Some Learning Tasks from a Control Perspective

Andrew G. Barto

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 90-122

December 1990

ACKNOWLEDGEMENTS: The author gratefully acknowledges Charles Ander-
son, Michael Jordan, Harry Klopf, and Richard Sutton for the many hours of
discussion which have contributed to the material outlined here; Vijaykumar
Gullipalli, James Houk, and Richard Yee for helpful comments on drafts of
this chapter; and the Air Force Office of Scientific Research, Bolling AFB, for
support through grant AFOSR-89-0526. Some of the observations made here
were also made by Barto and Sutton [6].

This paper will appear as a chapter in the 1990 Lectures in Complez Systems,
Santa Fe Institute Studies in the Sciences of Complexity, Lynn Nadel and
Daniel Stein (eds.), Lect. Vol. III. Redwood City, CA: Addison-Wesley.

SOME LEARNING TASKS FROM A CONTROL PERSPECTIVE

Andrew G. Barto
Department of Computer and Information Science
University of Massachusetts, Amherst MA 01003

1 Introduction

Progress in understanding complex systems strongly depends on choices made in defining
the problems to be studied. This process of abstraction requires both simplification
sufficient to make solutions feasible and the retention of enough complexity to make
solutions relevant to the real systems being studied. These aspects of the modeling
methodology have been discussed extensively, but in specific cases it is easy to overlook
the advice of philosophers and system theorists by forgetting that the solution to a
problem abstraction may not be the ultimate goal. There is a strong tendency to commit
what Alfred North Whitehead called the “Fallacy of Misplaced Concreteness” [40]: we
tend to mistake abstractions for reality, especially if these abstractions are successful.
This admonition is relevant to the study of learning because so many researchers are
currently studying such a small fraction of the issues relavant to learning. The purpose
of this chapter is to describe a collection of learning tasks in order to place the most
commonly studied learning tasks into a broad context and to suggest a range of tasks
that are important despite the fact that they are receiving relatively little attention,

Artificial intelligence researchers often distinguish between a system’s “environment,”
“performance element,” and “learning element” [15]. Dietterich in ref. [15] referred to
these elements to make a useful statement about learning:

The task of the learning element can be viewed as the task of bridging the gap
between the level at which the information is provided by the environment
and the level at which the performance element can use the information to
carry out its function. (p. 328)

One can consider a spectrum of possibilities for the extent of this gap. At one extreme,
the environment provides reliable, explicit, and detailed specification of desired actions.
In this case, the learning element simply has to remember what it is told and employ
an appropriate indexing scheme for accessing this information. A somewhat wider gap
occurs if the environment can provide desired actions for only a subset of the situations
that might occur in the future. Learning in this case requires storing information and
forming an indexing scheme that can generalize bevond the specific instances used in
training. This is usually called a supervised learning task and is being widely studied in
the context of artificial neural networks. It is possible to consider much wider gaps in

which the environment provides less information, and the learning element has to perform
more sophisticated processing. For example, the environment may provide unreliable and
infrequent assessments of the consequences of the performance element’s actions. In this
case, the learning element must somehow use a problem-solving method to discover what
is “worth” remembering and combine it with a storage mechanism and an appropriate
indexing scheme so that this knowledge can be used to improve future performance.

Widely recognized in the field of artificial intelligence is the need to consider learning
in the context of problem solving. For example, there is a trend toward developing
comprehensive “learning architectures” (e.g., refs. [25, 36]). In the field of artificial
neural networks, or connectionist modeling, there is also recognition of the need to study
comprehensive learning architectures, but most neural network research addresses only
a few subproblems of more general learning tasks. Although restricting attention to
subproblems is necessary for making initial progress in understanding more complete
systems, and solutions to subproblems can be of practical use in their own right, it is useful
to reassess progress in light of more realistic frameworks. In this chapter, instead of the
problem-solving framework of artificial intelligence, we adopt the framework of conirol.
In addition to its closer ties to traditional engineering problems, a control framework
more realistically emphasizes real-time interaction with reactive environments. '

This chapter only addresses learning tasks; methods for solving these tasks are not
addressed at all. Learning tasks are defined in terms of the task’s ob jectives, the nature
of the learning system’s environment, and the nature of the information available to
the learning system. Although the methods applicable to a particular task depend on
the task’s characteristics, there is not a one-to-one correspondence between tasks and
methods, despite the fact that tasks and methods are often given the same names. Most
methods can be applied to several classes of tasks, and most tasks can be solved by
several different methods. By discussing only tasks, we hope to provide a sound basis for
understanding the methods applicable to learning, while avoiding the confusion invariably
produced by confounding tasks and methods.! Hinton [19] provides a good overview of
learning methods developed for artificial neural networks, and Barto (2] discusses some
of these methods in the context of control.

We describe several classes of learning tasks within a control framework designed to
highlight the limitations of each class and the relationships between them. Because each
class of tasks is defined by specializing this framework in specific ways, it is possible to
see what additional complexities are encompassed by the more elaborate tasks, and what
simplifying assumptions reduce the more elaborate tasks to the simpler ones. Some of the
tasks are rather degenerate examples of control tasks, but viewing them as such serves
our purpose of exposing issues they do not address. Our goal in using this framework is
not to provide an exhaustive categorization or a “unified theory” of learning tasks. The
subject of learning is so broad, with so many domain-specific features, that a useful com-

!The distinction between tasks and methods is similar to the distinction between Marr’s [28] computa-
tional and algorithmic levels. Jordan and Rumelhart {22] provide additional insight into this distinction
as it applies to issues in learning.

prehensive theory probably does not exist. Qur framework does nothing to illuminate
some interesting and significant classes of learning tasks, and it avoids many subleties.
Further, for the most part we avoid mathematical formalism even though some of the
discussion could benefit from the additional precision that exists in extensive mathe-
matical literature pertinent to each class of tasks. The reader may be able to suggest
improvements to this framework and how we embed tasks within it, but we believe it is
adequate for showing that there is more to learning than is encompassed by the tasks
most frequently studied.

2 Learning Control Tasks

The philosopher Daniel Dennett [16] expresses the root idea of control in common lan-
guage as follows:

A controls B if and only if the relation between A and B is such that A can
drive B into whichever of B’s normal range of states A wants B to be in.

(p. 52)

For our purposes, an even broader definition is better: A controls B if and only if the
relation between A and B is such that A can cause B to behave as A wants B to behave.
Some of the behavior in which we are interested is not readily expressible in terms of
a range of states. Learning control tasks involve system A learning through experience
how to make a system B, and systems similar to B, do what A wants them to do.

Figure 1 shows systems A and B in a basic control loop. System A is called the con-
troller, system B is called the controlled system, and the signals that the controller sends
to the controlled system are called control signals. We will refer to these signals simply
as A’s actions. Other inputs to the controlled system are classified as “disturbances.”
These are usually regarded as unpredictable signals whose influence on the controlled
system is to be counteracted by the controller. The input signals to the controller, on
the other hand, typically provide information about the current state of the controlled
system as well as specification of commmands to the controller, which one can regard
as the “context” of the control task. Commands may indicate, for example, a desired
output of the controlled system (e.g., the set point of a thermostat), a desired time course
of system variables (e.g., the desired trajectory of robot manipulator positions), or more
general commmands (e.g., “make the controlled system do X™).

