WINDOW MAC PROTOCOLS
FOR REAL-TIME
COMMUNICATION SERVICES

K. Arvind, K. Ramamritham, J.A. Stankovic
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003
COINS Technical Report 90-127
January 1991

WINDOW MAC PROTOCOLS FOR
REAL-TIME COMMUNICATION SERVICES®

K. ARVIND (arvind@cs.umass.edu)
KRITHI RAMAMRITHAM (krithi@cs.umass.edu)
JOHN A. STANKOVIC (stankovic@cs.umass.edu)

Department of Computer and Information Science
University of Massachusetts at Amherst
Ambherst, MA 01003
COINS Technical Report 90-127
Submitted to IEEE Transactions on Communications

January 1991

Abstract

In this paper, we consider a distributed real-time system based on a local area net-
work with a bus topology, and propose a new suite of real-time medium access control
protocols. The proposed suite is devoid of deficiencies (in supporting real-time commu-
nication) found in existing standards for bus-based systems. The suite consists of five
medium access control protocols, viz., PRI, RTDG, RTVC, INTPVC and INTPDG, all
based on a uniform window splitting paradigm. The protocol PRI implements priority-
based arbitration. The protocol RTDG implements real-time datagram arbitration,
and the protocol RTVC may be used to implement the abstraction of real-time virtual
circuits. The protocols INTPVC and INTPDG are integrated protocols that may be
used to support both real-time datagram and real-time virtual circuit arbitration in an
integrated manner on a common bus. We derive various properties exhibited by the
protocols and also present the results of a performance evaluation through simulation.
The results of the simulation study show that, in addition to providing the advan-
tage of structural homogeneity (enabling the use of a uniform medium access control
logic and LAN controller hardware), the proposed suite of protocols also has excellent
performance characteristics.

Index Terms: broadcast bus topology, connectionless service, connection-oriented service,
distributed real-time system, local area network, medium access control protocol, multiac-
cess communication, priority resolution, real-time communication, window protocol.

*This work is part of the Spring Project at the University of Massachusetts funded in part by the Office
of Naval Research under contract N00014-85-K-0398 and by the National Science Foundation under grant
DCR-8500332 and CCR-8716858.

1 INTRODUCTION

A real-time system is a system whose correctness depends not only on the logical result of
computation, but also on the time at which the results are produced ([36], [34]). Distributed
real-time systems based on local area networks are becoming increasingly common for a
number of reasons including performance advantages and fault-tolerance. Communication
between tasks resident on the same or on different nodes is an important activity in a
distributed real-time system. In this paper, we have considered a distributed real-time
system based on a local area network with a bus topology, and addressed the problem of
network support (specifically, support at the medium access control layer) for providing the
required communication services. We propose, develop, analyze, and evaluate a new suite
of real-time medium access control protocols that is devoid of deficiencies (in supporting
real-time communication) found in existing standards for medium access control protocols
for bus-based systems, viz., the IEEE 802.3 and 802.4 standards.

In [2], we examined the limitations of existing approaches to real-time communication,
identified the communication requirements (viz., guaranteed and best-effort support for
timing constraints of messages) of the evolving next generation of distributed real-time sys-
tems, and proposed RTLAN, a four layered local area network architecture that supports
these requirements. RTLAN provides new classes of connection-oriented and connectionless
services known as real-time connection-oriented service (RTCOS) and real-time connec-
tionless service (RTCLS), which may be used to support guarantee-seeking and best effort
messages respectively. Implementation of RTCOS requires support at the medium access
control layer in the form of priority resolution protocols that implement global packet-level -
priority resolution, and protocols that can guarantee bounded channel access times. Im-
plementation of RTCLS requires medium access control protocols that explicitly consider
the timing requirements of messages such as message deadlines, and arbitrate access to the
channel on the basis of these requirements.

The IEEE Project 802 Committee has developed two sets of medium access control layer
standards for local area networks based on a bus topology, viz., the 802.3 standard (9] and
the 802.4 standard [8]. The IEEE 802.3 standard defines the standard for the CSMA/CD
protocol (the protocol used in Ethernets). The 802.3 CSMA/CD protocol is a random access
protocol that has no notion of packet timing constraints or packet priorities. Moreover,
because of the probabilistic collision resolution strategy (binary exponential backoff) that
it uses, it cannot guarantee a bounded channel access time for any node. Thus the 802.3
standard MAC protocol cannot be used to support the real-time communication services
that we mentioned above. The IEEE 802.4 standard represents the standard for the token-
passing bus protocol. The 802.4 protocol can guarantee bounded channel access times for
packets that belong to the highest priority class. Another attractive feature of the 802.4
protocol is that it provides the ability to handle multiple classes of traffic in an integrated
manner using a uniform token-passing paradigm. However, the support provided by the
802.4 standard for real-time communication is limited to these features. Even though the
802.4 standard supports the notion of multiple (limited to a maximum of 4) classes of
traffic corresponding to multiple priority levels, there is no support for global packet level
priorily resolution; it is possible with the 802.4 protocol for a lower priority class packet
to be transmitted, when packets belonging to higher priority classes are waiting at other

nodes (for example, this would happen in a given token cycle, if the token rotation rate in
the previous cycle was high enough). The 802.4 protocol also has no notion of individual
packet level timing constraints, and hence is blind to the timing requirements of individual
packets.

