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Abstract

Associative reinforcement learning tasks defined by Barto and Anandan (4] combine
elements of problems involving optimization under uncertainty, studied by learning au-
tomata theorists, and supervised learni‘ng pattern-classification. In our previous work,
we presented the SRV algorithm [15] which had been designed for extended versions of
associative reinforcement learning tasks wherein the learning system’s outputs could
take on real values. In this paper, we state and prove a strong convergence theorem
that implies a form of optimal performance (under certain conditions) of the SRV al-
gorithm on these tasks. Simulation results are presented to illustrate the convergence

behavior of the algorithm under the conditions of the theorem. The robustness of the
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algorithm is also demonstrated by simulations in which some of the conditions of the

_theorem are _violated. _



1. Introduction

Associative reinforcement learning tasks defined by Barto and Anandan [4] combine ele-
ments of problems involving optimization under uncertainty, studied by learning automata
theorists, and supervised learning pattern-classification. Each of these component classes
of tasks is of interest in its own right and has been studied extensively over the past three
decades [20, 10]. In our previous work, we described a class of learning tasks that are ex-
tensions of the associative reinforcement learning tasks defined by Barto and Anandan, and
an algorithm, called the Stochastic Real- Valued unit (SRV) algorithm [14, 15], that had been
designed specifically for such tasks. In this paper we state and'prove a strong convergence
theorem that implies a form of optimal performance for a modified version of the SRV algo-
rithm on these tasks. The proof of the theorem is based on Martingale theéry and is modeled
after Gladyshev’s [13] proof of convergence of the Robbins-Monro process [21]. Modifications
to the original algorithm were necessary to make rigorous analysis possible. However, we
informally argue that the original algorithm has convergence properties similar to those of

the modified algorithm, and we present simulation results which support this claim.

In associative reinforcement learning tasks, the learning system interacts in a closed loop
with its environment. At each time step, the environment provides the learning system with
input x chosen from a set of inputs, X. Using this input, the Jearning system selects an output
z from a set of permissible outputs, Z. Based on both x and z, the environment computes
and returns a payoff value or “reinforcement”, r € R. Ideally, we would like the system to

learn to respond to each input with the output that has the highest expected payoff. In



keeping with the earlier work on learning automata, Barto and Anandan defined associative
reinforcement learning tasks as involving selection of one of a finite set of outputs (Z is a
finite), and for which the payoff is a binary-valued success/failure signal (i.e. R = {0,1}).
Their interest in such tasks led to the development of the Ar_p (associative reward-penalty)
algorithm, which they prove has a form of optimal performance in associative reinforcement
learning tasks. The above conditions on the output and the payoff, however, are rather
restrictive for most applications and one would like to extend the definition of associative
reinforcement learning tasks to permit continuous-valued outputs and evaluations. Barto and
Jordan [5] present a version of the Ag_p algorithm that can handle the latter case, where
the evaluation returned by the environment can take on bounded confinuous values (the
so-called S-model case [8]). But learning continuous outputs is more difficult and existing
algorithms cannot be easily extended to do so. For example, Ar_p units (as defined in [4])
compute their binary-valued outputs by adding noise to their activations and thresholding
the sum. Such units could be easily modified to produce continuous outputs by omitting
the thresholding. Unfortunately, in such units there would be no control over the amount
of noise that is added to the activation and hence they would continue to produce random
output values regardless of the duration of training. The search for a suitable algorithm
for associative reinforcement learning tasks with continuous outputs and evaluations led to
the development of the SRV algorithm [14, 15], an algorithm closely related to standard
stochastic approximation procedures like the Robbins-Monro procedure [21] and the Kiefer-
Wolfowitz procedure [27] and their generalizations [11]. In this algorithm, the learning system

computes its real-valued output as some function of a random activation generated using the
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Gaussian distribution. The activation at any time depends on the two parameters, the mean
and the standard deviation, used in the Gaussian distribution, which, in turn, depend on the
current inputs to the unit. The SRV algorithm adjusts these two parameters so as to increase
the probability of producing the optimal real value for each input pattern. The algorithm
does this by maintaining the mean of its activation as an estimate of the optimal activation’
and using the standard deviation to control the amount of search around the current mean

value of the activation.

Several algorithms related to the SRV algorithm have been described in the literature,
although, to the best of our knowledge, no strong convergence results have been proven for
any of them. Williams [25], [26] describes a very similar algorithm involving the use of the
Gaussian distribution to generate real-valued outputs. His approach, unlike ours, is based

on using the derivatives of the logarithm of the Gaussian distribution function to update the
mean and standard deviation. Williams shows that, on an average, using these derivé.tives
to update the parameters results in an increase in the expected evaluation from the environ-
ment. Our algorithm also has components analogous to an earlier algorithm of Sutton [23],
which also uses the Gaussian distribution to generate real-valued outputs. However, in his
algorithm, the output is controlled by varying the mean alone and the standard deviation is
held constant. Harth and Tzanakou [17], in a somewhat equivalent approach, designed an
algorithm, called Alopex, to produce real values that are proportional to a bias with random

noise added to it. In the original algorithm, the noise had a fixed distribution, although in

Informally, the activation that has the maximum expectation of reinforcement from the environment. A

formal definition of the optimal action is given in Section 2.



more recent versions feedback is used to adjust the noise distribution. Farley and Clark [12]
also describe a scheme in which the noise level is varied based on changes in performance over
previous time steps. More recently, Alspector, Allen, Hu, and Satyanarayana [2] described a
reinforcement learning algorithm based on the Boltzmann machine learning algorithm [1], in
- which the noise in the activation of their stochastic units is controlled so as to keep the units
active for a reasonable fraction of the time. In addition to the frequency of activation of the
units, they also used measures such as the sum of the magnitudes of weights into a unit and
the past history of reinforcement received by the network to determine the amplitude of the

noise.