The range of learning tasks described in this chapter requires elaborating Figure 1
by adding an additional component and the interconnections as shown in Figure 2. We
focus on the controller, A, as both the learning element and the performance element,?
and we assume that its input can be divided into three categories. First, A receives

2We find it less useful to distinguish between a learning element and a performance element than
do researchers following a symbolic approach to machine learning. In connectionist networks—and in
biological systems—Ilearning mechanisms are distributed throughout performance systems.

disturbances

B
— Controlled

— System
control signals state
or actions information
A g
command

Figure 1: A Basic Control Loop. The controller, A, receives information
about the state of the controlled system, B, as well as context
signals or commands. The behavior of B is influenced by control
signals from A and unpredictable disturbances.

information describing the state of B. This information is usually incomplete: B only
provides “clues” to A about B’s current state. The second category of information is
provided to A from a component, labeled C, which we call a “critic” or a “teacher,”
depending on the type of task being considered. The critic provides information to A
that guides learning. C has access to clues about the state of B and also has access to the
actions of A. It implements some kind of evaluative procedure that assesses A’s actions in
light of B’s current state according to a measure of “correctness,” “goodness,” “utility,”
etc. Sometimes the critic provides “payoffs” to A. The gap referred to above between the
information provided by a learning system’s environment and the information needed to
accomplish some task is largely determined by the nature and quality of the information
provided to A by C. Significant differences between learning tasks depend on the nature
of this information.® The third category of information component A receives “sets the
context” for the learning task. This information corresponds to the context or command
information A receives in Figure 1, but in the expanded schema of Figure 2 it includes
the training patterns required for some learning tasks. This information is available to
all components via the line labeled “context, commands, or training patterns,” but the
source of the signals on this line is assumed to be outside of the system and “beyond the
control” of the components A, B, and C.

In general, components A, B, and C are dynamic systems. This means that the current
output of any of these components can depend on an internal state, which changes over

3We do not consider the case of multiple critics hecause the single-critic case is sufficiently complex
for our purposes; many significant issues not discussed in this chapter come into play in the multi-critic
case.

context signals,
commands, or

disturbances training patterns
B
— Controlled .
—— System
c Critic or B
g Teacher ——
evaluations state
* information
payoffs,
control signals errors, etc.
or actions
L A
Controller
-——————

Figure 2: A General Schema for Describing a Range of Learning Tasks. The
basic control loop of Figure 1 involving the controller, A, and
the controlled system, B, is augmented with a critic, C, and an
input to all components labeled “context, command, or training
pattern” which sets the context for the learning task.

time, in addition to a current input. Consequently, the current output of a component
can depend on the past history of its inputs in addition to its current input. Component
A must be a dynamic system if it is to be capable of learning from its past experience,
but for the learning tasks we consider here, some or all of the other components are
assumed to be “memoryless,” i.e., their current output only depends on their current
input. We assume throughout that C is deterministic and memoryless, an assumption
whose consequences we discuss in Section 3.

In attempting to place particular tasks into the schema shown in Figure 2, what
constitutes the components A, B, and C, and what corresponds to the context signals,
commands, or training patterns is not an intrinsic property of the mechanisms and phe-
nomena under consideration. Some divisions of reality into such boxes, with certain
communication channels designated as input and output channels, may have obvious
advantages over others in terms of explanatory power, but these divisions are best seen
as the result of the process of constructing models for specific purposes. Many different
ways of matching specific cases to this schema can be useful. In particular, we point
out two aspects of the schema shown in Figure 2 that are misleading if taken too liter-
ally. First, the controller, A, receives three categories of information via three distinct
input channels. This is a useful abstraction that may appear differently in real situa-
tions. For example, there may be no identifiable separation of A’s input channels into
three categories because all of this information might be represented in a distributed
code involving overlapping sets of input channels. A second misleading conclusion is
that the controller, A, corresponds to something like an entire adaptive organism. This
identification might make sense in some circumstances (e.g., for very simple adaptive
organisms), but it is better to avoid this interpretation because parts of some or all of
the components shown in Figure 2 may also reside inside the organism (e.g., B might
include the organism’s respiratory system, and C might represent the organism’s highly
evolved preference structure).

Because we frequently refer to the components of Figure 2 only by their lables A, B,
and C, the following summary should be helpful in remembering their meaning:

A Controller: the learning system; combines learning and performance elements.

B Controlled System: behavior can be influenced by the controller and is evaluated
by the critic; not present in all tasks.

C Critic or Teacher: implements evaluative process that assesses A’s actions in light of
B’s current state and the current context. command or training pattern accordin
)) gPp g
to a measure of “correctness,” “goodness,” “utility,” etc.

3 Performance Measures and Gradients

Although it is notoriously difficult to give a definition of learning that is both adequate
and precise, most attempts to do so involve the idea of a system improving performance

over time according to some performance measure. If one thinks of the performance
measure as a function defined over the set of possible external behaviors of the learning
controller (being, for the moment, purposefully vague about what the controller’s external
behavior is), and if one visualizes this function as a surface, then any given behavior of the
controller corresponds to a point on this surface. For a controller to improve performance
over time, the point corresponding to its behavior has to move to successively higher
points on this performance surface; or, assuming continuous changes in behavior, the
point has to move uphill across this surface.

One critical aspect of most interesting learning tasks is the problem of measuring
the learning system’s performance according to a performance measure that reflects the
true objectives of the task. The “true” performance measure might evaluate the overall
performance of the learning system over its lifetime, but it is impossible to determine this
during the system’s lifetime when learning has to occur. In practice one has to devise
measures that are closely correlated with the true performance and yet can be measured
more easily and more quickly. The problem of specifying accessible performance measures
that can act as surrogates for basic but hard-to-measure criteria is a central issue in most
realistic learning tasks.

Given this preamble, we can provide the rationale for our view of the critic as a
memoryless system. Referring to Figure 2, the critic, C, provides the controller, A,
with information pertinent to the immediate consequences of the action just taken by A
on the controlled system, B, as assessed within the current context. The performance
measure embodying the task’s true objective, however, is not necessarily revealed in
the immediate consequences of the controller’s actions. The true performance measure
usually evaluates behavior over longer periods of time, and although C’s signals over time
provide information relevant to A’s true performance, C does not directly implement this
measure. Hence, restricting discussion to memoryless critics emphasizes the problem of
improving performance according to a measure that is not directly accessible. One might
think of C as the “primary critic” which is part of a task’s specification and provides the
most basic evaluative information. Some learning methods involve “secondary critics”
which provide performance information that is more accurate and more timely than
the information provided by C. Research exists on how useful secondary critics can be
contructed by means of learning processes (e.g., Barto, Sutton, and Anderson [7], Sutton
[34, 35], Watkins [37], Werbos [39]), but within the framework presented here, these
“adaptive critic” methods are considered to be implemented within, the controller A.4

In some tasks there is no conflict between short-term performance, as revealed by the
critic’s instantaneous signals, and long-term performance, as determined by the task’s
true performance measure. In these tasks, performing each action to produce the best
immediate response from the critic coincides with the task’s true ob Jective. This occurs,
for example, when the training experiences to which A is exposed at each time step are

*Alternatively, if one focused only on the learning task faced by an adaptive critic, the task would
appear as a special kind of adaptive prediction task within the class of supervised learning tasks as
discussed in Section 5.

statistically independent and the true performance measure is the time average of the
critic’s outputs. In these cases, acting to optimize each immediate signal of the critic coin-
cides with the objective of optimizing the critic’s average signal over time. In other tasks,
however, dependencies over time may make it necessary to sacrifice short-term perfor-
mance in order to produce improvement with respect to the true performance measure.
This occurs when A’s actions not only influence the critic’s immediate evaluation but
also influence a dynamic process which plays a part in determining future evaluations.
Section 6.3 discusses tasks with this property, called sequential decision tasks. All the
other tasks we discuss are defined to avoid conflict between short-term and long-term
performance.

Two basic types of learning tasks can be distinguished on the basis of the local
characteristics of the performance surface about which the critic’s instantaneous signals
provide information. We call a task a supervised learning task if each instantaneous signal
of the critic provides information pertinent to the gradient of the performance surface at
the point corresponding to the controller’s current external behavior. Recalling that the
gradient of a surface at a point is a vector pointing in the direction of steepest ascent, a
supervised learning task is characterized by the availability from C of directed information
about how the controller should change its behavior in order to improve performance (at
least locally). This gradient information often (but not always) takes the form of an
error vector giving the difference between the controller’s action and some desired, or
target, action. Although each error vector (based on a single training pattern) is not
the gradient of the true performance measure (2 measure of the error over all training
patterns) it provides useful information about the true gradient. In other cases, the
critic’s signals may lack the magnitude information present in error vectors and only
provide directional information; for example, only the signs of errors may be provided.
Although less informative than other kinds of gradient information, this is still gradient
information according to our view, and such tasks are supervised learning tasks.® The
key point is that in a supervised learning task, the learning system is provided with
information about (1) whether or not a local improvement is possible (is the gradient
zero?), and (2) if improvement is possible, how (what direction) behavior should be
changed to achieve improvement.

