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Abstract

Due to resource sharing among tasks, priority inversion can occur during priority-
driven preemptive scheduling. In this work, we investigate solutions to the priority
inversion problem in a real-time database environment where two-phase locking is em-
ployed for concurrency control. We examine two basic schemes for addressing the prior-
ity inversion problem, one based on priority inheritance and the other based on priority
abort. We also study a new scheme, called conditional priority inheritance, which at-
tempts to capitalize on the advantages of each of the two basic schemes. In contrast
with previous results obtained in real-time operating systems, our performance stud-
ies, conducted on an actual real-time database testbed, indicate that the basic priority
inheritance protocol is inappropriate for solving the priority inversion problem in real-
time database systems. We also show that the conditional priority inheritance scheme
and the priority abort scheme perform well for a wide range of system workloads.
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1 Introduction

Priority-driven preemptive scheduling is an approach commonly used in real-time systems.
However, in this case, priority inversion may occur due to the sharing of resources among
tasks [11]. Priority inversion is said to occur when a higher priority task must wait for a
lower priority task to release a shared resource. Priority inversion can cause unbounded
delay to high priority tasks. This prolonged wait may result in the higher priority tasks
missing their deadlines, thus degrading the performance of real-time systems.

Priority inversion has been studied in real-time operating systems [10]. The basic
approach proposed to rectify the problem is the priority inheritance protocol [11], where
the low priority task is allowed to execute at the highest priority of all of the high priority
tasks that it blocks, and eventually return to its original priority level after using the
shared resources that caused the blocking. The idea is to allow the low priority task to
run and release its resources quickly so that the higher priority tasks can continue its
execution. The performance studies based on the rate-monotonic scheduling framework [10]
have demonstrated that the priority inheritance protocol, applied to the shared resources
accessed via semaphores, provides a significant performance advantage.

The goal of this work is to investigate the priority inversion problem in a particular
real-time environment - a real-time database system where a two-phase locking concurrency
control protocol is employed to enforce data consistency. Unlike real-time systems where
task conflict over shared system resources may last for a short period of time, in real-time
database systems, transaction conflict over shared data may last as long as the execution
time of a transaction. It can last even longer in the case of cascaded blocking. Here
we consider tow basic schemes for rectifying the problems due to priority inversion, one
based on priority inheritance and the other based on priority abort (abort the lower priority
transaction when priority inversion occurs). We seek answers to the following questions.

o Is the priority inheritance scheme an appropriate method for solving the priority
inversion problem in real-time database systems?

e Which mechanism, priority inheritance or priority abort, is better?

e Is there a better approach other than these two basic schemes?

In this study, we first evaluate the implications of using the priority inheritance and
priority abort schemes. Based on this evaluation, we develop a combined priority abort
and priority inheritance scheme, called conditional priority inheritance, which attempts to
capitalize on the advantages of each of the above two schemes. Specifically, this scheme
uses priority inheritance once a transaction is near completion; otherwise it aborts the
transaction if its priority is low. The performance studies conducted on our testbed indicate
that the basic priority inheritance protocol is inappropriate for solving the priority inversion
problem in real-time database systems. We show that a better solution is to make use of
the priority-abort based strategies, namely the simple priority abort and the conditional
priority inheritance schemes. Moreover, there appears to be no clear winner between these



two schemes. The choice depends on the degree of resource contention and the transaction
deadline distribution.

This paper is organized as follows. In Section 2, we first describe the problem of
priority inversion in real-time database systems. Then we discuss the implications of using
the priority inheritance scheme and the priority abort scheme under two-phase locking, and
propose a conditional priority inheritance scheme for resolving priority inversion. In Section
3, we describe the real-time database testbed that was used for the performance studies.
The experimental results are presented and discussed in detail in Section 4. Finally, we give
concluding remarks and outline future work in Section 5.

2 Transaction Scheduling Under Two-Phase Locking

In this study, we consider real-time database systems where a deadline is associated with
each transaction and data consistency is maintained according to the serializability correct-
ness criterion. In such a real-time environment, the execution of concurrent transactions
should be scheduled so as to meet their timing constraints, and at the same time, transaction
execution should also be governed by a concurrency control protocol in order to achieve se-
rializability. In this work, we study real-time database systems that employ priority-driven
preemptive scheduling* for CPU scheduling and two-phase locking for concurrency control.

For real-time priority-driven preemptive scheduling, each transaction is assigned a pri-
ority according to its deadline. The execution of concurrent transactions is scheduled based
on their assigned priority. Ideally, a high priority transaction should never be blocked by
any lower priority transaction. In particular, a transaction may get CPU service by pre-
empting a lower priority transaction from the CPU. The preempted transaction is placed
in the ready queue and resumes its execution when the CPU becomes available.

