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Abstract

Most real-time scheduling algorithms schedule tasks with respect to their worst case computation
times. Resource reclaiming refers to the problem of utilizing the resources left unused by a task
when it executes less than its worst case computation time, or when a task is deleted from the
current schedule. Resource reclaiming is a very important issue in dynamic real-time multiprocessor
environments. Resource reclaiming algorithms must be designed with three issues in mind. Firstly,
a resource reclaiming algorithm should be effective in reclaiming resources; that is, it should improve
the performance of the system. Secondly, since most of the tasks execute less than their worst case
computation times, resource reclaiming will occur frequently. To be effective, resource reclaiming
overheads should be small. More precisely, we seek an algorithm with bounded overhead, i.e., with
time complexity that is independent of the number of tasks in a schedule, and include this overhead
cost in the worst case computation time of a task. Thirdly, when the actual computation time
of a task differs from its worst case computation time in a multiprocessor schedule with resource
constraints, run time anomalies may occur if greedy schemes are used for utilizing idle resources.
These anomalies may cause some of the already feasibly scheduled tasks to miss their deadlines.
Thus, dynamic resource reclaiming algorithms must be effective in reclaiming unused time, have
low, bounded overheads, and also avoid any run time anomalies. In this paper, we present resource
reclaiming algorithms with these properties. The effectiveness of the algorithms is demonstrated
through simulation studies. The algorithms have also been implemented in the Spring Kernel [17].

indez terms — deadlines, dynamic real-time systems, multiprocessor scheduling, resource con-

straints, worst case computation times.
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1 Introduction

In real-time applications such as space stations, avionics, and command and control systems, many tasks
have execution deadlines. Among these real-time tasks, some are safety-critical, i.e., their deadlines
must be met under all circumstances, otherwise the result could be catastrophic; while others are
not safety-critical, i.e., missing their deadlines will seriously degrade the performance of a system
but will not cause catastrophe. In such real-time applications, the resources required by the safety-
critical tasks should be preallocated and a schedule should be statically produced with respect to
the worst case timing and resource requirements of these tasks so that their deadlines will be met.
On the other hand, due to the dynamic and nondeterministic nature of these applications, other
real-time tasks have to be scheduled on-line as they arrive since it is impossible to statically reserve
enough resources for all contingencies with respect to the worst case requirements of these tasks. Thus,

one of the performance metrics for these real-time systems should be the guarantee ratio defined as

the number of tasks guaranteed
the number of tasks arrived

When real-time tasks arrive in a dynamic real-time environment, the scheduler dynamically deter-

mines the feasibility of scheduling the new task and the previously scheduled tasks, including safety-

critical tasks, given their worst case requirements and current system state. A feasible schedule is
generated if all the timing and resource requirements of tasks can be satisfied. Tasks are dispatched
according to this feasible schedule. In order to guarantee that real-time tasks will meet their deadlines
once they are scheduled, most real-time scheduling algorithms schedule tasks with respect to their
worst case computation times [6, 9, 13, 18]. Since this worst case computation time is an upper bound,
the actual execution time may vary between some minimum value and this upper bound, depending on
various factors, such as the system state, the amount and value of input data, the amount of resource
contention, and the types of tasks. Resource reclatming refers to the problem of utilizing resources left
unused by a task when it executes less than its worst case computation time, or when a task is deleted
from the current schedule. Task deletion occurs either during an operation mode change [14], or when
one of the copies of a task completes successfully in a fault-tolerant system [2] and the fault semantics
permits deletion of the other copies frorq the schedule. Resource reclaiming is a very important issue
in dynamic real-time systems, and it has not been addressed in practice.

The design of dynamic resource reclaiming algorithms in real-time systems has four requirements:

(1) correctness: A resource reclaiming algorithm must maintain the feasibility of guaranteed tasks,

i.e., any possible run time anomalies must be avoided.

(2) inezpensive: The overhead cost of a resource reclaiming algorithm should be very low compared

to tasks’ computation times since a resource reclaiming algorithm may be invoked very frequently.



(3) bounded complezity: The complexity of a resource reclaiming algorithm should be independent
of the number of tasks in the schedule, so that its cost can be incorporated into the worst case

, computation time of a task.

(4) effective: A resource reclaiming algorithm should improve the performance of the system, i.e.,

increase the guarantee ratio.

The correctness requirement addresses the issue of avoiding run time anomalies in a multiprocessor
system. Resource reclaiming is straightforward given a uniprocessor schedule because there is only
one! task executing at any moment on the processor. Resource reclaiming on multiprocessor systems
for tasks with resource constraints is much more complicated. This is due to the potential parallelism
pro;'ided by a multiprocessor system and the potential resource conflicts among tasks. When' the
actual computation time of a task differs from its worst case computation time in a nonpreemptive
multiprocessor schedule with resource constraints, run time anomalies [8] may occur. These anomalies
may cause some of the already guaranteed tasks to miss their deadlines. In particular, one cannot simply
use any work-conserving scheme, one that will never leave a processor idle if there is a dispatchable
task, without verifying that task deadlines will not be missed . For tasks with precedence constraints,
Manacher [10] proposed an algorithm to avoid these anomalies by imposing additional precedence
constraints on tasks to preserve the order of tasks which can run in parallel. However, the complexity
of the algorithm is not independent of the number of tasks in the schedule and the algorithm does
not deal with resource constraints among tasks. Moreover, the primary purpose of the algorithm is to
ensure the feasibility of the original schedule in the event of tasks executing less than their worst case
computation times in a static system, rather than to dynamically reclaim unused resource.

Predictability is one of the most important issues in a real-time operating system. The system
overhead incurred in scheduling, dispatching, and resource reclaiming should not introduce uncertainty
into the system. In particular they should not cause already guaranteed tasks to miss their deadlines.
Since every task might complete early (i.e., execute less than its worst case computation time), every
task might incur resource reclaiming overhead. Hence, the resource reclaiming cost must be low (i.e.,
inexpensive) so that it is insignificant compared to the computation time of a task. Moreover, the
entire dispatching cost, which includes the resource reclaiming cost, should be included in the worst
case computation time of a task. Consequently, the overheads of a resource reclaiming algorithm must
be bounded so that its maximum run time cost does not vary. One straightforward approach to resource
reclaiming when a task finishes early is to reschedule the entire set of tasks that is remained in the

feasible schedule. In practice, this will not be beneficial if the rescheduling cost exceeds the time

15ee Appendix for a complete description and analysis of the anomalies for the multiprocessor model dealt with in this

paper.



reclaimed. Further, most scheduling algorithms have time complexities that depend on the number of
tasks to be scheduled, i.e., use of these algorithms for resource reclaiming would result in unbounded
overhead costs. Thus a resource reclaiming algorithm which employs rescheduling does not meet the
requirements of predictability. One of the challenging issues in designing resource reclaiming algorithms
is to reclaim resources with a bounded complexity and low overhead, in particular, a complexity that
is not a function of the number of tasks in the schedule.

In this paper, we study the resource reclaiming problem for multiprocessor systems in which each
Processor has local memory for task code and private resources. Tasks might also require other non-
local resources, such as shared data structures, and communication ports. We present two resource
reclaiming algorithms, Basic Reclaiming and Reclaiming with Early Start. These two algorithms
employ strategies that are a form of on-line local optimization on a feasible multiprocessor schedule.
Both of these algorithms have bounded time complexity although Reclaiming with Early Start is more
expensive to run than Basic Reclaiming. We prove the correctness of these algorithms. To understand
the performance impact of these algorithms, we have done extensive simulation studies of the resource
reclaiming algorithms for a five processor multiprocessor system. We tested a wide range of task
parameters, including different worst case computation times and actual computation times of tasks,

task laxities, and task resource usage probabilities. Through simulation results, we demonstrate that

* Low complexity run time local optimization can be very effective in improving the system per-

formance in a dynamic real-time system.
¢ Using complete rescheduling as a resource reclaiming scheme is not a practical choice.

e It only pays to do resource reclaiming if one can ensure that the overhead cost of the resource

reclaiming algorithm is below 10% of tasks’ worst case computation times.

¢ Resource reclaiming can compensate for the performance loss due to the inaccuracy of the esti-

mation of the worst case computation times of real-time tasks.

Further, to demonstrate the applicability of the algorithms, we have implemented the resource
reclaiming algorithms in the Spring Kernel [17) — a real-time kernel on a N UMA multiprocessor (Non-
Uniform Memory Access multiprocessor) system with shared resources. In this paper the important
issues in implementing the resource reclaiming algorithms as part of this multiprocessor kernel and the
interplay between the scheduler and the resource reclaiming algorithms are also Presented.

The remainder of the paper is organized as follows. Section 2 defines our task model, and introduces
the terminology used throughout the paper. In Section 3 we study the resource reclaiming problem and

present our resource reclaiming algorithms. In Section 4, we apply the resource reclaiming algorithms



to dynamic real-time systems with independent tasks, describe the implementation issues on a multi-
processor, and present experimental results. The applicability of the resource reclaiming algorithms to

tasks and systems with other characteristics is discussed in Section 5. In Section 6 we summarize the

paper.

2 Definitions and Assumptions

In this section we first define the types of real-time tasks and resources considered in this paper. Then
we define some of the terminology used. n is the number of tasks {T31, T3, ... T.}, m the number of

processors { Py, Py, ... Py}, and s the number of resources {ry, 72, ... Ts}.