In other learning tasks, which we call reinforcement learning tasks, instead of directly
providing gradient information during learning, the instantaneous output of C gives the
controller information about the current value of the performance measure. In contrast to
gradient information, information about the performance measure’s value does not itself
indicate how the learning system should change its behavior to improve performance it
is not directed information. A system facing a reinforcement learning task has to concern
itself with estimating gradients based on information about the performance measure
values provided by C over time. Although C’s outputs are usually scalars in a reinforce-
ment learning task, whereas they are vectors in supervised tasks, the distinction between

%The signs of the components of a gradient vectorn instruct a direction of local improvement but not
the direction of most rapid local improvement.

scalar and vector-valued information from C is not central. For example, although we do
not discuss them in this chapter, in multi-criterion reinforcement learning tasks the critic
signals are vectors consisting of the values of multiple performance measures. The key
point is that each output of the critic in a reinforcement learning task evaluates behavior
but does not in itself indicate if improvement is possible or direct changes in behavior.

The distinction between supervised and reinforcement learning tasks is only one of
many distinctions between learning tasks that one can make. We use this distinction as an
organizing principle in our view of learning tasks because it corresponds to a significant
division of existing theoretical traditions and their literatures, and it separates tasks

‘according to issues that have been treated as almost orthogonal: generalization is central

in most supervised learning tasks, whereas ezploration is central in reinforcement learning
tasks. Addressing these issues separately provides a good basis for understanding the
more complex tasks discussed below which combine them. However, in practice it may
be more difficult than we have suggested to distinguish between these classes of tasks even
in relatively simple cases. For example, it may have occurred to the reader that whether a
task’s objective is a global or local extremum of the performance measure is a factor that
complicates the situation. Just because directional information js immediately available
in a task does not mean that the task’s objective is best served by always following
it. Doing so would result in a local extremum, whereas a global extremum may be the
objective. A task such as this would match our definition of a supervised learning task
in a local sense, but it would be more like a reinforcement learning task when viewed
globally because exploration is a key issue for global optimization.

4 Unsupervised Learning Tasks

Unsupervised learning tasks are concerned with recoding information into forms that
are more compact, better organized, or otherwise better suited for understanding or
further processing. Usually, the ob Jective is to recode while retaining as much of the
original signal’s information as possible. The framework used in this chapter has not
been designed to do justice to unsupervised learning tasks. However, if one were to place
these tasks within our control framework, they would appear as tasks in which there js
no controlled system, B, and the signals that A must learn to recode are the context,
command, or training patterns. We might regard the critic, G, as embodying the principle
by which the recoding is to take place. Unlike all the other tasks discussed below, however,
this critic would be fized and completely known for each type of unsupervised learning
task.® Consequently, a better view might omit the separate critic altogether and regard
its function as being built into the learning system, A, from the start. In this case, thereis
no closed-loop interaction between any of the components, and the term “controller” for A

For the other types of tasks we discuss, the critic is fixed, and possibly completely known, for each
task instance, e.g., a specific supervised pattern recopgnition task. In contrast, the critic is fixed and
known for each entire class of unsupervised learning tasks, e.g., all tasks in which principal components
are to be extracted.

is highly inappropriate. For example, in one type of unsupervised learning task known as
a clustering task, the objective might be to separate the input data into disjoint classes
(clusters) so as to maximize the ratio of measures of the between-cluster and within-
cluster scatters. All the details of this performance measure are known in advance and
can be incorporated into the clustering algorithm.

In contrast, the learning tasks discussed below have the property that important
aspects of the performance measure are unknown and can vary with each task instance.
For example, in a supervised learning task, the desired pairings of training patterns
and target actions depend on the specific task instance (Section 5). In a reinforcement
learning task, even less is known about the performance measure (Section 6). Despite the
rather degenerate form they take within the framework being used here, the category of
unsupervised learning tasks is appropriate for concisely addressing issues of information
representation that are essential in all the more elaborate learning control tasks that one
can define. Although we consider them important, these issues are orthogonal to the
ones we have chosen to address in this chapter. Barlow [1] provides a good philosophical
overview of unsupervised learning tasks.

5 Supervised Learning Tasks

A critic capable of providing gradient information about a performance measure is usu-
ally called a “teacher.” Following Jordan and Rumelhart [22], we distinguish between
supervised learning tasks with “proximal” and “distal” teachers. We discuss the case of
the proximal teacher first because it is the prototypical supervised learning task.

Prozimal teacher—In a supervised learning task with a proximal teacher, the performance
measure is defined in terms of a set of input vectors to A, called training patterns, and the
actions that A should produce in response to them. These correct actions are sometimes
called target actions. In practice, training patterns and target actions are represented as
bit vectors or vectors of real numbers. Within the framework of Figure 2, the controlled
system, B, plays no role, and the training patterns arrive from outside the system as
context signals. Based on each action of A and knowledge of the target action for each
training pattern, C provides an error vector to A for each training pattern, where ¢he
error vector is the vector difference between A’s actual action and the target action for
the current training pattern. In an alternative view of these tasks, C simply provides A
with the target action for each training pattern instead of an error vector. In this case.
A itself has to compute the error vector (and the term critic is not very descriptive of C).
But whether C provides A with error vectors or target actions, each instantaneous output
of C tells A something about how it should change the action it produces in response to
each training pattern. In what follows, we regard C as providing error vectors. Figure 3
is the variant of Figure 2 appropriate for the supervised learning tasks most commonly
studied. It differs from Figure 2 in that th- «cntrolld system, B, is absent.

The objective of a supervised learning task with a proximal teacher is for A to learn to
produce the correct action (i.e., the target action) in response to each training pattern and

10

training patterns

C
—— Teacher ———
error vectors
actions
A
Controller —

Figure 3: The Basic Components of a Supervised Learning Task with a
Proximal Teacher. It differs from Figure 2 in that there is no role
for the controlled system, B.

to generalize correctly to patterns not presented during training. Stating this somewhat
more precisely, the objective is for A to form a mapping from the set of possible input
patterns to actions that would produce error vectors of small magnitude on all possible
sets of training patterns. Exactly what constitutes the magnitude of an error vector
can be defined in a variety of ways which involve issues that we do not address here.
Supervised learning tasks, as described above, provide the simplest framework permitting
the study of generalization, and applicable methods can be useful in a wide range of
practical problems. In artificial intelligence, learning in this type of task is called “learning
from examples” [15].

By assuming that the training patterns arrive from outside of the system, we incorpo-
rate a key feature of supervised learning tasks as they are usually studied: the selection
of training patterns is not influenced by the behavior of the controller, A. There is no
closed-loop interaction between A and the source of training patterns. The teacher, C,
and controller, A, interact in a closed-loop because the error vectors supplied by C de-
pend on A’s actions, but the generator of training patterns is not in this loop. The only
real learning control that occurs is that A is learning how to control C in the context of
each training vector: it wants to make C produce error vectors equal to zero.

A number of special cases of supervised learning tasks with a proximal teacher have
been studied separately. Rote memory storage is the variant of this task in which the issue
of generalization is omitted. For example, a standard computer random access memory
solves the version of this task in which each training pattern is an address and each
target action is the bit vector to be stored at the given address. Extending rote memory
to include some form of generalization leads to more general associative memory systems,

11

which have heen extensively studied in the form of artificial neural networks (e.g., Hinton
and Anderson [20] and Kohonen [23, 24]). If the target actions are elements of a finite
set, then supervised learning tasks are sometimes called adaptive pattern classification
tasks where the target actions are the class labels (e.g., Duda and Hart [17]). If the
target actions are real numbers, then these tasks are function approximation problems
in which generalization involves interpolation and extrapolation.