Before presenting the algorithm and the associated convergence result, we briefly describe
the relevant aspects of stochastic learning automata theory, work in pattern classification,
and stochastic approximation theory. This description provides a background for the ap-
proach we have taken in designing the SRV algorithm. We also present, in more formal

terms, the extended definition used in this paper of associative reinforcement learning tasks.

2. Associative reinforcement learning

Associative reinforcement learning tasks, as we define here, involve the following in-
teraction between the environment and the learning system. At time step ¢ the environ-
ment provides the learning system with some context vector x(t) selected from a set of
vectors X C R", where R is the set of real numbers. Based on this input, the learn-

ing system produces a random output z(t) selected according to some internal probabil-



ity distribution over some interval Z C R. The environment evaluates the output z(t)
in the context of the input x(¢) and sends to the learning system an evaluation signal
r(t) € R = [0,1], with r(¢) = 1 denoting the maximum evaluation. This evaluation is
determined according to some conditional probability distribution G : R x X x Z — [0, 1],
where G(r,x,z) = Pr{r(t) < r | x(t) = x,z(t) = z}. The objective of the learning system
is to learn to respond to each input pattern x € X with the action 2* € Z with probability

1, where 2* is such that E(r | x, 2*) = max.ez{E(r | x, 2)}.

Barto and Anandan [4] had defined associative reinforcement learning tasks for the case
when the output set Z is finite and the environmental evaluation r is binary-valued. The
definition of associative reinforcement learning tasks given above is a direct éeneraliza.tion
of their definition to the case when the output z can take on continuous values and the
environmental evaluation r lies in the interval [0, 1]. It is also possible to reduce associative
reinforcement learning tasks to other classes of commonly studied tasks by placing restric-
tions on various aspects of the task definition. For example, in the case of a single context
vector (| X |= 1), these tasks become members of an extensively studied class called learn-
ing automata tasks. Simple learning automata operating in stochastic environments have
gained attention as models of learning since the work of Tsetlin [24] and that of psychologists
studying mathematical learning theory (e.g., (7] and [3]). A good review of the theory of
stochastic learning automata is provided by Narendra and Thathachar {20]. A stochastic
learning automaton interacts with its environment by randomly selecting an action as out-

put to the environment, which, in turn, produces a random evaluation of the action. This



evaluation (also known as a “success signal”, “payoft”, “reward”, or “reinforcement” ) is used
by the automaton to update its action probabilities. Learning involves adjusting the action
probabilities so as to increase the expectation of favorable evaluations for future actions.
Learning automata can be further classified according to the kind of evaluation they receive
from the environment. If the set of possible evaluations is binary (denoting success/failure),
the automaton is called a P-model automaton. The evaluation is drawn from a finite set of
more than two values for a Q-model automaton and from an interval of the real line (usually
[0,1]) for an S-model automaton. The environment is said to be stationary if the probability
distribution used to produce the evaluation is constant over time. Otherwise, it is said to be

nonstationary.

For the purposes of this paper, it is important to note that the only input to the learning
automaton, as defined above, is the evaluation signal. As long as the environment is sta-
tionary, such an automaton can learn to select the optimal action using just the evaluation.
But if we consider the task of learning optimal actions in different situations using such an
automaton, it is clear that the automaton needs to consider input other than the evaluation
signal. Such contezt input [6] serves to indicate the current state of the environment to the
automaton. Since the probability distribution used to produce the evaluation may depend
on the state of the environment, the automaton has to use the context input to select the
preferred action appropriate for that context. In other words, the antomaton has to learn

an associative map from the context input to the preferred action for that context.

Associative reinforcement learning tasks can also be reduced to a special class of tasks

involving learning associative maps, called supervised learning pattern classification tasks.



This can be done by restricting both the output and the evaluation to discrete values and
defining the evaluation to be a deterministic function of the input alone. Specifically, the
“evaluation” has to be the label of the class of vectors or patterns in the input space to which
the input belongs. Pattern classification systems have been the subject of intense study
since the 1950s. A comprehensive overview of pattern classification techniques is provided
by Duda and Hart [10]. Learning in a pattern classification system involves using pattern —
class-label pairs provided as training input to the system to develop a classification rule that
assigns the correct class label for each pattern or, in general, minimizes the probability of
misclassification. It is usually assumed that the training pairs are produced randomly by the
environment in which the classification system operates. Formally, for an m-class problem,

the class w; is assumed to occur with probability P(w;), 1 < i < m, and a particular pattern
vector x from the it* class is assumed to occur with probability density p(x | w;). Therefore
the pattern classification problem is reduced to computing the a posterior: probability

p(x | wi)P(w;)

Plw; | x) = ™ (x| wj)P(w;)

(1)

for every 1 and selecting as the class label that w; for which P(w; | x) is maximum. Equiva-

lently, one can compute the discriminant functions
gi(x) = p(x | wi) P(wi) (2)
and select the label of the class with the largest discriminant function value.

In one set of techniques for pattern classification, called lLinear discriminani function

techniques [10], the discriminant functions are linear functions of the input pattern of the



form

gi(x) = 0;rx + ¢, (3)

where §;, 1 < i < m, are weight vectors. For the two class case, this is equivalent to forming

a single discriminant function
g(x)=0Tx+c, (4)

so that x is assigned to w; if g(x) is > 0 and to w, otherwise. Solving the classification
problem now involves using the training data to find weights that minimize the probability
of misclassification. Given randomly generated training pairs, if we can define a suitable

error functional that quantifies the classification error, we can apply known stochastic ap-
proximation methods [18] to this problem. These methods have been developed for finding
a set of parameters @ that minimize (or maximize) a criterion function J(@) in situations
where observations of the function values for any given setting of parameters are corrupted
with noise. It is assumed that we can observe either the random variable 2(6) which is
such that E[2(6) | 6] = J(@) or the random variable y(@) which satisfies the relation
E[y(0) | 8] = VgJ(8@) (i.e. y(8) is a noisy measurement of the gradient of the criterion
function). When the gradient information y(0) is available, the Robbins-Monro algorithm
[21] or its generalizations can be applied to update the parameters 8 so that the criterion
function is optimized. Otherwise, the Kiefer-Wolfowitz [19] algorithm, or other similar al-
gorithms based on obtaining estimates of the gradient from the noisy observations of the

function values, 2(8), can be applied.