2.1 Task Model

 Tasks are well-defined schedulable entities. A task is not preemptable and, once a task starts execution,
it will releases its resources after it completes. Resources that can be required by a task include
variables, data structures, memory segments, and communication buffers. Resources can either be
used in exclusive mode or shared mode [18]. Two tasks conflict on a resource if both of them need the
same resource in exclusive mode, or one of them needs a resource in exclusive mode while the other
needs the same resource in shared mode. Two tasks with resource conflict(s) cannot be scheduled in

parallel. Each task T; has the following attributes:

¢; : the worst case computation time of T;. At scheduling time, this value is known to the scheduling

algorithm. But at execution time, a task may have an actual computation time c: < ¢

d; : the deadline of T;

{Rf } : a resource requirement vector for 1 < j < s, denoting the set of resource requirements of T;;

each element of the vector indicates exclusive_use, shared-use, or no.use;

Py : a processor id for 1 < ¢ < m; this is the processor consiraint attribute of a task. Processor

constraints arise because:

(1) in a heterogeneous multiprocessor system, task T; requires some particular processor pg, or

(2) in a NUMA (Non-Uniform Memory Access) multiprocessor system, task T; has been allo-

cated to some processor p, in order to maximize the potential parallelism and minimize

remote memory access.

The processor constraint implies that a task can only be executed on that processor. However,

tasks on different processors may share resources; thus all the tasks and their resource needs must



be considered together at scheduling time. We assume that every task has a processor associated

with it.

2.2 Terminology

The following definitions will be used in the remainder of the paper.

Definition 1: A feasible schedule S is a task schedule in which tasks’ worst case computation
time, resource constraints and processor constraints are all guaranteed to be met. In this paper,
we consider nonpreemptive feasible schedules in which a scheduled start time (st;) and scheduled

finish time (ft;) are assigned to each task T in the schedule such that Vi,ft; < d;.

Definition 2: Given a feasible schedule S, a post-run schedule S’ is a layout of the tasks in
the same order as they are executed at run time with respect to their actual computation times
c;, where Vi, ¢} < ¢;. Associated with each task T; in a post-run schedule S’ is a start time st!
and a finish time ft.. st. and ft! are the actual times at which 7; starts and completes execution,

respectively, and they may be different from st; and ft;.

Definition 3: Given a post-run schedule S', a task T; starts on-time if st} < st;, that is, if the

task T; starts execution by or before its scheduled start time.
Definition 4: A post-run schedule S’ is correctif Vi 1 < i < n, fti < d;.

Lemma 1: If Vi 1 < i < n, T; starts on-time in a post-run schedule S’, then S’ is correct.
Proof: Given nonpreemptive task executions, by definition 3, if 7; starts on time, i.e., st} < st;,

then ft! < ft; < d;. So the resulting post-run schedule S’ is correct. O

This lemma forms the basis for the correctness of our reclaiming algorithms. Note that the lemma
gives us a sufficient condition for task starting times. Our reclaiming algorithms will be designed to
start tasks on-time. As we shall see, this strategy results in reclaiming algorithms that have bounded
reclaiming overhead.

We illustrate the terminology introduced above through the following example.

Example:

Table 1 provides the attributes of a set of tasks. Each task requires a processor and some need an
additional resource 7,. Figure 1 shows a two processor feasible schedule S for this set of tasks. The
scheduled start times st; and scheduled finish times ft; are given in Table 1. Table 2 and Figure 2
show one of the possible post-run schedules S’ and the corresponding start times st} and finish times

ft! of the tasks. All the tasks are on-time in S’. Hence S’ is correct. On the other hand, Table 3 and



Tasks | pid ¢ c§ d; 2 st;  ft;
T 2 225 125 225 - 0 225
T, 2 175 100 400 shared 225 400
Ts 1 175 150 175 - 0 175
Ts 1 25 25 200 ezclusive 175 200
Ts 1 150 75 350 - 200 350
Te 2 100 100 500 - 400 500
T7 1 150 125 500 shared 350 500

Table 1: Task Parameters for Example 1.

| T, T, T,
P, T; T, T; T,
| | ] | ] ] ] | | | ] ] iR l | !
25 60 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 1: A feasible schedule S according to tasks’ worst case computation times.

Tasks T1 Tz T3 T4 T5 Te T7
st} 0 225 0 175 200 400 350
fti | 125 325 150 200 275 500 475

Table 2: Start Times and Finish Times produced by no resource reclaiming.

P, T,
| ] | | | | 4 | | | ’ |
25 B0 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 2: A post-run schedule S’ when tasks execute only up to their actual computation times and

no resource reclaiming is done.

Tasks T] Tz T3 T4 T5 Te T7
st 0 125 0 225 250 225 325
fti | 125 225 150 250 325 325 450

Table 3: Start Times and Finish Times produced by the work-conserving algorithm.

i J'ij L WMT‘ R AT ////////

|
C 25 50 76 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Figure 3: A post-run schedule S’ produced by a work-conserving algorithm.



Figure 3 demonstrate one of the possible incorrect post-run schedules caused by using a work-conserving
algorithm. In this post-run schedule, T starts execution at time 125 because, as soon as T} completes
execution, both the resource and the processor that T, requires are available. This work-conserving
action causes task T to eventually miss its deadline. Thus a correct resource reclaiming algorithm

must be able to guarantee that this kind of run time anomaly does not occur in a post-run schedule.

3 Resource Reclaiming Algorithms

We first discuss the resource reclaiming problem with respect to its time complexity. Then we present

our two resource reclaiming algorithms, (1) Basic Reclaiming and (2) Reclaiming with Early Start.

3.1 Multiprocessor Resource Reclaiming

Since we are working in a dynamic real-time environment, efficiency and predictability are of major
concern for the on-line resource reclaiming algorithms. There are two extreme cases that provide the
lower and upper bounds on the cost in terms of time.

EXTREME CASE 1. Dispatching tasks strictly according to their scheduled start times (st). This
implies no resource reclaiming and, obviously, the cost of resource reclaiming is zero.

EXTREME CASE 2. Total rescheduling of the rest of the tasks in the schedule whenever a task exe-
cutes less than its worst case computation time. Suppose the cost of a particular scheduling algorithm
is f(n) for scheduling n tasks. Then, the cost of total rescheduling would be O(f(n)), assuming no
new task arrivals. Note that total rescheduling can be used only if the cost of this rescheduling is less
than the time left unused by a task.

Note that because the resource constrained multiprocessor scheduling problem is NP-complete in
the nonpreemptive case [5] and only has high degree polynomial linear programming solutions in the
preemptive case [1], any practical scheduling algorithm used in dynamic real-time systems must be
approximate or heuristic. This implies that it is not always the case that the same scheduling algorithm
will definitely find a feasible schedule when a task is removed from the original set of tasks when the
task finishes execution. Thus, even though extreme case 2 provides us with an upper bound on the
time complexity of the resource reclaiming problem, it does not represent the optimal solution in terms
of being able to find feasible schedules whenever they exist. It does provide an indication of the best
a system can do in reordering tasks according to available resources.

Clearly, a useful resource reclaiming algorithm should have a complexity less than the total
rescheduling extreme, while being just as effective. We distinguish between two classes of resource
reclaiming algorithms. One is resource reclaiming with passing, and the other is resource reclaiming

without passing.



Definition 5: A task T; passes task Tj if st; < st}, but ft; < sti. Thus passing occurs when a

task 7T; starts execution before other task(s) that are scheduled to finish execution before T; was

6riginauy scheduled to start.

If T; is a task in a feasible schedule, then we can divide the rest of the tasks in the schedule into
three disjoint subsets with respect to T; defined as follows:

Definition 6:
l Tei ={Tj: ft; < st;}
Tsi = {T; : st; > ft;}
Tei; = {T; : T; ¢ T¢; and Tj ¢ Tsi}

Thus, T«; is the set of tasks that are scheduled to finish before T; starts. T>; is the set of tasks that are
scheduled after T; finishes. T.; is the set of tasks whose scheduled execution times overlap with the
execution time of 7;. For example, in Figure 1, T<s = {T3,Ts}, Tss = {T6,T7}, and Tos = {11, T2}
Given a feasible schedule S, if we assume tasks never execute longer than their worst case com-
putation times, and there are no interruptions or arbitrary idle times inserted during the execution
of the tasks in S, then we have the following Lemma. This Lemma in essence tells us when run-time
anomalies can occur, and will be used in proving the correctness of our resource reclaiming algorithms

in the next section.

Lemma 2: Given a feasible real-time multiprocessor schedule S, if 3T;, such that task T; does
not start on time in a post-run schedule, then passing must have occurred.

