values per task.

comp-fraction float Scales the computation value assigned to an edge.
redundancy-no int The maximum duplication of a task.
redundancy-pct float Percentage of tasks which are redundant.
laxity-factor float The slack in defining the base period.

Table 1: Randog input parameters

The elementary groups contained in the task graph are all of type riree (reverse tree), instances of
elementary groups are vertices {12 3 4}, {5 6 7 8}, {9 10 11 12}, and {13 14 15 16}. Task group 1
is composed of 2 PTG’s (verticies {1 2 3 4} and {5 6 7 8}, each PTG is composed of 1 elementary
group. Task group 2 is composed of 1 PTG (verticies {9 10 11 12 13 14 15 16}). This PTG is
composed of two elementary groups (verticies {9 10 11 12} and {13 14 15 16}). Task group 1 will
have 2 periods, the first deadline will be at tasks {2 3 4}, the second deadline at tasks {6 7 8}.
Task group 2 has 1 period, the deadline at tasks {14 15 16}.

Summarizing the topological hierarchy, a task graph is composed of task groups. task groups
are composed of elementary groups. An additional, semantic relationship, is imposed between task
groups and, elementary groups, the PTG.

1.3 Elementary Groups

While we have discussed how Elementary groups are replicated to form a task graph, we have
yet to discuss what constitutes an elementary groups. Randog requires that the user specify the
type (task-group-type) of the elementary graph to be used in each task group. The user also specifies
the number of tasks in an elementary group, the group-size. Table 1 illustrates all Randog input
parameters.

The user has a choice of the types of elementary groups — chain, general, riree, or tree. The
elementary group type defines the interconnection structure of communication paths between tasks
(edges between vertices). If task a has a communication path to task b, then task b has a as its
predecessor. Similarly, task a has successor b. For all tasks contained in an elementary group, the
properties listed in table 2 hold.

The type determines the topology of the elementary group. In figure 1, the dotted rectangles

1. Randog 4

elementary

group type | definition

rtree At most one predecessor exists.
tree At most one successor exists.
general At least one successor exists.
chain Exactly one successor exists.

Table 2: Types of Elementary Groups

represent instances of elementary groups. A task group is composed of the same type of elementary
group. Moreover, the topology of the elementary group is replicated per task group. Examining
figure 1, you will notice that the both task groups happen to be composed of the elementary group
of type rtree.

All elementary groups in a task graph will contain the same number of tasks. This restriction
is imposed in order to compute a base period which is uniform between every elementary group,
thus facilitating the construction of periods. Although there are many variations of an elementary
group type, Randog generates only one variation per graph. This can be seen in figure 1.

While the communication paths connecting the tasks in an elementary group are replicated in
a task group, other attributes are independent among replications. Task communication times and
computation times are drawn from a uniform distribution over a specified range. Since the ficticious
start and end nodes serve only to connect task groups, they do not have resource constraints. The
fictitious start and end nodes are assigned zero computation time. Edges connected to both the
fictitious start and end nodes have zero computation time. Edges emanating from leaf tasks of
a PTG have communication time of zero. Figure 2 illustrate instances the four different types of
elementary groups.

2 Qp0Q O 0
@ @ @ @@\\(D@ ®

OB 0 0 ®

Rtree Tree General Chain
Figure 2: Types of Elementary Groups

1. Randog 5

1.4 Construction of Elementary Groups

The construction of the elementary groups is performed by using constant and probability
parameters. Constant parameters relating elementary groups are group-size, the number of ver-
tices in each elementary group, task-group-type, the type of the elementary group. The prob-
ability parameters which effect the interconnection of the tasks in the elementary group are
successors-per-task, layer-size-ratio, and cross-edge-fraction. The probability parame-
ters along with the task-group-type guide the placement of the edges in each elementary group.

