EXTRACTING CONCURRENCY
FROM OBJECTS: A METHODOLOGY

P.K. Chrysanthis, S. Raghuram, K. Ramamritham
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 90-126

Extracting Concurrency from Objects:
A Methodology

Panos K. Chrysanthis
S. Raghuram
Krithi Ramamritham

Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003
2

Abstract

Whereas a number of semantics-based concurrency control schemes for object-oriented
systems have been proposed in the literature, each scheme has approached the issue from
fairly narrow considerations. In this paper, we have made an effort to discover, from first
principles, the nature of concurrency semantics inherent in objects. Towards this end, we
identify the dimensions along which object and operation semantics can be modeled. These
dimensions are then used to classify and unify existing semantic-based concurrency control
schemes. To formalize this classification, we propose a graph representation for objects that
can be derived from the abstract specification of an object. Based on this representation,
which helps to identify the semantic information inherent in an object, we propose a
methodology that shows how various semantic notions applicable to concurrency control
can be effectively combined to improve concurrency. In this process, we identify and exploit
a new source of semantic information, namely, the ordering among component objects, to
further enhance concurrency. Lastly, we present a scheme, based on this methodology, for
deriving compatibility tables for operations on objects.

This work is supported in part by the N.S.F. under grant DCR-8500332.

2E-mail address: panos@ccs3.cs.umass.edu, raghuram@cs.umass.edu, krithi@nirvan.cs.umass.edu.

1 Introduction

In order to capture the needs of emerging information-intensive applications such as CAD/CAM,
office information systems, and stock trading databases, several extensions to the traditional
data and transaction models have been proposed [15]. For example, instead of the read/write
model of data, an abstract data type model has been advocated to capture the data in complex
databases. Abstract data types being a rich source of semantic information, allow the.design
of type-specific concurrency control schemes which enhance concurrency within objects, i.e.,
instances of abstract data types. These schemes exploit the semantic information about the
types and their operations. Several forms of type-specific concurrency control techniques have
been reported in the literature [1, 8, 9, 14, 16] and the improved performance achieved by these
schemes has already been demonstrated [3].

Our goal in this paper is to examine whether there is a systematic way to extract and
exploit the concurrency inherent in an object. To address this issue, we consider the following

to be prerequisites:
1. A precise model for objects that will bring out their concurrency semantics.

2. Given this, a scheme for extracting information that can be used for controlling concurrent

access to these objects.

In Section 2, the issues related to semantic-based concurrency control are examined. In section
3, existing semantic notions are presented and characterized in terms of the different semantic
information classes identified in Section 2. Section 4 presents a model that captures the abstract
structure of an object and provides a way to specify the effect of an operation on an object
in terms of such an abstract structure. Using this, in Section 5, a scheme is developed for
methodically deriving the compatibility table for ob Jects. Section 6 concludes with a summary

and future steps.

2 Issues in Semantics-Based Concurrency Control

In a database modeled in terms of ob Jects, i.e., instances of abstract data types, transactions
invoke operations defined on the objects. Controlling the concurrent execution of these trans-
actions involves the control of execution of the operations invoked on the objects. Whether or
not two operations, invoked by different transactions, can be allowed to execute concurrently

depends on:

. 2
1. the effect of one operation on the other, and

2. the effect of the operations on the object.

In this section, we elaborate upon these effects in order to set the stage for a characteri-
zation of semantics-based concurrency control schemes in subsequent sections. Throughout this
paper, we assume a traditional transaction model in which transactions have the properties of
serializability and failure atomicity (6, 7, 4].

We will be using the QStack object described below to illustrate various concepts discussed
in the rest of the paper. A QStack combines the properties of a stack and a queue. The operations
defined on a QStack are:

Enq(e):ok/nok or Push(e):ok/nok adds an element e to the back of the QStack. It returns
ok if QStack is not full, nok (denoting overflow) otherwise.

Deq():e/nok deletes an element e from the front of the QStack. It returns e if QStack is not
empty, nok (denoting empty) otherwise.

Pop():e/nok deletes an element e from the back of the QStack. It returns e if QStack is not

empty, nok (denoting empty or bottom) otherwise.

Top():e/nok returns e, the element at the back of QStack, if QStack is not empty, nok (denoting

empty or bottom) otherwise.
Size():n returns the number of elements n in the QStack.
Replace(el,e2):0k replaces all el elements (values) in QStack with e2. It always returns ok.

' XTop():ok/nok exchanges the first two elements in the back of the QStack. It returns ok if

two elements exist, otherwise nok.
Purge():ok resets (makes empty) the QStack. It always returns ok.

We refer to the “status”, such as ok or nok, returned by an operation as the outcome of the

operation. Other values returned are referred to as results.

2.1 Effects of Operations on Each Other

Operations defined on an object are considered as functions from one object state to another

object state. It is assumed that an operation always produces a return-value (output), th=1 is,

3

it has an outcome (condition code) or a result. The result of an operation on an object depends
on the current state of the object. For a given state s of an object, we use return(s, p) to denote
the return value, i.e., result or outcome, produced by operation p, and state(s,p) to denote the
state produced after the execution of p.

Here we ask the question: What are the possible interactions that can occur between two
concurrent operations on a given object, and what are the effects of these interactions on the
relationship between these two operations? This relation can cause dependencies to develop
between the transactions invoking the two operations, thus affecting their commit or abort.
The relationship between an operation and another relative to state s depends on whether it is
an observer of s or a modifier of s, or both. Two operations interact only if at least one of them

is a modifier that changes the state of the object.
Definition 1: An operation o is an observer in a state s if state(s,0) = s.