Under two-phase locking, on the other hand, a transaction must obtain a lock before
accessing a data object and release the lock when it terminates (commits or aborts). A
lock-requesting transaction will be placed in a wait queue if its lock mode is found to be
incompatible with that of the lock-holding transaction(s). The queued transaction can
proceed only when it is granted the lock.

When the priority-driven preemptive scheduling approach and the two-phase locking
protocol are simply integrated together in a real-time database system, a problem, known
as priority tnversion, arises. Priority inversion occurs when a higher priority transaction
must wait for the execution of lower priority transaction(s). This scheduling problem results
from the use of locking for concurrency control. Under the two-phase locking protocol, as
we just described, a high priority transaction which requests a lock may conflict with a lower
priority transaction which holds the lock. The high priority transaction has to wait for the
lock while the lower priority transaction continues. Here transaction wait is necessary in
order to ensure data consistency. However, blocking with priority inversion implies that
higher priority transactions are waiting while lower priority transactions are in execution.

! Non-preemptive scheduling is not appropriate in a database setting since long transactions and I/O
cause unnecessary blocking to other transactions thus preventing them from meeting their deadlines.



This defeats the purpose behind priority assignment. Even worse, the blocking delay may
be unbounded. This can be illustrated by the following two, or combination of the two,
situations.

¢ Data resource blocking: A high priority transaction can be blocked by more than
one low priority transaction when a data access conflict occurs. For instance, a trans-
action requesting a write lock on a data object may conflict with a group of trans-
actions holding read locks on that object. Furthermore, it is possible that the lock
holder(s) is waiting for other transactions due to data access conflict. Thus, the
blocked high-priority transaction can be delayed for an unbounded period of time.

¢ CPU resource blocking: The blocking of a high priority transaction can be pro-
longed by intermediate priority transactions that have no access conflict with it but
need CPU time. Assume that transaction Tz has higher priority than 77 and is
blocked by T, due to an access conflict. While T is waiting for the lock and 77, is
executing, some transaction(s) Ta may arrive, whose assigned priority lies between
the priorities of Ty and Tf. In this case, T will preempt 77, and take over the CPU.
Clearly, even if Ts has no access conflict with the higher priority Tx, its execution
will delay Tg. Thus, the high priority transaction can be blocked indefinitely due to
the execution of the intermediate priority transactions.

Clearly, the blocking resulting from priority inversion is a serious problem for real-time
transaction scheduling. In the following, we first look at a scheme, called priority inheritance
[12, 10], which eliminates the problem of CPU resource blocking and attempts to reduce the
period of priority inversion. Then, we examine another approach based on priority abort
[1, 6], which completely eliminates the problem of priority inversion as well as CPU resource
blocking. Based on the analysis of the two schemes, we then propose a combined priority
abort and priority inheritance scheme, called conditional priority inheritance.

Note that the priority ceiling protocol [12, 3, 13] is another scheme developed to solve the
priority inversion problem. Under this scheme, the priority inversion is bounded to no more
than one transaction execution time. The scheme also has the property of deadlock freedom.
However, this scheme requires prior knowledge about the data objects to be accessed by each
transaction. This condition appears to be too restrictive in many applications. Moreover,
the scheme becomes extremely conservative, with respect to the number of transactions
that can execute concurrently, if transactions can access any data objects in the database.
Due to these reasons, we do not consider this particular scheme in this study.

Priority Inheritance (PI)

Under priority inheritance, when priority inversion occurs, the low priority transaction
holding the lock will execute at the priority of the highest priority transaction waiting for
the lock, until it terminates. Because of the increase in priority, the lock-holding transaction
may run faster than it will without priority change, thus releasing its lock quickly. As a
result, the blocking time for the high priority transaction may be reduced.

The priority inheritance scheme also eliminates the problem of CPU resource blocking.
Consider the example that we discussed above. Suppose T is blocked by 77, due to data



access conflict. Then, by using priority inheritance, T, will execute at the priority of T .
Now if Ty, an intermediate priority transaction, arrives, it cannot preempt 77 since its
priority is less than the inherited priority of Tr. Thus, Ty will not be delayed by T;.

The priority inheritance scheme provides a significant performance improvement in
real-time operating systems, as shown in [10]. However, it has shortcomings when used
in real-time database systems. First, under strict two-phase locking, a transaction may
hold a lock throughout its execution. This “life-tsme blocking” may be too long for a high
priority transaction to wait, even though the lock-holding transaction may execute faster
after inheriting the higher priority. The problem will be worse if a high priority transaction
encounters priority inversion with data resource blocking, or if the high priority transaction
is blocked by low priority transactions many times along the course of its execution, a
situation called chained blocking [11]. Second, an increase in priority for one transaction
may affect other concurrent transactions. In other words, a low priority transaction with an
inherited high priority will compete for system resources (CPU, I/0, data objects, critical
sections, etc.) with other non-blocking high priority transactions, which might lower the
performance of those high priority transactions. Also, due to the increase in the competition
for data objects, the conflict rate may increase.