Our efforts have been directed towards incorporating the relevant techniques from the
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areas described above in a single learning system that (1) learns the action that yields the
highest evaluation in a given context, like a stochastic automaton, (2) learns to associate
different optimal actions with different contexts, much as a pattern classifier associates dif-
ferent class labels with different input patterns, and (3) uses a vector of parameters, 9, to
compute the optimal actions and learns these optimal actions by updating the parameters
using stochastic approximation procedures. The SRV algorithm is a result of these efforts.
An important feature of the algorithm is that it can be implemented as a connectionist unit
that can be incorporated into a network. Examples in which such units have been used to
learn various tasks have been presented elsewhere [15, 16]. In this paper, we focus our at-
tention mainly on the convergence properties of the SRV algorithm, although we do present

supporting simulation results.

3. The SRV algorithm

Designed for associative reinforcement learning tasks defined above, the SRV unit has the
structure shown in Figure 1. The interaction between the unit and the stochastic environment
takes place as iterations of the following operations. Iteration n begins with the unit receiving
an input x, chosen randomly from a set of input vectors X. The unit uses the input x,, and
two internal parameter vectors 8, and ¢, to compute the two parameters ji,, and o, of the

Gaussian distribution used to generate the unit’s output. The mean output, ., is computed
as the inner product HI Xn, and the standard deviation, 0,,, is computed in two stages by first

computing an expected evaluation #, as an inner product d)I Xn and then computing o, as a
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function s(#,) of the expected evaluation. s(#,) is a monotonically decreasing, nonnegative
function of #,. Moreover, s(1.0) = 0.0, so that when the maximum reinforcement is expected,
the standard deviation is zero. The output of the unit, 2,,, is generated as a random variable
from the Gaussian distribution with parameters p,, and o,. The unit then receives an
evaluative feedback 7(z,, x,) from the environment, which it uses to adjust future outputs

by updating the parameter vectors 8,, and ¢,.

The evaluative signal »(z,x) is a random variable whose distribution coincides almost
everywhere with the distribution H(r | 2,x), which belongs to a family of distributions that

depend on the parameters z and x. Let

(-}

M(z,x) = /mrdH(r | z,x) (5)

be the regression function corresponding to this family of distributions (i.e., M(z,x) =
E{r | z,x}). We assume that M(.) is measureable and continuously differentiable almost

everywhere.

The unit uses the following algorithm to update the parameter vector 8, thus generating

a sequence of random vectors 0,,:

Onis = On+ 0n(r(2n,%n) = Fn) (20 — pin )%, (6)
where g, = 6] x, | ()

On = 8(fs), | (8)

n = ¢ x,, and (9)

12
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Zpn ~ N(n,00n). (10)

(6) can be written as

on+1 = 0n+oﬁyn(0n,¢n1xn)xn (11)

| where yn(0n, Pn, Xn) = (7(2n, %) — #5) (z,, — pm) y (12)

On

and p,,0,,%,, and 2, are as defined in'(7), (8), (9), and (10) respectively.

An intuitive explanation for these update equations is the following. We can view the
fraction in (12) as the normalized noise (or jitter) that has been added to the mean output
of the unit. If this noise has caused the unit to receive an evaluation signal that is more
than the expected evaluation, then it is desirable for the unit to have an output closer to the
current output z,. The mean output value should therefore be changed in the direction of
the noise. That is, if the noise is positive, the unit should update its parameters so that the
mean value increases. Conversely, if the noise is negative, the parameters should be updated
so that the mean value decreases. On the other hand, if the evaluation received is less than
the expected evaluation, then the unit should adjust its mean in the direction opposite to

that of the noise. It can be verified that the above equations have the effect described above

on the mean output.

Updating of the parameter vector ¢ used for computing the expected evaluation is rel-
atively straightforward. We want to associate with each input vector a corresponding rein-

forcement value, and since both the input vector and the reinforcement value are supplied

14



to.the unit, we can use the LMS rule of Widrow & Hoff (1960) to learn this association:

Butr = Bn+ pu (#(2ny Xn) = ) X | (13)

T

This completes the descnptlon of the SRV a.lgonthm in its ongmal form. It can be seen from
the above descnptlon of the SRV algonthm that it mvolves a complex mteract]on between the
two concurrent learning processes, namely, the process for learmng the expected evaluation
for a given input, a.nd the process for lea.rmng the optlmal output for that mput Thxs
;nteractlon makes rigorous analysls of the learning system as a whole dnfﬁcult Smce our
primary interest here is in the learning of optimal outputs for given mputs, in orderl to

make the analysis tractable, we make the following simplifications to the SRV unit and the

following assumptions.

Simplifications and assumptions
S1 In the SRV a;lgorithm, the pa..ra;meter‘ t/ector ¢ is .used to leern an estimate of the
/ expected evaluation #, given the mean output g, for an input ®,. As discussed above,
this estimation process interacts in a complex fashlon w1th the process of estimating
the optimal output, makmg a.nalysm dlﬂicult We therefore decxded to simplify the
algorithm by eliminating the internal estimation of the expected evaluation. Instead,
in each iteration, the unit obtains this estimate directly from the environment. It does
so- by emitting another output, which is the mean g,, and receiving an evaluation
7(#n,Xn) ~ H(7 | pin, Xn) which it uses in the place of #, in (6). The usual output z, is

also output to the environment, and the resulting evaluation r(z,,%,) ~ H(r | zn;x;‘)
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is used as before in the update equation. As we no longer required it for computing

7n, we discarded the parameter vector ¢.