Definition 2: An operation o is a modifier in a state s if

state(s,0) # s AVs',s' # s,return(s’, 0) = return(s, o).

Definition 3: An operation o is a modifier-observer in state s if

state(s,0) # s A s',s' # s,return(s’, 0) # return(s, o).

These definitions classify the operations as observer (O,), modifiers (M,) and modifier-
observers (MO,) with respect to a particular state s. Clearly an operation could be a modifier
in one state and an observer in another. For example, operation Push is a modifier-observer if
successful and just an observer if it is not.

Interactions between operations can cause dependencies between the invoking transactions.
Given the above definitions, consider the cases where an operation g follows an operation p. If p
is a modifier and g is an observer, or p is modifier and q is a modifier-observer, or p is a modifier-
observer and q is an observer, or both p and g are modifier-observers, operation q observes the
effects of p. In these cases, to guarantee failure atomicity, the transaction invoking q has to abort
if for some reason the first transaction aborts, since the information used by g would no longer
be valid. The second transaction can commit only if the first transaction commits. Hence, in
this case, the second transaction is said to be abori-dependent (AD) on the first transaction.

If p is an observer and ¢ is a modifier, or p is an observer and q is a modifier-observer,
or p is a modifier-observer and q is a modifier, or both p and g are modifiers, the outcome and
result of g are not affected by the effects of p. In these cases, to ensure serializability, if both

transactions commit, the first should commit before the second. i.e., the second transaction

4

can commit, and hence, it can effect its changes, only after the first transaction commits or
aborts®. In this case, the second transaction is said to be commit-dependent (CD) on the first
transaction.

Thus far, we have classified operations in a given state s. Let us consider state-independent
classification of operations. To motivate this classification observe that an abort-dependency is
stronger that a commit-dependency in the sense that abort-dependency can prevent a transac-
tion from committing and force it to abort, whereas commit-dependency can neither prevent
a transaction from eventually committing nor force it to abort. (Note that abort-dependency
implies commit-dependency.) Because of this, if an operation o is a modifier-observer in a state
s in which it potentially may cause an abort-dependency, and o is a modifier in another state
s’ in which it may potentially cause a commit-dependency, o should be classified as a modifier-

observer with respect to all states. Here is a state-indenpendent classification of operations:

Definition 4: An operation o is a modifier-observer (MO), if

Jds in which o is a modifier-observer.

Definition 5: An operation o is a modifier (M) if

As in which o is a modifier-observer, and Js in which o is a modifier.

Definition 6: An operation o is an observer (O) if

As in which o is a modifier-observer, and 7s in which o is a modifier.

Here is a state-independent classification of the operations of the QStack:

Operation Type | Operation Type
Pop MO Deq MO

Push MO Size 0]

Top 0 Replace M

XTop MO Purge M
Table 1

We prefer to use the more general terms observer and modifier, rather than read and write,
to explicitly denote the fact that a modifier may not “write” into the complete object and an
observer may only “read” part of the object. Thus, as we shall see in Section 5, it may be
possible for two modifiers or even a modifier and an observer to concurrently access an object.

The above classification of operations forms the basis for the methodology outlined in

Section 5 for extracting concurrency from objects.

3This means that, in the event that p is aborted, p’s changes have to be undone and possibly g’s, and the
changes of ¢ must be reapplied.

2.2 Effects of Operations on Objects

We now turn our attention to the effects of individual operations on objects. Broadly spéaking,

the concurrency semantics of an object can be extracted from the following:
1. semantics of the operations,
2. operation input/output values,
3. organization of the object, and
4 object usage.

Operation semantics are the most commonly used semantics in the context of concurrency
control and are related to the effects of an operation on the state of an object. In this paper,
operations are broadly classified as observers that do not change the state of an object, and
modifiers that change the state of an object. Reads and writes are simple examples of observers
and modifiers respectively.

Input/output semantics refer to both the direction (in/out) of information flow from an
object, and to the interpretation of input and output values of an operation. The information
into or out of an object occurs via the arguments of the operations defined on the object and
through the outcome and results of the operations. For example, an operation without arguments
such as Deq on a QStack, does not support information flow into the QStack although it supports
information flow out of QStack. Interpretation of input/output values can be used to decide
if two operations conflict. For example, two Push operations which attempt to Push the same
item onto a stack commute and thus, they do not conflict.

Object organization semantics refer to the abstract organization of an ob ject. We classify
this further as composition semantics that pertain to what an object is composed of, and as
order semantics that refer to the relative ordering among the component objects.

Usage semantics refer to how the object is used and what is done with the information
extracted out of an object by an operation. In this paper, we don’t consider usage semantic
information, although such information can potentially be exploited to enhance concurrency
within a given application. We return to this in the concluding section.

Several techniques have been proposed in the literature to enhance concurrent access to
objects. We review them in Section 3 and show how they are designed to use operation semantics,

input/output semantics and object organization semantics.

6

3 Characterization of Existing Object-based Concurrency Control
Schemes

Commutativity is the traditional semantic notion used to determine if two operations can be
allowed to execute concurrently (e.g., two reads commute). Commutativity does not distinguish
between abort-dependencies and commit-dependencies. Two operations do not commute if
either type of dependency will result.

Several concurrency control schemes use input/output data semantics, operation seman-
tics, and object organization semantics in determining commuting operations (2, 13]. In [16],
commutativity is defined in terms of state machines as forward commutativity, which is appli-
cable only with intentions lists based recovery, and backward commutativity, which is applicable
only with log based recovery. Multilevel concurrency-control takes object organization semantics
into account [11].