The deficiencies pointed out above make these existing standards for medium access
control protocols inadequate for supporting RTCOS and RTCLS. In this paper, we propose
a suite of five window medium access control protocols, viz., PRI, RTDG, RTVC, INTPVC
and INTPDG, that is devoid of these deficiencies of the 802.3 and 802.4 standards. The PRI
window protocol implements packet-level priority-based arbitration, a capability that the
standard MAC protocols lack. The RTDG window protocol takes individual packet-level
timing constraints into account in arbitrating access to the channel and has performance
characteristics superior to those of the standard protocols. The RTVC window protocol
guarantees bounded channel access times, and has performance characteristics that are
comparable to the standard token-passing bus protocol. INTPVC and INTPDG are inte-
grated protocols that support both RTCLS and RTCOS traffic in a unified manner on a
common bus, using a uniform window splitting paradigm. We analyze these new protocols
and derive various properties exhibited by the protocols. For example, we derive upper
bounds on the worst case per packet overhead of the window protocols (Property 2), on the
probability that the RTDG window protocol fails to implement the minimum laxity first
policy exactly because of new arrivals during a contention resolution interval (Property 6),
on the worst case packet service times for the RTVC (Property 7), INTPVC (Property 9)
and INTPDG window protocols (Property 10). We also present results of a simulation study
conducted in order to evaluate the performance of the protocols. The main properties of
the protocols, derived from the analytical and simulation study are summarized below:

1. The per packet contention resolution overhead for the window-based contention reso-
lution procedure used by the window protocols increases logarithmically with the size
of the window.

2. The PRI window protocol not only provides a capability, viz., system-wide packet
level priority-based arbitration, that the 802.3 and 802.4 standard protocols lack, but
also is characterized by a slightly smaller average priority resolution overhead than
other non-standard protocols that have been proposed for priority resolution.

3. The RTDG protocol closely approximates the minimum laxity first policy for channel
arbitration. .

4. The performance of the RTDG window protocol is superior to that of an idealized
baseline protocol that provides a bound on the performance achievable by any non-
real-time protocol (i.e., a protocol that has no notion of packet timing constraints).

5. The performance of the RTVC window protocol is close to that of an idealized baseline
protocol that provides a bound on the performance achievable by any protocol that
can guarantee bounded channel access times.

6. The integrated window protocol INTPVC is characterized by a smaller (by a factor
of about 2) worst case channel access time for real-time virtual circuit (explained in

4

Section 2) packets, than the standard 802.4 token bus protocol operating in integrated
mode (priority mode).

7. The quality of service provided to real-time virtual circuit packets by the integrated
window protocol INTPVC is better than that provided by VCTIMER, an idealized
baseline integrated protocol.

8. The integrated window protocol INTPDG is characterized by a worst case channel
access time for real-time virtual circuit packets, that is about the same as (but larger
by about two packet transmission times) than that for VCTIMER.

9. Use of an integrated protocol results in an improvement in the quality of performance.
INTPVC provides a better quality of performance for real-time virtual circuit packets
than RTVC. INTPDG provides a better quality of performance for real-time datagram
packets than RTDG.

In addition to overcoming deficiencies of existing standards, and to the good performance
characteristics pointed out above, the protocol suite proposed in this paper also has the
advantage of structural homogeneity, since all the protocols are based on a uniform window
splitting paradigm.

The presentation in this paper is organized as follows. In Section 2, we develop the
required context for the description of the medium access control protocols presented in
this paper. We examine the communication requirements that arise in a distributed real-
time system in Section 2.1. In Section 2.2, we present a brief description of RTLAN, focusing
mainly on the logical link control layer. Section 2.2.1 contains a brief description of RTCOS
and RTCLS. In Section 3, we present a homogeneous approach to MAC layer protocols
based on a uniform window splitting paradigm. In Section 4 through Section 7, we employ
this approach to develop the window protocol suite for supporting RTCOS and RTCLS. In
Section 8, we present a brief survey of related work on MAC protocals. Section 9 contains
a presentation of the results of a performance evaluation of the protocols. We conclude the
paper in Section 10 with a brief summary.

2 REAL-TIME COMMUNICATION

The term “real-time communication” may be used to describe any kind of communica-
tion activity in which the messages involved have timing constraints associated with them.
For example, packet-switched voice communication, in which the individual voice packets
have fixed maximum delay constraints associated with them, is often termed real-time com-
munication. However, in the rest of this paper we restrict this term to mean commaunication
in distributed real-time systems. While some of the protocols developed here may be ap-
plicable to voice communication, we do not consider that application any further in this

paper.