PROOF. Since T; does not start on time, st; > st;. Assume the contradiction, i.e. assume
no passing occurred. Then the tasks in T'¢; must have been dispatched before T; started and the
tasks in T>; must have been dispatched after T; finished execution. By definition of a feasible
schedule, the tasks in T~; have no resource conflicts with T., therefore, no matter what order these
task were dispatched with respect to the dispatching time of T;, they would not have delayed the
dispatching of T;. This contradicts the premise that T; did not start on time. O

A resource reclaiming algorithm that allows passing will inevitably incur higher complexity in terms
of time than another that does not allow passing. This is because passing implies altering the ordering
of tasks imposed by the feasible schedule, thus is similar to rescheduling. To determine which task in
the remaining schedule can utilize an idle period involves searching (since the scheduling problem is in
fact a search problem [18]). Any searching will have a complexity of at least O(logn). Since we are
interested in designing resource reclaiming algorithms with bounded cost that can be used for dynamic

real-time systems, we will concentrate on resource reclaiming algorithms without passing.
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3.2 Algorithms for Multiprocessor Resource Reclaiming

In this section, we present our two multiprocessor resource reclaiming algorithms, the Basic Reclaiming
algorithm and the Reclaiming with Early Start algorithm. Before the details of the algorithms are
presented, we would like to motivate the ideas behind the algorithms. Let us reexamine the correct
post-run schedule portrayed in Figure 2. Actually, this post-run schedule is a result of no run time
resource reclaiming. Notice that between time 150 to 175 all the processors are idle. Clearly, every task
in the remaining feasible schedule, i.e., tasks T3, T4, T5, Tg, and T7, could have been started at least
25 time units earlier than their scheduled start times without in any way jeopardizing the meeting of
their deadlines. This is in essence what our Basic Reclaiming algorithm does as illustrated in Figure 9.
However, with a more careful inspection of Figures 1 and 9, one can see that we can do even better in
utilizing the idle time left in the post-run schedule of Figure 9. For example, T, could have started even
earlier than in this post-run schedule. In particular, it can be started at time 175 because T» € T~g (see
Definition 6). This can be accomplished if we can in some way represent and utilize the information
given in Definition 6. Our second resource reclaiming algorithm, Reclaiming with Early Start, does
this and produces the post-run schedule shown in Figure 11.

Now we are in the position to present our resource reclaiming algorithms. The following definitions

are needed to describe our resource reclaiming algorithms.

Definition 7: Given a feasible schedule S, a projection list PL is an ordered list of the tasks
in the feasible schedule, arranged in nondecreasing order of st;. A projection list is in one-to-one
correspondence with some feasible schedule. If st; = st; for some tasks T; and T}, we place the task
with the smaller processor id in the PL first. Thus PL imposes a total ordering on the guaranteed
tasks.

Definition 8: Given a projection list PL, a processor projection list PP L, is an ordered list of
all the tasks processor id Py in the PL, also arranged in nondecreasing order of st;, for 1 <i{<n
and1<¢g<m.

Therefore, for the feasible schedule given in Figure 1, the projection list of S is PL =
{T3,T1, T4, Ts, T2, Tz, Te}. The processor projection lists are: PPL, = {Ts,T4,Ts, T}, and PPL, =
{T1,Ts, Te}.

In the following, we assume the existence of (1) a feasible schedule for n tasks {T1, T3, ..., Tn.}, which
have been guaranteed with respect to their timing, resource and processor constraints (e.g., using the
algorithm presented in [13]), (2) the corresponding projection list PL and m processor projection lists
PPL, ... PPL,,, and (3) a scheduled start time st;, and scheduled finish time ft; for each task entry

T; in the feasible schedule. We also assume that we can associate a comstant cost to access the first

10



task in the PL and the first task in each of PPL, (These assumptions are very practical and easily
achievable.).

The resource reclaiming algorithms are presented in pseudo code in Figure 4, 5, 6, and 7. Figure 4
gives the outline of the resource reclaiming algorithms. Recall that resource reclaiming occurs when a
task completes, say on processor P,. There are two steps involved in resource reclaiming. In the first
step, the length of the idle time resulting from the early completion of tasks is determined. Details
of this step are the same for both the Basic Reclaiming Algorithm and the Reclaiming with Early
Start Algorithm. In the second step, the next task in PPL, is examined to decide whether it can be
immediately dispatched. Figure 6 and 7 present Step2 for each of these algorithms, respectively. In

the following, we describe the resource reclaiming algorithms in detail.

[

; Step1l: (see Figure 5) Resource reclaiming occurs when a task completes execution and another
task is to be dispatched. A task scheduled on processor ¢ is not removed from the PL and
PPLg until it finishes execution. This restriction is important to ensure a consistent view of the
amount of time reclaimable. Upon completion of a task, Stepl tries to identify idle periods on
all processors and resources by computing a function reclaim§ = sty — current.time (lines 6
to 8 in Stepl); where sty is the scheduled start time of the current first task in the PL. :I‘he
computation complexity of this function is O(1). Since the PL imposes a total ordering on the
guaranteed tasks, sty must be the minimum scheduled start time among all tasks in the schedule,
including the one(s) still in execution. Any positive value of reclaim.§ indicates the length of the

. idle period resulting from tasks finishing early. Since a task is removed from the schedule only

upon its completion (line 1 in Figure 5), temp_reclaim_§ could have a negative value (if the first
task in the PL is still in execution) and, in this case, reclaim_§ retains its original value. For
example, let us examine Figure 9. At time 125 when task T) completes execution, the cur;'ent
first task in the PL is T3 which is still in execution, and so temp_reclaim§ = 0 — 125 = =125

" since sty = 0 (refer to Table 1 for scheduled start times and scheduled finish times). On'the

. other hand, at time 150 when T3 finishes execution, T4 becomes the first task in the PL, and so

~ temp_reclaim § = 175 - 150 = 25.

e Step2.BASIC: (see Figure 6) The idea behind the Basic Reclaiming algorithm is very simple.
" When a processor completes a task, it checks to see if all the processors are idle. If so, the entire
schedule can be shifted forward. Now let us be more precise and discuss the pseudo code for
the algorithm. We immediately start the execution of the first task T,, on processor P, only if
the task is the current first task in the PL (i.e., it is the next task in the total order of tasks)
or if it has the same st (scheduled start time) as the current first task (line 3 to 4 in Figure 6).

Otherwise we compute a function ast,, for T;, to decide the actual start time (vs. the scheduled

11



/* m — the number of processors */
/* reclaim_§ — the amount of time that has been reclaimed. */
/* reclaim.§ is set to zero initially. */

/* Tq; — the newly completed task in PPL, for some processor . */

Algorithm Resource Reclaiming

Whenever a task T,, completes execution on a processor g, do

{
Stepl(Ty;, reclaim.§, PPL,);
if reclaim_§ > original.reclaim_§
then

{

for all » such that processor r is idle do
Step2.{BASIC|EARLYSTART}(r, reclaim_$, PL, PPL,, ... , PPLy,);

}

end Algorithm Resource Reclaiming

Figure 4:

Stepl (T, reclaim.§, PL, PPL,);

* Task Ty; just completed execution on processor g.*
Qi

1. REMOVE(Ty, PL, PPL,);

2. Ty « the first task in the current PL;

3. if (currenttime < (fty, — reclaim.§))

4. then

5. {

6. temp_reclaim § = sty — (current_time);
7. if temp_reclaim.§ > 0

8. then reclaim.§ «— temp_reclaim.§;
9. end if

10. }

11. end if

end Stepl

Figure 5:

12



Step2.BASIC (r, reclaim $, PL, PPLy, ..., PPL,);

1. Tj « the first task in the current PL;
2 T, « the first task in the current PLL,;

3. if (T, == Ty)
or (st,.! == sty)
4 then startexecution(T%,);
5 else
6. {
7. ast,, = st,, — reclaim.b;
8 pend(T, ,ast,, );
9. }
10. end if

end Step2.BASIC

Figure 6:
Step2. EARLYSTART (r, reclaim.§, PL, PPL,, .
1. Ty « the first task in the current PL;
2. T, « the first task in the current PLL,;
3. can-start.early — true;
4. if st,, # siy
5. then
6. {
7. g+ 0;
8. while (can_start_early and ¢ < m) do
9. {
10. g—q+1;
11. if (g # r) and (st,, > ftg,)
12. then can-start_early « false;
13. end if
14. }
15. }
16. endif
17. if can_start_early
18. then startexecution(T%,);
19. else
20. {
21. ast,, = st,, - reclaim.b;
22. pend(T, ,ast,, );
23 1}
24. end if
end Step2.EARLYSTART

Figure 7:

13
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start time given in the schedule) for it, taking into consideration the idle periods that have been
accumulated up to now. This function is ast., = st,, — reclaim.§, where st,, is the original
scheduled start time of task T,,. This function is also O(1). Once this function is computed,
processor 7 will pend until (1) either the calculated ast,, has arrived, or (2) some other task

finishes early and reclaim.§ is incremented. In the latter case, Step2.BASIC will be invoked

again (see Figure 4).

Step2.EARLYSTART: (see Figure 7) Notice that the Basic Reclaiming algorithm will start
a task early by an amount of time equal to reclaim_§ which is the length of time that all
the processors can reclaim. The Reclaiming with Early Start algorithm dispenses with this
requirement. It allows a task T.,, the first task in PPL,, to start as long as the first task Ty, in
each of the other PPL, does not conflict over any resources with T ;, and no passing will occur.
More precisely, T;, can start iffor 1 < ¢ < mand ¢ # », Ty, is either in Ty, or in T, . Now let
us define that a task T, is being early started if st, ; < Sty —reclaim_§. In Reclaiming with Early
Start, we first compute (line 8 to 14) a Boolean function can_start_early = str, < ftq,, Vg such
that ¢ # r and 1 < ¢ < m, where st,, is the scheduled start time of the first task on processor
r and ftg, is the scheduled finish time of the first task on processor ¢. This function identifies
parallelism between the first task on processor r and the first tasks on all other processors by
checking to see whether the first tasks on all other processors are in T,, (see Definition 6). That
is, for any two tasks T;, and Ty, if st,, < ftg,, then Ty, € T~q,. The complexity of this function
is O(m). The task will be dispatched if the value of the Boolean function is true. Only when

the value of the function can_start_early is false, we will compute the ast,, for task T, as in
Step2.BASIC.