An alternative method for defining conflicts is based on serial dependency relations [8, 9].
Two operations conflict according to a serial dependency relation if they invalidate each other.
The use of intentions lists in this scheme as a recovery mechanism avoids the occurrence of in-
formation flow or obsolescence between active transactions since the modifications of an object
by an operation are not effected until the operation commits. For example, with intentions lists,
there is no information flow if a Pop operation follows a Push operation on a QStack, until the
Pop commits. But at the time of commitment, a transaction is validated to determine if its
commitment invalidates the changes made by any committed transaction in case of backward
validation, or the effects of any in-progress (active) transaction in case of forward validation.
In the case of backward validation, this involves checking whether any information used by the
transaction attempting to commit has been rendered obsolete by any other committed trans-
action, and if so, the committing transaction is aborted. Hence when two active transactions
successfully commit, it means that there was no serial dependency between them when they
were a,btive.

Recoverability is another criterion which is used to define conflicts among operations|1, 3].
An operation o, is recoverable relative to another operation o,, if 0, returns the same value
whether or not o, is executed immediately before 0,. Transactions invoking o, and o, are
required to commit in the order of invocation of these two operations. Since recoverability
forces a (dynamically determined) order of commitment for active transactions, in a sense it is
stronger than serial dependency which postpones the commit order till the time of commitment

of active transactions. Recoverability, like commutativity, allows implementations that avoid

7

cascading aborts while also avoiding the delay in the processing of many non-commiutative
operations. It assumes a flexible recovery technique for handling the abortion of operations.

In both serial dependency and recoverability, aspects of input/ output data semantics re-
lating to input and return values, and operation semantics are used. Both these definitions are
weaker notions than commutativity which requires equivalence of states. In fact serial depen-
dency and recoverability can be shown to be equivalent semantic notions in the sense that they
allow the same set of valid histories given a particular recovery mechanism. We have proven
elsewhere that both these schemes have the same set of valid histories, and we have shown how
a serial dependency based compatibility table translates into a recoverability table and vise-
vetsa. The difference between these two semantic notions is in the assumption of the underlying
recovery mechanism.

Compatibility of operations based on the formation of significant and insignificant depen-
dencies between concurrent operations is described in [14]. For example, two concurrent read
operations form an insignificant dependency and hence can be allowed to execute concurrently.
The classification of dependencies as significant or insignificant is not explicitly uniform across
types. Here a combination of operation, input/output data, and object organization semantics
1s exploited.

Whereas each of these proposed semantics-based concurrency control schemes hds at-
tempted to exploit different aspects of objects and their operations, it is not clear if (between
them) that have exhausted all possibilities. It will be useful to know — given a particular object
- what the potential for concurrency is while executing operations on the object. This is the
issue addressed in the next section. Specifically, we develop a model for representing objects

that brings the concurrency properties of an ob ject and its operations to the forefront.

4 The Object Model

The popular notion of an object is that it hides or encapsulates implementation details, and
presents only the logical or abstract view of the ob Jects, with a predefined set of methods or
operations that are used to access the object. Even while staying within this view, one can
exploit another abstract object characteristic, namely, the notion of ordering among elements®.
Specifically, an object can be thought of as containing a set of subobjects or components ordered

in a specific way. This potentially rich source of semantic information can be used to extract

more concurrency.

*Note that not all objects may contain components that are ordered. However, as we will see, where available,
such ordering information can be exploited to improve concurrency.

8

In thus section, we develup a characterization of objects that helps identify the semantic
information inherent to an object. First we propose use of an object graph to represent objects
and their components. Using this graph, the locality of effects of an operation is described.

Locality of operations forms the basis for deriving their concurrency properties.

4.1 Object Graph

Objects are instances of abstract data types whose state can be observed and manipulated by a
set of operations defined on the object. The state can be viewed as an ordered set of component
objects. In this recursive view, the primitive object has a simple data value. Hence this view

captures both the notions of simple and complez objects, i.e., objects composed of other objects.

Definition 7: An object ob is a 3-tuple (S, R, O) where S is a set of objects or simple data

values, R is a set of ordering rules, and O is a set of operations defined on ob.

The object graph represents the logical organization (abstract structure) of an object.
This graph encodes the fact that an object consists of component objects, where the ordering
among components is made explicit by encoding it as edges in the graph. The ordering edge
emanating from a component indicates the next component that can be accessed following
access to this component. A component may be an object with or without further components.
This representation, which is an extension of the graph model used in [2], can be constructed
just from the abstract specification of an object and the operations and does not subsume any
implementation detail. In particular, we are dealing with the abstract operations for which it is
assumed that the implementation does not impose any constraints on extracting the concurrency
inherent in an object.

Thus, in what follows, it is assumed that if the semantics of two operations on an ob-
ject allow the operations to execute concurrently, the lower-level implementation of the object
will allow the exploitation of such concurrency. In case an object has components which are
themselves objects, then concurrent access to that object (perhaps from operations invoked on
the parent object) are controlled by the component object. Such multilevel concurrency control

issues pertaining to complex objects [10] are studied in [12, 11, 3|.

Definition 8: Let Gop({vob U Vb }, { Ecom U Eora}) be the object graph for object ob where:
— e is the root of the object graph,

— Vo is a set of vertices, representing the components of o0b,

Figure 1: An object graph

— Ecom is a set of composed-of edges from v, to every vertex in V4, representing the com-

position of ob, and

— Egeq 1s the set of ordering edges connecting vertices in V,, representing the ordering of

the components of ob.