As we can see, there are many ramifications when priority inheritance is combined
with two-phase locking. On the one hand, the scheme may reduce the duration of priority
inversion and eliminate the problem of CPU resource blocking. But on the other hand,
the “life-time blocking” nature of two-phase locking may prevent the scheme from being
effective.

Priority Abort (PA)

The priority abort scheme overcomes the priority inversion problem by aborting the low
priority transaction. When a lock-requesting transaction 77 conflicts with a lock-holding
transaction Ty, Ty is aborted if T4’s priority is higher than that of T5; otherwise, T7 will
wait for T5.2 In this way, a high priority transaction will never be blocked by any lower
priority transactions. Therefore, priority inversion is completely eliminated. Note that
under the priority abort scheme, the problems of “life-time blocking” and “chained blocking”
encountered by priority inheritance scheme disappears.

The “non-blocking” nature of the priority abort scheme is highly desirable to real-time
transaction scheduling, but it may have a negative side effect on the system, i.e., it may
lead to a high transaction abort rate due to data access conflict. The higher the abort rate,
the more the wasted system resources. This may become a serious problem when a system
already contains highly utilized resources.

Each of the two schemes, PI and PA, for addressing the priority inversion problem
has its advantages and disadvantages. The main trade-off between the two schemes is the
potentially long blocking time versus the high conflict abort rate. In order to minimize the
effects of these two problems, we propose a combined priority inheritance and priority abort
scheme, called conditional priority inheritance.

2Tf 71 conflicts with more than one transaction, 71 will abort the conflicting transactions only if its
priority is higher than that of all the conflicting transactions.



Conditional Priority Inheritance (CP)

The basic idea behind this scheme is the following. When priority inversion is detected,
if the low priority transaction is near completion, it inherits the priority of the high priority
transaction, thus avoiding an abort with its waste of resource; otherwise, the low priority
transaction is aborted, thereby avoiding the long blocking time for the high priority trans-
action, and also reducing the amount of wasted resources used thus far by the low priority
transaction.

Here we assume that transaction length (defined as the number of steps) is known in
advance. This assumption is reasonable for many application environments like banking
and inventory management. Let L7 be the length of transaction 7', 1 be the number of
steps that T has executed thus far, and pr be T’s priority. Then, our conditional priority
inheritance scheme can be described by the following algorithm.

T} requests a data object being locked by T with an incompatible lock mode.
if pr, < pr,
then 77 waits for Ty
else
if (LTZ — :ETZ) > h
then abort Ty
else T, inherits T7’s priority
end if
end if

In the algorithm, h is a threshold. For the lock-holding transaction with a lower priority,
if its remaining work (Lt — 1) is less than h, then we apply PI; otherwise we use PA.
This threshold policy, CP, is expected to reduce the blocking time with respect to PI, and
to reduce the abort rate with respect to PA. We define the priority inheritance period to
be the time interval in which the priority inheritance scheme is used rather than priority
abort, i.e., the last h steps of the transaction.

The principal question regarding CP is the choice of threshold value, h. If h is too
small, CP may behave like PA. On the other hand, if h is too large, CP may behave like
PI. In addition, the setting of h should take into account the distribution of data conflicts
with respect to transaction length. The sensitivity of A on performance has been studied
through experiments and the results are discussed in Section 4.

In summary, the presented three schemes solve the priority inversion problem based on
either one or both of the two basic mechanisms, namely, priority inheritance and priority
abort. The trade-off among the schemes is blocking time versus resource consumption.

3 Test Environment

The three schemes, PI, PA and CP, for addressing the priority inversion problem have
been implemented and evaluated on our real-time database testbed RT-CARAT [6]. In this



section, we briefly introduce the test environment, including the testbed organization, the
real-time transaction model, the system parameter settings, and the performance baselines
and metrics.

3.1 Testbed organization

Currently, RT-CARAT is a centralized, secondary storage, real-time database testbed built
on top of the VAX/VMS operating system. It contains all of the major functional com-
ponents of a transaction processing system, such as transaction management, data man-
agement, log management, and communication management. The testbed is implemented
as a set of cooperating server processes which communicate via efficient message passing
mechanisms. A pool of transaction processes (TR’s) simulate the users of the real-time
database. Accordingly, there is a pool of data managers (DM’s) which service transaction
requests from the user processes (the TR’s). There is one transaction manager, called the
TM server, acting as the inter-process communication agent between TR and DM processes.
Communication between TR, TM and DM processes is carried out through mailboxes, a
facility provided by VAX/VMS. To be more efficient, TM and DM processes also share some
information, such as transaction deadline and priority, through a common memory space,

called the global section in VAX/VMS.