Open-loop system identification (e.g., refs. [18, 27]) is also a supervised learning task
with a proximal teacher. Open-loop system identification is the task of modeling an
incompletely known system by observing how it responds to a set of inputs. It is open-
loop because there is no simultaneous attempt to control the system being identified.
The inputs to the system being identified and its corresponding outputs play the roles,
respectively, of training patterns and target actions. This fits into the schema of Figure 3
by letting C contain the system being identified. Training patterns are the inputs to the
system being identified and also inputs to A. The error vectors provided to A during
learning are computed by comparing A’s actions with the outputs of the system being
identified. As the magnitudes of the error vectors are reduced, A’s input/output behavior
more closely matches that of the system being identified. According to this formulation,
the controller, A, is not engaged in controlling the system being identified: it is attempting
to control C, in the sense described above, and the task is arranged so that it has to
identify the unknown system in order to do this.

This view of the open-loop system identification task does not do justice to many of
its features, especially the use of delay-coordinate representations of system input and
output, but it does correctly characterize the nature of the learning task according to
the distinctions we are making. Similarly, open-loop adaptive prediction tasks appear
as tasks in which the role of the critic is played by the system whose behavior is to
be predicted. Storage buffers must be introduced for storing training patterns until the
target actions become available. Barto [2] discusses these tasks in somewhat more detail;
Widrow and Stearns [41] and Goodwin and Sin [18] provide views of these tasks from the
perspectives, respectively, of adaptive signal processing and adaptive control. Adaptive
critic methods (e.g., Sutton [35]) are methods for solving open-loop adaptive prediction
tasks in which the objective is to predict some statistic about the critic’s signals over the
future (such as the expected sum over the future) instead of its signal at a prespecified
time in the future.

Some tasks that might be called supervised learning tasks do not conform to this
open-loop view. For these tasks, the generation of training patterns is not “beyond the
control” of component A as we have specified. The training process may incorporate
pedagogic principles which alter the order, frequency, etc. of training patterns based on
A’s behavior. For example, to accelerate the learning process, training may concentrate
on the patterns on which large errors have been made, or training “queries” can be
generated to test hypotheses [12]. These technigques. as well as others such as “fading”
and “shaping” in which the training inf ration changes over time depending on A’s

12

behavior,” require that both A and C influence the source of training patterns. These
techniques are not often studied from a theoretical perspective and do not fit into Figure 3,
but they can be important for improving the rate and /or quality of learning. Similarly,
the closed-loop system identification task requires identification to proceed at the same
time that the system being identified is being controlled. Such tasks are more properly
viewed as examples of adaptive sequential decision tasks discussed in Section 6.3.

Distal Teacher—The basic supervised learning task described above can be generalized
to what Jordan and Rumelhart [22] call “supervised learning with a distal teacher.” The
gradient information provided by a distal teacher is not expressed in the same coordinate
system as are A’s actions. Jordan and Rumelhart [22] use the example of learning to move
a robot arm to specified locations in the arm’s workspace. For this problem, A’s actions
specify joint angles, but C provides error vectors that are differences between desired
spatial positions of the end effector and the positions actually attained. Here, A is working
in joint space, but C is providing Cartesian training information. Learning methods must
incorporate some means for deducing from the distal teacher’s training information what
a proximal teacher would specify if one were provided. Jordan and Rumelhart [22] discuss
methods that effectively construct an appropriate proximal teacher based on the distal
teacher’s training information.

Figure 4 is an elaboration of Figure 3 illustrating the components and connections
required for a supervised learning task with a distal teacher. The controlled system, B, is
placed in the pathway from the controller, A, to the teacher, C. Component B transforms
the space of A’s actions to the space in which C is able to provide error vectors. As in
other supervised learning tasks, training patterns, assumed to be generated outside of
the system, are available to both A and C. If B is the identity transformation, then the
schema shown in Figure 4 reduces to that shown in Figure 3. For the arm movement
example, B is the forward kinematic transformation of the arm, i.e, the transformation
from joint angles (the actions of A) to the corresponding spatial coordinates of the end
effector (the outputs of B). Training patterns are coded descriptions of the target spatial
positions which play the role of commands to move the end effector to these positions.
During training, a series of such commands is given to A—so that A can learn how
to generate appropriate actions for each commanded position, and to C—so that C can
properly assess the arm’s actual movement. Although the arm, B, does not require access
to these commands in the example of Jordan and Rumelhart [22], in general these signals
may include context information that influences B’s behavior; for example, movement
may have to occur in the context of different loads.

The distal teacher, C, provides error vectors to A based on discrepancies between
B’s outputs and known target outpuis for B for each contex signal, training pattern,
or command. In the arm movement task, for each training pattern, C knows how to

"These terms describe techniques used to train animals {21]. Fading refers to the alteration of stimulus
patterns over time as a function of the animal’s hehaviar, whereas shaping refers to the alteration over
time of the criteria by which the delivery of reinforcement is determined. Although these techniques
more properly relate to reinforcement learning than to supervised learning, both might be thought of as
alterations of the pattern/target pairs as a function of the animal’s behavior.

13

context signals,
commands, or

disturbances training patterns
B
S Controlled D E—
—— System
C Distal -
Teacher | —
state
information
error vectors
control signals
or actions
A
Controller ,
-

Figure 4: The Basic Components of a Supervised Learning Task with a
Distal Teacher. A controlled system, B, is placed in the pathway
connecting the controller, A, with the critic, C.

14

determine an error vector in spatial coordinates. Component A somehow has to figure
out how to alter its actions in response to each training pattern to reduce the magnitude
of these error vectors. This task can be nontrivial, and a variety of methods can be used.
The availability of B’s outputs to A, as provided by the link from B to A in Figure 4,
may be useful to A depending on what learning strategy it employs. In tasks such as
this, there is a closed loop of influence passing from A, through B and C, and back to
A. We can say that A is trying to control C, and the task is arranged so that in the
process A must also learn how to control B. One of the issues that arises in these tasks
; 15 that there may be many actions of A that can achieve a distally specified target (for
example, there may be many arm configurations that place the end effector at a target
spatial location). In these cases, the objective may be to achieve any one of the possible
solutions, or to achieve a solution that satisfies additional constraints.

The generalization of supervised learning tasks to include distal teachers, i.e., to
cases in which B is not the identity transformation, is much more widely applicable than
suggested by the arm control example. In fact, when details of the internal structure of
the learning component are taken into account, supervised learning tasks always involve
a distal teacher. To understand this, recall that in Section 3 we characterized supervised
learning tasks by the availability of gradient information pertaining to the performance
surface defined over the external behavior of the controller A. Because we are discussing
learning tasks and not learning algorithms, we have said nothing about how gradient
information pertinent to external behavior can be translated into gradient information
pertinent to the internal parameters of the learning component that are to be adjusted
during learning. The controller, A, is being treated as a black box.

But if one focuses on an internal adjustable component of A (such as a weight of a
neural network), and shifts perspective so that this internal component is now the learning
component A of Figure 4, then this A faces a task with a distal teacher. This task can
be viewed in terms of Figure 4 by regarding component B as the process that translates
the internal component’s actions into the external actions of the overall controller. How
the learning task of such an internal component can be solved depends on how much
knowledge is available about the transformation implemented by B. For example, in the
case of a layered artificial neural network, if A is a hidden unit, component B represents
the transformation implemented by the part of the network between A and the network’s
output units. Because the details of this transformation are known, the appropriate
translation of gradient information from distal to proximal coordinate systems can be
accomplished, in this case, by error back-propagation [33] (which evaluates the Jacobian
transpose of B at the current operating point). If the transformation performed by B is
not known in detail sufficient to permit the required translation of gradient information,
B can be identified via supervised learning (as discussed above) so that the required
translation can be approximated using the resulting model [22].