The task-group-type (iree, riree, general or chain) is specified by the user, but the exact place-
ment of the edges is based on the probability parameters. The scheme for interconnecting tasks is
to first partition the tasks into layers, then attach edges between layers. In addition to the task-
group-type, the attributes successors-per-task and layer-size-ratio also contribute to the topology
of the elementary group. More formally, there are group-size vertices in each elementary group,
each vertex representing a task. The level, I;, of task i is defined to be the shortest path length
from the root vertex to task i. A layer consists of all the vertices of a particular level.

The partitioning of groups into layers is based on the proper fraction layer-size-ratio. To
determine how many vertices will comprise each layer, a random integer is drawn with mean
group-size [layer-size-ratio. This procedure is repeated until all vertices in the group have
been assigned to a layer. Prior to mmﬁng the randomized procedure for defining the layer size, one
vertex is reserved as a root vertex. For graphs of type tree or general, this vertex is the top vertex.

If a graph is of type tree or rtree, the layers will be sorted. Graphs of type general do not have
their layers sorted. A tree will have the layer with the most tasks as the bottom layer, and the
least tasks as the top layer. An rtree appears as an upside-down tree. Chains have only one task
per layer. Figure 1.3 illustrates these different elementary group topologies.

Between levels, edges are randomly generated based on the mean of an input parameter,
successors-per-task. For each layer of the graph, each task is connected to the next layer
on the basis of this parameter. Note that trees and rtrees are only connected between layers !.

Although tasks of elementary group type tree and rtree are wired only between layers, general
graphs can also be interconnected across layers. The input parameter cross-edge-fraction, specifying
the probability that a particular task contains an edge to another task in a “distant” layer. This

construction creates a more general graph.

Figure 3 illustrates an rtree of group-size 6, layer-size-ratio .4, and successors-per-task
of 2. Vertex number 1 resides at level 1, vertices 2 and 3 at level 2, and vertices 4, 5, and 6 are

! Although the successor-per-task make sense when applied to a tree, the term successors-per-task is a bit of a

misnomer - it really means predecessors per task.

1. Randog @ 6

\
@/®
I\)\
ONONO,

Figure 3: Generating an Elementary Group

in level 3. When partitioning the tasks into layers, the value (group-size » layer-size-ratio)
is rounded to the nearest integer. This integer is used as the mean of the uniform distribution.
Random integers are generated with this mean, allocating tasks to a layer from the task pool until
no tasks remain. In the example of figure 3, the mean successors per task is 6 * 0.4 = 2.4 = 2.

The parameter group-size specifies the number of vertices in every group. This convention
enables the construction a base period which is applicable to any elementary group. For instance,
if one were to specify 4 task groups, each of a different task-group-type, the elementary groups
comprising the task groups (rtree, tree, general and chain) would all contain the same number
of vertices.

1.5 Construction of Periodic Relationships in Task Groups

Section 1.1 outlined the basic structure of the task graph. In this section we present the
computatidn of the base-period and its relationship to the overall task graph. We wish to partition
each task group of the task graph into ¢ groups, s.t. 1 <= i <=number-task-groups. To achieve
this, a base period is defined.

average-computation-time = (comp-low + comp-high) / 2;
redundancy-factor = (1 + redundancy-no * redundancy-pct);
base-period = average-computation-time % group-size * redundancy-factor x
laxity-factor;

The base period is the expected worst-case computation time of an elementary group. The
product group-size * average-computation-time reflects this. The laxity-factor stretches this
value, allowing more leeway in meeting the deadline. The redundancy-factor provides an addi-

tional augmentation of the base-period, - the purpose is to allow more time for the scheduler to
service redundant vertices.

Multiple copies of the elementary group are combined to construct the periodic task graph.
We compute the least common multiple of the natural numbers to number-task-groups. Each
task-group contains lem(1,2,...,number-task-groups) copies of the elementary group. We impose
periods on each task-group to implicitly define deadlines between groups. These periods are defined
so that task-group i has number-task-groups—i + 1) periods.

1. Randog 7

/

O ORNOG)
N R N7

'¢9J.
y ’!g,...