Using the underlying VAX/VMS operating system real-time priorities, the priority-
driven preemptive scheduling is done by a CPU scheduler embedded in the TM. Upon the
arrival of a new transaction, the scheduler assigns a priority to the transaction according to
the CPU scheduling policy (earliest-deadline-first in this study). The scheduling operation
is done by mapping the assigned transaction priority to the real-time priority of the DM
process which carries out the transaction execution. At this point, an executing DM will
be preempted if it is not the highest priority DM process at the moment, otherwise it will
continue to run until it completes or until it needs to wait for an I/0. The operation on
priority inheritance is incorporated in the concurrency control protocol in the DM. Similarly,
the priority inheritance operation is performed by changing the priority of corresponding
DM process(es).

RT-CARAT is a system that contains a fixed number of users that submit transaction
requests one after another, with a certain think time (7) in-between. This model captures
many applications in the real world. For example, in an airline reservation system, there
is a fixed number of computer terminals. The airline clerk at each terminal may check a
flight, reserve a seat, or cancel a reservation for customers. After submitting a request to
the system, the clerk waits for a result. He may submit another request after getting a
response from the previous one. (On the other hand, this model certainly does not capture
all applications. For instance, an open system model is more appropriate for a process
control system.)

3.2 Real-time transactions

A transaction is characterized by its length and deadline. The length is specified by T'(z, y),
where z is the number of steps that a transaction needs to execute, and y is the number of



records accessed in each step. Transaction deadline is randomly generated from a uniform
distribution within a deadline window, [d_base,a x d_base], where d_base is the window
baseline and «a is a variable determining the upper bound of the deadline window. For each
workload in the experiments, d_base is specified first by the formula:

d-base = avg_rsp — stnd_dvi

where avg-rsp is the average response time of the read-only transactions with the same
length when executed in a non real-time database environment, and stnd-dvi is the standard
deviation of the response time.

A transaction terminates upon a normal completion or a termination abort. The latter
refers to the situation where a transaction has missed its deadline and it is thus aborted
by the system. The termination abort can happen, for example, in program trading in
stock market when a transaction carrying out a bidding operation fails to meet the broker-
specified deadline. A transaction aborted due to deadlock or data access conflict will be
restarted as long as it has not passed its deadline. Hence a transaction may make multiple
runs before it eventually terminates. Note that a restarted transaction will access the same
set of records as it did in its first run.

3.3 Parameter settings

Table 1 summarizes the parameter settings in the experiments. The table is divided into two
parts. The first part presents the parameters that are kept constant across all workloads,
and the second part are those that change. In our experiments, two separate disks are
used, one for the database and the other for the log. The database consists of 1000 physical
blocks (512 bytes each) with each block containing 6 records for a total of 6,000 records. In
all of the experiments, the multi-programming level in the system is 8. While this is low
compared to what we would find in practice, the database size in the experiments (6000
records) is also smaller than what we would find in practice. With a proper system scaling,
many factors, such as the level of data access conflict, can model practical situations. Thus,
the performance results obtained from the smaller system can reflect the performance of
a larger system. A database may be accessed uniformly or with a certain probability for
some hotspots. Hotspot accesses may create high data contention among transactions. This
effect, in the context of this study, can be modeled by varying the ratio of read and write
transactions (see the parameter P, in the following). For simplicity, only uniform access
is considered here. Similarly, the change of external think time, 7, may affect the actual
system multi-programming level and, in turn, the degree of data contention and resource
contention. Since data contention and resource contention are modeled by P, and system
type (see below), we fix 7 at 0. The number of records to be accessed per transaction step,
y, is also simply fixed at 4. Thereby, the transaction length, T'(z,y), can be varied by one
parameter z.

Experiments were conducted in two different types of systems. One is I/O bound (a
VAXstation 3100/M38 with two RZ55 disks) and the other is CPU bound (a VAXstation
II/GPX with two RD50 disks). The reason for this is to see how different kinds of resource
contention will affect protocol performance. A critical factor in this performance study



Table 1: Experimental Settings

‘ Parameter ‘ Settings ‘
Disks diskl: database; disk2: log.
Database size 1000 blocks (6000 records)
Multiprogramming level 8
Access distribution uniform
T (external think time) 0
y (records accessed per trans. step) | 4 records
system type I/0 bound, CPU bound
z (steps per transaction) 4 - 16 steps
P,, (prob. of write transactions) 02-1.0
a (deadline window factor) 2.0-6.0
h (threshold parameter) 0 - 16 steps

is transaction length T'(z,y), since it is directly related to transaction blocking time. As
mentioned above, we vary @, while fixing y. We are also interested in the effect of P,,
the probability of write transactions among the concurrent ones on performance. This is
because it directly affects data contention and, hence, the chance of priority inversion. In
addition, the deadline window factor, «, is a timing-related parameter which specifies the
deadline distribution of real-time transactions. The smaller the value of a, the tighter the
transaction deadlines are and vice versa. Moreover, to study the conflict resolution scheme
CP, we vary h, the threshold parameter.