In the examples of supervised learning with a distal teacher given above, the controlled
system B was treated as being memoryl ss (arm dynamics were ignored in the version of
the arm movement task discussed). If B is a dynamic system, 1.e., if its output depends
on an internal state in addition to input, then the tasks we have classified as supervised

learning tasks with a distal teacher are the same as adaptive control tasks in which
the objective is to cause B’s behavior to track a desired reference trajectory, where the
trajectory is specified at all time instants or only at selected time instants. If the reference
trajectory is specified at all time instants, the context or command signals directly provide
the target trajectory, so that the distal teacher can provide the controller with a tracking
error at each time instant. If the reference trajectory is not specified at all time instants,
then the task’s objective is to achieve the specified behavior at the designated times
while perhaps satisfying other constraints in the intervening time intervals. An example
of the latter type of task occurs when the context or command signals specify a target
output to be produced by B at a later time but do not specify a target trajectory for B’s
states or outputs over the intervening time interval. Jordan and Rumelhart [22] refer to
the teacher in such tasks as being “distal in time.” Although in such tasks the process
intervening between A’s actions and the relevant output of B extends over time, the logic
is the same as for other tasks with distal teachers: somehow, knowledge about B must
be used to deduce what a proximal teacher would specify at each time instant if one were
present.

Supervised learning tasks with teachers that are distal in time are related to the
adaptive sequential decision tasks we discuss in Section 6.3 as examples of reinforcement
learning tasks. In fact, it may not be very useful to draw sharp distinctions between these
tasks because they can both require learning to produce sequences of actions without the
immediate availability of training information. However, within the framework we are
using in this chapter, no matter how infrequent the training information, if it occurs in the
form of target outputs of B, then the task is supervised because C can provide gradient
information by comparing B’s actual outputs with the targets. In a reinforcement learning
task, on the other hand, the objective is to make B’s behavior improve according to a
performance measure that does not necessarily involve target outputs. But the situation
is more complicated than this because learning with a teacher distal in time usually
involves satisfying trajectory constraints that also are not specified in terms of target
outputs. We leave these subleties for a more discriminating framework and turn to a
discussion of reinforcement learning tasks.

6 Reinforcement Learning Tasks

In a supervised learning task the critic, or teacher, C, supplies information to A in
the form of error vectors. Each error vector provides information about the gradient
of an underlying performance measure at the current operating point. The gradient
vector points in the direction in which the controller’s behavior should be changed to
to yield the best local improvement. In a reinforcement learning task, in contrast, (
provides A with information pertinent to just the value of the performance measure for
the current behavior. Accordingly, for reinforcement lrarning tasks we call (s outputs
“evaluations.” An evaluation does not tell \ how it should change its behavior, or even
whether improvement is possible or not. We distinguish between reinforcement learning

16

tasks according to what information is available to A in addition to C’s evaluations. In
nonassociative tasks, A receives only C’s evaluation, whereas in associative tasks, A has
access to information that can influence its actions via associative relationships.

6.1 Nonassociative Reinforcement Learning Tasks

In a nonassociative reinforcement learning task the only input A receives are the evalua-
tions provided by C. Each of A’s actions is separately evaluated by C, and the objective
is for A to find the best action (or one of possibly many best actions) as evaluated by
C. This basic picture is complicated by the possibility that C’s evaluations may not
depend in a simple way on A’s actions Evaluations may depend on a complex, and
possibly stochastic, dynamic system intervening between A’s actions and C, as well on
other factors that A’s actions cannot influence. To accomodate these possibilities within
the general schema of Figure 2, we use all of the components and delineate special cases
by assigning specific properties to them.

Figure 5 shows the basic arrangement of these components for nonassociative rein-
forcement learning tasks. Because neither the context signals nor the outputs of B are
available to it, A cannot select actions conditionally on this information even though
the evaluations it receives may depend on this information as well as on its actions. We
use the term nonassociative because A cannot form an associative mapping from this
information to actions. Because C evaluates the consequences of A’s actions on B, C
may not need access to the actions themselves. However, in some cases C’s evaluation
depends on the actions themselves as well as on their consequences (for example, the
actions may have different “costs”), and thus we provide the direct connection from A
to C in Figure 5 (which is present for the same reasons in all remaining figures depicting
reinforcement learning tasks).

If the output of B is a deterministic function of A’s actions (that is, if there are
no disturbances and B is memoryless and insensitive to any changes in context signals)
and the performance measure concerns only the instantaneous behavior of A, then the
task is a function optimization task. If C implements a real-valued function of B’s
output, as is usually assumed, then B and C together assign a real number to each
action of A. The objective is for A to determine which of its actions maximizes this
number, or, since this is generally impossible, to find an action that is a local maximum.
Within the framework being used in this chapter, this is a relatively simple type of
task, although specific instances can be extremely difficult to solve due to the nature
of the functions implemented by B and C. Function optimization has been studied very
extensively. Central issues concern the search efficiency, local versus global optimization,
and the justification and use of specific classes of models of the function to be optimized.

If B’s output is not a deterministic or memoryless function of A’s actions, then the
evaluation A receives from C in response fean action may not be the same each time
that action is performed. This can als. ha ppen if B and/or C are sensitive to multiple
context signals. In these cases, the performance measure has to take this variability
into account. It often makes sense to model the overall evaluation process in terms of

17

disturbances context signals

B
— Controlled -
i System —
state
information
C D
- Critic
| —
evaluations
or payoffs

control signals
or actions

L A
Controller

Figure 5: The Basic Components of a Nonassociative Reinforcement Learn-
ing Task. The only input A receives is the evaluative input from

C.

18

probability distribitions, and to define the performance measure as the average over time
of the evaluations produced by C. Two cases are distinguished depending on whether
the probability distributions are stationary or nonstationary over time. A stationary
probabilistic model is appropriate when B is memoryless and B and C are insensitive to
multiple contexts. In this case, the action that yields the optimal average evaluation stays
the same over time. A nonstationary model is appropriate when B is not memoryless
‘and/or there is sensitivity to multiple context signals. Here, an action that is best at
one time may not be best at another. Because A is blind both to B’s state and to any
context signal, to A it appears that C is changing its evaluation criteria over time.

Stationary tasks of this kind have been extensively studied as “bandit problems” (e.g.,
ref. [13]) or addressed by means of the theory of learning automata (e.g., ref. [29]). For
example, learning automata theorists have studied the following problem. The controller,
A, has n actions ay, @y, ..., a,. Immediately after A generates an action, C sends to
A a signal indicating either ‘success’ or ‘failure.’ This signal is determined from A’s
action by some complex nondeterministic process implemented by components B and C
of Figure 5. Whatever this process may be, it is modeled simply as a collection of success
probabilities d;, dy, ..., dn, where d; is the probability of returning ‘success’ given that
A has produced action a;. Each d; can be any number between 0 and 1 (the d;’s do not
have to sum to one), and one assumes that A has no initial knowledge of these values.
The objective is for A to eventually maximize the probability of receiving ‘success,” which
is accomplished when A always performs the action a; such that d; = max{d;|i = 1,n}.
In a variant of this task, the success probabilities are known, but it is not known which
corresponds to which action.

In the nonstationary version of this task, the success probabilities, d;, change over
time. A reasonable objective under these circumstances is for A to maintain a high
level of performance over time by continuing to change its action in an attempt to track
the maximum of the nonstationary evaluation process. It can do this by attempting to
construct a predictive model of the evaluation process, but this is difficult to do only on
the basis of the information provided by C, or it may be impossible due to unpredictable
shifts of context. More realistically, if A can adjust its behavior quickly enough to
track the nonstationary evaluation process, then it can maintain good performance over
time without constructing a predictive model. The point, however, is that even though
evaluations of A’s actions may depend on the context and on the state of B, it is not
possible for A to select actions conditionally on this information because A is completely
blind to this information.