2o

99
3
9:OJ‘

7 \& / ya
@9597@90 1 @ @

@

Figure 4: Task Graph with Labeled Deadlines

The example of figure 4 clarifies these relationships. Figure 4 has the following input file:
2 (number-task-groups)
rtree (task-group-type) rtree (task-group-type)

6 (group-size) .35 (layer-size-ratio) 2 (successors-per-task)
0.0 (cross-edge-fraction) 50 (comp-low) 100 (comp-high) .1 (comp-fraction)
0 (redundancy-no) 0.0 (redundancy-pct) 1 (laxity-factor)

In this example there are two task groups of type riree. Notice that each subgraph is the rtree
of group-size 6 previously illustrated. Lem(1,2) is 2, so each task group occurs twice in each task
group. Task group 2 has one period, task group 1 has two periods This requires that a deadline
be imposed on the last task of the first task group of task group 1 (vertex 7), of base-period. A
earliest-start-time of base-period is also imposed on any successor tasks of vertex 7, (vertices 8
and 9). In the second phase of the period for task group 1 vertices 10, 11 and 12 receive a deadline
of base-period * 2. Since task group 2 has a base period length of 1, vertices 22, 23, and 24 receive
a deadline of base-period * 2.

Figure 4 illustrates a base period of 495 — task group 2 contains one period, its deadline is 990.
task group 1 contains two periods of deadline 495 and 990. The imposition of the base periods
on the task graph implicitly define deadlines and earliest-start-times for certain tasks in the task
graph. The notation :495 in this figure indicates that the task originating this edge has deadline

1. Randog 8

Figure 5: Task Graph with Labeled Communication Times ([5 10])

495. Similarly, the notation 495: indicates that the source task of this edge has a minimum start
time of 495. For example in figure 4, the notation :495 on the edge from task 5 to task 7 means
that task 5 has a deadline of 495. Similarly, the edge from task 7 to task 8 labeled 495: means
task 8 has an earliest-start-time of 495.

Figure 5 illustrates the same task graph as figure 4, but with different information on the edges.
Instead of deadlines and earliest-start-times placed on the edges, the communication times
are illustrated. The comp-low and comp-high values are 50 and 100, scaled by the comp-fraction
(.1). (as illustrated in the example input file). The edges of figure 5 are labeled with a random
integer selected from this range. Notice that all edges connecting to the dummy vertices (the very
top or bottom vertices) have a communication cost of zero. Also notice that, where periods are
placed between elementary groups, the communication costs are also zero.

The output of Randog is a precedence constrained task graph with task computation times,
inter-task communication times, deadlines, and earliest start times. Table 3 illustrates the output
file which contains a description of the generated task graph. One integer, the deadline of the entire
task graph, is output. This would correspond to 990 in figure 4. For each task, its computation time
(comp), deadline (task-deadline), its earliest start time (earliest-start-time), and number of
edges (nconn) are output. For each edge, the id of the destination task (connected-to), and the
communication cost (comm-cost) are output. All of this information is not contained in any one

1. Randog 9

parameter type applies description

deadline integer | per graph | Deadline of the task graph.
number-of-nodes integer | per graph | Number of vertices in the task graph.
comp float per task | Computation time of the task.
task-deadline float per task [Deadline of the task.
earliest-start-time | float per task | Earliest start time of the task.
redundancy per task

nconn integer | per task | Number edges emanating from this task.
connected-to integer | per edge | Id of the connecting task

comm-cost float per edge | Communication cost of this edge.

Table 3: Randog output parameters

graph in this document, but a combination of figures 4 and 5 illustrate most of this data.

1.6 Summary

The Randog program provides an efficient and effective method for generating task graphs
which are used as input to real-time scheduling algorithms. This tool is currently being used by
University of Massachusetts researchers for the evaluation of real-time scheduling algorithms.