3.4 Performance baselines and metrics

Table 2 lists the policies we examined in this performance study. Here each policy is a com-
bination of a CPU scheduling scheme and a conflict resolution scheme. The CPU scheduling
scheme is either priority-driven or non priority-driven (multi-level feedback queue). The for-
mer represents the nature of CPU scheduling in real-time databases, while the latter in
traditional databases. Transaction priority can be assigned based on various transaction
parameters, such as deadline, criticalness (i.e., the degree of importance), and length. Since
the study of priority inheritance scheme is considered to be orthogonal to priority assignment
policies and also meeting transaction deadline is the main concern on protocol performance,
we employ the earliest-deadline-first (EDF) policy for transaction priority assignment. For
studies on other priority assignment policies based on transaction slack time, criticalness,

or length, the reader is referred to [1, 6, 4, 8].
Besides PI, PA and CP discussed in Section 2, we also look at two other policies,

NRT (non-real-time) and WAIT, for the sake of performance comparisons. Representing
a non real-time transaction processing system, NRT is the performance baseline in these
experiments. Under NRT, transactions are scheduled by a multi-level feedback queue policy,
and in case of data access conflict the lock-requesting transaction is always placed in a



Table 2: Policies Examined

‘ Policy H CPU scheduling ‘ Conflict resolution ‘
NRT multi-level feedback queue | always wait
WAIT || earliest deadline first always wait
PI earliest deadline first priority inheritance
PA earliest deadline first priority abort
CP earliest deadline first conditional PI/PA

FIFO wait queue. In other words, transaction timing information is used neither in CPU
scheduling nor in conflict resolution under NRT.

Unlike NRT, WAIT uses priority-driven CPU scheduling, based on EDF. However,
it does not take transaction priority into account for conflict resolution: It is always the
lock-requesting transaction that will be placed into a wait queue. This policy enables us to
isolate the performance differences due to the use of PI, PA, or CP.

In the experiments we use the following metrics for performance evaluation.

e Deadline guarantee ratio - the percentage of submitted transactions that complete by
their deadlines.

e Priority inversions per run - the average number of instances, for each run, that a
lock-requesting transaction is blocked by lower priority transaction(s).

e Data resource blocking - the average number of (lower priority) transactions blocking
a lock-requesting transaction. (See Section 2.)

e PD abort ratio - the total number of priority aborts and deadlock aborts, divided by
the number of submitted transactions.

e Number of waits per run - the average number of lock-waiting instances that a transac-
tion encountered at each run, including blocking instances caused by priority inversion.

e Waiting time - the average waiting time (in seconds) in each wait instance.
e Total waiting time per run - waiting time times number of waits per run (in seconds).

e Wasted operations per transaction - the average total number of transaction steps
wasted due to priority abort or deadlock abort for each submitted transaction.

We also collect statistics on CPU utilization, I/O utilization, and transaction restart ratio.

The data collection in the experiments is based in the method of replication. The
statistical data has 95% confidence intervals with less than + 2% of the point estimate
for deadline guarantee ratio. In the following graphs, we only plot the mean values of the
performance measures.



4 Experimental Results

In this section, we present performance results for the experiments conducted on the RT-
CARAT testbed. The schemes for addressing priority inversion are evaluated in a four
dimensional test space defined by resource contention (I/O or CPU bound), transaction
length, data contention, and deadline distribution. In addition, we examine the effect of
varying h on the performance of the CP scheme. In the following, we first present 4 sets of
experiments carried out in an I/0 bound system (CPU utilization = 65% and I/O utilization
= 95%, on average), and then 1 set of experiments in a CPU bound system (CPU utilization
= 92% and I/O utilization = 55%, on average).

4.1 Data contention

In this set of experiments, we vary P,,, the probability of write transactions, so as to vary
the level of data contention in the system. Transactions are all equal in length with = 6
steps, the deadline window factor a is fixed at 4, and the threshold parameter h is set at 2

(steps).

Figure 1 plots the transaction deadline guarantee ratio versus P, for policies NRT,
WAIT, PI, PA and CP, respectively. As one would expect, the deadline guarantee ratio
drops as data contention increases. Among the five policies, CP performs the best, especially
when data contention becomes high. PA works very well for low data contention. However,
compared to CP, its performance degrades as P,, increases. P and WAIT perform basically
the same with PI being slightly better than WAIT when P, is small. The deadline guarantee
ratio under NRT is the lowest, because it does not make use of any transaction information
such as deadline and transaction length.

As we discussed in Section 3, the performance of these schemes is affected by several
factors. In the following, we explain the results shown in Figure 1 by analyzing the perfor-
mance with respect to priority inversion, blocking time, abort rate, and resource utilization.

