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1 Introduction

The Spring Kernel is a research oriented kernel designed to form the basis of a flexible,
real-time operating system for complex, next generation, real-time applications. The
Spring Kernel is being implemented in stages on a network of 68020 and 68030 based
multiprocessors called SpringNet. Version 1 of the Kernel is now operational. While
much has already been written on the Spring Kernel [10, 11, 12, 4], the purpose of this
wnvited paper is to combine ideas found in separate papers and presents them with a
different emphasis. In particular, in Section 2.1 we categorize real-time systems to clearly
indicate the difficulty in building such systems. Since most real-time systems aspire to
being predictable, we discuss exactly what predictability means for such systems. We show
that it is important to fully understand the implications of predictability and to not over
estimate its value. In Section 2.2 we discuss how the notion of predictability can likely
be achieved by an integrated approach to designing and building next generation hard
real-time systems. Much of Section 2 is taken from [16]. In Section 3 we review the main
ideas found in the Spring Kernel. Much of the material found in Section 3 is from [12].
In Section 4 we discuss the reflective nature of the Kernel providing the emphasis that
has not appeared in previous papers. By reflection is meant the ability of the Kernel to
maintain and act on information concerning the application, the environment, and the
Kernel itself. This includes identifying what information is to be used, how to monitor
this information, and how to dynamically adapt the system. Section 5 makes summary
remarks.

*This work was supported by ONR under contract NOOO14-85-K-0389 and NSF under grant DCR-
8500332.



2 Predictability for Real-Time Systems

2.1 Categorizing Real-Time Systems

Real-Tvme Systems are those systems in which the correctness of the system depends not
only on the logical results of computations, but also on the time at which the results
are produced. However, the full meaning of this definition takes on various subtleties
depending on, at least, five dimensions. They are:

e what is the granularity of deadlines and what are the laxities for tasks,
e how strict are the deadlines,
e how reliable must the system be,

e what is the size of the system and what is the degree of interaction (coordination)
among components, and

e what are the characteristics of the environment in which the system operates.

The characteristics of the environment, in turn, seem to give rise to how static or
dynamic the system has to be. As can be imagined, depending on the answers to these
questions many different system designs occur. However, one common denominator seems
to be that all designers want their real-time system to be predictable. But what does
predictability mean? It means that it should be possible to show, demonstrate, or prove
that requirements are met subject to any assumptions made, e.g., concerning failures and
workloads. In other words, predictability is always subject to the underlying assumptions
being made. Let us now consider each of these 5 dimensions, in turn.

Granularity of the Deadline and Laxity of the Tasks: In a real-time system some
of the tasks have deadlines and/or periodic timing constraints. If the time between when
a task is activated (required to be executed) and when it must complete execution is short
then the deadline is tight (i.e., the granularity of the deadline is small, or alternatively
said, the deadline is close). This implies that the operating system reaction time has to be
short, and the scheduling algorithm to be executed must be fast and very simple. Tight
time constraints may also arise when the deadline granularity is large (i.e., from the time
of activation), but the amount of computation required is also great. In other words even
large granularity deadlines can be tight when the laxity (deadline minus computation
time) is small. In many real-time systems tight timing constraints predominate and
consequently designers focus on developing very fast and simple techniques to react to
this type of task activation. In large, complex, real-time systems we find both loose and
tight deadlines, and short and long laxities.

Strictness of Deadline: The strictness of the deadline refers to the value of execut-
ing a task after its deadline. For a hard real-time task there is no value to executing the



task after the deadline has passed. A soft real-time task retains some diminished value
after its deadline so it should still be executed. Very different techniques are usually used
for hard and soft real-time tasks. In many cases hard real-time tasks are preallocated
and prescheduled resulting in 100% of them making their deadlines. Soft real-time tasks
are often scheduled either with non-real-time scheduling algorithms, or with algorithms
that explicitly address the timing constraints, but aim only at good average case per-
formance, or with algorithms that combine importance and timing requirements (e.g.,
cyclic scheduling). In complex, real-time systems both soft and hard real-time tasks exist
simultaneously.