For both algorithms, whenever a positive value of reclaim.§ is obtained in Stepl, Step2 must be

executed for all currently idle processors. Thus the complexity of the basic version is: O(1) + mxO(1)

= O(m), while Reclaiming with Early Start has a complexity of O(1) + m * O(m) = O(m?).

These two resource reclaiming algorithms are based on the idea that a feasible multiprocessor

schedule provides task ordering information that is sufficient to guarantee the timing and resource
requirements of tasks in the schedule. If two tasks T; and T} are such that T; € T; (see Definition 6)
in a schedule, then we can conclude that no matter which one of them will be dispatched first at run

time, they will never jeopardize each other’s deadlines. On the other hand, if T; € T; or T € T>;, we

cannot make the same conclusion without re-examining timing and resource constraints or without total

re-scheduling. Assume each task T; is assigned a scheduled start time st; and a scheduled finish time

ft; in the given feasible schedule, our resource reclaiming algorithms utilize these two task attributes
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to infer the information in Definition 6 at run time, i.e., to identify tasks in T~y where Ty is the first
task in PL, and to reclaim unused resources using these tasks. Thus our resource reclaiming algorithms
perform local optimization, optimization that is local to the Ty portion of a feasible schedule S. By
doing so, we do not have to explicitly examine the availability of each of the resources needed by a
task in order to dispatch a task when reclaiming occurs. This keeps the complexity of the algorithms
mdependent of the number of tasks in the schedule and the number of resources in the system — a

desirable property of any algorithm that has to be used in dynamic real-time systems at run time.

3. 3 Properties of the Resource Reclaiming Algorithms

The two resource reclaiming algorithms just presented guarantee that run time anomalies as shown
at the end of Section 2 will not occur. In the section we shall illustrate the two resource reclaiming
algorithms through an example and prove the correctness of the algorithms in this section. We also

discuss some interesting aspects of the algorithms.

3.3.1 Discussion Through An Example

Assume we have the same feasible schedule in Figure 1 for the set of tasks defined in Table 1. The
post-run schedule produced by the Basic Reclaiming Algorithm is shown in Figure 9 and the post-run
schedule produced by the Reclaiming with Early Start Algorithm is shown in Figure 11. We show the
values of reclaim.§ at the time of each task completion in Figures 8 and 10 for the two algorithms
respectively?. Figure 2 is the post-run schedule when no resource reclaiming is done. Thus from Figures
2, 9; and 11, one can see the effects of resource reclaiming.

Note that once the new value of reclaim.§ is determined in Stepl, every task T; in the rest of
the schedule can in fact be started reclaim.§ time units earlier than its st;, e.g., at time 150 when
T3 c‘ompletes execution, Ty can start execution (see Figures 9 and 11). This is equivalent to a time
traﬁslation of reclaim_§ units of time on the remaining feasible schedule, i.e., the st; and ft; of every
task T; in the remaining feasible schedule can be translated to st; — reclaim.§ and ft; — reclaim.$.
However, we do not explicitly carry out this time translation in the remaining feasible schedule because
we will incur a time complexity of O(n) to modify the st; and ft; of each task, thus violating our
boundedness premise.

From the description of the algorithms, it seems obvious that Reclaiming with Early Start should

be more effective than Basic Reclaiming. However, there are two interesting aspects of the Reclaiming

with Early Start Algorithm that are not easily seen.

2Note that although there is no task completion at time 300 in Figure 11, we include the value of reclaim_§ in Table

10 for comparison purposes.
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time 0 125 150 175 250 300 425 450
reclatm § |0 O 26 256 25 50 50 50

Figure 8: The values of reclaim§ at each task completion when the Basic Reclaiming Algorithm is
used.
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Figure 9: The post-run schedule S’ produced by the Basic Reclaiming Algorithm.

time 0 125 150 175 250 275 300 375
reclaim$ |0 0 25 25 25 25 25 125

Figure 10: The values of reclaim._§ at each task completion when early start is allowed.

P S\ ™ DO
o | ng L R RS 1 gT’l | /////////////

C 25 S0 75 100 125 150 175 200 225 250 275 300 325 350 975 400 425 450 475 500

Figure 11: The post-run schedule S’ produced by the Reclaiming with Early Start Algorithm.
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Figure 12: The post-run schedule S’ produced by the Basic Reclaiming with the addition of Tg.
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o First, Reclaiming with Early Start does not necessarily accumulate a larger value of reclaim._$
in the short term. For example, compare the values of reclaim_§ at time 300 in Figures 8 and
10. The value of reclaim-§ from using Basic Reclaiming is larger than from using Reclaiming
with Early Start at time 300, even though at time 375, the converse is true. This is because
reclaim.§ reflects the time reclaimed on all processors and resources. In general Reclaiming with
Early Start keeps the processors and resources busier than Basic Reclaiming does. So when ﬁsing
Reclaiming with Early Start, temp_reclaim_§ might be found to be positive less frequently in
Stepl. But in the long run, such as by time 375, Reclaiming with Early Start can have a large

value of reclaim.§.

e Second, since we are dealing with dynamic real-time systems, tasks can arrive stochastically.
Whether a task can be feasibly scheduled depends very much on the particular time the task
arrives at the system, i.e., the current system state including the number of tasks and their worst
case requirements, and which tasks are already in execution. Therefore, even though Reclaiming
with Early Start can eventually have a larger value of reclaim_§, it does not outperform the Basic
Reclaiming algorithm with respect to guaranteeing dynamic task arrivals at every task arrival
instance. This is because starting the execution of a task as early as possible is not necessarily
always the best choice in a system with nonpreemptive scheduling and dynamic arrivals. For
example, assume we have the same feasible schedule as in Figure 1 and, for the ease of explanation,
let us assume scheduling occurs instantaneously. If a task T’ arrives at time 300 with cg = cg = 50,
dg = 375, ps = 2 and R} = ezclusive (i.e., having a resource conflict with 7%), a system using the
Basic Reclaiming algorithm will be able to feasibly schedule T3 as shown in Figure 12, while a
system using the Reclaiming with Early Start will not be able to schedule T (since T¢ and T are
already in execution). Thus, through experimental studies, we need to examine the effectiveness

of Reclaiming with Early Start with respect to Basic Reclaiming,.

3.3.2 Correctness

In the following, we shall prove that the two resource reclaiming algorithms presented in this section

are correct, that is, they will not cause the type of run time anomalies discussed in Section 2.

Theorem 1: Given a feasible multiprocessor schedule S with resource and processor constraints,
the Basice Reclaiming Algorithm will produce a correct post-run schedule.

PROOF. By Lemma 1, we only have to prove that all tasks start on-time in the post-run
schedule produced by the Basic Reclaiming Algorithm.

By Definition 3, if tasks are dispatched according to their st in the feasible schedule, they all

start on-time. We only have to observe that the value of reclaim.§ in Step1l reflects the idle time
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units on all resources and processors. Therefore, for reclaim_§ > 0, we can have a time translation of
reclaim.§ units of time (i.e., time moved forward) on the portion of the feasible schedule remaining
to be dispatched. Since the feasible schedule remains feasible under time translation, and since
Step2.BASIC dispatches every task at st! = st; — reclaim.§, it follows that the tasks in the

post-run schedule produced by the Basic Reclaiming Algorithm must have been started on-time.
O

Theorem 2: Given a feasible multiprocessor schedule S with resource and processor constraints,
the post-run scheduled produced by the Reclaiming with Early Start Algorithm is correct.

PROOF. We shall prove that passing does not occur when Reclaiming with Early Start is
used. Then by Lemma 2, we know that all tasks start on time.

We prove this by contradiction. Consider a task T} to be dispatched in Step2. EARLYSTART.
Suppose 3 T; such that T; were dispatched at some time st;- < st; while st; > ft;. This implies
that T; passed T;. But this is impossible; because if st; > ft;, can_start_early would have become
false in line 12 of Step2. EARLYSTART, and hence T; would not have been dispatched. D

4 = An Application of the Resource Reclaiming Algorithms

In many real-time applications, the system is required to execute tasks in response to external events
and signals. To improve the guarantee ratio (the number of tasks guaranteed / the number of tasks
arrived) of tasks, the resource reclaiming algorithms presented in the last section can be used. In
this section, we shall be concerned with the application of the resource reclaiming algorithms to such
a real-time operating system kernel [17] and demonstrate the effectiveness of the algorithms through

simulation results in the next section.

4.1 Concurrent Implementation of Resource Reclaiming Algorithms in a Multi-

processor System

Both resource reclaiming algorithms have been implemented in the Spring Kernel [17]. In this sec-
tion, we discuss the important issues in implementing the resource reclaiming algorithms in a NUMA
multiprocessor (Non-Uniform Memory Access multiprocessor) system with shared resources, and the
interplay between the scheduler and the resource reclaiming algorithms. Recall that we are dealing with
real-time tasks with resource constraints, thus there exists an integrated schedule for all the processors
on a multiprocessor. There are two different ways to implement a resource reclaiming algorithm on
a multiprocessor system — centralized and concurrent. In a centralized scheme, the algorithm can be

implemented by a single reclaiming daemon process. In a concurrent scheme, each processor will do
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its own reclaiming and all the processors in the multiprocessor system can be concurrently reclaim-
ing unused time as tasks complete execution. We have taken the concurrent approach in the Spring
Kernel. This choice has two major merits. First, the parallelism provided by a multiprocessor can be
more effectively explored with a concurrent implementation. Second, solutions developed for the con-
current approach can be implemented on either NUMA or symmetric shared-memory multiprocessors
efficiently, but this is not true for solutions developed for the centralized approach which in general
assumes a symmetric shared-memory multiprocessor architecture.