2.1 COMMUNICATION REQUIREMENTS

Communication requirements in a distributed real-time system are induced by the need
for interaction between various entities in the distributed system. Time-constrained mes-

sages that arise in a distributed real-time system may be classified into two categories:

1. Guarantee Seeking Messages: These are messages, typically critical or essential for
the proper operation of the system. The requirements of these messages include a
guarantee from the system that, if the activity that gives rise to them is accepted for
execution, their timing constraints will be met with certainty.

2. Best Effort Messages: These are messages, typically with soft timing constraints, that
do not require a guarantee from the system that their timing constraints will be met.
However the system will try its best to satisfy the timing constraints of these messages,
since minimizing the number of such messages whose timing constraints are violated
will result in increased value (in some sense) for the system.

Most current work in real-time communication assumes a open loop [22] model of a
distributed real-time system in which the messages involved are mainly of two types, viz.,
periodic messages that typically carry sensor data, and aperiodic messages. Further both
classes of messages are assumed to be statically specifiable. Periodic messages and a limited
class of aperiodic messages (e.g., alarm messages) are usually classified as guarantee seeking,
while the remaining aperiodic messages (e.g., certain status, control and advisory messages)
are treated as best effort messages. However, such a simplistic model is likely to prove
inadequate for the evolving next generation of closed loop autonomous real-time systems
([34],[35],[2]). Specialized network architectures that incorporate new classes of services and
protocols will be required, in order to meet the more complex communication requirements
of these dynamic systems. In [2], we have proposed RTLAN, a new local area network
architecture, to support the communication requirements that arise in these systems. We
provide a brief description of RTLAN in the next section.

2.2 RTLAN

The RTLAN (real-time local area network) architecture is a local network architecture
for communication in distributed real-time systems that permits applications to dynamically
specify their communication timing requirements, and provides mechanisms to guarantee
these requirements, if needed and if at all possible. RTLAN is structured as a layered
architecture (Figure 1) consisting of four layers, viz., the physical layer, the medium access
control (MAC) layer, the logical link control (LLC) layer, and the application layer. Some
of the salient features of the RTLAN architecture are listed below:

1. Real-Time Applications:
RTLAN is targeted for complex real-time applications which have time-constrained
communication requirements that span from simple best effort delivery requirements
to dynamic guarantees of general timing requirements.

2. Time-Constrained Services:
RTLAN provides both connection-oriented and connectionless services, both of which
consider the timing requirements of applications.

3. LLC Layer supports Guarantee:
Connection establishment at the LLC level is more complicated than in conventional

Figure 1: The RTLAN Architecture

architectures. The LLC layer incorporates scheduling algorithms that take a set of
message timing requirements and try to guarantee that the requirements will be met.

4. Real-Time MAC Protocols: _
The MAC layer employs specialized real-time protocols to help the LLC layer provide
its real-time services. Some of the protocols are geared to supporting the connec-
tionless class of service, while others are geared to supporting the connection-oriented
class of service.

5. Multiple Physical Channels: The physical layer consists of multiple physical chan-
nels and interfaces, for fault-tolerance and for meeting performance and functional
requirements.

2.2.1 COMMUNICATION SERVICES

The logical link control layer of the RTLAN architecture provides new classes of real-
time communication services to the application layer, that take the timing requirements of
messages explicitly into account. The new service classes are known as real-time connection-
oriented service (RTCOS) and real-time connectionless service (RTCLS).

RTCOS

RTCOS is a connection-oriented service that permits the sender to specify its timing
requirements at the time of connection establishment. RTCOS is meant for supporting the
requirements of the class of guarantee-seeking messages. The service is characterized by the
establishment of a logical connection known as a real-time connection. A real-time connec-
tion represents a simplex end-to-end communication channel between two communicating
application level entities, a sender and a receiver. In order to set up a real-time connection,

RTC REQUIREMENTS

MESSAGE #1

Periodic Period: P1

Maximum Number of Cycles: N1
MESSAGE #2

Aperiodic

Latest Arrival Time T2

Deadline D2

MESSAGE #3
Aperiodic
Latest Arrival Time T3
Deadline D3

MESSAGE i#4
Aperiodic
Latest Arrival Time A4
Earliest Delivery Time E4
Deadline D4

Figure 2: Real-Time Connection Requirements

the sender specifies the timing requirements of the messages that it plans to send over the
connection to the LLC layer at the time of connection establishment (connection establish-
ment is done at the time of scheduling a task; the connection request is typically made by
the operating system, which is also part of the application layer, on behalf of the sender).
The connection is set up only if the specified requirements can be guaranteed; otherwise
the sender is informed that the connection cannot be established.

The timing constraints specified may be fairly general and may include periodicity,
arrival time, laxity, deadline, etc. Figure 2 depicts an example of the requirements that
may be specified by an application task to the LLC layer. In this example, the application
task requires guarantees that the timing constraints of a session involving four messages will
be satisfied. The first message is periodic and a guarantee is requested for N1 consecutive
instances of the message. The remaining three messages are aperiodic with various arrival
time and deadline requirements.

Two approaches that the LLC layer may use in order to provide such a guarantee are

the priority assignment approach and the real-ttme virtual circuit approach. We discuss
these below.