Definition 9: The subgraph G.,({ves U Vap}, Ecom) of Gop is called the composition graph
of ob, and subgraph G.,(Vos, Eora) is called the ordering graph of ob.

Definition 10: The content of a vertex is defined recursively as follows:

— If the vertex denotes an object without components, then the content of the vertex is the

content of the object.

— If the object has components, the content of the vertex is denoted by the composed of

edges and content of the vertices in the subtree rooted at the vertex.

For example, in Figure 1, object A is composed-of primitive objects B and C and tompo-
nent object D which is composed-of primitive objects E and F. Since D itself is an object, 4 is
a complex object. AB, AC, AD, DE and DF are composed-of edges (the solid arrows). Thus,
the composition graph of 4 is G'({A, B,C, D},{AB, AC, AD}). The ordering edges of A are
BC and CD (the dotted arrows). Thus, the ordering graph of A is G"({B, C, D}, {BC,CD}).
Note that DE and DF are composed-of edges and EF and FE are ordering edges of D and
not of A.

The composition graph of an object together with the composition graphs of component
objects has a hierarchical structure. At any level of the hierarchy, the ordering graph of the
object at that level may contain cycles. Since ordering is meaningful only between components

of an object, ordering edges are restricted to lie at a single level, i.e., they do not connect vertices

at different levels.

10
4.2 Operations and Locality

An operation on a complex object may result in the invocation of a set of operations on the

component objects. An operation can possibly do one or more of the following:
1. change the contents of vertices (for component objects, by invoking operations on them),
2. insert or delete vertices and their related (composed-of and ordering) edges,
3. change the structure by changing the ordering edges,
4. observe the contents of vertices, or
5. observe the structure or presence of vertices.

Out of these, item 5 might need some further explanation. The following example should clarify
it. Consider the operation Size on the QStack object. The number of elements on a QStack that
Size returns equals the number of vertices present in the structure of the QStack (see Figure 2
on page 19). Thus, Size observes the structure and counts the vertices present, i.e., it observes
the presence of the vertices.

To characterize the specific parts of the object graph affected by or used by an operation,

we define the locality of an operation.

Definition 11: Vofm"k for an object ob is the set of all the vertices with simple data values
in the hierarchical graph constructed by the composition graph of the object G., together
with the composition graphs G;b,- of its component objects ob; (ob; € Vy3). Thus,

vamele = V, U (U;Vam?*), where: V, C Vi, represent the primitive components of ob.

'
i

Definition 12: The locality L, of an operation o is the union of (1) the set of vertices
V, with simple data values (V, C V,3™'¢) which the operation accesses, and (2) the set
of vertices V, in V,, (V, C V) whose existence is observed by o, and (3) the union of the
locality L, of the operations o; which are invoked on the vertices v; ({v:} C V) representing

component objects of ob: L, = V, U Vg U (U;L,,).

Since operations can affect the structure of an object and the contents of the component
objects, the locality of an operation o can be split into two sets L3 and Lg (L, = Lj U L), not

necessarily disjoint, denoting the structure and content locality of o respectively.

11
Definition 13: The structure locality L of an operation o is a subset of the locality
of the operation L, (L C L,), containing the vertices in L, that are inserted or deleted,

vertices to/from which ordering edges are changed or observed, and vertices whose presence

is observed.

Definition 14: The content locality Lt of an operation o is a subset of the locality of the
operation L, (Lt C L,), containing the vertices in L, that are inserted, deleted, or whose

content is changed or observed.

Informally, whereas structure locality of an operation considers all the vertices whose
ezistence or ordering, may have been noted by the operation, content locality considers all the
vertices whose contents may have been observed or affected by the operation.

By considering insert, delete, and change operations as modifiers, structure as well as con-
tent localities of an operation can be further distinguished into structure-observation, structure-

modification, content-observation, and content-modification localities.

Definition 15: The structure-observation locality L2° of an operation o is a subset of
the structure locality of the operation L: (L%° C LZ), containing the vertices in L] whose

presence is observed, and ordering edges to/from which are observed.

Definition 16: The structure-modification locality L™ of an operation o is a subset of
the structure locality of the operation L} (L™ C LZ), containing the vertices in L that are

inserted or deleted, or to/from which ordering edges are changed.

Definition 17: The content-observation locality L% of an operation o is a subset of the
content locality of the operation LS (LS C Lg), containing the vertices in LS whose content

is observed.

Definition 18: The content-modification locality L™ of an operation o is a subset of
the content locality of the operation L¢ (LE™ C L¢), containing the vertices in L¢ that are

modified, i.e., inserted or deleted, or whose content is changed.

The following examples should clarify these terms. The Replace operation on a QStack modifies
the content but not the structure of the QStack. A successful XTop modifies the structure but
not the content of the QStack. That is because XTop which affects the top two elements of the

QStack does not modify the content of the elements or the composed of edges. It only reorders

12

the ordering edges®. The Top operation observes both the content as well as the structure of

the QStack.

Definition 19: An operation o on an object ob is said to be a global operation

if L, D V5™?!e An operation which is not global is said to be non-global.

That is, the locality L, of a global operation o defined on ob always contains all the vertices
with simple data values in the object graph of ob.

Global operations can be classified as global-modifiers and global-observers, or can be fur-
ther refined as global-structure-modifiers, global-structure-observers, global-content-observers and
global-content-modifiers according to the locality type. For instance, if for an operation o,
L& = Lt then o is said to be a global-content-observer. Replace is an example of such an

operation.

4.3 Relation of Locality to Semantic Notions used in Concurrency Control

In the most general case, two operations defined on an object conflict if the intersection of the
'localities of the two operations is not empty. We focus first in the state-independent classification
of operations and then we show how return-value dependency and state-dependency semantics
can be factor in.