Figure 2 shows the average number of priority inversions per transaction run for WAIT,
PI and CP, respectively. PI reduces the number of priority inversions compared to the
WAIT scheme. CP achieves much larger reduction in the number of priority inversions by
conditionally aborting the lower priority transaction(s). Note that for all the schemes, the
average number of priority inversions per transaction run is less than one (even for long
transactions). Therefore, chained blocking [11] does not happen frequently in RT-CARAT.

Figure 3 demonstrates the situation of data resource blocking. As we can see, when
priority inversion occurs, the average number of blocking transactions with lower priority
is just slightly more than one and basically does not change with P,,.

The average number of transaction wait instances per run and the average waiting
time per wait instance are illustrated in Figures 4 and 5, respectively. As data contention
increases, both the average number of wait instances and average waiting time increase. Of
the five policies, PA has the lowest number of waits and the shortest waiting time. Note
that under PA, priority inversion does not occur (except under the situation where a low
priority transaction is in its commit stage). Thus, PA results in the minimal waiting for

10



real-time transactions. From these Figures we also note that priority inheritance, PI, does
reduce transaction waiting time with respect to WAIT policy by about 8% for (P, = 0.2).
CP further reduces the waiting time over PI, but is still no better than the pure abort
scheme PA.

Figure 6 plots PD abort ratio. At one extreme, PA has the highest abort ratio. At the
other extreme, NRT, WAIT and PI result in the lowest abort ratio. CP falls in-between.
This is understandable since PA relies on transaction abort, while NRT, WAIT and PI
are based on a wait mechanism. The proposed conditional priority inheritance scheme
combines both abort and wait strategies. Hence, the abort ratio under CP is higher than
NRT, WAIT and PI, but lower than PA. It is important to mention that there is (almost)
no deadlock abort under PA. This is because PA enforces a total ordering by priority among
the concurrent transactions (except the situation where a high priority transaction conflicts
with a group of transactions, some of which are at the lower priority). For CP, the ratio of
priority abort and deadlock abort is approximately 7:1.

To see the negative effect of transaction abort, we plot the wasted operations per trans-
action in Figure 7. Clearly, due to the high abort rate, PA wastes much more work than
other schemes. The conditional abort policy CP wastes much fewer operations than PA
and nearly the same as NRT, WAIT and PI. Figure 8 shows the CPU and I/0 utilizations,
respectively. As one expects, PA consumes more CPU and I/O resources than any other
scheme.

Our observations and discussions in this set of experiments lead to the following points:

e Applying priority inheritance does reduce transaction blocking time. However, PI,
the basic priority inheritance scheme, does not provide significant performance im-
provement over the WAIT scheme. PI performs even worse than WAIT when data
contention is high.

e The performances of PA and CP are similar, in terms of transaction deadline guarantee
ratio, when data contention is low. CP works better than PA when data contention
becomes high.

e Blocking resulting from priority inversion (including the period of priority inheritance)
is a more serious problem than wasting system resources. PA and CP, which attempt
to eliminate or reduce transaction blocking, perform better than WAIT and PI, which
attempt to reduce resource waste.

e Chained blocking and data resource blocking are not frequent and are negligible under

PA and CP.

4.2 Sensitivity of threshold (k) settings

The proposed CP scheme employs a threshold policy where the decision to use priority
inheritance or priority abort depends on h. In the above experiments, h is fixed at 2
(steps). In this set of experiments, we further study the performance of CP by varying the
threshold parameter h.

11



Figures 9, 10 and 11 depict the total waiting time per transaction run, PD abort
ratio, and transaction deadline guarantee ratio, respectively, for the workload with z =
6,P, = 0.6, and o = 4. To see the relation between CP and PI and PA, we also show
the performance of PI and PA, even though they are independent of h. In the figures, CP
performs the same as PA when h is equal to 0, and the same as Pl when A is equal to
6. This is exactly how CP should behave according to the algorithm described in Section
2. As h changes from 0 to 6, the total waiting time increases while wasted operations
decrease. Clearly, due to its threshold policy - switching between priority abort and priority
inheritance based on h setting, CP is bounded by PA and PI in terms of total waiting time
and wasted operations. With respect to deadline guarantee ratio (see Figure 11), however,
CP performs the best for 1 < h < 3.

We have also exercised workloads with longer transactions and have observed a similar
performance trend to that observed for ¢ = 6, with the effective range of h being extended
from1 < h<3forz=6to1l <h <6for bothz =12 and z = 16. The performance
of CP indicates that, in general, the priority inheritance strategy only works well over a
certain range. In other words, the priority inheritance period of a lock-holding transaction
cannot be too long (i.e., A should be small with respect to Lr); otherwise, the resulting
long blocking time will degrade the performance of other higher priority transactions. We
will further explain this result in the following sub-sections.

4.3 Deadline distribution

In this experiment, we examine the schemes along another dimension of our test space, i.e.,
deadline distribution. We vary the deadline window factor a so as to change the tightness
of transaction deadlines.