Priority Assignment Approach

The priority assignment approach may be used to handle the static periodic message
components of systems that involve both static and dynamic communication requirements,
by dedicating a separate physical channel for these components.

The approach is based on the rate monotonic priority assignment scheme [21]. The rate

monotonic priority assignment scheme, originally developed in the context of scheduling
periodic tasks on a uniprocessor, is a fixed priority assignment scheme in which tasks with
a smaller period (i.e., higher rate) are assigned higher priorities. Scheduling then consists
of merely allocating the processor to the pending task with the highest priority, preempting
the currently running task if necessary. Liu and Layland [21] have shown that the rate
monotonic priority assignment scheme is optimal in the following sense - if some priority
assignment scheme can assign suitable priorities to tasks such that every task will complete
within its period, then the rate monotonic priority assignment scheme can do so. They also
show that a sufficient condition for such a priority assignment to exist is that the sum of
the utilizations of the individual tasks must satisfy

Z":U,-gn(zi-1), (1)

i=1
where n is the number of tasks and U; is the utilization of task 7 defined as

Ci

Ui:ﬁ,

where C; and T; are respectively the computation time and period of the task. Lehoczky

and Sha [18] have extended this result to the problem of scheduling n periodic messages

on a shared bus. Strosnider (1988) has further extended this result to the deferrable server

algorithm that makes use of a periodic server to service aperiodic messages. He has used

this algorithm to provide guarantees for both periodic messages and a limited class of alert -
messages that are assumed to occur rarely.

Guaranteeing an application’s message timing requirements, in the priority assignment
approach, consists of merely assigning fixed priorities to each of the periodic messages (and
the periodic server that services aperiodic messages) involved (on the basis of their periods),
and ensuring that the utilizations of the messages satisfy Eq. (1). Actual implementation of
priority arbitration is left to suitable MAC protocols. Note that neither of the two standards
proposed for bus-based systems support priority resolution. The IEEE 802.3 CSMA/CD
protocol has no notion of packet priorities. The IEEE 802.4 token bus protocol does support
up to 4 priority classes, corresponding to 4 different classes of traffic. However, it does not
support packet level priority-based arbitration.

Real-Time Virtual Circuit Approach

The real-time virtual circuit (RTVC) approach may be used to guarantee the timing
requirements of both statically known and dynamically arising messages. An RTVC is a
logical channel that has the property that the service time of a packet queued on this
channel, the length of the interval between the instant at which the packet enters service
and the instant at which transmission of the packet completes successfully, is bounded for a
fixed packet length. Thus the LLC layer can assume that once a packet queued onto a RTVC
has been accepted for service, it will be transmitted within a bounded amount of time. The
packet service time consists of two components, the physical channel access time and the
packet transmission time. The channel access time arises because the underlying physical
channel in a local area network is typically a multiple access channel that is shared by all

Figure 3: Packet Service Time

the nodes on the network; a node may therefore have to wait for the channel arbitration
mechanism to permit it to transmit. The packet transmission time is the time required to
transmit a packet. Note that the packet transmission time may be bounded by restricting
the maximum size of a packet. However, unless a suitable medium access control (MAC)
protocol is used, the channel access time can be unbounded. This bound is determined by
the MAC protocols used to implement RTVCs.

The LLC layer makes use of RT'VCs as follows. Each RTVC has a transmission queue
associated with it. When an application entity requests a real-time connection from the
LLC layer, the LLC layer firsts fragments messages in the request that are longer than
the maximum packet length into multiple packets and propagates the timing constraints
of messages to their fragments. The set of fragments are then passed on to a LLC layer
entity known as the scheduler. The scheduler takes a set of message fragments with timing
requirements, and applies a scheduling algorithm [5] to determine if the set of fragments
can be inserted (according to some insertion discipline, such as the first-in first-out (FIFO)
or the minimum laxity first (MLF) discipline’) into the queue associated with some RTVC,
without violating the timing constraints of the packets that have already been admitted
into the queue and that are awaiting transmission. In order to make this determination
the scheduler makes use of the following worst case assumption, since the scheduler cannot
predict the service time exactly. The assumption made is that each packet in the queue will
have a service time equal to the worst case service time. Such a worst case service time is
guaranteed to exist, since an RTVC by definition has a bounded packet service time. The
example shown in Figure 4 illustrates these ideas. In this example, there is one RTVC (with
a worst case service time of 10) which already has three guaranteed packets waiting to be

!A commonly used discipline in the scheduling of real-time tasks is the minimum lazity first (MLF)
discipline, which is known to be optimal in the following sense - if some discipline can schedule a set of
independent tasks so that all the tasks meet their deadlines, then the minimum lazity first policy can do so.