To prevent too narrow an interpretation of nonassociative reinforcement learning
tasks, note that the following qualifies as an example. Suppose each of A’s actions is
an entire control rule which can be applied to a complex stochastic dynamic system.
Let the transformation B assign to each such action (now an entire control rule) some
description of the dynamic system’s behavior under the control of the corresponding con-
trol rule. For example, B might produce a description of the state the dynamic system
reaches after some time interval. Based on this state description, C provides to A an

19

evaluation of the choice of control rule.® The solution sought in this task is a control rule
optimal in a sense determined by the critic. This formulation of learning control does
not have much to recommend it due to the size and complexity of the sets and systems
involved, but it is an example of a nonassociative reinforcement learning task.

Deeper aspects of reinforcement learning tasks exist when the objective is not just
to discover eventually which action is optimal, but also to perform the optimal action
as frequently as possible during the discovery process, or, more generally, to maintain
performance throughout the discovery process at as high a level as possible. The issue
arises of how to balance the requirement for maintaining a high level of performance
over time with the requirement for estimating the relative worth of the actions. Two
factors must influence each action selection: (1) the desire to use what is already known
about the relative merits of the actions, and (2) the desire to acquire more knowledge
about actions’ consequences to make better selections in the future. These two factors
ordinarily conflict: the best decision according to one is not best according to the other.
This is called the conflict between control and identification. It is present in its simplest
form in the stochastic success/failure task described above, which is one of the simplest
adaptive optimal control tasks [31].

Despite the limitations imposed by restricting the information to which component
A has access, nonassociative reinforcement learning tasks clearly illustrate differences
between reinforcement learning tasks and supervised learning tasks. Obviously, when C
directly provides A with gradient information, as it does in a supervised learning task,
the learning algorithm implemented by A does not have to estimate the gradient of the
performance measure from a set of evaluations. It is effectively told by C how to change
its behavior. In a reinforcement learning task, however, the learning component has to do
something to estimate the gradient. What it does depends on the specifics of the learning
algorithm, but in all cases it must perform some form of exploratory behavior and must
manipulate the resulting set of evaluations to determine how to change the rule for gen-
erating behavior. In a supervised learning task, as formulated here, all the responsibility
for exploratory behavior is relegated to whatever process generates training patterns, and
this process is usually fixed and simple (e.g., it repeatedly cycles through a finite set of
training patterns). Consequently, the conflict between control and identification—the js-
sue that emerges in its most stark form in nonassociative reinforcement learning tasks—is
not present in supervised learning tasks unless the generation of training examples can
be influenced by A’s actions.

6.2 Associative Reinforcement Learning Tasks

Associative reinforcement learning tasks have all of the properties of nonassociative re-
inforcement learning tasks except that A has access to information other than C’s eval-
uations. Consequently, A can take advantage of information that can help it perform

8Biological evolution is sometimes viewed this wayv: each of A’s actions is the genetic material of an
organism, and C provides a measure of the reproductive success of that organism over its lifetime.

20

disturbances

B
— Controlled
— System
C
— Critic ———]
state
evaluations information
or payoffs.

control signals
or actions

L A
Controller

Figure 6: Basic Components of an Associative Reinforcement Learning
Task. The critic provides evaluative information to A, which also
has access to information about the state of B and the context
signal or command.

better than can its blind counterpart facing a nonassociative version of the same task. In
Figure 6, the controller A has access to information about the state of B and, if present,
context or command information.

One of the simplest associative reinforcement learning tasks is a generalization of the
‘success/failure’ nonassociative task described in Section 6.1. Suppose that at any time,
there can be one of several context signals and that the success probabilities depend on the
context signal as well as the action of A. Specifically, suppose d;; is the probability of C
sending ‘success’ to A given that A produced action a; while the context signal was . To
achieve the best rate of success, whenever A receives context signal z, it should select the
action a; such that dj, = max{d..|i = 1,n}. Clearly, if A selects actions independently
of the context signals—as it would be forced to do if facing a nonassociative task—then
in general it could, at best, achieve a lower success rate than if its actjons could depend
on the context signals. A’s sensitivity to context signals eliminates nonstationarity by
allowing the nonstationary task to be solved as multiple stationary tasks. Tasks of this
kind are discussed by Barto, Sutton. and Promwer [R]. Rarto and Anandan [5], Barto

3, 4], and Williams [42, 43].

In other associative reinforcement learning tasks, the controller, A, can take advan-

21

tage of information about B’s current state if this state influences C’s evaluation of the
current action. For example, B’s current state may act as context for the evaluation
process in the same way that the context signals do in the example just described, ex-
cept that in this case, A’s actions can influence how these context signals change over
time. Consequently, A’s actions not only can influence the immediate evaluation signal
produced by C, but they can also influence future evaluations by influencing B’s future
behavior. However, by an associative reinforcement learning task we mean a task in
which the underlying performance measure is such that the the objective is to maxi-
mize only the immediate evaluation at each step. More complex tasks, called adaptive
sequential decision tasks, require learning how to perfom actions so as to maximize a
measure of long-term performance by manipulating B’s long-term behavior. In these
tasks, it can make sense to forego a favorable immediate evaluation in order to achieve a
better evaluation in the future. We discuss adaptive sequential decision tasks in the next
section.

Associative reinforcement learning tasks combine the important aspects of nonassocia-
tive reinforcement learning tasks with aspects of supervised learning tasks, while avoiding
the additional complexities present in sequential tasks. For example, the context signals
in the associative version of the ‘success/failure’ task just described correspond to pattern
vectors in a supervised learning task. The objective is for A to respond to each pattern
with the action that is optimal for that pattern, but it must learn how to do this on
the basis of success/failure feedback instead of error vectors. All the issues concerning
generalization which are important in supervised learning are important here, but there
is a conflict between control and identification as well.

6.3 Adaptive Sequential Decision Tasks

Adaptive sequential decision tasks are characterized by performance measures that eval-
uate the controller’s behavior over extended periods of time, but unlike some of the tasks
discussed above—which are special cases—the full framework for sequential tasks takes
into account the possibility of the controller influencing the long-term behavior of the
controlled system, B. Whereas in associative reinforcement learning tasks, the controller,
A, has to discover what actions produce the most favorable immediate evaluation from
C, in sequential tasks A has to learn how to select the actions that maximize some cu-
mulative measure of the evaluations it receives over time. This is more difficult than
merely trying to achieve the best immediate evaluation. Some actions may be useful in
producing a high immediate evaluation, but these same actions may cause B to enter
states from which later high evaluations are unlikely or impossible. Hence, performing
these actions would result in worse performance over the long-term than might be possi-
ble otherwise. Conversely, some actions may produce low evaluations in the short-term
but are necessary to set the stage for better evaluations in the future. The controller’s
decision-making method must somehow account for both the short- and the long-term
consequences of actions. By a task’s horizon, we mean the duration of the time interval
into the future over which the consequences of current actions are significant.

22

Many tasks of practical significance can be modeled as sequential decision tasks. Find-
ing the least-cost route from one place to another is perhaps the most generic example.
Choice points along a route correspond to the states of B, A’s actions determine the path
taken and the next place reached, and the evaluation from C in response to an action is
related to the cost of traveling the path. In this example, it is clear that an action influ-
ences the immediate evaluation (the cost of the path immediately taken) as well as the
evaluations possible over the future (determined by the place reached). More complex
tasks involving resource allocation, investment, gambling, and foraging for food are also
examples of sequential decision tasks. Many of the planning and problem-solving tasks
studied by artificial intelligence researchers are sequential decision tasks. Unlike most of
the tasks described above, solving sequential decision tasks can be difficult even if one
knows all the details about the sytems and performance measures involved. Bertsekas
[14] provides a good account of sequential decision tasks and their solution using com-
putational methods known as dynamic programming, which are applicable when there is
an accurate model of the systems and performance measures involved.