Figure 12 shows the transaction deadline guarantee ratio for the workload with z = 6,
P, = 0.6, and h = 2. Unlike the results we have shown above where CP performs the best
with a = 4, here PA becomes the best when transaction deadlines are loose (a > 4.7). This
is because under PA, a high priority transaction (almost) never waits for a lower priority
transaction. With dynamic EDF scheduling policy, a transaction restarted due to conflict
abort may get a higher priority, and eventually complete its execution. This is true as
long as the deadline of a transaction is long enough to allow it to be (repeatedly) aborted
and restarted. Unlike PA, CP may have a high priority transaction wait for lower priority
transactions when its conditional priority inheritance is applied. The experimental result
implies that when transaction deadlines are loose, it is better for high priority transactions to
proceed by aborting lower priority transactions than to wait by applying priority inheritance
to lower priority transactions.

Comparing PI and WAIT, one can see the intersection of their performance curves.
When transaction deadlines are tight, WAIT performs slightly better than PI. But when
deadlines are loose, PI works better than WAIT. This is due to the fact that PI raises the
process priority of the lower priority transaction which holds the lock. This operation will
increase the actual number of processes executing concurrently in the system. With a higher
priority to compete for system resources, the priority inheriting transaction may degrade
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the performance of other concurrent transactions. This becomes true when transaction
deadlines are tight. However, the concurrent transactions can withstand this negative effect
when deadlines are loose.

We can see from these results that all of the schemes are sensitive to deadline distribu-
tion. Overall, the non-blocking schemes based on priority abort, like PA and CP, perform
far better than wait oriented schemes, like WAIT and PI, as long as transaction deadlines
are relatively loose.

4.4 Transaction length

All of the results shown above are for transactions with ¢ = 6. We now vary transaction
length z from 4 steps to 16 steps, with P, fixed at 0.2, o at 4, and h at 2. Figure 13 plots the
transaction deadline guarantee ratio for the five different schemes. For short transactions
(z = 4), the access conflict rate is low (less than 10%). In this case, the particular scheme
used to avoid priority inversion has no significant impact. Since WAIT, PI, PA and CP
use the same scheduling policy, namely EDF, their performance is quite close. Although
there is little difference between the schemes, their relative order is the same as in the earlier
experiments. Here PIis slightly better than WAIT, and PA is slightly better than CP. These
are the results that we obtained in the earlier experiments (see Figure 1 for P, = 0.2).

As transaction length increases, on the other hand, the performance difference among
the four schemes increases. In addition, the differences between CP and PA and between
PI and WAIT are reversed. Now CP performs better than PA, and WAIT performs better
than PI. Note that for a fixed P, value, varying the transaction length also changes the
access conflict rate among the concurrent transactions. Hence, we need to isolate the two
factors for any further analysis.

To examine the performance for long transactions, we fix transaction length at z = 16
while varying P,, from 0.05 to 0.20. Figure 14 shows the deadline guarantee ratio for such
workloads. Comparing Figure 14 with Figure 1, we can see that for long transactions, the
schemes making use of priority abort, namely PA and CP, perform much better than wait-
based schemes PI and WAIT. This is because access conflict over long transactions leads
to longer waiting time under PI and WAIT. In other words, life-time blocking becomes a
severe problem as transactions become long.

Because of the problem of life-time blocking, the priority inheritance scheme does not
work well. As one observes from Figure 14, PI performs even worse than WAIT, regardless
of the degree of data contention. This is due to the fact that priority inheritance increases
the degree of process parallelism. As a result, PI causes a higher deadlock abort rate than
WAIT for long transactions (the results are not plotted here). At this point, it is important
to compare PI with CP, which also employs a priority inheritance scheme, but on the basis
of transaction execution length. Here h is set to 2 (steps) for CP. That means the priority
inheritance period under CP is only one eighth of that under PI. Without the life-time
blocking problem, CP works well for long transactions, and it outperforms PA as data
contention becomes high.

We have also exercised workloads with a mix of different transaction lengths. Here we
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show one set of the experimental results for such mixed workloads. Figure 15 depicts the
average deadline guarantee ratio of two lengths of transactions, one being 4 steps (z = 4) and
the other 8 steps (z = 8) with mean value 6 (i.e., P[z = 4] = P[z = 8] = 1/2). Comparing
Figure 15 with Figure 12 which shows the performance of transactions with equal length
z = 6, we can see that the behavior of the five policies and their relative performance
under the two different workloads are basically the same. We have also observed similar
performance results for transactions with £ = 4 and with ¢ = 8, respectively. In addition,
we note that the deadline guarantee ratios of different length transactions are different,
with shorter transactions having higher deadline guarantee ratio than longer transactions
on average. This phenomenon, called transaction starvation [8], relates to the issue of
scheduling fairness and is out of the scope of this paper. The reader is referred to [8] for
details.