Reliability: Many real-time systems operate under severe reliability requirements.
That is, if certain tasks, called critical tasks, miss their deadline then a catastrophe may
occur. These tasks are usually guaranteed to make their deadlines by an off-line analysis
and by schemes that reserve resources for these tasks even if it means that those resources
are idle most of the time. In other words, the requirement for critical tasks should be that
all of them always make their deadline (a 100% guarantee), subject to certain failure and
workload assumptions. However, it is our opinion that too many systems treat all the
tasks that have hard timing constraints as critical tasks (when, in fact, only some of those
tasks are truly critical). This can result in erroneous requirements and an overdesigned
and inflexible system. It is also common to see hard real-time tasks defined as those with
both strict deadlines and of critical importance. We prefer to keep a clear separation
between these notions because they are not always related.

Size of System and Degree of Coordination: Real-time systems vary considerably
in size and complexity. In most current real-time systems the entire system is loaded
into memory, or if there are well defined phases, each phase is loaded just prior to the
beginning of the phase. In many applications, subsystems are highly independent of
each other and there is limited cooperation among tasks. The ability to load entire
systems into memory and to limit task interactions simplifies many aspects of building
and analyzing real-time systems. However, for next generation large, complex, real-time
systems, having completely resident code and highly independent tasks will not always be
practical. Consequently, increased size and coordination give rise to many new problems
that must be addressed and complicates the notion of predictability.

Environment: The environment in which a real-time system is to operate plays an
important role in the design of the system. Many environments are very well defined (such
as a lab experiment, an automobile engine, or an assembly line). Designers think of these
as deterministic environments (even though they may not be intrinsically deterministic,
they are forced to be). These environments give rise to small, static real-time systems
where all deadlines can be guaranteed a prior:. Even in these simple environments we
need to place restrictions on the inputs. For example, the assembly line can only cope
with five items per minute; given more than that, the system fails. Taking this approach
enables an off-line analysis where a quantitative analysis of the timing properties can be
made. Since we know exactly what to expect given the assumptions about the well defined
environment we can consider these systems to be predictable.



The problem is that the approaches taken in relatively small, static systems do not
scale to other environments which are larger, much more complicated, and less con-
trollable. Consider a next generation real-time system such as a team of cooperating
mobile robots on Mars. This next generation real-time system will be large, complex,
distributed, adaptive, contain many types of timing constraints, need to operate in a
highly non-deterministic environment, and evolves over a long system lifetime. It is much
more difficult to force this environment to look deterministic - in fact, that is exactly
what you do not want to do because the system would be too inflexible and would not
be able to react to unexpected events or combinations of events. We consider this type
of real-time system to be a dynamic real-time system operating in a non-deterministic
environment. Such systems are required in many applications. It is much more difficult
to define predictability for these systems and the typical semantics (all tasks make their
deadlines 100% of the time) associated with the term for small static real-time systems is
not sufficient. Many advances are required to address predictability of these next gener-
ation systems in a scientific manner. For example, one of the most difficult aspects will
be in demonstrating that these systems meet both their overall performance requirements
(which are generally average case statistics but with respect to meeting deadlines and
maximizing value of executed tasks), as well as specific deadline and periodicity timing
requirements of individual tasks or groups of tasks, or instances thereof. If both types
of timing requirements can be demonstrated, then we can refer to the system as being
predictable.

2.2 Achieving Predictability

While there may be many ways to achieve predictability in complex real-time systems,
here we consider one that we call the layer-by-layer approach. This approach is advocated
by the Spring Kernel to be discussed in the next section of this paper.

Before we discuss the layer-by-layer approach we have a few preparatory remarks.
A real-time system can be considered to be composed of entities at various hardware
and software layers. Broadly speaking these levels are: semiconductor components, the
hardware/architecture layer, the operating system layer, and the application layer. The
layer-by-layer method assumes that a higher layer is predictable, if and only if, the lower
layer is predictable.

In the layer-by-layer approach, in order to obtain a predictable system, it is necessary
to have a tight interaction between all aspects of the system starting from the design rules
and constraints used, to the programming language, to the compiler, to the operating
system, and to the hardware [15]. Then, based on a careful software and hardware design
it should be possible to achieve both microscopic and macroscopic predictability. In the
microscopic view, we can compute the worst case execution time of any task. This is not as
simple as it first may seem. First, we require a simplified architecture so that instructions
times are well defined. Second, we must be able to account for resource requirements
and calls to system primitives made on behalf of this task. This can be accomplished



via various techniques including a planning scheduler such as found in the Spring system
[7, 11, 2, 18]. In this way, the execution time of a particular invocation of a task with
its resource needs can be accurately computed. In many other approaches predictability
breaks down here because they have no good method for dealing with delays for resources.