S2 Since the unit no longer computes #, internally, it does not compute the standard
deviation o, as a function of #,. Instead, it uses a fixed sequence of real numbers {o,},

with the properties stated below.

Given these simplifications, the equations describing the generation of the random vector

sequence {0,} are written as

0n+1 = on + oy (r(zn)xn) - r(l"na x'n)) (Z,, - ”’n)xnr (14)
where p, = 0 x,,, and (15)
2~ Nty 7). (16)

As before, we can define a function y,() so that (14) can be written as

9n+1 = 0n+afz;yn(0n,¢n7xﬂ)xﬂ (17)

where (0, %) = (r(em %) = i %)) (222}, (18)

and p, and 2, are as defined in equations 15 and 16 respectively.

The following assumptions are necessary to define the optimal output for each input in
X, and to ensure that the random vector sequence 8, converges to the corresponding optimal

parameter values:
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Al

A2

A3

The sequence of real numbers {,} is such that

o0 oo
3
o, 20, d " 03 = oo, ) o} < .
n=1

n=1

An example of such a sequence is { 1 /nl/a}. Note that these three conditions imply

that ¢3 — 0. In the limit, therefore, the standard deviation of the output of the SRV

unit goes to zero (see S2 above), and the output of the unit equals the mean.

1. The input vectors x,, € X = {x,x®) .. x®} a set of linearly independent

vectors, and
2. Pr{x, =xW} =¢0) > 0, 1<i<k.

These two conditions imply that the random input vectors are drawn from a finite
set of k linearly independent vectors, with each vector in the set having a non-zero

probability of being chosen at any time.

For each x(¥), 1 < i < k, thereis a unique real number ) € Z such that

M(BD, x0)) = max M(z, x(®),

This assumption implies that the regression function of the environmental evaluation
M(.) has a unique maximum for each given input x"' It is also assumed that M(z,x)

has bounded first and second order derivatives with respect to z. Let

R(z,x) = % (19)
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A4 For each x(), 1 <1 < k,

sup (2 — B9) R(z,x%) <0, (20)
e<le-p< L
for all ¢ > 0. This assumption says that for each i, R(z,x(") behaves linearly as a

function of z for values of z near 8(*),

A5 Finally, we assume that

[ (o2, x) = M(z,x9)) dH(r | 2,x9) S B+ (2 - BOP) (1)

—00

for some real number A > 0. This assumption assures that the noise in the evaluative

input r(.) has a bounded variance and that ||r(z,x{)||? is bounded by a quadratic

function for all zand 1 <i < k.

Assumptions Al, A3, A4, and A5 are fairly standard in stochastic approximation liter-
ature [22, 11]. Of these, A3 and A5 can be easily met by most evaluation functions, while
assumption A4 is more restrictive, since it requires M(.) to be linear in the neighborhood
of the maximum for each input. It may be possible, however, to weaken this assumption as
has been done in stochastic approximation literature, but only at the cost of complicating

the analysis. For the sake of simplicity, we chose not to do so here.

Having delineated the above simplifications and assumptions, we are now ready to state

the main result of this paper, namely, the convergence theorem for the random process

defined by (14).
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Theorem 1 Given assumptions Al - A5 and a finite random initial vector 0,, the sequence
of random vectors {6,} generated by (14) converges with probability 1 to the unique vector

0" € Ra(A) + 0, which satisfies the equations

pi=0"Tx =80 1<i<k (22)

This theorem says that the mean output p; of the algorithm for any given input x{9)
converges to the optimal output B(*) with probability one. But since the standard deviation
used for computing the output of the algorithm tends to zero, the output converges in
probability to the mean output. Hence the above theorem implies that the output of the
algorithm for any given input x(*) converges in probability to the optimal output value 8(9.

The proof of the theorem is given in the Appendix.

4. Discussion

A few observations of general interest can be made regarding the above strong convergence
theorem and the associated assumptions and simplifications. Most of these pertain to the
relationship between the original SRV algorithm and the modified version to which the

convergence result applies.

1. To make rigorous analysis possible, we made simplificaticns S1 and S2 to the original
SRV algorithm. In doing so, we eliminated the need for estimating the expected eval-

uations 7 using the parameter vector ¢. In the original algorithm, however, the two
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interacting processes, one for estimating the expected evaluation, and the other for
estimating the optimal output, run simultaneously. Since the estimate of the expected
evaluation has a critical role in the estimation of the optimal output, it is necessary to
ensure the correctness of this estimate. Therefore one can expect stable convergence of
the original SRV algorithm only if the output estimation process is much slower than

the process for estimating the expected evaluation.

. Assumption Al places restrictions on the choice of the sequence {0,} that are critical
for the proof. Therefore this assumption cannot be discarded. But if we try to obtain
an intuitive understanding of the role played by these restrictions in the convergence
process, we can see that a similar effect is achieved by the method used to generate the
0, sequence in the original SRV algorithm. The condition that 332, 02 = oo ensures
that the sum of increments to the initial parameter vector 8; can be arbitrarily large,
so that any finite 6, can be transformed into the optimal vector 8*. At the same
time, the condition that 72, 02 < oco ensures that the variance in 8, is finite and
hence the vector cannot diverge to infinity. The o, sequence used in the original SRV
algorithm also ensures the former consequence, since o,, does not become zero unless
the optimal outputs are being produced for all inputs. Conditions on the computation
of 0, (Equations 8 and 9) which will ensure the second property described above are

currently unclear.

. It is likely that linear independence of the input vectors, as required by A2, is not an
essential condition for convergence. This is suggested by simulations of these algorithms

in various tasks. We present some of these simulations in the next section. By defining

20



an additional evaluation criterion for the parameter vector (for example, the least-

squares criterion), it may be possible to show convergence to the best approximation

of optimal performance relative to this criterion.