Since predictability and consistency are two important issues and are difficult to maintain jn a
dynamic system, in the following discussion, we concentrate on how to achieve boundedness in térms
of overhead cost, and how to achieve data consistency in this concurrent implementation.

Parallel Execution of the Scheduler and Guaranteed Tasks

In order to maximize the potential parallelism provided by multiprocessor systems, the Spring
Kernel supports the concurrent execution of application tasks and the scheduling algorithm. This
is accomplished by using one processor on a multiprocessor node as the system processor to offload
task scheduling and other operating system overhead, while using the remaining processors to execute
guaranteed application tasks. The scheduler on the system processor is responsible for dynamically
producing a feasible schedule for the multiprocessor as tasks arrive. There is a dispatcher process on
each application processor. Effectively, whenever a task completes, this dispatcher process executes
steps 1 and 2 of the reclaiming algorithm. Thus, reclaiming occurs concurrently on the application
Processors.

Figure 13 illustrates the scheme we use to schedule dynamic task arrivals with resource reclainiing.
GUARANTEE uses the heuristic scheduling algorithm proposed in [13]. To achieve concurrent execu-
tion of application tasks and the scheduler while maintaining the predictable of the feasible schedule,
at each task arrival, a time line called the cui_off-line is calculated in the existing feasible schedule
based on the time cost of the scheduling algorithm in use. In order to bound the cost of running the
scheduler, we set a value N as the maximum number of tasks that the scheduler will schedule at a time.
So the maximum value of the cut_off line is capped by a value current_time + mazgsc. Any task T}
with st; — reclaim_§ < cut.off.line in the schedule will not be considered in the re-scheduling process.
This ensures that the scheduling algorithm can execute in parallel with application tasks. The details
of this concurrent implementation can be found in [11).

Parallel Execution of the Dispatchers

To ensure consistency of reclaim.§, Step 1 of the algorithms must be within a critical section . To
bound the cost of this mutual exclusion among m processors, we used the predictable multiprocessor
synchronization mechanisms developed in [12]. Therefore, the time complexity of Step 1 for each task

completion now becomes O(mC), where C is the critical section size. Step 2 of the algorithm does
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Scheduler

Whenever a task T; arrives, do

{

reclaim_§ «— the amount of time that has been reclaimed;
e Calculate the run time cost SC of the scheduling
algorithm based on the number of tasks in

the current PL plus the new task arrival;

o cut_of f_line = current_time + SC;

o Tpr «— {Tj|stj — reclaim$ < cut-of f dine};

e Calculate the earliest available time

of each resource and processor,

based on the resource and processor requirements,

and ft; of the tasks T} in 7;,,, and the value of reclaim.$;
o T, — {Tjlst; — reclaim.$ > cut_of f line};

e GUARANTEE(7Z,, T});

Figure 13: Scheduling Dynamic Real-Time Tasks with Resource Reclaiming

not involve any locking. As the overheads of reclaiming are bounded, predictability of the system is
maintained even with reclaiming.
Multiple Invocations of the Scheduler

When 2 new task arrives, its worst case computation time, deadline, and resource and processor
requirements are assumed to be known. The system will try to guarantee the new task arrival together
with all the tasks T, in the original feasible schedule, for which st; — reclaim_§ > cut_off-line. With the
knowledge of the value of reclaim.§, i.e., the amount of time that has been reclaimed on all resources
and processors, those tasks T; with st; — reclaim§ < cut-off line will finish at least reclaim._§ time
units earlier than their scheduled finish time ft;. Thus, in calculating the earliest available time of
resources and processors in trying to schedule the new task arrival in Figure 13, the scheduler takes
the current value of reclaim_§ into consideration.

If the new task arrival is guaranteed, the newly generated feasible schedule S,,.,, must be appended
to the original feasible schedule at the cut_off-line. Since the scheduler’s cost SC is the scheduler’s
worst case computation time, it is very likely that there are still tasks in the original feasible schedule
before the cut_off line at the time when the scheduler finishes scheduling. Meanwhile, reclaim_§ will
be continuously updated by the resource reclaiming algorithm. Let us call the value of reclaim.§
that has been updated since the new scheduling instance occurred reclaim_delta’. Thus for the tasks
that are in the section of the feasible schedule before the cut_off.line, the value of reclaim.§’ is valid.
However, for the tasks that are in the section of the feasible schedule produced after the cut_off_line, the
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reclaim_§ portion of the value of reclaim _§' has already been taken into consideration in calculating the
tasks’ scheduled start times. Moreover, there can be more than one cut-off-line in a feasible schedule
since more than one task can arrive, causing the scheduler to be invoked multiple times during the
execution of a feasible schedule. We must develop a protocol to maintain the correct view of the value
of reclaim_§ between the tasks that are before and that are after each of the cut.off-lines, i.e., between
any two portions of the current feasible schedule that have been constructed at two different scheduling
instances. Otherwise, inconsistent usage of the value of reclaim-§ may result in incorrect post-run
schedules.

To handle this problem, we have designed a protocol. Due to space limitations, we present only a
simplified version of this protocol in the following. See [15] for a complete description and correctness

analysis of this protocol.
e Each task T; in the feasible schedule has a reset.§ field.

e The value of this field is zero for all tasks except for the task T, which is the first task in the
total ordering PL for Spew,, Where Spey, is the section of the feasible schedule produced by the
kth invocation of the scheduler. reset-6(Ty,) is set to be equal to the value of reclaim_§ that has
been assimilated by the kth invocation of the scheduler.

o As soon as Ty, is dispatched, reclaim.§ = reclaim_§ — reset_§(Ty,).

This protocol ensures the correct view of the value of reclaim-§ throughout a feasible schedule at
any time. One may be tempted to adopt a conceptually simpler protocol, one that explicitly modifies
the st; and ft; of all the tasks after the cut_off-line by the amount of reclaim_§ — reset_6(T}y,) at the
end of each scheduler’s invocation. The drawback to this protocol is that its run time cost is O(n)
and reclaim_§ must be locked while this protocol is in progress to avoid race conditions between the
scheduler and the dispatchers. This means that the dispatchers may have to wait for an amount of

time that is O(n), i.e. not bounded. So this is not acceptable.

4.2 Experimental Results

To evaluate the performance of the resource reclaiming algorithms and to study the tradeoff between
system overhead costs and runtime savings due to resource reclamation, we present experimental results
in this section. Since it is difficult to collect elaborate performance statistics without affecting the true
performance of the actual Spring Kernel, we have implemented our resource reclaiming algorithms not
only on the Spring Kernel, but also on a software simulator which simulates the multiprocessor Spring
Kernel. In our simulations, the system overhead costs are the worst case costs measured on the Spring

Kernel. The scheduler’s cost SC is calculated before each invocation of the scheduler as follows: SC
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= overheadcost + n * per_task_cost, where overhead_cost is the portion of the scheduler’s cost that
is constant for each invocation and per_task_cost is the portion of the cost dependent on the number
of tasks in the schedule. As mentioned in the previous section, in order to bound the cost of running
the scheduler, we set a value N as the maximum number of tasks that the scheduler will schedule
at a time, i.e., n < N in calculating SC. The worst case values of overhead_cost and per_task_cost
are 4 milliseconds and 5 milliseconds, respectively, unless specified otherwise. The run time cost of
Basic Reclaiming and Reclaiming with Early Start are 1 and 2 milliseconds, respectively. In all the
experiments, whenever the resource reclaiming algorithms are used, the cost of the algorithms are
added onto a task’s worst case computation time before the task is scheduled.

We present simulation results for a five processor system. There are five additional resources in all
the simulations. Tasks’ worst case computation times are uniformly distributed between wcc_min and
wcc-maz. We have tested two cases for wec.min and wec-maz. One is wee-min = 50 and wee-maz =
150. The other is wec.min = 50 and weeomaz = 1000. These two cases represent the two kinds of task
systems in which the worst case computation times of tasks have small/large variance. We have found
that in most cases, the performance of the resource reclaiming algorithms is almost the same for both
cases of tasks’ worst case computation times. We also present results for which we linearly increase
the value of wce-min, thus causing the ratio of the cost of resource reclaiming to the average worst
case computation time among tasks to decrease. The actual computation time of a task is uniformly
distributed between 50% and 90% of its worst case computation time in all cases except where specified
differently. The laxity of a task is calculated based on the worst case computation time of the task, and
it is uniformly distributed between 9 to 10 times the worst case computation time in all cases except
specified otherwise. A task requires any resource with probability P,,.. If a task requires a particular
resource, it uses the resource in shared/exclusive mode with probability 0.5.

The combination of the mean interarrival time i of tasks, the value of P,,., the number of resources
S, and wce_min and wcc-maz determines the average load of the system. In our simulation, tasks arrive
as a Poisson process. Every processor has the same Al'_, for 1 € 1 < m. We use the following three
formulas to measure the average processor load L,;, the average resource load L,;, and the resource

conflict probability P, for two tasks.