Further, the layer-by-layer approach enables a macroscopic view of predictability. That
is, first, we require the macroscopic view that all critical tasks will always make their
deadlines (subject to the assumptions of the analysis). In other words, for critical tasks
the requirement is a 100% guarantee. Some (small) systems force all their tasks to be
critical. This amounts to overdesign, has a number of disadvantages, and will not scale to
next generation, large, and dynamic systems. Second, by on-line planning and through
microscopic predictability, at any point in time we know ezactly which non-critical but
hard real-time tasks in the entire system will make their deadlines given the current load.
In other words we have a dynamic and macroscopic picture of the capabilities of the current
state of the system with respect to timing requirements. This has several advantages with
respect to fault tolerance and graceful degradation. Third, it is also possible to develop
an overall quantitative, but probabilistic assessment of the performance of non-critical
hard real-time tasks given expected normal and overload workloads. For example, via
simulation one might compute the average percentage of non-critical tasks that make their
deadlines or the expected value of tasks that make their deadline. We then would need
to show that on the average these tasks meet the system requirements or add resources
until this is true. Fourth, we require the macroscopic view of the capabilities of the I/0O
front ends. For example, it may be possible to state that the tasks on the I/O processor,
scheduled according to the rate monotonic algorithm, will always make all their deadlines,
because the load is less than 69% and because there are no resource conflicts.

In some circles this four pronged macroscopic view may seem unsatisfying because
everything is not 100% guaranteed. However, we believe that this is necessary and un-
avoidable given that we are operating in a complex, non-deterministic environment. In
these environments it seems necessary to carefully develop the requirements as actually
needed, and then to employ different means to meet the different types of requirements.
It is also important to not over estimate what a 100% guarantee for a set of tasks means.
This guarantee is a logical analysis based on assumptions which may become false due to
overloads, failures, or errors (such as an incorrectly specified worst case time for a task).
Consequently, even with 100% guarantees there is a need for error handlers and other
reliability techniques.

3 The Spring Kernel

In this Section we present the main ideas supported by the Spring Kernel. See [1, 3, 8, 9,
17] for descriptions of other interesting real-time kernels.



3.1 Types of Tasks

Our approach categorizes the types of tasks found in real-time applications depending
on their interaction with and impact on the environment. This gives rise to two main
criteria on the basis of which to classify tasks: importance and timing requirements. Our
Kernel then treats the different classes of tasks differently thereby reducing the overall
complexity.

Based on importance and timing requirements we define three types of tasks: critical
tasks, essential tasks, and non-essential tasks. Tasks’ timing requirements may range over
a wide spectrum including hard deadlines, soft deadlines, periodic execution requirements,
while other tasks may have no explicit timing requirements. Critical tasks are those tasks
which must make their deadline, otherwise a catastrophic result might occur (missing
their deadlines will contribute a minus infinity value to the system). It must be shown a
priort that these tasks will always meet their deadlines subject to some specified number
of failures. Resources will be reserved for such tasks. That is, a worst case analysis must
be done for these tasks to guarantee that their deadlines are met. Using current OS
paradigms such a worst case analysis, even for a small number of tasks is complex. Our
new, more predictable Kernel facilitates this worst case analysis. Note that the number
of truly critical tasks (even in very large systems) will be small in comparison to the
total number of tasks in the system. Fssential tasks are tasks that are necessary to the
operation of the system, have specific timing constraints, and will degrade the performance
of the system if their timing constraints are not met. However, essential tasks will not
cause a catastrophe if they are not finished on time. There are a large number of such
tasks. It is necessary to treat such tasks in a dynamic manner as it is impossible to reserve
enough resources for all contingencies with respect to these tasks. Our approach applies
an on-line, dynamic guarantee algorithm (see [7]) to this collection of tasks. Importance
levels of essential tasks may differ. Also, the importance level of a given task may change
with time. Non-essential tasks, whether they have deadlines or not, execute when they
do not impact critical or essential tasks. Many background tasks, long range planning
tasks, maintenance functions, etc. fall into this category.