5. Simulation results

In this section, we present simulations of the original SRV algorithm and the modified
version for which the convergence result above applies in two simple associative reinforce-
ment learning tasks. The purpose of these simulations is twofold: first, to illustrate the
convergence properties of the algorithms, and second, to examine the practical importance
of the simplifications and assumptions made in Section 3.. To do this, we have designed
the tasks so that all the conditions of the theorem are met in the first task, while some of
these are violated in the second task. Clearly, associative reinforcement learning tasks can
be made very difficult to solve, for example, by increasing the number of input vectors or
their dimensionality. We have deliberately chosen rather simple tasks so that the important

aspects of the algorithm’s performance are readily discernible.

Each task is defined by a finite set of input vectors (X) and their corresponding 3 values

(see assumption A3). For Task 1, X has three vectors, x(*), x(*) and x(®), which are linearly
independent but not orthogonal. The set of input vectors defining Task 2 bas the same

three vectors as Task 1 plus two more. These five vectors together constitute a linearly
dependent set (specifically, x(®) = 0.5(x(!) + x(®)).) The vectors in the input set for a task

are all equally likely to occur at each time step. Thus ¢U) = 1/3, 4 = 1,2,3 for Task I,
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and ¢#) = 0.2, i=1,---,5 for Task 2. These conditions ensure that A2 is satisfied by the
set of vectors for Task 1. We picked the initial parameter vector #; (and ¢, for the SRV

algorithm) randomly for each run of the simulation.

The sequence {0,}32, used by the modified SRV algorithm was defined in our simulations

as

1

= (/20" (23)

On

where | | denotes the floor function. This sequence satisfies the conditions of Al, as the

reader can easily verify. In the case of the SRV algorithm, we first computed # as

Pn = f(da%n), (24)
where
1
f(a) = e (25)

is the logistic function that maps the real line onto the interval (0,1). Using this, we com-

puted o, for the SRV algorithm simply as
on = 8(Fn) = 1 — 7. (26)

In these simulations, we also set the learning rate, p,, for the parameter vector @ (see (13))

to be constant and equal to 0.5.

Two different evaluation functions, r; and r,, were used for the simulations. These are

defined as follows:

ri(z,x) = 1.0— | F(89) - £(2) |, (27)
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and

ro(z,x9) = N(ry(2,x),0.1), (28)

where f(.) is the logistic function defined above, and N (u,0) is the Gaussian distribution
function. Note that r, is a deterministic evaluation function, while r, returns a random
evaluation whose mean is the evaluation returned by 7,. From these definitions, it is clear
that the highest ezpected reinforcement, given an input vector, is 1.0 for either evaluation

function. It is also easy to verify that both these evaluation functions satisfy assumptions

A3, A4, and AS5.

Performance of the two algorithms was measured by recording a smoothed reinforcement
value at each time step over the course of a training run. The smoothed reinforcement
at any time step was computed as the average of the reinforcement received over the last
100 consecutive time steps. This measure conveys more information about the change in
performance of the algorithms over time than the actual reinforcement received at a time
step. Perhaps a more accurate performance measure would be the expected value of the
reinforcement at each time step, given the parameters and the input vector at that time
step. However, because both the output and the reinforcement are continuous valued random
numbers with their own distributions, obtaining a closed form expression for this expected
value is not easy. The moving average of past reinforcements is a good approximation of this
expected value, and one that is easily computable. A single simulation run lasted for 4500
time steps for Task 1 and 7500 time steps for Task 2. Tf each input vectorin X were presented
sequentially to the learning algorithm, these simulation durations would correspond to 1500

presentations of the entire input set for either task. For the purposes of collecting statistics,
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we conducted 25 runs of each algorithm in each task with each evaluation function.

A. Task 1

For Task 1, the input vectors are x(!) = (1,1,1,0)T, x(® = (1,1,1,1)T, and x(® =
(1,0,1, 1)T. The corresponding optimal output values are 8 = (—1.3862,1.3862, O.O)T, and
the learning system receives the maximum reinforcement when it responds to an input vector
with the corresponding optimal output. Note that because these input vectors are linearly

independent and the initial parameter vector 6, is finite, it follows from Lemma 1 that there

exists a optimal parameter vector 8 that is unique for that initial parameter vector.

The results of simulating the modified SRV algorithm in Task 1 with both evaluation
functions are shown in Figure 2. Graphs in the figure are plots of the smoothed rein-
forcement at each time step n, 1 < n < 4500. Figure 2(a) shows results of 10 individ-
ual runs with each type of reinforcement. The average smoothed reinforcement over 25
runs for each type of reinforcement is plotted in Figure 2(b). Comparing these plots, it
is clear that the algorithm performs almost as well with random reinforcement as with
deterministic reinforcement. Further, the individual runs all show identical convergence
behavior. Since all the assumptions A1-A5 made for the theorem are satisfied by the def-
inition of Task 1, these plots serve to illustrate the convergence behavior assured by the

theorem. For example, in one of the simulation runs with random reinforcement, the ran-

domly chosen value for 8, was (0.3163,0.0153, —().3275, —().3472)T. After 4500 time steps,

04500 was (—1.0263,1.3097, —1.6702,2.6557)T, which is close to the theoretical asymptotic

24



value? 6~ = (—1.0644, 1.3863,—1.7082,2.7726)T for the above value of @;,. The smoothed
payoff at this time step was 0.9697, which is also close to the optimal value of 1.0. Obviously,
more training steps would be required for closer convergence. Moreover, because o, tends
to zero very rapidly, longer and longer training sequences become necessary for comparable

reductions in the deviation from the optimal parameters.