RTVC QUEUE
T

P3 P2
40 | 30

Figure 4: Real-Time Virtual Circuit Scheduling

transmitted. Packet P1 has a laxity (time until deadline for start of transmission) of 10, P2
has a laxity of 30 and P3 has a laxity of 40. If a new request M4 consisting of a packet of
laxity 10 arrives, then it cannot be accepted by the system, if the MLF discipline is used,
since the deadlines of both M1 and M4 cannot be simultaneously met. However a request
M5 consisting a packet with a laxity of 20 can be admitted, since it is possible to meet
its laxity requirements without violating the requirements of any of the messages already
in the queue. It should be pointed out that, for the real-time virtual circuit approach to
guarantee a reasonable fraction of the connection requests that are made, the worst case
packet service time must be of the same magnitude or smaller than the average laxity of
the packets involved.

RTVCs are abstractions provided by the MAC layer to the LLC layer. Protocols in the
MAC layer transform the underlying raw multiple access shared channel with potentially
unbounded times, into logical channels with bounded packet service times, viz., RTVCs.
The MAC layer has to employ suitable protocols in order to provide such an abstraction.

For instance, the 802.3 CSMA/CD standard protocol cannot be used to implement
real-time virtual circuits. This is a random access protocol in which, at the beginning of
a transmission epoch, every node that has a packet awaiting transmission transmits the
packet. If more than one node has a packet to transmit, a collision results. In this case,
each node is randomly assigned one of the next 2k slots for transmitting its packet, where
k is the number of collisions that have occurred in the current transmission epoch. This
collision resolution strategy, known as binary ezponential backoff may result in a packet
never being transmitted. Thus this protocol does not guarantee bounded channel access
times.

The 802.4 standard token-passing bus protocol may however be used to implement real-
time virtual circuits. In this protocol, the nodes are organized in a logical ring. A token
that circulates around this ring is used to arbitrate access to the channel. The token confers
upon its holder the privilege to transmit on the channel for a bounded amount of time (the

11

token holding time). If there are no packets to transmit, or if the token holding time has
been exceeded, the token is passed onto the next node in the ring. If the token holding
time per node is P time units (i.e., a node is permitted to transmit only one packet in
each cycle), then the maximum length of the interval between successive channel accesses
by a node is given by N (P +), where N is the number of nodes in the system and 3
is the token passing overhead. However, as we noted earlier, the 802.4 standard protocol
has other deficiencies that make it inadequate to fully support real-time communication. It
does not support packet level priority resolution and it has no notion of packet level timing
constraints.

RTCLS

The second class of service that RTLAN provides, viz., RTCLS (real-time connectionless
service), is an unreliable connectionless service for transmitting time-constrained messages.
It is unreliable in the sense that the timing constraints of messages transmitted using this
service may not be satisfied. However RTCLS tries to deliver messages within their timing
constraints on a best effort basis. Thus this service is suitable for the class of best effort
messages. By best effort, we mean that at each decision making point within the service,
decisions are made on the basis of timing constraints of pending packets. For example, if
there are several packets waiting to be transmitted, then the system would try to transmit
them in an order that minimizes the number of messages whose deadlines are not met. The
individual packets that are transmitted under RTCLS are referred to as real-time datagrams.

In order to support RTCLS, the LLC layer requires support from the MAC layer in the
form of real-time MAC protocols that explicitly consider timing constraints of packets in
arbitrating access to the shared bus. Examples of such real-time protocols are the VTCSMA
protocol [42] and the MLF window protocol [43], which try to order the transmission of
messages according to a minimum laxity first policy. Note that neither of the two standard
MAC protocols for local area networks, viz, the 802.3 CSMA/CD standard and the 802.4
token bus standard, have any notion of timing constraints of individual packets. They do
not consider the timing requirements of packets in arbitrating access to the channel. Thus
they are not well suited for providing a best-effort service.

With this, we conclude the presentation of the framework within which the rest of
the paper fits. In the next section, we introduce the main contribution of this paper, a
new homogeneous suite of MAC protocols for real-time communication that is capable of
supporting both RTCOS and RTCLS.

3 A UNIFORM APPROACH TO MAC PROTOCOLS

In the preceding sections, we pointed out the limitations of existing standards for MAC
protocols and noted that they are not suitable for supporting RTCOS and RTCLS. In this
section, we develop a suite of structurally homogeneous MAC protocols that can support
both RTCOS and RTCLS, based on a uniform window-splitting medium access control
paradigm. '

The starting point for this work was provided by the MLF window protocol proposed

12

by Zhao, Stankovic and Ramamritham [43]. This protocol can be used to closely approxi-
mate the system-wide minimum laxity first policy for message transmission over a shared
bus. Thus, it is well-suited to supporting RTCLS. However this protocol cannot guarantee
bounded channel access times for nodes. Therefore this protocol, as it is, is not suitable
for implementing RTCOS. An approach that makes use of the window splitting paradigm
to implement RTCOS also is attractive for the following reason. In addition to its intuitive
appeal, the structural homogeneity that such an approach provides, makes it possible to use
the same medium access control logic and LAN controller hardware that is used to support
RTCLS, to support RTCOS also. This advantage is especially important when both classes
of services are to be supported by a single protocol on a common bus in an integrated man-
ner. This motivated us to explore generalizations and adaptations of the window protocol
proposed in [43] that can guarantee bounded channel access times.