Finding the actual locality of an operation may require the execution of the operation. In
most cases the locality of a non-global operation can be specified by a predicate. Thus, whether
the intersection of two localities is empty or not can be determined by using the predicates
characterizing the localities without actually finding the vertices or edges involved. (However,
note that, in general, determining if the sets identified by two arbitrary predicates intersect is
undecidable.) If it is not possible to specify such predicates, the locality of an operation can be
determined only after the operation completes.

Typically, the input parameters to an operation determine the locality of the operation.
In addition, the ordering among component objects can be very effectively used in constructing
predicates for specifying the localities of the operations. To this end, the notion of the set

of references used by each operation on an object is introduced. This set is a subset of the

*XTop, as specified, is characterized by a non-empty structure-modification locality and empty content-
modification locality. If XTop were to swap the contents the top two clements, then XTop would modify the
content of the QStack but not the structure. Thus, XTop would be characterized by a non-empty content-
modification locality and empty structure-modification locality. This points to the fact that it is possible for an
operation to have more than one characterization. In such cases, all characterizations need to be considered in
order to determine the one characterization that allows the most concurrency.

13

composed-of edges E,, emanating from the root vertex of the object graph and is generally
maintained as part of the object state.

For example, a QStack maintains two references, one is the back pointer or stack pointer
(denoted by b in Figure 2) that points to the end of the QStack and is used by Enq, Push, Pop,
and Top operations, and the other is the front pointer (denoted by f in Figure 2) that points to
the front of the queue and is used by the Deq operation. The stack pointer, for instance, is the
composed-of edge corresponding to the last element on the QStack. The ordering edges define
which composed-of edge should become the stack pointer when a Pop operation is invoked (since

the composed-of edge representing the current stack pointer is deleted when Pop executes).

Definition 20: Let 7,, be the set of references of operation op defined on object ob
represented by the object graph Gop({ves U Vab}, {Ecom U Eora}). The set of references 7o,
is a subset of the composed-of edges Ecom (Top C Ecom) and is defined with respect to ob’s

ordering rules R (see definition 1).

These references can either be (indirectly) provided by the agent invoking the operation
(ezplicit referencing), or by the object state itself that maintains a set of references to be used by
the operations (implicit referencing). The two references maintained by a QStack are implicit.
An example of explicit referencing occurs in the search(z) operation on a relation. Here z is
the argument that can be used to determine the reference to the record being searched.

References can be deleted for example when a QStack becomes empty. A reference can also
be modified. Modification can be done without necessarily deleting the corresponding composed-
of edge by selecting a different composed-of edge as the new reference. For example, a Push
operation on a QStack modifies the stack pointer by selecting the newly added composed-of
edge to be the new stack pointer but without deleting the composed-of edge representing the

current stack pointer.

Definition 21: The input and output parameters of an abstract operation on an object

can be said to contain three components: reference (r), input-data (z), return-result(o).

Assertion 1: Transactions invoking two operations ¢ and y defined on the object ob, do

not form dependencies, if localities of z and y satisfy the following conditions:
LTPLY =LY LT = LT~ L7 = LP0Ly™ = Lm0 Ly = L"NL™ = ¢ 0

This implies that operations restricted to the structure of an object do not form depen-

dencies with operations restricted to the content of the object.

14

The intersection of different combinations of locality types, if it is not empty, may result
in either commit or abort dependency. In the following table, if the intersection of the given
sets is empty then no dependency is developed between the corresponding operations and
y, otherwise the noted dependency, (here AD stands for abort-dependency, CD for commit-
dependency and N D for no dependency,) is developed. Here z is in execution and y attempts

to execute concurrently with z.

(Lo [Lo [L [L]
L [ND [ND | AD [ND
Lo [ND [ND | ND | AD
L' |CD[ND|CD | ND
L |ND[CD|ND | CD

Table 2

Assertion 2: Given two operations = and y defined on the object ob, and y commute iff the
intersections of their associated locality types (Li¥, L) where i € {c, s}, and k,! € {o,m},
k # |l = o, are empty. O

Assertion 3: Given two operations z and y defined on the object ob, y is recoverable relative
to z iff for (Li¥, L¥) where i € {c,s}, and k,! € {o,m}, k # I = o, (a) the corresponding
intersections of the locality types are empty, or (b) the corresponding entry in Table 2 is a
CD or an ND. 0

5 A Scheme for Determining Compatibility Tables

Having addressed the problem of determining the concurrency properties of the operations on
a given object, we turn our attention to applying the concepts discussed thus far to determine
the compatibility table associated with a given object.

In the traditional framework, a compatibility table is a simple a binary relation with a yes
entry for (o;, 0;) indicating that the operations o; and o; are compatible, i.e., do not conflict, or a
no entry indicating that the two operations are incompatible, i.e., conflict. In our terminology,
an entry could contain no-dependency (ND), abort-dependency (AD), or commit-dependency
(CD). That is, in our scheme a standard yes entry translates to a ND, whereas a standard no
entry is refined to either AD or CD. Note (see Section 2 for the definitions of dependencies) that
an AD entry is more restrictive (stronger) than a CD entry, and a CD entry is more restrictive
than a ND entry (AD>CD>ND). The general rule to determine an entry in a table follows from

the discussion of the effects of an operation on another (see Section 2.1).

15

In this scheme, the compatibility table is developed through stepwise refinement of its
entries. Each step uses more semantic information to produce a compatibility table that offers
more potential for concurrency among operations.