An identical set of plots of simulations of the original SRV algorithm in Task 1 are
presented in Figure 3. Recall that in this version of the algorithm, an additional set of
parameters is used to learn the expected reinforcement, which is then used to compute the
standard deviation o, of the output. Because of this additional work, the SRV algorithm is
slower than the modified SRV algorithm. Nevertheless, it exhibits similar convergence of the
parameters to their optimal values. Further, Figure 3(b) shows that the SRV algorithm
also performs equally well with both deterministic and noisy reinforcements. Thus the
simplifications S1 and S2 introduced to facilitate theoretical analysis do not appear essential
for convergence in practice, at least in the simple tasks presented here. Moreover, the

simplifications do not seem to significantly benefit the performance in these tasks.

B. Task 2

For Task 2, the input set for Task 1 was augmented with twn additional vectors. These are
x® = (1,2,1, I)T, and x(®) = (1,0.5,1,0.5)T and the correspounding optimal output values

are 8 = (2.7726, —0.6931)T. As noted before, with the additional input vectors, the vectors

2The proof of Lemma 1 shows how this theoretical asymptotic value can be computed.
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in X are no longer linearly independent and hence assumption A2 is violated. Therefore it
is no longer possible to use the procedure in Lemma 1 to determine the optimal parameter
vector. In order to ensure that there was at least one set of parameters which would maximize
the expected reinforcement, we chose the optimal output values for the new vectors in the
following manner. Using the original three input vectors and their corresponding optimal

output values, we computed the optimal parameter vector 8 assuming that @; = 0. This

yields 8* = (—1.3863,1.3863, —1.3863,2.7726)T. We then set 8) = 0" Tx() for i = 4,5.
Clearly, 6~ is the only parameter vector which can yield optimal outputs for all five inputs,

and hence it is the optimal value for the parameters regardless of the starting value 6.

Figures 4 and 5 show the results of simulating the modified SRV algorithm and SRV
algorithm respectively in Task 2. As before, part (a) of each figure depicts the performance
over 10 runs with each type of reinforcement, while part (b) depicts the performance av-
eraged over 25 runs. Comparing these figures with those for Task 1, we can see that the
individual runs are more jittery, especially in the case of random reinforcement. However,
all runs of the simulation converged in the case of both algorithms, as is evidenced by the
plots of performance averaged over 25 runs. One run using the SRV algorithm did not start
to converge until after the 2500 time step. The ostensible reason for this was an unfortu-
nate choice of the random initial parameters for ¢ that led the algorithm to predict higher
reinforcement values than were being actually obtained. Until the reinforcement predictor
became more accurate, the algorithm could not learn the right outputs and converge. Ob-
servation of individual runs leads us to believe that the non-uniform convergence behavior

is probably due to the random initial parameters, since, for this task, there is a single set
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of optimal parameters independent of the initial values. This also accounts for the. slower

overall convergence rate for Task 2 as compared with Task 1.

Figure 4 shows that the condition that the input vectors be linearly independent is not
critical for convergence of the modified SRV algorithm, as long as the task itself is linear.
Using random reinforcement also appears to affect the rate of convergence only marginally.
The same is true for the SRV algorithm also. Although these results only cover the case of a
finite number of input vectors, elsewhere (15, 16]) we have presented simulations in which the
SRV algorithm performs well even when the input vectors were drawn from an infinite set.
These simulations show that the SRV algorithm appears to have all the desirable convergence

properties proved for the modified SRV algorithm.

6. Conclusion

In this paper, we have presented an algorithm that can learn associative maps from input
vectors to actions that are real-valued without the necessity of having the desired responses
available to the algorithm. This work extends the pioneering work of Barto and Anandan
in synthesizing associative reinforcement learning algorithms using techniques from pattern
classification and automata theory. We have also presented a strong convergence theorem for
a simplified version of the algorithm operating under certain conditions. Simulation results
have been used to show that neither the simplifications nor some of the conditions of the
theorem are essential for good convergence in practice. We feel that the central idea of

the SRV algorithm, namely, using predictions of the outcomes of actions to incrementally
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optimize the actions, is an important one that merits further study. Finally, the ability to
learn real-valued functions using less informative training signals than conventional learning

algorithms may prove to be a useful tool in several applications.
Acknowledgements
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Appendix

Convergence Proof

Before proving the convergence result, we make the following observation about the

algorithm and establish three supporting lemmas.?

Observation Let A denote the matrix whose columns are the input vectors x(9,1 < ¢ < k,
and let Ra(A) denote the range of A. Then 6,, € Ra(A)+6,, n > 1. This is readily apparent

if we write

. n-1
6. = 6+ A6

j'.:l

3Supporting results similar to the above observation and Lemma 1 were used by Barto and Anandan (4]

in their proof of convergence of the Ar_p algorithm.

32



where A0; =6;,, -6;,

and observe from (17) that each A; is a scalar times x; € X.

Lemma 1 Given an arbitrary finite 6, and 8 = (BM, 83, ..., B(®) as in A3, there exists

a unique 6" € Ra(A) + 0, such that

pi = 6T = g (29)

fori,1<i<k.

Proof: Consider the equation
ATe =g, (30)

where A is the matrix whose columns are the input vectors (as in the observation above).

Since the rows of A are independent (from A2) there exists at least one 8~ that satisfies (30).
Also, since 8* € Ra(A) + 8,, we can rewrite (30) as AT (Aw + 0,) = B for some w € R*.

Since the columns of A are independent, AT 4 is invertible, and w is the unique vector
w=(ATA)'(B-AT6,). (31)

Thus 0° = Aw +0,, with w defined by (31), is the unique vector in Ra(A) + @, that satisfies

(29). .