We have approached the problem of developing a homogeneous suite of window proto-
cols through a technique known as parameter-based contention resolution (PB CR). The term
PBCR describes the following channel arbitration problem. Consider a set of N nodes shar-
ing a multiple access channel. Each node is associated with a parameter p € II = {0, Pmac]
(TI is referred to as the parameter space). The parameter p may vary with time. The prob-
lem is to allocate the channel to the node that has the smallest value of p, whenever there is
contention for the channel. We reduce the problems of priority-based arbitration, real-time
datagram arbitration and real-time virtual circuit arbitration to instances of PBCR and
realize PBCR using a window splitting approach. Each of these reductions gives rise to a

window MAC protocol, that implements the corresponding type of arbitration. |

' In the following sections, we propose a suite of five window MAC protocols, viz., PRI,
RTDG, RTVC, INTPVC and INTPDG. The protocol PRI implements priority-based arbi-
tration. The protocol RTDG implements real-time datagram arbitration by implementing
a system-wide minimum laxity first policy for transmission. The protocol RTVC is a win-
dow protocol characterized by bounded channel access times, and thus may be used to
implement real-time virtual circuits. The protocols INTPVC and INTPDG are integrated
window protocols that handle both RTCLS and RTCOS packets in a unified manner on
a single bus. The protocol INTPVC displays a favorable bias towards servicing real-time
virtual circuit packets, while the protocol INTPDG is biased towards servicing real-time
datagram packets.

In the next section, we describe a window splitting procedure called window that im-
plements parameter-based contention resolution. In the subsequent sections, we derive the

PRI, RTDG, RTVC, INTPDG and INTPVC protocols with this procedure as a basis.

3.1 WINDOW SPLITTING PROCEDURE

Window protocols and other members of the splitting algorithm family like stack and
tree protocols (e.g., [3], [4], [16], [19], [40]) have in the past been used as collision resolution
schemes in multiple access networks; when a collision occurs, these protocols provide a
means of ensuring that all the packets involved in the collision get transmitted successfully.
The window splitting procedure window described below makes a deliberate use of collisions
and collision detection to identify a single node that has the smallest value of a parameter
p and assigns transmission rights on the channel to this node. Thus it functions like a

13

distributed channel scheduler that chooses the next packet to send.

The procedure window assumes a slotted bus of slot length equal to 7, the maximum
round trip propagation delay on the bus. All the nodes are assumed to be slot-synchronized
and are permitted to start transmitting only at the beginning of a slot. The nodes are
assumed to have carrier sensing and collision detection capabilities. This CSMA/CD capa-
bility enables the nodes to determine whether there was a successful transmission, a collision
or silence on the channel during the immediately preceding slot.

The procedure operates as follows. Each node maintains a data structure known as a
window that is characterized by the position = of its left edge and its size §. The window
at any moment spans the range of values [x, 7 + §). This range is referred to as the current
window. If the parameter p associated with a node lies in the current window, the node
is said to be in the window. The window splitting procedure is invoked at the beginning
of each transmission epoch with a current window of [0, 8;naz). This window is referred
to as the initial window. The size of the initial window e, is chosen to be a power of
2 and it represents the maximum size the window can ever assume. When the window
splitting procedure is invoked, if there is only one node in the initial window, then that
node continues to transmit its packet to completion; if two or more nodes lie within the
window, a collision results, which is sensed by all the nodes at the end of the slot. On
detecting a collision, each node splits the window into two halves. The left half window is
made the current window and the procedure operates on this window exactly as it did with
the initial window, i.e., if there is only one node in the left half window, this node transmits
its packet to completxon, if there is a collision, the left half is again split into two, and
the operation continues recursively until some.node transmits successfully. If there are no
nodes in the left half window, then there is no transmission on the channel and an idle slot
is sensed by all the nodes. In this case, the right half window is made the current window
and the procedure operates on this half window in ‘exactly the same manner as it did on
the left half.

Figure 5 illustrates the operation of the window splitting procedure. In the example
shown in this figure, the initial window spans the range [0,128) and there are three nodes
with p values 75, 90 and 120 respectively that are in the window. All of them start transmit-
ting, and consequently there is a collision on the channel. The nodes sense the collision and
split the window into two, making the left half of the initial window the current window.
Since none of the nodes lie within this half, the nodes sense the channel to be idle. The
right half is then made the current window. All the nodes lie within the current window
once again, resulting in a collision. The current window is therefore split into two and the
left half of this window considered first. Only one node, the node with the smallest value
of p, lies within this half and it transmits its packet to completion. Transmission of the
packets with p values 90 and 120 will be scheduled by subsequent invocations of the window
procedure.

3.1.1 PSEUDOCODE

Figure 6 contains the pseudocode for the window splitting procedure window, executed
by each node. The procedure has three arguments II, A and R. The argument II defines the

14

ALVLS

128

120
120
120

AR

PN

R ==

A

= o HNAIL

i

ion

in operat

An example of the window procedure

.
.