We begin with the case where no semantic information is used about the object and its
operations, i.e., corresponds to all operations being modifier-observers (MO). This produces a
single entry compatibility table containing AD (X is the ongoing operation and Y is the invoked

operation).

Table 3

Based on whether an operation is an observer (O), a modifier (M), or modifier-observer

(MO), this single entry table can be replaced by the following table:

[0 1M]|MO|
O IND!AD| AD
M ||CD|CD|CD
MO |CD | AD | AD
Table 4

These entries capture the eight types of potentially conflicting interactions between two oper-
ations seen in Section 2.1. This is exactly the semantics that is captured by recoverability and
serial dependency.

By making use of the order among dependencies (AD>CD>ND), the entries associated
with a modifier-observer can be considered as a function that returns the stronger dependency
between the corresponding modifier and observer entries. For example, the entry (O,MO) =
stronger((O,M),(0,0)) = stronger(AD,ND) = AD. Since the MO entries can be easily generated

in this way, we need to further consider tables with only the O and M entries:

[0 W]

O | ND | AD
M|CD|CD
Table 5

Note that the above “weakening” was accomplished by using a combination of semantics of both
operations.
Object organization semantics, i.e., the composition and structural (ordering) semantics of

an object, is used to further refine the AD and CD entries. An observer can either be a content

16

observer (CO) or a structure observer (SO) or both (CSO). Similarly, a modifier can be classified
as content modifier (CM), structure modifier (SM), or both (CSM). It is possible to eliminate
the entries associated with CSM by making use of the stronger function as explained above.
Operations restricted to the structure of an object can execute concurrently with operations
restricted to the content of the object. For example, the operation Replace defined on a QStack
is a CM operation on the QStack and a successful XTop is a SM operation on the QStack, and
hence, Replace and successful XTop operations commute. The Top operation on the other hand
is both SO and CO since it observes both the ordering and the content of the first node. By this
refinement, the following three tables are obtained corresponding to the entries (O,M), (M,M),
and (M,0):

(O,M) [SM]CM | CSM | (M,M) [SM]CM | CSM |

SO [AD|ND | AD SM [[CD|ND| CD

CO [[ND|AD | AD CM [ND|CD| CD

CSO || AD | AD | AD CSM [[CD | CD | CD
Table 6 Table 7

(M,0) IFSOALCO I CSOJ
SM CD{ND| CD
CM ||[ND|CD| CD
CSM ([CD|[CD | CD

Table 8

It should be noted that tables 6, 7, and 8 are in agreement with Table 2. For example,
the entry (SM,S0) in the Table 6 corresponds to the entry (L™, L7®) of Table 2.

The refinement thus far was based on a state-independent characterization of operations.
The input Joutput semantics of operations and the locality of non-global operations can be
exploited to further weaken the remaining AD and CD entries. Potentially, these are very rich
sources of semantic information that can be effectively used to further enhance concurrency.
This is illustrated in Section 5.2.

The operations can be classified as either global (G) or non-global (L) and ouly the non-
global operations need to be refined further. For non-global operations, in general, their locality
is dynamic in nature, i.e., has to be determined at the time of invocation. The next refinement
consists of replacing the single dependency in an entry with a set of mutually-consistent (depen-
dency/condition) pairs where each condition is dependent on the predicate that describes the
locality of the operation (see Section 4.3). Different conditions test the emptiness of the inter-

section of different types of localities of two operations and may result in different dependencies.

17

By mutually-consistent (dependency, condition) pairs, we mean that if the conditions associated
with two pairs involve the same type of localities where the condition of the first pair exploits
more semantics than the one of the second pair, the dependency specified in the first pair must
be weaker than the one specified in the second pair. Thus, for a given entry, the dependency
chosen from the set of (dependency,condition) pairs is the least restrictive (weakest) dependency
among the dependencies whose associated conditions hold.

Let us consider a Push operation followed by a Deq operation. The entry (Deq,Push) of
the compatibility table of QStack contains the pair (C D, Push,,: = nok), since an unsuccessful
Push (returning nok) is only an observer, and hence, Deq has a CD with this Push. As we
will see in the next section, the entry (Deq,Push) also contains the pair (ND, f # b) (Recall
that f and b stand for the front and back pointer of the QStack), denoting that the intersection
between the localities of operations Push and Deq is empty. That is, for the state in which
f # b, Push and Deq commute. In the event of an unsuccessful Push, both conditions Become
true, and hence, ND should be chosen, being the weaker of ND and CD.

Based on the above discussion, a methodology presents itself that helps to generate the
conflict resolution table for an object methodically. This table is a n x n table, where n is
the number of operations defined on the object, with AD, CD, or ND entries which could be
either conditional or unconditional. Conditional entries are those that are based on dynamic
information such as the locality of a non-global operation. The objective is to obtain an optimal
table that contains the minimal of AD or CD entries, with CD preferred over AD, and weaker

conditional entries preferred over stronger unconditional entries.

5.1 The Scheme

We first describe the scheme and then apply it to the QStack example.
In the first stage, in order to identify all the necessary information, the object graph G of

the object is constructed and the references are identified. Then the behavior of each operation
defined on the object is expressed in terms of operations on Gog.

In the second stage, using information gathered in the first stage, for each operation,

answers to the following questions are sought.

D1: Is it an observer, modifier or modifier-observer?
D2: Does it observe/modify content, structure, or both?

D3: Does it have an outcome, or result, or both? Does it have input parameters?

18
DJ: Is its locality global or not?

D5: Does it employ explicit or implicit referencing, if implicit, which are the references used?