3.2 The New Paradigm

In light of the complexities of real-time systems, the key to next generation real-time
operating systems will be finding the correct approach to make the systems predictable
yet flexible in such a way as to be able to assess the performance of the system with
respect to requirements, especially timing requirements. In particular, the Spring Kernel
stresses the real-time and flexibility requirements, and also contains several features to
support fault tolerance. Our approach combines the following ideas resulting, we believe,
in a new paradigm. They ideas are:

e resource segmentation/partitioning,



o functional partitioning,

e selective preallocation,

e a priort guarantee for critical tasks,

e an on-line guarantee for essential tasks,

o integrated CPU scheduling and resource allocation,

o use of the scheduler in a planning mode,

e the separation of importance and timing constraints, e.g., a deadline,
e end-to-end scheduling, and

o the utilization of significant information about tasks at run time including timing,
task importance, fault tolerance requirements, etc. and the ability to dynamically
alter this information.

The first three ideas are not new, but are quite useful and, consequently, we make use
of them. We now briefly indicate how the Spring Kernel incorporates the above ideas,
thereby supporting predictability and flexibility.

Resource Segmentation: All resources in the system are partitioned into well de-
fined entities. The Kernel supports the resource abstractions of tasks and task groups,
and various resource segments such as code, stacks, task control blocks (TCBs), task
descriptors (TDs), local data, global data, ports, virtual disks, and non segmented mem-
ory. It is important to note that tasks and task groups (which includes the operating
system primitives ) are time and resource segmented and bounded meaning that they are
composed of well defined segments and that both the worst case execution times and
the worst case resource requirements for these tasks are known. Kernel primitives are
also time and resource segmented and bounded. There exists a prologue (as part of an
Invoke primitive) that uses formulas for worst case needs to compute the timing and re-
source requirements for the current invocation. Resource segmentation thereby provides
the scheduling algorithm with a clear picture of all the individual resources that must
be allocated and scheduled. This contributes to the microscopic predictability, i.e., each
task upon being activated is bounded in time and resource requirements. Microscopic
predictability is necessary, but not sufficient condition for overall system predictability.

Functional Partitioning: Each node in SpringNet is a multiprocessor. Structuring
a Spring node as a multiprocessor with specialized components is a prerequisite for func-
tional partitioning. There is a system processor, a communications processor, one or more
application processors, and one or more front end I/O processors. Application processors
execute previously guaranteed and relatively high level application tasks. System proces-
sors offload the scheduling algorithm and other OS overhead from the application tasks
both for speed, and so that external interrupts and OS overhead do not cause
uncertainty in executing guaranteed tasks. Upon failure of the system processor,



one of the application processors can become the systems processor. Functional parti-
tioning provides many benefits including dividing a large problem into more manageable
pieces, allowing us to treat critical, essential and non-essential tasks differently, allowing
different solutions for different levels of granularity of timing constraints, and enabling
the isolation of tasks that run on the application processors from unpredictable interrupts
generated by the non-deterministic environment. This latter point is extremely impor-
tant and together with our guarantee algorithm allows us to construct a more macroscopic
view of predictable performance since the collection of tasks currently guaranteed to ex-
ecute by their deadline are not subject to unknown, environment-driven interrupts. The
unexpected interrupts can occur, but they affect the current tasks in a very predictable
manner due to our on-line guarantee approach.

The I/O subsystem is partitioned away from the Spring Kernel and it handles non-
critical I/0O, slow I/O devices, and fast sensors. This shields the application processors
from external processors. Many real-time constraints arise due to I/O devices including
sensors and actuators. The set of I/O devices that exist for a given application will
be relatively static in most systems. Even if the I/O devices change, since they can
be partitioned from the application processors and changes to them are isolated, these
changes have minimal impact on the Kernel. Special independent driver processes must
be designed to handle the special timing needs of these devices. In Spring we separate slow
and fast I/O devices. Slow I/O devices are multiplexed through a front end dedicated I/O
processor. System support for this is predetermined and not part of the dynamic on-line
guarantee. For example, the I/O processor might be running a cyclic scheduler or a rate
monotonic scheduler, etc. However, the slow I/O devices might invoke a task which does
have a deadline and which is subject to the guarantee. Fast I/O devices such as sensors
are handled with a dedicated processor, or have dedicated cycles on a given processor or
bus. The processors might be front-end I/O processors or one or more of the application
processors. The fast I/O devices are critical since they interact more closely with the real-
time application and have tight time constraints. They might invoke subsequent higher
level real-time tasks. However, it is precisely because of the tight timing constraints and
the relatively static nature of the collection of sensors that we preallocate resources for the
fast I/O sensors. In summary, our strategy suggests that some of the tasks which have
real-time constraints can be dealt with statically, and others by a dynamic scheduling
algorithm in the front-end. This leaves a smaller number of tasks which typically have
higher levels of functionality and can tolerate a greater latency, for the dynamic, on-line
guarantee routine.