By an adaptive sequential decision task we mean a sequential decision task in which
one does not have the accurate models required for applying these solution methods.
These tasks are obviously very difficult to solve: solving them requires learning, and they
can simultaneously involve the difficulties present in all of the other learning tasks we
have discussed. The associative reinforcement learning tasks discussed in Section 6.2 are
special cases of adaptive sequential decision tasks whose horizons are reduced so that
only the immediate consequences of actions are significant. Some approaches to solving
adaptive sequential decision tasks are discussed by Barto, Sutton, and Watkins [9, 10]
and Barto and Singh [11].

One type of sequential decision task receiving attention is known as a Markov decision
task (e.g., ref. [32]). In this kind of task, the controller, A, interacts with a controlled
system, B, which is a discrete-time, finite-state, stochastic dynamic system. At each
time step ¢, A observes the system’s current state, z;, and selects an action, a,. After the
action is performed, A receives a certain amount of payoff, r,, from the critic, C, that
depends on a, and z,, and B makes a transition from state z; = z to state z;; = y with
probability P.y(a;). Upon observing state T¢41, the controller A chooses another action,
@¢+1, and continues in this manner for a sequence of time steps. The objective of the task
is for A to form a rule to use in selecting actions, called a decision policy, that maximizes
a measure of the total amount of payoff accumulated over time.

One commonly studied measure of cumulative payoff is the expected infinite horizon
discounted return. This is defined by using a discount factor, v, 0 < v < 1, to weight
future payoffs less than immediate payoffs. Specifically, the expected infinite horizon
discounted return for a given policy and state, z, is

E[EXov'rlz0 = »]. (1)

\

where z is the initial system state, and I is the expectation assuming that A uses the
given policy. The objective of the decision task is to form a policy (there may be many)
that maximizes the expected infinite horizon discounted return defined by Equation 1

23

for each system state . This sequential decision task reduces to the ‘success/failure’
associative reinforcement learning task described in Section 6.2 if there are only two
possible payoff values and the discount factor, -, equals zero. In this case, one can
identify the larger payoff value with the ‘success’ signal of the associative reinforcement
learning task, and the smaller value with the ‘failure’ signal of that task. When v equals
zero, Equation 1 becomes simply E [ro|zo = 2], which is maximzed when the probability
of immediate success is maximized for each state z. If in addition, B has only one state,
this task further reduces to the ‘success/failure’ nonassociative reinforcement learning
task described in Section 6.1.

The most general adaptive sequential decision tasks require all the components and
connections shown in Figure 2, with the exception of the pathway for context signals,
commands, or training patterns. If such signals were present, they could indicate which of
several different adaptive sequential decision tasks was present at any particular time. For
example, in the context of “thirst,” a foraging animal’s task would be different than in the
context of “hunger.” The critic’s evaluation criteria would depend on the context, and the
animal’s foraging strategy, implemented by A, may come to depend on the context also.
We might call such tasks “associative adaptive sequential decision tasks” in analogy with
the associative reinforcement learning tasks discussed above. Solving them would involve
learning associative relationships between context signals and control rules effective in
different contexts, and generalization among different sequential decision tasks could be
important. This observation brings us in a full-circle back to the issues addressed by
supervised learning tasks, except that here the gap between what must be learned and
the kind of training information available is wide indeed.

7 Discussion

In this chapter we described a collection of learning tasks in order to place the tasks most
commonly studied into a broad context and to describe other types of learning tasks that
are receiving relatively little attention. We restricted discussion to learning tasks—defined
in terms of the task’s objectives, the nature of the learning system’s environment, and the
nature of the information available to the learning system—and did not discuss methods
for solving these tasks. By placing all the tasks within a control framework we attempted
to illuminate the limitations of each type of task and the relationships between them,
even though some of the tasks are rather degenerate kinds of control tasks. We reiterate
that our aim has not been to provide an exhaustive categorization or a unified theory of
learning tasks.

We distinguished two broad classes of tasks on the basis of the type of training
information available during learning. In supervised learning tasks information about the
gradient of the performance measure is directly available to guide learning. By gradient
information we mean information that dircotly (olls the svstem if local improvement in
behavior is possible and, if so, specifies how the behavior should be changed, i.e, in what
direction a change should be made. The central issue in supervised learning tasks is

24

generalization: how can a complete mapping be inferred from a sample of examples?
In contrast, the training signals in reinforcement learning tasks do not directly contain
directional information. These signals evaluate behavior but do not directly indicate if
local improvement is possible or how the behavior should be changed for improvement.
Directional information must be obtained from a collection of signals evaluating different
behaviors, but the learning system itself has to perform this integrative process. It has to
probe the environment—perform some form of ezploration—to obtain information about
how to change its behavior. In so doing, a system in a reinforcement learning task can
encounter a conflict between how it has to change behavior in order to obtain directional
information, and how the resulting directional information tells it to change its behavior
for improvement. This is known as the conflict between control and identification and
is absent in supervised learning tasks. Although many tasks involve aspects of both
supervised learning and reinforcement learning tasks—so that the distinction between
these classes of tasks may not be as sharply drawn in practice as we have suggested—this
distinction has significant consequences for the design of learning methods.

Following Jordan and Rumelhart [22], we discussed supervised learning involving
proximal and distal teachers. Whereas a proximal teacher provides gradient information
in the coordinate frame of the learning system’s actions, a distal teacher provides this
information in a different coordinate frame. Solving an example of the latter task requires
transforming distal training information into the information a proximal teacher would
provide if one were present. Tasks with distal teachers involve control in more substantive
ways than do other supervised learning tasks. To learn to achieve distal targets implies
that the learning system must learn to control aspects of the system that transforms its
actions into the distal coordinate frame (component B in Figure 4). If this is a dynamic
system, these tasks correspond to adaptive control tasks in which the objective is to
control a system so that its output tracks a desired reference trajectory.

We also emphasized a distinction between nonassociative and associative learning
tasks. In a nonassociative task, the learning system tries to find a single optimum ac-
tion, whereas in an associative task, it tries to construct an associative mapping from
inputs providing state and/or context information to optimal actions. We discussed this
distinction only in terms of reinforcement learning tasks. Nonassociative reinforcement
learning tasks are the simplest tasks involving the issues of exploration and the conflict
between control and identification. Supervised learning tasks, on the other hand, must be
associative in order to be interesting (except, perhaps, in cases involving distal training
information). A key feature of supervised learning is the possibility for forming associa-
tive mappings that generalize appropriately to novel inputs, and in nonassociative cases
there are no novel inputs.

For any kind of learning task, access to state and /or context information is important
because it may allow nonstationary nonassociative tasks to be transformed into stationary
associative tasks. In the nonstationary case. the critic’s evaluation criteria may appear
to vary over time because information relevant to performance is unavailable to the
learning system; in the stationary case, context signals allow the learning system to alter
its behavior according to which of a collection of stationary tasks is being faced at any

25

time. Given the ability to make its behavior conditional on relevant state and /or context
information, a learning system has the potential for dramatically improved performance
over what it could achieve if it were blind to this information. It is obviously important,
therefore, for a learning system to have access to information that it can use to reduce
or eliminate nonstationarity by means of associative processes.

In associative learning tasks, state and context signals play similar roles in supply-
ing information that can be used to reduce nonstationarity. In the framework used in
this chapter, the difference between state and context signals is that the former have
the potential for being influenced by the learning system, whereas we assumed that the
latter were beyond the learning system’s control. We let the context signals play the role
of the training patterns in supervised learning tasks because in most studies of super-
vised learning applied to pattern classification or function approximation, the sequence
of training patterns is not influenced by the learning system’s behavior. But it should be
clear that signals regarded as context in one task formulation may become state signals
in another formulation that extends the learning system’s influence.