Lpi = Ai=Efwed]
Lyi = PuysexAi=Ewee]sm
Pe = 1—(2(1 = Pusc)=Pusc+ (1~ Pusc)® + (0.5 Pu.c)?)®

E[wec] is the expected value of the worst case computation time of a task; thus it is either 100 or 525
for the two kinds of worst case computation times in our simulations. m is the number of processors

and T is the number of tasks in a schedule. The first two formulas are straightforward. Note that
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the average resource load L,; goes up as P,,. increases even if the expected worst case computation
timei Elwec] and the mean arrival rate A; stays the same. In the third formula, P, is the probability
that two tasks will conflict on any of the given S resources (vs. P,,e which is the probability that a
task will require a resource). Thus P, is a measure of the resource conflicts in a task load. In order to
simulate task arrivals that have sufficient parallelism to be run on a multiprocessor system, we must
keep the value of P, fairly low. A high value of P, would indicate the inherent resource conflicts among
many tasks. P, is calculated as 1 minus the probability that the two tasks will not conflict on any of
the § resources. With respect to any one of the § resources, the first term in the summation is the
probability that only one task will require the resource, the second term is the probability that none
of the two tasks will require the resource, and the third term is the probability that both tasks will
require it in shared mode (i.e., no resource conflict). P, increases when the value of P,,. or the value
of § increases. So if we keep P,,. the same for all the tasks, the more resources there are in a system,
the more resource conflicts tasks will have. ‘

The heuristic scheduling algorithm proposed in [13] is used in the scheduler in all of our simulations
presented in this section. The performance metric we use is the guarantee ratio of an algorithm with

the number of tasks guaranteed
the number of tasks arrived

all the simulation experiments, each data point consists of ten runs. Our requirement on the statistical

respect to dynamic task arrivals. The guarantee ratio is defined as

data is to generate 95% confidence intervals for the guarantee ratio whose width is less than 5% of the
poinf estimate.
To evaluate the effectiveness of the proposed resource reclaiming algorithms, we have also imple-

mented the following three schemes for comparison purposes:

e guarantee with actual computation time: This is an ideal scheduling scenario. In this
scheme, when a task arrives, the scheduler omnisciently knows the actual, rather than the worst

case, computation time of the task. Therefore, resource reclaiming is not necessary.

e rescheduling: In the rescheduling scheme, whenever a task executes less than its worst case
- computation time, the scheduler is invoked to reschedule the tasks in the existing schedule in the
~ same manner as when a new task arrives. The scheduler is invoked to do resource reclaiming
- only if the difference between the worst case computation time and the actual computation time

of the completed task is greater than the scheduler’s cost.

® no resource reclaiming: Here no resource reclaiming is done. Tasks are dispatched according
!

to their scheduled start times. The case of no resource reclaiming provides a lower bound on

performance.

A.Performance comparison of the two resource reclaiming algorithms
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Figure 14: Performance of Basic Reclaiming and Reclaiming with Early Start

In this section, we compare the performance of the two resource reclaiming algorithms with no
resource reclaiming. In Figure 14, Ly; = 0.75 and P,,. varies from 0.1 to 0.5. This represents a heavy
to overloaded system. For example, when P,,. is 0.3, L,; is 1.13, and when P,,. is 0.5, L,; is 1.9.
Reclaiming with Early Start is very effective for all the resource usage probabilities. Its guarantee ratio
is 18.4% higher than that of no resource reclaiming when P,,. = 0.2. When the resource conflict is
small (i.e., when Py,. < 0.3 and thus P, < 0.3), Reclaiming with Early Start performs much better than
Basic Reclaiming since it can exploit more parallelism. When the value of P,,, is 0.5, the performance
of the Basic Reclaiming algorithm approaches that of Reclaiming with Early Start. When the value of
P,,c is too high, P, is even larger, indicating high resource conflicts among tasks, thus little parallelism
among tasks. For example, for P,,. = 0.5, P, = 0.65. In this case there is a very high probability
that any two arriving tasks will have resource conflicts. This will result in schedules in which very few
tasks can be run in parallel. Since in using a multiprocessor system, one would expect certain levels
of parallelism to exist among the tasks, it is more appropriate to keep the value of P,,. < 0.3 (thus,
P, < 0.3) in the rest of our experiments. From the above results, we see that Reclaiming with Early
Start does outperform Basic Reclaiming in most of the cases. Thus in the following experiments, we
concentrate on evaluating the performance of Reclaiming with Early Start.

B. Performance Comparison with Rescheduling
The scheduler has a more global view of the tasks in the schedule than the resource reclaiming

algorithm does, but it also has a higher run time cost. The purpose of this study is to answer the

24



Guarantee Ratio

70 1 A——A Actual Computation Time
L=/ Rescheduling
- — —¢ Early Stant
60 - B - —W No Reclaiming
50 ! ‘ ] L ]
0 1 2 3 4 5
Scheduler's per task cost

Figure 15: Effects of Scheduler’s Runtime Cost

following question: ‘Suppose we can reduce the cost of the scheduler, will the rescheduling scheme be a
better choice?” We compare the performance of the rescheduling scheme with that of (1) the guarantee
with actual computation time, (2) Reclaiming with Early Start, and (3)the no reclaiming schemes.
Here we artificially vary the scheduler’s per_task_cost from 0 to 5, where 5 is the actual worst case cost
we have measure on the Spring Kernel. The task loads simulated have L,; = 1.0 and P,,. = 0.2.

The simulation results in Figure 15 indicate that the performance of rescheduling degrades 17.1%
when the cost of the scheduling algorithm increases from 0 to 5. Only when the scheduler’s per task_cost
is zero, does rescheduling perform better than Reclaiming with Early Start. In real systems, the cost of
the scheduler will be nonzero. So the rescheduling scheme is not a practical choice. The performance of
Reclaiming with Early Start is very close to the performance of the guarantee with actual computation
time scheme no matter how the cost of the scheduler changes. This demonstrates that low complexity

run time local optimization, such as the one used in Reclaiming with Early Start, can be very effective

in a dynamic real-time system.
C. Effects of Task Lazity

We now examine the performance of the various schemes with respect to different task laxities.
Figure 16 shows the results of the experiments in which P,,. = 0.2 and Lp; = 1.0. Here tasks’ laxities
are plotted along the X-axis. At each x point, a task’s laxity is drawn from a uniform distribution
between z% * wee and z + 100% * wee, where wcc is the average worst case computation time of tasks.

With tight task laxities, e.g., ¢ < 200, resource reclaiming is not very effective, since, in this case,
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Figure 16: Effects of Task Laxity

tasks arrive at the system with very small laxities, thus many of them cannot even be guaranteed. As
the laxities of the tasks are relaxed, the performance of Reclaiming with Early Start approaches the
performance of the guarantee with actual computation time scheme, and is much better than that of
rescheduling and no resource reclaiming. At z = 900, the difference between the guarantee ratios of
using Reclaiming with Early Start and of using no resource reclaiming is 11%. On the other hand,
rescheduling performs as well as Reclaiming with Early Start only when the laxity is very tight, i.e.,
when z = 100. It performs poorly as the laxity increases. The more tasks there are in the feasible
schedule, the more rescheduling will cost. With larger task laxities, more tasks can be guaranteed, thus
the feasible schedule contains more tasks. We have found that resource reclaiming is most effective
when there are tasks to be dispatched continuously from the schedule.
D. Effects of Worst Case Computation Time

In Figure 17, we compare the performance of Reclaiming with Early Start with no reclaiming
with respect to different worst case computation times. As the worst case computation times of

resource reclaiming cost

tasks increase, the ratio worst case computation time

decreases. Recall that the run time cost of

Reclaiming with Early Start is 2 (milliseconds). So for the two kinds of worst case computation times
we have tested so far, i.e., uniformly distributed between (50, 150) and between (50, 1000), the resource
reclaiming overhead cost is at most 0.4% of a task’s worst case computation time (since the minimum

worst case computation time wceomin = 50 in both cases and 2/50 = 0.4). What happens to the

26



Guarantee Ratio

60 + .

¢ Early Start
~ =+ =3 No Reclaiming

ol 411
5 10 15 20 25 30 35 40 45 50
Minimum Worst Case Computation Time

Figure 17: Effects of WCC to Resource Reclaiming Cost Ratio

performance of resource reclaiming if wee_min is smaller so that the ratio of the resource reclaiming
overhead to the minimum worst case computation time becomes larger? In this experiment, we varied
wee-min from 5 to 50, and the worst case computation time of a task is uniformly distributed between
weemin and 2 * wee-min. The average processor load Lp; is 1.0 and Py, is set to 0.3. We did not
include any scheduling overhead in this experiment for the purpose of examining the pure effects of
the resource reclaiming overhead costs. In Figure 17, we plot the values of wee-min on the X-axis.
When wee.min = 5, the resource reclaiming overhead ranges from 20% to 40% of tasks’ worst case
computation times. When wce-min = 50, the resource reclaiming overhead is only 0.2% to 0.4% of
tasks’ worst case computation times. As one can see, if the resource reclaiming overhead can be more
than 10% of tasks’ worst case computation time, i.e., when wee.min < 20 on the X-axis, the guarantee
ratio using Reclaiming with Early Start can be even worse than without any resource reclaiming. So it
only pays to do resource reclaiming if one can ensure that the overhead cost of the resource reclaiming
algorithm is below a reasonable percentage of tasks’ worst case computation times, such as below 10%.
E. Effects of Average Processor Load