Selective Preallocation: Critical tasks and tasks with very fast I/O requirements
are preallocated. Further, the Spring Kernel contains task management primitives that
utilize the notion of preallocation where possible to improve speed and to eliminate un-
predictable delays. For example, all essential tasks are memory resident, or are made
memory resident before they can be invoked. In addition, a system initialization program
loads code, and sets up stacks, TCBs, TDs, local data, global data, ports, virtual disks
and non segmented memory using the Kernel primitives. Multiple instances of a task or
task group may be created at initialization time and multiple free TCBs, TDs, ports and
virtual disks may also be created at initialization time. Subsequently, dynamic operation



of the system only needs to free and allocate (the first item on a list) these segments
rather than creating them. While facilities also exist for dynamically creating new seg-
ments of any type, such facilities should not be used under hard real-time constraints.
Using this approach, the system can be fast and predictable, yet still be flexible enough
to accommodate major changes in non hard real-time mode.

A Priori Guarantee for Critical Tasks: The notion of guaranteeing timing constraints
is central to our approach. However, because we are dealing with large, complex systems
in non-deterministic environments, the guarantee is separated into two main parts: an a
priort guarantee for critical tasks and an on-line guarantee for essential tasks. All critical
tasks are guaranteed a priori and resources are reserved for them either in dedicated
processors, or as a dedicated collection of resource slices on the application processors
(this is part of the selective preallocation policy used in Spring). Resources are provided
under specified failure assumptions. For example, if ¢ Byzantine processor failures should
be accommodated, resources are provided for 2t + 1 replicates of a task. Hence, critical
tasks are guaranteed for the entire lifetime of the system. While a prior: dedicating
resources to critical tasks is, of course, not flexible, due to the importance of these tasks,
we have no other choice! On the positive side, typically, the ratio of critical tasks to
essential tasks is very small.

On-line Guarantee for Essential Tasks: Due to the large numbers of essential
tasks and to the extremely large number of their possible invocation orders, preallocation
of resources to essential tasks is not possible due to cost, nor desirable due to its inflex-
ibility. Hence, this class of tasks is guaranteed on-line via the algorithm presented in
[7]. This allows for many task invocation scenarios to be handled dynamically (partially
supporting the flexibility requirement). However, the notion of on-line guarantee has a
very specific meaning as described in the first itemized point below. The basic notion and
properties of guarantee for essential tasks have been developed elsewhere [7] and have the
following characteristics:

e it allows the unique abstraction that at any point in time the operating system knows
exactly which tasks have been guaranteed to make their deadlines', what, where
and when spare resources exist or will exist, a complete schedule for the guaranteed
tasks, and which tasks are running under non-guaranteed assumptions. However,
because of the non-deterministic environment the capabilities of the system may
change over time, so the on-line guarantee for essential tasks is an instantaneous
guarantee that refers to the current state. Consequently, at any point in time we
have the macroscopic view that all critical tasks will make their deadlines and we
know ezactly which essential tasks will make their deadlines given the current load?,

In contrast, current real-time scheduling algorithms, such as earliest deadline, have no global knowl-
edge of the task set nor of the system’s ability to meet deadlines; they only know which task to run
next.

2Tt is also possible to develop an overall quantitative, but probabilistic assessment of the performance
of essential tasks. For example, given expected normal and overload workloads, we can compute the
average percentage of essential tasks that are guaranteed, i.e., make their deadlines.



e conflicts over resources are avoided thereby eliminating the random nature of waiting
for resources found in timesharing operating systems (this same feature also tends
to minimize context switches since tasks are not being context switched to wait for
resources). Basically, resource conflicts are solved by scheduling tasks at different
times if they contend for a given resource,

e there is a separation of dispatching and guarantee allowing these system functions to
run in parallel; the dispatcher is always working with a set of tasks which have been
previously guaranteed to make their deadlines and the guarantee routine operates
on the current set of guaranteed tasks plus any newly invoked tasks,

e provides early notification; by performing the guarantee calculation when a task
arrives there may be time to reallocate the task to another host of the system via
the distributed scheduling module of the scheduling approach; early notification also
has fault tolerance implications in that it is now possible to run alternative error
handling tasks early, before a deadline is missed,

e within this approach there is the notion of still “possibly” meeting the deadline
even if the task is not guaranteed, that is, if a task is not guaranteed it could receive
idle cycles at this node, and, in parallel, there can be an attempt to get the task
guaranteed on another host of the system subject to location dependent constraints,
or based on the fault tolerance semantics of the task, various alternatives could be
invoked,

o the guarantee routine supports the co-existence of real-time and non real-time tasks,
and note that this is non-trivial when non real-time tasks might use some of the
same resources as real-time tasks,

o the guarantee can be subject to computation time requirements, deadline or periodic
time constraints, resource requirements where resources are segmented, importance
levels for tasks, precedence constraints, I/O requirements, etc. depending on the
specific guarantee algorithm being used in a given system.