Figure 5

15

1. window (II, A, R)
2. begin
3. 8§ — 6maz + ceil2 (A); © «— 0; o « Right;
4, p — R(II, A);
5. forever do
6. ifp € [mx+6)
7. then start transmitting packet and monitor the channel;
8. else monitor the channel;
9. endif
10. At the beginning of the next slot
11. event — channel event during the past slot;
12. switch (event)
13. case successful transmission:
14. if I am the transmitting node
15. then continue to transmit packet to completion;
16. else wait for transmission to complete;
17. endif
18. return;
19. case collision:
20. o « Left;
21. 6 — g-;
22. if (6 < 1) then window({1, A, adr);
23. break;
24. case idle:
25. if o = Right then return;
26. o +— Right;
27. T — 7+ 6;
28. break;
29. end switch
30. end forever;
31. end window.

Figure 6: The window splitting procedure

parameter space under consideration. The argument A < |II| is used to compute? (line 3)
the size §,q0 Of the initial window, so that the size is an exact power of 2. This argument
would typically be specified as the size of the parameter space II. The argument R is a
function that defines a rule for the computation (line 4) of the parameter p associated with

a node. An example of such a rule (assuming that the parameter space II is the set of all
node addresses) is:

Rule adr: Choose the parameter p associated with the node to be the node’s
unique address.

The parameter value computed by the rule R is required to be either in the range [0, A) or
be undefined (e.g., when the node does not have a packet to transmit). This requirement
ensures that the initial window spans all possible values of p.

3The function ceil2 is defined as ceil2 (z) 2 oMesa=l je itis equal to = rounded up to the nearest power
of 2.

16

The defining variables of the window, viz., §, 7 and ¢ are initialized in line 3. The
parameter ¢ indicates which half of the parent window (the window which was split to
produce the window under consideration) is being examined and is defined to have the
value “Right” for the initial window. The parameter p itself is computed in line 4. Between
lines 5 and 30, the procedure essentially implements a recursive binary® partitioning of the
range of values of p covered by the initial window [0, maz). The entire window is examined
first (line 6). If there are no nodes in this window (line 25), then none of the nodes are
contending for the channel and the procedure therefore returns. If there is exactly one node
in the window (line 13), then that node is the one with the lowest p and is given exclusive
channel access rights until it completes transmission (lines 14,15,16). If there is more than
one node in the window (which would result in a collision on the channel, line 19), the
window is split into two (line 21) and the left half of the window examined first (line 20).
The recursive partitioning continues until a successful transmission takes place (line 15) or
if the node with the smallest value of p decides not to transmit its packet (e.g., if the packet
deadline has expired) (line 25). Note that if two nodes have the same value of p, i.e., if
there is a tie, the recursive partitioning would eventually cause the condition tested on line
22 to be true. When this occurs, the procedure window is recursively invoked, this time
with the space of addresses of the nodes involved in the tie (2), the size (A) of the set of
all node addresses and the rule “adr” specified earlier, as its arguments. Since each node is
guaranteed to have a unique address, there cannot be a tie in this recursive invocation and
the tied (in the original invocation) node with the smallest address successfully transmits
its packet. ’

3.1.2 PROPERTIES OF window
PROPERTY 1 The procedure window implements PBCR.

PROOF: Whenever there is a collision on the channel, the procedure window splits the
“window into two halves and always first ezamines the left half window, i.e., the half window
spanning the smaller values of p. Thus the node ultimately selected for awarding transmis-
sion rights has a value of p that is smaller than that of all the other nodes. Therefore the
procedure implements PBCR. Q.E.D.

PROPERTY 2 In the absence of a tie, an upper bound on the worst case per packet
contention resolution overhead {mae (in units of T) for window is given by:

émaz < 2log, |-A] -1, . (2)
when A > 1. The equality holds good when A is an ezact power of 2.
PROOF: Initially, let us assume that A is a power of 2. Let

A =2k, k > 0.

3 A procedure similar to window is specified in the IEEE 802.4 token bus standard for station addition.
However this protocol uses recursive quarternary partitioning.

17

The result may be proved by induction on k.

Basis Step: When k = 1, A = 2. Therefore, there can be at most two nodes in the initial
window, since §maz = ceil2 (A) = 2 (line 3 of Figure 6) and we have assumed that there are
no ties. The worst case overhead occurs when there are two nodes in the initial window.
In this case, the node with the smaller value of p will be selected for granting transmission
rights immediately after the initial collision, i.e., the worst case overhead is 1 slot, which
agrees with Eq. (2).

Induction Step: Assume Eq. (2) is true for k = r, i.e., assume that

emuz =2r — 11

when A = 2. When k = r + 1, the size of the initial window is doubled and the previous
initial window becomes the left half of the new initial window. The worst case contention
resolution overhead occurs, when there is no node whose p value falls in the left half of
this new initial window, and the worst case contention resolution overhead is incurred in
resolving the contention in the right half of this new window. The overhead is given by the
sum of the overhead (1 slot) that arises as a result of the collision in the initial window, the
overhead (1 slot) that arises as a result of the idle slot involved in examining the left half of
the initial window, and the overhead (2r — 1 slots, by the inductive hypothesis) in resolving
the contention in the right half of the initial window. This sum evaluates to 27 + 1 slots
which is equal to 2k — 1 slots for k = r + 1. Thus Eq. (2) is again satisfied.