4.5 CPU bound system

As we described at the beginning of this section, the schemes for addressing priority inversion
are evaluated in a four-dimensional test space. In the experiments demonstrated above, the
performance evaluation was carried out by varying data contention, deadline distribution
and transaction length, while fixing the resource contention in an I/O bound system. We
also examined a CPU bound system, where the CPU and I/0 utilizations were 92% and
55%, respectively. Due to the similarity of the experiments, we only illustrate one set of
the performance results from such a CPU bound system.

Figure 16 shows the deadline guarantee ratio versus transaction length for the workload
with P, = 0.2, =4 and h = 2. Qur first observation is that PA and CP, which are based
on priority abort, perform better than WAIT and PI, which are based on a wait mechanism,
especially for long transactions. This result is consistent with what we have obtained in an
I/0 bound system. Secondly, the reader can see that the priority inheritance scheme works
well only for short transactions and it performs worse than WAIT for long transactions.
This result is also the same as the one we obtained from the I/O bound system.

It is interesting to compare Figure 16, the results obtained from the CPU bound system,
with Figure 13, the results from the I/O bound system. We observe that the deadline
guarantee ratio of WAIT, PI, PA and CP in the CPU bound system is higher than in the
I/0 bound system. This is because CPU scheduling plays a more important role in CPU
bound systems than in I/O bound systems[6]. (Note that real-time I/O scheduling is not
considered in our work.) We also observe that the performance difference between PA/CP
and WAIT/PI is larger in the CPU bound system than in the I/O bound system. This
is understandable since CPU scheduling will make non-blocking (or less-blocking) conflict
resolution schemes work better in a CPU bound system than in a I/O bound system.

These results suggest that in a CPU bound system we may simply incorporate CPU
scheduling with a non-blocking resolution scheme, like PA. In other words, it is most im-
portant to eliminate priority inversion when CPU contention exists.
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5 Conclusions

We have studied several schemes for addressing the priority inversion problem in a real-
time database environment where two-phase locking is employed for concurrency control.
We first examined two basic schemes, one based on priority inheritance (PI) and the other
on priority abort (PA). Based on the analysis, we proposed a combined priority inheritance
and priority abort scheme, called conditional priority inheritance (CP). The three schemes,
plus two performance baselines NRT and WAIT, have been implemented and evaluated
on a real-time database testbed. Our performance studies indicate that with respect to
deadline guarantee ratio, the basic priority inheritance scheme does not work well. Rather,
the conditional priority inheritance scheme and the priority abort scheme perform well for
a wide range of system workloads.

We have clarified through experiments that the priority inheritance scheme is sensitive
to the priority inheritance period. A long priority inheritance period (life-time blocking)
will affect not only the blocked higher priority transactions but also other concurrent non-
blocked higher priority transactions. It is the life-time blocking that makes the basic priority
inheritance scheme infeasible in resolving priority inversion in real-time database systems.
On the other hand, the proposed conditional priority inheritance scheme works well because
of its reduced priority inheritance period. From this result, we hypothesize that the basic
priority inheritance approach will also not work well in real-time systems where the priority
inheritance period is long.

Besides the problem of life-time blocking, it has also been found that the basic priority
inheritance scheme has another shortcoming when used in real-time database systems. Ap-
plying priority inheritance may increase the degree of actual process concurrency. We have
observed that this side effect causes a higher deadlock rate, especially with long transactions.

As a result of our comparison of the abort-oriented scheme, PA and CP, and the wait-
oriented scheme, WAIT and PI, we have identified that blocking resulting from priority
inversion is a more serious problem than wasting of system resources. This is especially true
when transaction deadlines are loose or when a system is CPU bound®. In addition, PA is
sensitive to data contention, particularly in I/O bound systems. In such an environment,
CP, which wastes less resources and yet incurs less blocking (with shorter blocking time),
should be used to achieve better performance.

It is assumed in CP that the transaction length is known a priori. In fact, one may
only have an estimate of the transaction length. This means that if there is an error in the
estimate, performance may be effected. Further experiments may have to be conducted to
study how errors in the length estimate would affect the performance.

The use of CP, however, is not limited to applications where the transaction length is
known. It may be used, for example, at transaction validation phase in real-time database
systems which employ optimistic concurrency control [8]. Since the validation phase, the

3These results are similar to what we obtained in our studies on real-time optimistic concurrency control
scheme (OCC) [7, 8], where we show that the abort-oriented OCC performs better than wait-oriented two-
phase locking approach.
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last stage of transaction execution, is usually relatively short, priority inheritance may be
applied to the validating transaction which blocks a higher priority transaction.

We may futher extend this work by incorporating real-time I/O scheduling [5, 2, 4, 9].

It would be interesting to re-examine the various schemes studied in this paper in a system
that integrates both priority-based CPU scheduling and real-time I/O scheduling.
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