Finally, we discussed sequential decision tasks in which it can make sense to forgo
short-term performance in order to achieve better performance over the long-term. Solv-
ing a task having this property requires extensive planning that can be difficult even if
all the details of the task are known in advance. When these details are not all known in
advance, performance over the long-term can be improved by learning, and we used the
term adaptive sequential decision task for these cases. The other reinforcement learning
tasks discussed in this chapter are special cases of adaptive sequential decision tasks.
Reducing the horizon so that only the immediate consequences of actions influence the
performance measure yields associative reinforcement learning tasks. If in addition the
learning system is not permitted access to information other than the critic’s evaluations,
the task becomes a nonassociative reinforcement learning task. Consequently, all the is-
sues we have discussed in this chapter must be considered in solving adaptive sequential
decision tasks.

Although the framework adopted in this chapter for comparing and contrasting learn-
ing tasks is one of many that could have been created, the exercise of embedding a range
of tasks within it demonstrates that there are many factors relevant to learning beyond
those addressed in the most commonly studied learning tasks. Conducting this exercise
while avoiding discussion of learning methods eliminates the confusion arising when as-
pects of tasks and methods are confounded. When studying learning methods against
this background, a clearer view of their capabilities and limitations is possible. For exam-
ple, one can consider separately two different categories of limitations on the capabilities
of a learning method.® A method may be limited in its ability to solve tasks of a quen
type that are more complex than a certain level, and a method may be limited because
it can only solve a certain type of task. For example, an artificial neural network con-
sisting of a single layer of linear threshold units using the perceptron learning rule can
learn to implement only linear discriminat functions. A very different limitation of such

This point was made by Barto and Sutton in ref. [6].

26

a network is that even if it could learn to implement arbitrarily complex discriminant
functions (for example, by using the error backpropagation method [26, 30, 33, 38)), it
would still require an environment capable of providing a specific type of detailed training
information.

Although solution methods for difficult nonlinear pattern classification, function ap-
proximation, and function optimization tasks will have important roles in sophisticated
learning systems, it seems to us that sophisticated learning behavior can result from a
system designed to solve many interrelated learning tasks of different types, where each
task is a relatively simple example of its type given the available prior knowledge. One
key to designing useful learning systems may be to design systems applicable to realistic
models of the tasks actually faced by animals than to abstract tasks isolating only a few
features of realistic learning tasks.

References

(1] H. B. Barlow. Unsupervised learning. Neural Computation, 1:295-311, 1989.

[2] A.G. Barto. Connectionist learning for control: An overview. In T. Miller, R. S. Sut-
ton, and P. J. Werbos, editors, Neural Networks Jor Control MIT Press, Cambridge,
MA. To appear.

[3] A. G. Barto. Learning by statistical cooperation of self-interested neuron-like com-
puting elements. Human Neurobiology, 4:229-256, 1985.

[4] A.G. Barto. From chemotaxis to cooperativity: Abstract exercises in neuronal learn-
ing strategies. In R. Durbin, R. Maill, and G. Mitchison, editors, The Computing
Neuron, pages 73-98. Addison-Wesley, Reading, MA, 1989.

[5] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, 15:360-375, 1985.

(6] A. G. Barto and R. S. Sutton. Goal seeking components for adaptive intelligence:
An initial assessment. Technical Report AFWAL-TR-81-1070, Air Force Wright
Aeronautical Laboratories/Avionics Laboratory, Wright-Patterson AFB, OH, 1981.

(7] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can
solve difficult learning control problems. JEEE Transactions on Systems, Man, and
Cybernetics, 13:835-846, 1983. Reprinted in J. A. Anderson and E. Rosenfeld, Neu-
rocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.

[8] A. G. Barto, R. S. Sutton, and P. S. Brouwer. Associative search network: A
reinforcement learning associative mem-ry. 1FEE Transactions on Systems, Man,
and Cybernetics, 40:201-211, 1981,

27

[9] A.G. Barto, R. S. Sutton, and C. Watkins. Learning and sequential decision making.
In M. Gabriel and J. W. Moore, editors, Learning and Computational Neuroscience.
MIT Press, Cambridge, MA. To appear.

[10] A. G. Barto, R. S. Sutton, and C. Watkins. Sequential decision problems and neural
networks. In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems 2, pages 686-693, San Mateo, CA, 1990. Morgan Kaufmann.

[11] A.G. Barto and S.P. Singh. On the computational economics of reinforcement learn-
ing. In Proceedings of the 1990 Connectionist Models Summer School.

(12] E. B. Baum. Neural net algorithms that learn in polynomial time from examples
and queries. JEEE Transactions on Neural Networks. To appear.

[13] D. A. Berry and B. Fristedt. Bandit Problems. Chapman and Hall, London, 1985.

(14] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[15] P. R. Cohen and E. A. Feigenbaum, editors. The Handbook of Artificial Intelligence,
volume 3. HeurisTech Press, Stanford, California, 1982.

[16] D. C. Dennett. Elbow Room. The Varieties of Free Will Worth Wanting. MIT Press,
Cambridge, MA, 1985.

[17] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New
York, 1973.

[18] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control. Prentice-
Hall, Englewood Cliffs, N.J., 1984.

[19] G. E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40:185-234,
1989.

[20] G. E. Hinton and J. A. Anderson, editors. Parallel Models of Associative Memory.
Erlbaum, Hillsdale, NJ, 1981.

[21] W. K. Honig and J. E. R. Staddon. Handbook of Operant Behavior. Prentice Hall,
Englewood Cliffs, NJ, 1977.

[22] M. I. Jordan and D. E. Rumelhart. Forward models: Supervised learning with a
distal teacher. Submitted for publication.

[23] T. Kohonen. Content-Addressable Memories. Springer-Verlag, Berlin, 1980.

(24) T. Kohonen. Self-Organization and \ssociativ Wemory. Springer-Verlag, Berlin,
1984.

28

[25] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in SOAR: The anatomy of
a general learning mechanism. Machine Learning, 1:11-46.

[26] Y. le Cun. Une procedure d’apprentissage pour reseau a sequil assymetrique [A

learning procedure for asymmetric threshold network]. Proceedings of Cognitiva,
85:599-604, 1985.

(27] L. Ljung and T. Séderstrom. Theory and Practice of Recursive Identification. MIT
Press, Cambridge, MA, 1983.

[28] D. Marr. Vision. W. H. Freeman, San Francisco, 1982.

. [29] K. Narendra and M. A. L. Thathachar. Learning Automata: An Introduction. Pren-
tice Hall, Englewood Cliffs, NJ, 1989.

[30] D. B. Parker. Learning logic. Technical Report TR-47, Massachusetts Institute of
Technology, 1985.

(31] J. W. Polderman. Adaptive Control and Identification: Conflict or Confluz? Cen-
trum voor Wiskinde en Informatica, P.O. Box 4079, 1009 AB Amsterdam, The
Netherlands, 1987.

[32] S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New
York, 1983.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,

Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition,
vol.1: Foundations. Bradford Books/MIT Press, Cambridge, MA, 1986.

[34] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts, Amherst, MA, 1984.

[35] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44, 1988.

[36] R.S. Sutton. Integrating architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, pages 216-224, San Mateo, CA, 1990. Morgan
Kaufmann.

[37] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

[38] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis. Harvard University. 1974,

29

[39] P.J. Werbos. Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEEE Transactions on Systems,
Man, and Cybernetics, 1987.

[40] A. N. Whitehead. Science and the Modern World (Lowell Lectures, '1925). The
Macmillan Company, New York, 1925.

[41] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1985.

[42] R. J. Williams. Reinforcement learning in connectionist networks: A mathematical
analysis. Technical Report ICS 8605, Institute for Cognitive Science, University of
California at San Diego, La Jolla, CA, 1986.

(43] R.J. Williams. Reinforcement-learning connectionist systems. Technical Report NU-
CCS-87-3, College of Computer Science, Northeastern University, 360 Huntington
Avenue, Boston, MA, 1987. ,

30