Integrated CPU Scheduling and Resource Allocation: Current real-time
scheduling algorithms schedule the CPU independently of other resources. For exam-
ple, consider a typical real-time scheduling algorithm, earliest deadline first. Scheduling
a task which has the earliest deadline does no good if it subsequently blocks because a
resource it requires is unavailable. Qur approach integrates CPU scheduling and resource
allocation so that this blocking never occurs. Scheduling is an integral part of the Kernel
and the abstraction provided is one of a guaranteed task set.

By integrating CPU scheduling and resource allocation at run time, we are able to
understand (at each point in time), the current resource contention and completely control
it so that task performance with respect to deadlines is predictable, rather than letting
resource contention occur in a random pattern resulting in an unpredictable system.

Use of Scheduler in Planning Mode: Another important feature of our scheduling
approach is how and when we use the scheduler, i.e., we use it in a planning mode when



a new task is invoked. When a new task is invoked, the scheduler attempts to plan a
schedule for it and some number of other tasks so that all tasks can make their deadlines.
This enables our system to understand the total load of the system and to make intelligent
decisions when a guarantee cannot be made, e.g. see the next point below. This is at odds
with other real-time scheduling algorithms which, as mentioned earlier, have a myopic
view of the set of tasks. That is, these algorithms only know which task to run next
and have no understanding of the total load or current capabilities of the system. This
planning is done on the system processor in parallel with the previously guaranteed tasks
so it must account for those tasks which may be completed before it itself completes.

Separation of Importance and Deadline: A major advantage of our approach is
that we can separate deadlines from importance. This is necessary since importance and
deadline are orthogonal task characteristics. Again, all critical tasks are of the utmost
importance and are a priori scheduled. Essential tasks are not critical, but each is as-
signed a level of importance which may vary as system conditions change. To maximize
the value of executed tasks, all critical tasks should make their deadlines and as many
essential tasks as possible should also make their deadlines. Ideally, if any essential tasks
cannot make their deadlines, then those tasks which do not execute should be the least
important ones. In the first phase of the guarantee algorithm, scheduling is done ignoring
importance. If all tasks are guaranteed then the importance value plays no part. On the
other hand, when a newly invoked essential task is not guaranteed, then the guarantee
routine will remove the least important tasks from the system task table if those pre-
emptions contribute to the subsequent guarantee of the new task. The low importance
eliminated tasks, or the original task, if none, are then subject to distributed scheduling.
Various algorithms for this combination of deadlines and importance have been developed
and analyzed [2]. It is important to point out that our approach is much more flexible
at handling the combination of timing and importance than a static priority schedul-
ing mechanism typically found in real-time systems. For example, using static priority
scheduling a designer may have a task with a short deadline and low importance, and
another task with a long deadline and high importance. For average loads it is usually
acceptable to assign the short deadline task the higher priority, and under these loads all
tasks probably make their deadlines. However, if there is overload, it will be the high
importance task which ends up missing its deadline. This condition would not occur with
our scheme.

End-to-End Scheduling: Most application level functions (such as stop the robot
before it hits the wall) which must be accomplished under a timing constraint are actually
composed of a set of smaller dispatchable tasks. Previous real-time kernels do not provide
support for a collection of tasks with a single deadline. The Spring Kernel supports tasks
and task groups and is currently developing support for dependent task groups. A task
group is a collection of simple tasks that have precedence constraints among themselves,
but have a single deadline. Each task acquires resources before it begins and can release
the resources upon its completion. For task groups, it is assumed that when the task
group is invoked the worst case computation time and resource requirements of each
task can be determined. A dependent task group is the same as a task group except
that computation time and resource requirements of only those tasks with no precedence



constraints are known at invocation time. Needs of the remaining tasks of the dependent
group can only be known when all preceding tasks are completed. The dependent task
group requires some special handling with respect to guarantees which we have not done
at this time. Precedence constraints are used to model end-to-end timing constraints both
for a single node and across nodes and the scheduling heuristic we use can account for
precedence constraints.