If A is not a power of 2, then A < §q:- The window procedure specifies that the
parameter computation rule R has to choose the value of the parameter p associated with .
a node to be less than A. This implies that p < §pmaz. Therefore only a portion of the right
half of the initial window will be examined by the contention resolution procedure. Hence
the maximum contention resolution overhead will be smaller than if A is a power of 2. In
fact, in this case the worst case overhead incurred in examining the left half of the initial
window fully, may be larger than that incurred from examining the ‘sparsely filled’ right
half. However the worst case overhead then is given by the sum of the overhead (1 slot)
that arises as a result of the collision in the initial window, and the overhead (27 — 1 slots)
in resolving the contention in the left half of the window, i.e., 2r = 2k — 2 slots. This again
agrees with inequality (2). Q.E.D.

COROLLARY 1 If a tie is possible, an upper bound on the per packet contention resolu-
tion overhead &mqz (in units of T) for window is given by:

bmaz < 2 ([logy A] + [log, A1) — 2, (3)
when A > 1. Here A is the size of the space of addresses of all the nodes.

The proof of this property is similar to that of Property 2, except that the worst case
contention overhead incurred in order to resolve a tie is included.

PROPERTY 3 Assuming that the per packet contention resolution overhead is uniformly
distributed over its range of values, i.e., that all possible values of the overhead are equally
likely, the average per packet contention resolution overhead £ is given by:

18

1. forever do
2. window(®, K, pri);
3. end forever

Figure 7: The PRI Window Protocol

1. € < [log, A] — 0.5, if there can be no ties.
2. £ < [log, A] + [log, A] — 1, if ties are possible.

PROOF: The proof follows from Property 2, Corollary 1, the fact that the minimum possi-
ble overhead is 0 slots (when there is no contention), and the assumption that the overhead
is uniformly distributed. Q.E.D.

The procedure window may be used to implement a priority resolution protocol in a
straightforward manner. We consider this in the next section.

4 THE PRI WINDOW PROTOCOL

Figure 7 contains the pseudocode for a window protocol PRI that may be used for
priority-based arbitration. The priority associated with a node at any instant of time is
assumed to belong to the space of priority values & = [0,K). The protocol merely invokes
the window contention resolution procedure repeatedly with arguments &, K and pri. The
parameter computation rule “pri” is defined below:

Rule pri: Choose parameter p to be the priority of the packet with the smallest
priority queued at the node. If there are no queued packets p is undefined.

PROPERTY 4 The PRI window protocol always selects for transmission the packet with
the smallest priority value (at the time p is evaluated) in the entire system.

PROOF: The result follows from Property 1 and the definition of “pri”.

In Section 8.1, we will see that the PRI window protocol has a smaller average contention
resolution overhead (Property 3) than other priority resolution protocols that have been
proposed for bus-based systems.

A real-time datagram arbitration protocol may be implemented using the window split-
ting procedure in the same manner as PRI is implemented. We consider this protocol, the
RTDG window protocol, in the next section.

5 THE RTDG WINDOW PROTOCOL

The pseudocode for the RTDG window protocol is shown in Figure 8. This protocol
repeatedly invokes the window contention resolution procedure with the space of possible

19

1. forever do
2. window(A, L, mlf);
3. end forever

Figure 8: The RTDG Window Protocol

laxity values (A), the width (L) of the subspace [0,L) C A, that determines the initial
window size and that is used in computing the parameter p associated with the node, and
a rule called “mlf”, as its arguments. The parameter computation rule “mlf,” is defined
below.

Rule mlf: Choose parameter p to be the laxity of the packet with the smallest
non-negative laxity at the node. If this laxity is larger than L, or there are
no queued packets, then p is undefined (i.e., the node does not contend for the
channel). Delete any packet that has a negative laxity from the queue.

The first clause in this rule ensures that the packet with the shortest time to extinction,
i.e., the most urgent packet, at each node contends for the channel. The second clause
ensures that the initial window in the procedure window spans all possible values of the
parameter p (this clause implies that only packets whose laxities are less than L, i.e., packets
with a minimum level of urgency can contend for access to the channel; however, since the
laxity of a packet continuously decreases with time, the laxity of every packet will eventually
become less than L). The third clause stipulates that packets whose deadlines have expired
be dropped at the source.

5.1 PROPERTIES OF RTDG

PROPERTY 5 The RTDG window protocol selects for transmission the packet with the

smallest lazity (at the time p is evaluated) in the entire system, if it selects any packet at
all.

PROOF: The result follows from Property 1 and the definition of rule “mlf”.

Property 5 essentially states that the RTDG window protocol approximates a system-
wide minimum laxity first policy for packet transmission (whenever it selects a packet for
transmission). The protocol approximates, rather than exactly implement the minimum
laxity first policy, because the protocol selects for transmission the packet with the smallest
laxity at the time p is evaluated. It may be seen from Figure 6 that there is an