In all the above experiments, we have simulated heavy load situations. In Figure 18, we examine
the performance of Reclaiming with Early Start with respect to different average processor loads Ly;.
We vary the value Ly; from heavily loaded (1.0) to lightly loaded (0.3). In this experiment, Py, is
0.2. A task’s laxity is uniformly distributed between 1 to 10 times its worst case computation time, so

that no matter what the average processor load is, tasks arrive with a large variance of laxities. We
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Figure 18: Effects of Average Processor Load

compare the performance of Reclaiming with Early Start with the performance of guarantee with actual
computation time and no resource reclaiming. As the performance graphs indicate, the guarantee ratio
of Reclaiming with Early Start follows closely to that of guarantee with actual computation time for all
the different loads. Except when the system is very lightly loaded, i.e., when Ly; < 0.4, Reclaiming with
Early Start has much higher guarantee ratio than no resource reclaiming. At Ly; = 0.8, the difference
between the guarantee ratios of Reclaiming with Early Start and no resource reclaiming is 14.3. When
the load of the system is extremely low, e.g., at L,; = 0.3, resource reclaiming is not necessary.
F.Effects of Actual Computation Time to Worst Case Computation Time Ratio

In all the simulations presented above, the actual computation time of a task is between 50% to 90%
of its worst case computation time, drawn from a uniform distribution. Figure 19 shows the results for
the case in which all the tasks in a task load for each simulation point have the same ratio of actual
computation time to worst case computation time. We plot the percentage of the unused computation
time on the x axis. This test studies the effect of the accuracy of worst case execution times upon
performance. This ratio is varied from 100% to 10%. Note that for each test, even if all the tasks have
the same actual computation time to worst case computation time ratio, their actual computation times
are still very different due to the uniform distribution of their worst case computation times. P,,. is
set 0.2. The average processor load has been calculated according to tasks’ actual computation times
rather than their worst case computation times, i.e., Ly; = ); * E[actual computation time]. At each

simulation point, we generated the same average processor load Lp; = 0.6 with respect to the expected
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Figure 19: Effects of different actual to worst case computation time ratios

actual computation time, so that if we had known the actual computation times of tasks, the task load
was mostly feasible as demonstrated by the performance of guarantee with actual computation time.
However, since in using Reclaiming with Early Start and no resource reclaiming we do not know the
actual computation times at schedule time, the smaller the ratio of the actual computation time to the
worst case computation time (as the tasks leave more unused computation time), the larger the worst
case load the system has to handle.

The simulation results indicate that

e For a large range of the accuracy of worst case computation time estimation (from 30% to 100%),

Reclaiming with Early Start performs very close to that of the guarantee with actual computation

time scheme. This is because:

— Reclaiming with Early Start is very effective in reclaiming the unused time dynamically,

reflecting the actual computation times of tasks in a timely fashion.

e The improvement on the guarantee ratio of Reclaiming with Early Start over no resource reclaim-
ing is substantial. The guarantee ratio is improved by 23.9% when tasks’ actual computation

time is 40% of their worst case computation times.
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5 Additional Remarks

In the previous section, we demonstrated the applicability of the resource reclaiming algorithms in
dynamic real-time systems. Here we discuss their applicability and necessary extensions for task systems

with other characteristics.
Precedence Contraints among Tasks:

In this paper, we have assumed that tasks are independent. There are many applications in which
tasks are related by precedence constraints. Precedence constraints specify the partial ordering among
tasks such that a task can start execution only when all of its predecessors have completed execution.
Since neither of the resource reclaiming algorithms proposed in this paper allows passing (as defined
in Section 3), they are both applicable for task systems with precedence constraints. If tasks have
precedence constraints in a feasible schedule, the resource reclaiming algorithms will never violate
these precedence constraints.

Tasks with Explicit Ready Times:

Some systems may have tasks that cannot be started until after some specific time, called a ready
time. For example, periodic tasks cannot be started until the beginning of their periods. In such
systems, a task with a ready time may have been placed in the feasible schedule, but it cannot be
moved forward to pass its ready time in the schedule. In this case, our resource reclaiming algorithms
can be modified to take into consideration a task’s ready time. In Step 2 of either of the algorithm,
we need to consider the ready time of a task when we try to start a task. Specifically, first at line 4 in

Figure 6 and line 18 in Figure 7, the following condition should be added:

o if current_time > ready-time(T,,).

Second, at line 7 in Figure 6 and line 21 in Figure 7 we need to modify the calculation of the actual

start time of a task to the following:
¢ ast., = maz(sst,, — reclaim.§, readytime(T,,)).

Other Types of Tasks:

In addition to dynamic hard real-time tasks, a system may have (1) monotone tasks [16], (2) dual-
copy fault-tolerant tasks [2], and (3) non-real-time tasks. Real-time systems with these types of tasks
can all benefit from resource reclaiming. Instead of using the reclaimed time reclaim_§ for the tasks
that have already been guaranieed in the feasible schedule, a system can use it to (1) execute the
optional part of a monotone task, (2) increase the time assigned to the primary copy of a dual-copy

fault-tolerant task in a feasible schedule, or (3) preemptively execute non-real-time background tasks.
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6 Conclusion

In this paper, we have investigated the problem of resource reclaiming in real-time multiprocessor
systems. A correctness criterion was defined for designing correct resource reclaiming algorithms. We
presented two simple resource reclaiming algorithms, Basic Reclaiming and Reclaiming with Early
Start. The complexity of the algorithms is bounded by the number of processors in a multiprocessor
node. Practical issues for supporting predictability in multiprocessor real-time systems were considered
and the algorithms were shown to be implementable. In fact, both resource reclaiming algorithms have
been implemented in the Spring Kernel. The resource reclaiming algorithms have also been studied
under dynamic real-time task arrivals and experimental results are presented.

From the simulation studies, the following can be observed:
¢ Good local optimization can be very effective in a dynamic real-time system.

¢ In areal-time system, it is important to employ run time algorithms with bounded time complexity.

The complexity of the algorithm should be independent of the number of tasks.

¢ Beside having bounded time complexity, it is essential for a resource reclaiming algorithm to be
inezpensive in terms of overhead cost. Our simulation results indicated that it only pays to do
resource reclaiming if one can ensure that the overhead cost of the resource reclaiming algorithm

is below 10% of tasks’ worst case computation times.

¢ Resource reclaiming can compensate for the performance loss due to the inaccuracy of the esti-

- mation of the worst case computation times of real-time tasks.

¢ Resource reclaiming is very useful for real-time systems that have to guarantee tasks with respect
to their worst case computation times. For a large range of accuracy of the worst case computation
time estimation (from 30% to 100%) that we have experimented with, Reclaiming with Early Start

performs very close to that of an ideal scheduling scenario - guarantee with actual computation

 time.

o Even though Reclaiming with Early Start has a higher run time cost than that of Basic Reclaim-
ing, it performs much better than Basic Reclaiming in most of the situations except (1) when the

system is lightly loaded with Ly; < 0.5 and/or (2) when the resource usage probability of tasks
_ is high with P,,. > 0.5.

e Simple resource reclaiming algorithms are needed most when the system is heavily loaded and

~ the invocation of the scheduling algorithm is expensive compared with the resource reclaiming
algorithms.
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o When the load of the system is extremely low, e.g., Ly; < 0.3, resource reclaiming is not necessary.

® Dynamic resource reclaiming is applicable to a wide range of task resource usage probabilities,

task laxities, and system loads.

In summary, the results show that, although the resource reclaiming algorithms proposed are very
simple, they are very effective with respect to a wide range of system and task parameters. We believe
that resource reclaiming substantially improves average system performance.
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A Appendix — Multiprocessor Resource Reclaiming Anomalies

Anoma.hes can arise at run time in a dynamic real-time multiprocessor schedule with resource and
progessor constraints when resource reclaiming is not done correctly. These anomalies may jeopardize
the deadlines of the real-time tasks that have already been guaranteed. In this appendix, we examine
two: very simple work-conserving resource reclaiming algorithms and the possible anomalies they can
cause at execution time to a resource constrained multiprocessor task schedule. The worst case bounds

on these anomalous cases are presented.

A.1 Greedy Resource Reclaiming Rule

The first is the Greedy Resource Reclaiming Rule.

Definition 9: Given a Projection List PL (See Definition 7) of a feasible schedule S, the Greedy
Resource Reclaiming Rule will scan the PL from left to right, and dispatch a task T; if the resources

and the processor T; needs are all available.

The Greedy Resource Reclaiming Rule reclaims resources by not intentionally leaving any processor
or resource idle at run time. Figure 3, which is in fact the post-run schedule produced by the Greedy
Resource Reclaiming Rule, demonstrates the run-time anomaly that can occur when the Greedy Re-
source Reclaiming Rule is used. Although all the tasks’ timing and resource constraints are satisfied in
S in Figure 1, T, misses its deadline in S’ in Figure 3. Then the questions to ask are (1) why does this
anomaly occur, and (2) how much performance degradation can this anomaly bring to the system? The
anomaly occurs because tasks are not dispatched in the same order as in the given feasible schedule, i.e.,
passing has occurred, and this run-time reordering is done without verification of the resource conflicts
and timing constraints among tasks. For example in Figure 3, since the Greedy Resource Reclaiming
Rule always keeps a processor busy (i.e. work-conserving) whenever possible, T; was dispatched earlier
than its scheduled start time. When T executes less than its worst case computation time, T is
d.\spatched immediately since both the processor and resource it needs are available. Because of the
resource conflicts between T, and Ty, i.e. due to their resource conflict over 7, T4 cannot be dispatched

on time. The following theorem provides the answer-to the second question.