Dynamic Utilization of Task Information: Information about tasks and task
groups is retained at run time and includes formulas describing worst case execution time,
deadlines or other timing requirements, importance level, precedence constraints, resource
requirements, fault tolerance requirements, task group information, etc. The Kernel then
dynamically utilizes this information to guarantee timing and other requirements of the
system. In other words, our approach retains significant amounts of semantic information
about a task or task group which can be utilized at run time. Kernel primitives exist to
inquire about this information and to dynamically alter the information. This enhances
the flexibility of the system.

4 The Reflective Nature of the Spring Kernel

Computational reflection is normally defined as an activity performed by a computational
system when doing computation about (and by that, possibly affecting) its own compu-
tation. In our context reflection means the ability of the Kernel to maintain and act
on information concerning the application, the environment, and the Kernel itself. This
includes identifying what information is to be used, how to monitor this information,
and how to dynamically adapt the system. Examples of reflection include keeping and
using performance statistics, keeping information for debugging or on-line decision mak-
ing, performing computation to decide what computation to pursue next (or for the next
interval), self-optimization, and self-modification. Features covering all these examples
appear or are planned for the Spring Kernel [14, 6]. Much of the reflective capabilities of
the Kernel arise from the task management and scheduling features of the Kernel. We
restrict our discussion to these areas.

4.1 Reflection in Task Management and Scheduling

Tasks arise when real-time programs - specified in the form of communicating processes
- are decomposed into schedulable entities, namely tasks, with precedence relationships,
resource requirements, fault tolerance requirements, importance levels, and timing con-
straints. The task management primitives support executable and guaranteeable entities
called tasks and task groups. A task consists of reentrant code, local data, global data, a
stack, a TD, and a TCB. Multiple instances of a task may be invoked. In this case the
(reentrant) code and task descriptor are shared. A task group is a collection of simple
tasks that have precedence constraints among themselves, but have a single group dead-



line. Each task acquires resources before it begins and releases the resources upon its
completion. For task groups, it is assumed that when the task group is invoked, all tasks
in the group can be sized (this means that the worst case computation time and resource
requirements of each task can be determined at invocation time). More flexible types of
task groups are currently being investigated.

We require that designers follow strict rules and guidelines in programming. The
purpose is to facilitate subsequent analysis of timing requirements. In order to support
on-line analysis we use reflection. We require that tasks be characterized by:

e C (a worst case execution time - may be a formula that depends on various input
data and/or state information pertaining to a specific task invocation),

e D (Deadline) or period or other real-time constraint
e preemptive or non-preemptive property

e maximum number and type of resources needed (this includes memory segments,
ports, etc.)

e type: critical, essential, or non-essential

e importance level for essential and non-essential tasks (this is an indication of the
value imparted to the system by the execution of the task)

e incremental task or not (incremental tasks compute an initial answer quickly and
then continue to refine the answer for the rest of its requested computation time)

e location of task copies indicating the various nodes in the distributed system and
on which processor of each node where the task resides,

e Group ID, if any (tasks may be part of a task group)

e precedence graph (describes the required precedence among tasks in a task group
or a dependent task group)

e communication graph (list of tasks with which a task communicates), and type of
communication (asynchronous or synchronous)

a fault model (described below).

All the above information concerning a task is maintained in the task descriptor (TD)
and used as part of the on-line decision making. In other words, the system maintains
information about itself and subsequently uses that information to make more intelligent
decisions. Much of the above information is also maintained in the task control block
(TCB) with the difference being that the information in the task control block is specific
to a particular instance of the task. For example, a task descriptor might indicate that
the worst case execution time for TASK A is 5z milliseconds where z is the number of
input data items at the time the task is invoked. At invocation time a short procedure



is executed to compute the actual worst case time for this module and this value is then
inserted into the TCB. The guarantee is then performed against this specific task instance.
All the other fields dealing with time, computation, resources or importance are handled
in a similar way. Further, all these fields can be modified (via the Modify primitive), e.g.,
the importance of a task may vary depending on the overall state of the system or the
environment.