33



Lemma 2

E {yﬂ(am xﬂ) I 0,,, xn} = a'nR(GIxm xn) (32)

Proof: From (18),

(B Xn) = ({2 ) = 7oty 30)) (22,

where z, ~ N(pn,0,) is a Gaussian random variable and p, = GI Xn. Taking conditional

expectations on both sides, we get
E {yn(0n,%n) | 0n, %0}

-t (S2) o -5 o) (2522) 1%

n n

= E{r(am,x) (2£2) | 61, %, (33)

n

because r(p,,%,) and (-‘-ﬂf’fﬂ) are conditionally independent, given @, and x,,, and

E{(2t2) | 6,,%,} = 0. But

B () (2522) 0,5

® Zn — Pn
= ./;coE{r(zmxn)( o B ) Iomxnazn}an(zn I omxn)r

n

where D,(.) is the distribution function for z,. Therefore

E {r(z,,,xn) (z,, — #") | Bn,xn}

On
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* Zn — fin
= »/-.-eo M(2n, X5) (_ai-) dDp(2n | 04,%,),

= E{M(z,,,x,,) (z,, — ”’") | Bn,x,,} . (34)

On

Substituting the result (34) in (33), we get

E {yn(0n,x,) | 0,,,x,,}

= B{M(mx) (2222) | 6,,x,)

n

= E{[M(ﬂmxn) + %(zﬂ )+ azM‘gi,;,xh)(zn _2%)2

(z" — ””) | Gn,x,.} ,
aﬂ

using a second order Taylor series expansion of M(z,,x,) about u, (¢n lies between z, and

#n). Therefore

E {yn(6n,%s) | 60, x.}

= M(pn,x,)E { (i;—”ﬁ) | Bn,x,.} + R(pn,x,)E { ((z"—;p"—)z) | 9mxn}

s lE{azM(Cn,xn) ((zn - nn)") | gmxn}.

2 022 on

The first term on the rhs above is zero because the odd moments of z,, a Gaussian random
variable, are zero. Since M(.) has bounded second order derivatives by assumption A3, the

last term on the rhs can also be seen to be zero. Hence we get

E{yn(0n,%p) | 0n, %X} = 0nR(pin,Xn)
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= 0uR(0)%n,%n).

Lemma 3

E {lyn(8n, %) [1? | 0n, Xn} < K(1 + (|00 — 67|1%). (35)

Proof: From (18)

E {|lgn (80, %) | 6, %}

= E {(r(z,.,xﬂ) = 7(fn Xn))? (z" - uﬂ)z | 0"’x"}

On

= [T B {(r(em %) = o %) | O 20} (22) 4D (2 | 01, %0X36)

n

Now

E {(*(2n Xn) — *(in) Xn))? | O, Xn, 20 }

= E{r*(2n%n) | On, Xn, 20} + E{r?(ftn, Xn) | B, Xn, 2}

= 2E{r(2p, Xa)"(ptrn.X0n) | @i Xp, 20}

Defining 8, = A% if x, = x® € X (i.e, B, = G'Tx,, , we can use assumption AS and the
8

conditional independence a.e. of r(z,, X;,,) and 7(gn, X,.), given O,, X,, and z,, in the above
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equation to obtain

E{(r(2n, %) = 7(ttn, %n))? | B, X, 20}

S (AL + (20 = Bu) + MP(2n, %0)] + [B(1 + (i — Ba)? + M (i, %)) (37)
= 2M (20, X, ) M (1, X,,)
= k(2 + (20 = Bn)’ + (B = Bu)?) + (M(20, %) = M(pim, X)), (38)

Substituting (38) in (36), we get
E {|[yn(8n, Xa)I[* | O, %n }
< o 7 (Bt ") dDn(zn | B, %)

bt - 2
+ h J/Lm (_(zn - ﬂn)z + (”'n - ﬁn)z) (52‘;’&) dD..(z,. l 9...x..)

n

+ [ (M, 20) = M, 3 (2222) D (1 6, 7,)

Using the fact that z, ~ N(un, 0,) and expanding M(2,,%,) in a second order Taylor series

about p,, as before, we get

E {|[4n(8n, Xa)|I* | 6, %0}

< 2heth [ o = )+ 2o = o)t = B) 4 20— 807 (2L2) ()

Tn

+/ [aM b Xn) )y S %) (o —2un)2r (zn - “n)den(.)

022 On
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- 2h+h/ ——”“)dD()+2h( ﬂn)f_:(—”:-;-z""—)adp,,(.)

ﬂ

+ 2h(pn ~ B)? [ : 9‘%;‘")-2-40,,(.) +8() [ : (’";—j‘")‘*dp,.(.)

n

+[: (62M(men))2(2n4 2 Hn)® dD.(.) + R(. )/‘ (azM(men)) (20 — 2n)® n().

022 622 o3

Since the second order derivatives of M(.) are bounded by assumption A3, these derivatives
can be replaced in the last two terms of the rhs above by an upper bound S and factored
out of the integrals without affecting the inequality. The integrals on the rhs are then all

moments of z,, which can be easily evaluated since z, has a Gaussian distribution. Therefore
E {1y (8, %) | 81, Xn}
2 2 20v.2 , 1502 4
< 2h 4 3hoj + 2h(pn — Bn)* + 3R*(.)o2 + TS o,
< H(L+ (n = Bu)?)
for some H > 0, by the boundedness of o,,, R(gtn, X,,), and %%Q But
(#n = Ba)? = (07 %0 = 07Tx,)? = (B — 6")Tx,)" < |16 — 67| f1a?

by Cauchy’s inequality. Substituting for (g, — B8,)? in the above, we get (since x,, € X, a

finite set), for some K > 0,

E{[[92(0n, %a)|I* | 6, %0} = K (1 + 16 — 67[1%).
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We are now ready to prove Theorem 1. Qur proof of this theorem is based on Gladyshev’s
proof of the convergence of the Robbins-Monro process [13]. Unlike the Robbins-Monro pro-
cess, wherein the stochasticity is: confined to the environment in which. the learning system
operates, (14) defines a stoéhastic system operating in a stochastic environment. Confound-
ing between these two sources of randomness makes the analysis more complicated. Hence,
although we employed the same basic proof f.echm‘que based on Martingale theory as Glady-
shev, his proof had to be extended in several non-trivial ways. Other alternative approaches
could have been taken to arrive at the same result but we felt that the approach presented

here is most easily comprehensible.