Theorem 3: Let m be the number of processors and n the number of tasks. Given a feasible
schedule S of length L, when the computation times of some task(s) decreases, in the worst case,

the length L' of the resulting post-run schedule §' produced by the Greedy Resource Reclaiming
Rule is E}l xL,ie.
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Proof Recall that ¢; is the worst case computation time of task T; in the feasible schedule,
and ¢; is the actual computation time of T} in the corresponding post-run schedule.

Suppose e(t) = the set of tasks being executed at time t. If § = {t||e(t)| = 1}, i.e. S is the set
of time intervals ¢ in which only one task is being executed in L’, then let 7(S) denote the sum of

all the time intervals in S, and let 7(5) denote the sum of the rest of the time intervals in L’. Then

we have
L'=7(8)+ T(S')
Define
T= U e(t)
T;€S

i.e. T is the set of tasks executed in 7(5).
Since no two tasks T;, T; in T can execute in parallel due to their resource constraints, (otherwise

they would have been dispatched in parallel by the Greedy Resource Reclaiming Rulé),

L>7(S)

This is because the scheduling algorithm that produced the feasible schedule with length L could
not have scheduled any of the tasks in T in parallel either due to their resource constraints. For
example, T = {As, B;} for the post-run schedule in Figure 21.

Since

n
mL > Zc,- and ¢; > ci,

i=1

ic,- > 7(8)+27(5)

i=1

(since there are at least 2 tasks executing in 7(5)), we have
mL > 7(8) + 27(5)

And since

LI

(S) + 7(5)
7(8) + 7(8) + 27(8)
(5) + 27(5)=2L'-1(8)

2L’
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Then

mL
mL

v

r(8) + 27(8) > 2L' - 7(S)
2L' - L

v

2L’

v

(m+1)L
r m+1

L - 2

I
A

[}
'

Even though our task model assumes processor constraints, we found that there is a direct mapping
of the Greedy Resource Reclaiming Rule in our model to the list-scheduling problem {3, 4, 7] which
assumes identical processors with global shared memory. In [4], a similar bound and proof were given
for the list-scheduling problem; however their bound was not derived in the context of task computation
time decreasing at run time. The following example demonstrates that the worst case ratio of Theorem
3 is tight for our multiprocessor scheduling model.

Example Greedy:

Let m = the number of processors, n = the number of tasks = 4m —1, and » = the number of
resources, 7 > m. Figures 20 and 21 illustrate this worst case example withm = 3, B = 10, ¢ = 2, and
§ = 1. The tasks and their parameters are specified in Table 4, and Table 5 contains tasks’ resource
requirements. Here L’ is 43 and L is 26,i.e. L' < % * L. We now show that if e — 0 and § — 0,
L' — "-L;-L x L.

e CALCULATION OF THE AsYMPTOTIC WoORST CASE Ratio of L'/L:

Let L be the schedule length of the feasible schedule S, and L' be the schedule length of the
post-run schedule L’. We have

L = me+2B
L' = mB+B+m(e-$)
= (m+1)B+ m(e-6)
Then as ¢ — 0 and § — 0, |

L = me+2B— 2B
LI

(m+1)B+m(e-§) — (m+1)B

Thus,
L' (m+1)B m+1
L 2B~ 2
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Task Type # of Tasks pid ¢; d;
A m i B B me + B
B m i B B me+ 2B
E m i € €—§ me
F m-—1 i € € me

Table 4: Task Parameters: pid = processor id, ¢; = worst case computation time, ¢; = actual compu-

tation time, d; = deadline, for 1 < i < m.

resources | F1 | F3 | Ey | E; | Es | Ay | Ay | Az | By | B, | Bs
Ry e | el e e s
Ry s e e e s
R3 5 e e s s

Table 5: Task resource requirements.

ONE A & \\\\\\\\\\\\\\\\\\\\\\\\\\\

6 2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30 32 34 38 38 40 42 44

Figure 20: A feasible schedule S.

P, 8, E, A,
P, A,
P, B,

' I N N

4 16 18 20 22 24 26 28 30 a2 34 38 38 40 42 44

Figure 21: The worst-case post-run schedule produced by the Greedy algorithm.
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From the above construction of the worst case bounds for the Greedy Resource Reclaiming Rule,

the following corollary can be derived.

Corollary 1: Given a feasible schedule § of length L, in the case of decreasing computation
times of some task(s), a task T; can miss its deadline by as much as L' — L in the resulting post-
run schedule S’ produced by the Greedy Resource Reclaiming Rule, where L' is the length of the
post-run schedule.

Proof It follows directly from Example Greedy that, as € — 0 and § - 0, ftp, = dp, +
(L' — dp,) and dp, = L, where fip, is the finish time in S’ and dp, is the deadline of task B;. D

Observation 1: The worst case of L'/L, i.e. when L'/L is maximum, occurs when S is produced
by an optimal scheduling algorithm such that L is smallest. Here by optimal we mean an algorithm
_that can always find a feasible schedule if one exists, and if more than one feasible schedule exists,

it will always find the shortest one. Since any practical dynamic scheduling algorithm is likely to

be heuristic, the resulting L will be larger than the optimal schedule length. Thus in general the

worst case ratio of L'/ L will be smaller than m—;—l-

A.2 Bounded Greedy Resource Reclaiming Rule

Since scanning the PL is part of the Greedy Resource Reclaiming Rule, it has a run time complexity
linear to the number of tasks in the PL. The second simple resource reclaiming algorithm, the Bounded

Greedy Resource Reclaiming Rule reduces this complexity by being less greedy.

Definition 10: Given a projection list PL and its corresponding processor projection lists PPL;
of a feasible schedule S, the Bounded Greedy Resource Reclaiming Rule will dispatch a task T; if
(1) T; is the very first task in PPL;, and (2) the resources, including the processor, that T; needs
are all available. If more than one task satisfies (1) and (2), dispatch the task T; such that st; is

The Bounded Greedy Resource Reclaiming Rule limits the time complexity by not scanning the rest
of the PL, but by only examining the tasks that are in front of the individual PPL;. This in effect
reduces the time complexity to be bounded. However, even though the greediness is bounded, run time
anomalies can still occur when the Bounded Greedy Resource Reclaiming Rule is used. The worst case
ratio bound of L'/ L resulting from using the Bounded Greedy Resource Reclaiming Rule is even worse

than from using the Greedy Resource Reclaiming Rule, as shown in the following theorem.

Theorem 4: Given m processors, if the Bounded Greedy Resource Reclaiming Rule is used, the
length L of the feasible schedule S and the length L' of the post-run schedule S’ can have a worst

case ratio of L'/L = m when task computation time decreases at execution time.
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Proof  Any feasible schedule S must have a schedule length L > E—‘:ﬁ, so we have mL >
7, ¢i. Since at no time all processors and resources are idle in S’ and ¢! < ¢;, we must have
n
L' < Z ¢; <mxL
i=1
where m is the number of processors and n is the number of tasks. O

The following example demonstrates that the worst case ratio in Theorem 4 is tight for our multi-

processor scheduling model.
Example Bounded Greedy:

Let m = the number of processors, n = the number of tasks = 3m — 1, and » = the number of
resources, > 1. The tasks and their parameters are specified in Table 6, and Table 7 contains tasks’

resource requirements. Figures 22 and 23 illustrate this worst case example with m = 3, B = 20, ¢ =
2and § = 1.

o CALCULATION OF THE AsYMPTOTIC WORST CAsSE RaTiO OF L'/L:
Let L be the schedule length of the feasible schedule S, and L' be the schedule length of the
post-run schedule S’. We have
L = me+B

L mB + m(e — §)

Then as ¢ = 0 and § — 0,

L = me+B—B

L' = mB+m(e-6) — mB
Thus,
r_mB_
L~ B

The above construction of the worst case bounds for the Bounded Greedy Resource Reclaiming Rule

leads us to the following corollary.

Corollary 2: Given a feasible schedule S of length L, in the case of decreasing computation times
of some task(s), a task T; can miss its deadline by as much as L' — L in the resulting post-run
schedule S’ produced by the Bounded Greedy Resource Reclaiming Rule, where L' is the length of
the post-run schedule.

Proof 1t follows directly from Example Bounded Greedy that ft4, = da, + (L' —dy,) and
ds, = L, where ft,, and dy, are the finish time and deadline of task 4,. O
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Task Type # of Tasks pid ¢ ¢ d;
A m i B B me + B
E m i € €e—6 i€
F m-1 ] € € i€

Table 6: Task Parameters: pid = processor id, ¢; = worst case computation time, ¢; = actual compu-

tation time, d; = deadline,for 1 <i<m and2<j<m.

resources | B, | B2 | Es | Fo | F3 | A1 | A2 | As
Ry e e e 5 s
Ry s 3 e s ]

P, A,
P, A, g
Pf A, ; E- E-:““‘_ 2 ':: -.-:._ % :.. e
TR TR TR T TR B - & RS
° 12 15 18 21 24 27 30 3 36 » 42 45 48 1] 54 57 €0 63
Figure 22: A feasible schedule S.
P, F, A,
P, |f A,
P, A, ::
| ] { | | | %

° 3 6 ® 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 5 60 6
Figure 23: The worst-case post-run schedule produced by the Bounded Greedy algorithm when tasks

execute only up to their actual computation times.
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