Our scheduling approach separates policy from mechanism and is composed of 4 lev-
els. The 3 highest levels exhibit many of the features of reflection, while the lowest level
does not. At the lowest level multiple dispatchers exist; one type of dispatcher runs on
each of the application processors, and another type executes on the system processor.
The application dispatchers simply remove the next (ready) task from a system task table
(STT) that contains previously guaranteed tasks arranged in the proper order for each
application processor. The system dispatcher provides for the periodic execution of sys-
tems tasks, and asynchronous invocation when it can determine that allowing these extra
invocations will not adversely affect guaranteed tasks, nor the minimum guaranteed peri-
odic rate of other system tasks. Asynchronous invocation of system tasks are ordered by
importance, e.g., the local scheduler is of higher importance than the meta level controller
(see below).

The three higher level scheduling modules are executed on the system processor. The
second level is a local scheduler. The local scheduler is responsible for locally guaranteeing
that a new task or task group can make its deadline, and for ordering the tasks properly in
the STT using information about the environment, the system state, and the semantics of
the application task. Another reflective property is that we are planning the computation
of the system (far) out into the future. The local scheduler, when invoked, attempts to
guarantee any new tasks or task groups that arrived since its last activation. It guarantees
the new task if the task can be scheduled to complete before its deadline and if the
previously guaranteed tasks are not jeopardized by the execution of the new task. If it
cannot make the guarantee then it invokes the fault tolerance model for this task which
indicates one of the following alternatives:

try to guarantee a shorter, error handler,

e remove low importance tasks until guaranteed,

perform distributed scheduling,
e try to execute without a guarantee, or

abort.

The third scheduling level is the distributed scheduler which attempts to find a node
for execution for any task or for components of a task group that have to execute on
different nodes [5], because they cannot be locally guaranteed. The fourth level is a Meta
Level Controller (MLC) which has the responsibility of adapting various parameters or
switching scheduling algorithms for both local and distributed scheduling by noticing



significant changes in the environment. The MLC is a decentralized controller based on
heuristics with the purpose of controlling the scheduling itself. The capabilities of the
MLC support some of the adaptability and flexibility needs of next generation real-time
systems. The MLC provides a user interface allowing dynamic changes to meta-level
control policies as well as providing a means for the user to provide an even higher level
of control. See [6] for more details. The MLC exhibits the self-optimization and self-
modification features of reflection.

In the future, we plan to have the scheduler dynamically monitor the success ratio of
essential tasks. If the success ratio drops below a certain level, immediate and long term
corrective actions can be planned, e.g., performing distributed reallocation and scheduling,
or simply announcing degraded service available from the system, or notifying the system
managers that additional processing power must be added to the system.

To these basic scheduling modules we plan to add one or more Time Planners which
have access to the task descriptors, and a condition monitor facility [14]. The Time
Planners could be considered versions of the local scheduler being invoked for different
purposes, i.e., to suggest tradeoffs, to perform planning of future schedules for tasks, or
to suggest causes of the problems in the current plan. Multiple Time Planners may be
invoked simultaneously, each assessing different alternatives. An example of a tradeoff
that might be identified is either Tasks 1,2,3 and 4 can complete, or Tasks 1,2, and 3 can
complete together with short error handlers for Tasks 4 and 5. The condition monitor
facility permits various (situations,action) pairs to be defined and monitored. The set
of situations to monitor and the actions to perform are dynamically modifiable and can
relate to the state of the environment or the system. Various levels of importance can be
attached to the different situations being modified.

5 Summary

One goal of our research is to show that a real-time system meets its timing requirements.
Achieving this goal is non-trivial and requires research breakthroughs in many aspects
of system design and implementation. For example, good design rules and constraints
must be used to guide real-time system developers so that subsequent implementation
and analysis can be facilitated. Programming language features must be tailored to these
rules and constraints, must limit its features to enhance predictability, and must provide
the ability to specify timing, fault tolerance and other information for subsequent use at
run time. Execution time of each primitive of the Kernel must be bounded and predictable,
and the operating system should provide explicit support for all the requirements including
the real-time requirements. Further, the operating system should support flexibility,
adaptability and long-lived systems. We believe that reflection is an important property
to achieve these goals. The hardware must also adhere to the rules and constraints and
be simple enough so that predictable timing information can be obtained, e.g., caching,
memory refresh and wait states, pipelining, and some complex instructions all contribute
to timing analysis difficulties. An insidious aspect of critical real-time systems, especially



with respect to the real-time requirements, is that the weakest link in the entire system
can undermine careful design and analysis at other levels. Our research is attempting to
address these issues in an integrated fashion.
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