D1 and D2 involve state-independent semantics, D3 is related to input/output semantics, and
D4 and D5 are state dependent semantics.

In the third stage, an initial compatibility table T, of the object is derived from the tables
5,6, 7, and 8, collectively referred to as template tables, using the first two dimensions, namely
D1 and D2, of the characterization of the operations produced in stage 2. For each pair of
operations (0;,0,) where each operation is either a modifier, an observer, or a modifier-observer,
potentially every one of these template tables can specify a dependency. Specifically, for such a

‘pair of operations the corresponding entry in T, is determined from the following tables:
e Table 5, if both operations can be characterized in terms of D1.
e Tables 6, 7, and 8, if both operations can be characterized in terms of D2.

The final dependency for the pair of operations (01,0;) is taken to be the least restrictive
dependency of the dependencies specified by the appropriate template tables in each dimension.

Since modifier-observer operations are considered to be a composition of modifier and
observer operations, two dependencies will result, one for each component, along each dimension.
The single dependency for modifier-observer along each dimension is chosen, as explained above,
to be the more restrictive of the resulting two dependencies.

In the fourth stage, the D3 dimension of the characterization of operations is used to
refine entries. This is achieved by replacing the existing AD or CD dependency with a set
of (dependency,condition) pairs where the conditions are based on the outcome and on input
parameters, and the dependency in at least one of the pairs is less restrictive than the existing
one.

In the fifth and final stage, using the dimensions D4 and D5 of the characterization of the
operations, all non-global operations are identified, and their locality predicate is constructed
in terms of their input parameters and/or their references. For every pair (01, 0;) of non-global
operations their corresponding entry in the initial compatibility table is added or replaced with
a sel of (dependency,condition) pairs, where conditions are expressed in terms of the constructed

predicates.

19

Figure 2: Object graph for QStack

5.2 Constructing the Compatibility Table for QStack

In this section, as an illustration of how to use the above scheme to generate a compatibility
table for an object, we generate the compatibility table for the QStack as an example. For this
purpose, we focus on the following operations defined on QStack: Push, Pop, Deq, Size, and
Top.

In Stage 1, a graph representation for QStack is constructed, as shown in the Figure 2. The
ordering edges (dotted arrows) point to the front of the QStack. QStack maintains two implicit
references f (front pointer) and b (back pointer) that are the composed-of edges pointing to the
first and last element of QStack respectively. These references are used by the operations to
access the elements.

In Stage 2, all the operations defined on QStack are characterized along the dimensions

D1-D5 as stated above. The characterization of each operation is summarized in Table 9.

Operation obs/mod Cont/Str return-value Locality Reference

Pop MO CS result /nok L f

Push MO CS ok/nok L f

Deq MO CS result/nok L b

Size 0] S result G

Top 0O CS result/nok L S
Table 9

The reason that Size is not associated with a reference is that Size counts the composed-of edges
in the object graph of QStack and counting of composed-of edges does not require any specific
order. Counting could start from any composed-of edge, and hence, need not refer Lo f or b.

In Stage 3, the entries for each pair of operations is determined by consulting the tables

20

presented in section 5.1. For example, the entry for the operation pair (Deq, Push)® is determined

as follows:

1. Based on D1, Push and Deq are of type MO and MO respectively, and hence the stronger
of the entries we get from Table § for (M,M), (M,0) and (O,M) is a AD.

2. According to D2, both these operations are of type CS. The stronger of the entries from
Table 6 and 7 for (CSM,CSM), (CSM, CSO) and (CSO,CSM) is again a AD.

The compatibility table for QStack obtained as a result of stage 3 is as follows:

(01,02) |[Push | Pop | Deg | Top | Size |
Push AD | AD|AD|CD | CD
Pop | AD | AD | AD [CD | CD
Deq | AD | AD | AD | CD | CD
Top AD [AD | AD | ND | ND
Size AD | AD|AD | ND | ND

Table 10

In Stage 4, based on D3, the outcome of the operations are used to refine the entries.
Focusing again on the (Deq, Push) entry, although both the operations have outcomes, only the
outcome of the Push operation helps in refining the existing dependency by replacing it with
the set of (dependency,condition) pairs: {(AD, Pusheu = ok),(CD, Pushoy = nok)}. This is
because, when the outcome is nok, Push acts as an observer and not as a modifier-observer. In

a similar manner Table 12 can be constructed for (Push,Push).

” Push® |
Push | (ND,Push?,=Push},; = nok)
Deq || (CD,Push,,; = nok) Push? || (CD,PushZ,, = nokA Push},, = ok)
(AD,Push,y = ok) (CD,Push?®,, = Push},, = ok)
Table 11 (AD,Push®,, = okA Pushl,, = nok)
- 7 Table 12

Now we can consider further refinements based on input parameters. For example, if two

Push operations attempt to push the same element ¢, they commute.

CRecall that (Deq, Push) entry corresponds to the situation that a Deq operation follows a Push operation
on the QStack.

21

I Push® |
(ND,Push® ,=Push},, = nok)
(CD,PushZ,, = nokA Pushy,, = ok)

Push¥ (CD,Push?,, = Pushy,, = ok)
(AD,PushZ,, = okA Push},, = nok)
(ND,Push}, = Push}, = e)

Table 13

In Stage 5, the entries corresponding to non-global operation pairs are refined further.
Considering the example (Deq, Push) pair, both Push and Deq are non-global, based on D4.
Therefore, as we show now, some of the corresponding (dependency,condition) pairs of (Deq,
Push) entry can be replaced with pairs involving weaker dependencies and conditions expressed
in terms of locality predicates.