Proof of Theorem 1: Let

e, = (6, -0"). (39)
Clearly, from (17), '
€nt1 = €n + 07 Yn(On, Xn) Xn. (40)
Squaring and taking conditional expectations given 8,,...,8,,, we get

E{llens)I? 1 61,-..,8.} = E{llen)?|64,...,6.}
+ 5B {[|4n(00n, %0 )x4l|? | 01,0}

+202E {e] yu(n. Xa )% | 61,6, (41)
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In this equation,

k
DG {[[5n(0n, xN)x V7 | 6y, 0, x9}

i=1

E {l1yn(8n, Xn)%al* | 63, ..., 6.}

k
= 2 GE{I4n(On X | 61,00, XV} V|2

i=1

IA

k
> K(1+ lleal?)¢@x* (using Lemma 3)

i=1

IN

Ky(1+ [lenl®), (42)

where K; = kK lrsn.p,saif(")"x(")lp.

k .
Also, E {1 yn(0n, Xn)xn | 0,...,0,} = Y E {eavn(0n, x)x | g, xD} £

i=1

k
= Y E {y,,(G,,, x() | 9,,x® } el x(el) (43)

i=1

k
= 0, Y R(O7x%), x))(8, — %) Tx(e)

=1

k
= 0n Y R(O]xW), x0T x) — gi)e()

=1

< 0 (by assumption A4). (44)
Using (42) and (44) in (41), we get

E{llear )l 161,02} < lleall? + 02 Ky(1 + [len]l?)
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= |leal*(1+ K;02) + Kyok. (45)

Let us define

o = lleall” [I(1 + K1) + 3_ Kaof ] (1+ Kiof). (46)
j=n j=n i=j+1
Then it is easy to show using (45) that
E{ons1|61,...,0,} < ay. (47)

Taking conditional expectations for given ay, ..., a, on both sides of the inequality (47), we
find

E{a‘n+l I Ay, ... 1a1t} < an, (48)

which shows that o, is a non-negative supermartingale where

E{ani1} < E{an} < --- < E{n} < 0. (49)

Therefore, by the martingale convergence theorem [9], a,, converges with probability 1. From

this observation, the definition of a,, (Equation (46)) and assumption A1, we can conclude

that ||e, || “P3 », a random variable. Also, (49) and (46) together with Al imply that

E{|len|I”} < oo. (50)

Let us now take expectations on both sides of (41) after making substitutions using (42)

and (43). We get

k
E{|leas1l’}~ E{llelI’} < onKi(1+E{|len|*}) +207E {Z R(OIX“),X“))ezx(‘)f“’} - (51)

=1
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Adding the first n of these inequalities, we get

n n k . . o .
E{llent|?} - E{lles|*} £ 3" oK1 (1+E{llesl*H+23 o3 E {Z R(8]x1, x(‘))e}rx("&“’} :

Jj=1 j=1 i=1
(52)

From inequality (52), using the boundedness of E{||e,||*} and assumption Al, it follows that
!

i k - o
Y oiE {Z; R(6]x, x<'))e,Tx<'>e(')} > —o00, (53)
j=1 =

which implies that
) k .
Z:l o3E {21 —R(G;rx("), x(‘))e}-x(‘)ﬂ‘)} < 0o0. (54)
j= i=

Since %2, 02 diverges (A1) and, by A4 and A2, the quantity Y% —R(O;Tx("),x("))e;rx(")f(")

i=1"3 =1

is non-negative, we can conclude that for some subsequence {n;},

k
> —R(GI,.x("), x("))eI,.x(")f(") — 0 w.p.1.

i=1
Since each of the terms of the above sum is non-negative (A4), we have
R(O] x, xMel @ 0 wp1 v 1 i<k (55)

The fact that ||e,||> — 5 w.p.1, together with assumptions A2, A3, and A4 and (55) imply

that n = 0 w.p.1. Hence, 6,, — 0™ w.p.1. 0O
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Footnotes

1. This material is based upon work supported by the Air Force Office of Scientific Re-
search, Bolling AFB, under Grant AFOSR-89-0526 and by the National Science Foun-
dation under Grant ECS-8912623.

2. Informally, the activation that has the maximum expectation of reinforcement from

the environment. A formal definition of the optimal action is given in Section 2.
3. The proof of Lemma 1 shows how this theoretical asymptotic value can be computed.

4. Supporting results similar to the above observation and Lemma 1 were used by Barto

and Anandan [4] in their proof of convergence of the Ag_p algorithm.
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Figure captions

. Block diagram of a SRV unit showing the various computations being performed. The
flow of signals used to compute the output of the unit is shown with solid lines, while

the signals used for learning are shown with dashed lines.

. Simulations results for the modified SRV algorithm in Task 1. (a) Curves showing
the smoothed reinforcement for ten runs with each type of reinforcement. (b) Curves

showing the smoothed reinforcement averaged over 25 runs with each type of reinforce-

ment.

. Simulations results for the SRV algorithm in Task 1. (a) Curves showing the smoothed
reinforcement for ten runs with each type of reinforcement. (b) Curves showing the

smoothed reinforcement averaged over 25 runs with each type of reinforcement.

. Simulations results for the modified SRV algorithm in Task 2. (a) Curves showing
the smoothed reinforcement for ten runs with each type of reinforcement. (b) Curves

showing the smoothed reinforcement averaged over 25 runs with each type of reinforce-

ment.

. Simulations results for the SRV algorithm in Task 2. (a) Curves showing the smoothed
reinforcement for ten runs with each type of reinforcement. (b) Curves showing the

smoothed reinforcement averaged over 25 runs with each type of reinforcement.
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