2. Xgraph 10

2. Xgraph

The Xgraph program constructs a graph from an adjacency list. Pictorial output is available
for several output devices, while printed output is available by printing a generated Postscript file.

The format of the input adjacency list is a series of (source-vertex destination-vertex label)
triples separated by newlines. The first entry of the adjacency list is the root of the graph. Only
vertices reachable from the root will be included in the final output plot.

Xgraph is a general purpose tool for constructing graphs. All the graphs in this document were
generated with Xgraph.

2.1 Visual Interfaces

Xgraph can display the final graph on either an X windows display terminal or generate a
Postscript file. The dimensions of the graph are controlled by the size of the window containing
the graph. This can be specified either on the command line or interactively by manipulating the
mouse.

Postscript output will be nearly identical to the X output, except the Postscript output is
more visually pleasing. The labels are plotted at the same angle as the edges, the width and
font specifiers have more accuracy. The Postscript language for printers [2, 1], is a general purpose
graphics programming language, that provides a flexible expressive language for the Xgraph output.
Some of the features that Xgraph exploits are scalable fonts, splines, circles, scaling, translation,
and rotation. Compared to Postscript, packages for laser printers such as Latex {3] are limited in
their capability drawing general purpose graphics.

Xgraph displays vertices as circles. The names of the vertices (the source-vertex and
destination-vertex fields) are centered in the circle. Edges are drawn between vertices, and
are optionally labeled (the third entry in the Adjacency list triple). Edges can be directed or
undirected.

Command line options exist to control vertex, edge, and font attributes of the graph. One can
specify radius of the vertex and the vertex label font. The font for the edge label and the vertex
label are also Xgraph options.

When more the one edge exists between a pair of vertices (a multigraph), Xgraph “bends”
duplicate edges. The degree of curvature of each additional edge is another Xgraph parameter.

2. Xgraph 11

S,

Q
o
v

X
X

STOTO0 > €O O DI D) W 1=b b =t
00 O) =1 00 = ~I O €I O T N

Q)

Figure 6: A Cube with Adjacency List Input

2.2 Layout Algorithm

Xgraph performs automatic layouts of a graph. The basic layout algorithm is as follows: vertices
are first partitioned into levels. The root vertex is on the first level. The level, I;, of each remaining
vertex i is defined to be the shortest path length from the root vertex to vertex i. Since vertices
which are connected to each other are arranged in close proximity to each other, this method of
partitioning the vertices in one dimension is a reasonable first pass to minimize edge crossings. The
ordering of the vertices per layer will be in the the order specified in the Adjacency list.

Although this strategy is flawless for rooted trees (see figure 8), the general problem of mini-
mizing crossings in NP-hard. An even more difficult problem is that of finding the layout which is
most visually pleasing to the user, especially since the concept of what makes a visually pleasing
layout may differ between users.

2.3 Summary

The Xgraph tool provides an effective method for generating a graphical layout from an Adja-
cency list. In addition to working interactively with a graph via an X windows output, Postscript
output is also available. The inclusion of these output graphs into technical documents written
primarily in Latex is an effective method of constructing expressive documents. All of the figures
in this report were generated with Xgraph.

12

2. Xgraph

Figure 7: A Directed Multi-graph

\ /@
./

@A 3

el _ @

o8

—~3
\ =
/@“

@\

N ®=3

® B

=
QP
~m—®
0/@

./

/ col
\ ~e=3
/ _e=8

Figure 8: A Complete Binary Tree

REFERENCES 13
References

[1] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley, Reading, Mas-
sachusetts, 1985.

[2] Adobe Systems Inc. PostScript Language Tutorial and Cookbook. Addison-Wesley, Reading,
Massachusetts, 1985.

[3] Digital Equiment Inc. LaTez users guide & reference manual. Addison-Wesley, Reading, Mas-
sachusetts, 1985.

[4] H. Kasahara and S Narita. Practical multiprocessor scheduling algorithms for efficient paralled
processing. IEEE Trans. on Computers, C-33(11), 1984.