Based on D5, we can note that both Push and Deq employ implicit referencing and use
the references b and f respectively. This means that the intersection of their localities could be
empty, in which case there will be no dependency (ND). The intersection between the localities
of Push and Deq can be determined by a predicate constructed from the references f and b that
tests whether f and b are the same composed-of edge, i.e., refer to the same component object.
Hence the (dependency,condition) pair having the AD in (Deq, Push) is replaced, and the (Deq,

Push) entry becomes:

I Push]
(CD,Push,y = nok)
Deq (AD,f = b)
(ND,f # b)
Table 14

The entries for the remaining pairs can be refined by following the same procedure for
stages 4 and 5. - ‘

To summarize the methodology just used, given an object, the specific operations defined
on the object are expressed in terms of operations on the graph representation of the object.
The compatibility of each pair of operations is determined by using the produced graph charac-
terization of the operations and the template tables. Subsequently, each entry may be refined by

considering input/output semantics and by defining conditions in terms of locality predicates.

6 Conclusion

Whereas a number of semantics-based concurrency control schemes for object-oriented systems

have been proposed in the literature, each scheme has approached the issue from fairly narrow

22

considerations. In this paper, we have approached the problem from first principles in an effort
to discover the underpinnings of, and hence classify, existing schemes while giving a unified view
to the nature of semantics inherent in objects.

In this regard, we have classified the semantic information available within an object in
order to identify the specific combinations tha! can possibly yield enhanced concurrency. To
formalize this classification, we have proposed an object model and its graph representation that
can be derived from abstract specification of an object. We have shown how the model can be
effectively used to identify the available semantic information about an object.

We have proposed a scheme that methodically exploits the available semantic information.
This shows how various semantic notions applicable to concurrency control can be effectively
combined to achieve improved concurrency. In this process, we have identified and exploited a
new source of semantic information, namely, the ordering among component objects, to further
enhance concurrency.

We have also classified the semantic information into static and dynamic information,
depending on when it is available, to facilitate easy design of compatibility tables. To determine
dynamic information such as the locality of an operation, we have provided a framework or
ground rules within the proposed object model, that can be effectively used to identify further
possibilities of improved concurrency. Lastly, and perhaps of the most practical interest, we
have presented a methodology for deriving compatibility tables for operations on objects.

In this paper, we did not make use of usage semantics, but this semantics is extensively
utilized in various extended transaction models that relax the requirements of serializability
and failure atomicity to achieve more concurrency. Just as the present paper has attempted to
unify object semantics, the ACTA model proposed in [5] provides a unifying framework for all
these transaction models. The notion of dependencies among transactions serves as the thread
common to both these efforts. Hence, by using the results of this paper in conjunction with the
ACTA jmodel, the semantic information obtained from the relaxed correctness requirements of

an application can be used to further enhance concurrency.

References

[1] Badrinath, B. and Ramamritham, K. Semantics-based concurrency control: Beyond Com-
mutativity. In Fourth IEEE Conference on Data Engineering, pages 132-140, February
1987.

[2] Badrinath, B. and Ramamritham, K. Synchronizing transactions on objects. IEEE Trans-
actions on Computers, 37(5):541-547, May 1988.

23

[3] Badrinath, B. and Ramamritham, K. Performance Evaluation of Semantics-based Multi-
level Concurrency Control Protocols. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 163-172, Atlantic City, NJ, May 1990.

[4] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency Control and recovery in
database systems . Addison-Wesley, Reading, MA., 1987.

[5] Chrysanthis, P. K. and Ramamritham, K. ACTA: A Framework for Specifying and Rea-
soning about Transaction Structure and Behavior. In the ACM SIGMOD International
Conference on Management of Data, pages 194-203, Atlantic City, May 1990.

[6] Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The notion of consistency and predicate
locks in a database system. Communications of the ACM, 19(11):624-633, November 1976.

[7) Gray, J. The transaction concept: Virtues and limitations. In Proceedings of the 7th VLDB
Conference, pages 144-154, September 1981.

[8] Herlihy, M. P. Extending multiversion timestamping protocols to exploit type information.
IEEE Transactions on Computers, 35(4):443-449, April 1987.

[9] Herlihy, M. P. and Weihl, W. Hybrid concurrency control for abstract data types. In
Proceedings of the Tth ACM symposium on Principles of Database Systems, pages 201-210,
March 1988.

[10] Kim, W. and et al. Composite object support in an Object-Oriented database system. In
Proceedings of Object-Oriented Programming Systems, Languages, and Applications, pages
118-125, Orlando, Florida, October 1987.

[11) Martin, B. E. Modeling concurrent activities with nested objects . In Proceedings of the 7th

international conference on distributed computing systems, pages 432-439, Berlin, Germany,
September 1987.

[12] Moss, J. E. B., Griffeth, N., and Graham, M. Abstraction in recovery management. In
Proceedings of the ACM SIGMOD international conference on management of data, pages
72-83, May 1986.

[13] Roesler, M. and Burkhard, W. Concurrency Control Scheme for Shared Objects: A Peep-
hole based on Semantics. In Proceedings of 7th international conference on Distributed
Computing information Systems, pages 224-231, September 1987.

[14] Schwarz, P. M. and Spector, A. Z. Synchronizing shared abstract data types. ACM Trans-
actions on Computer Systems, 2(3):223-250, August 1984.

[15] Stonebraker, M. (Ed.). Readings in Database Systems. Morgan Kaufmann, 1988.

[16] Weihl, W. Commutativity-Based concurrency control for abstract data types. IEEE Trans-
actions on Computers, 37(12):1488-1505, December 1988.

