Control in Parallel Production Systems
A Research Prospectus

Daniel E. Neiman

COINS Technical Report 91-2

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003
CSNET: DANN@CS.UMASS.EDU

Abstract

This report describes a prospectus for research on control issues raised by incorporat-
ing rule parallelism into production systems. The proposed research develops the thesis
that successful development of parallel production systems requires a careful analysis
of the nature of the algorithms being implemented, a re-evaluation of existing conflict
resolution techniques, construction of algorithms with a tolerance for temporary in-
consistencies in working memory, development of a vocabulary for describing temporal

. interdependancies between rules and data, and language mechanisms for supporting
parallel rule execution.

9This work was supported in part by the Office of Naval Research under a University Research Initiative
grant, ONR N00014-86-K-0764, and NSF-CER contract DCR-8500332

Abstract

Rule-based programming requires matching productions against a state memory in
order to determine which rules are able to fire. It is commonly held that matching
is the most time-consuming phase of computation in these systems. Previous studies
have shown that parallelism can improve the performance of a rule-based system by
increasing the speed of the matching process. In general, the speed up is limited by
the number of productions affected by a change to memory, the number of changes
to memory taking place, the size of the memory elements, the number of elements
currently in memory, and the cost of scheduling parallel processes. In existing OPS5
systems, the average values of these parameters [Gupta89a) indicate that the potential
speedup due to match-level parallelism is about one order of magnitude. Most of the
systems which were analyzed use control structures which rely on conflict resolution
and the serial nature of the OPS5 recognize-match-act cycle.

More recent research has demonstrated that executing rules in parallel can greatly
increase the performance of production systems. Unlike matching parallelism which
is largely transparent to the programmer, parallel rule execution requires significant
changes to the rules and control structures of the system. In the case of these systems
which allow multiple productions to fire simultaneously, the issue of which rules can
co-execute must be considered. Current techniques for identifying and managing
interactions between rules require a resource intensive syntactic analysis.

Control of parallel production systems is problematic. For example, experiments
which I have performed using a parallel version of OPS5 indicate that in systems
which execute many productions concurrently, the standard control mechanism, con-
flict resolution, turns out to be a bottleneck. The standard conflict resolution algo-
rithm requires that all working memory changes and entries/deletions to the conflict
set be completed before a rule is selected, this causes the maximum level of parallelism
to be greatly reduced. If no control mechanism is applied, then rules may interfere
with each other, may fire redundantly, or may exceed the computing capacity of even
a parallel machine. The problem of control is further complicated by the relatively
short execution times of productions which tends to preclude lengthy deliberation.
The question of controlling a highly parallel production system without incurring un-
acceptable overhead is considered and a number of approaches are proposed, including
a functionally accurate/cooperative control algorithm, a concurrent control scheme
which monitors asynchronous production firings, and a meta-language for expressing
control requirements.

The proposed research develops the thesis that successful development of parallel
production systems requires a careful analysis of the nature of the algorithms being
implemented, a re-evaluation of existing conflict resolution techniques, construction
of algorithms with a tolerance for temporary inconsistencies in working memory,
development of a vocabulary for describing temporal interdependancies between rules

and data, and language mechanisms for supporting parallel rule execution.

Contents

1 Introduction

2 OPS5: A Case History of a Rule-based Language

2.1
2.2

Control of OPS5 Programs
The Rete Ngt

3 Research in Parallel Production Systems

3.1
3.2
3.3
3.4
3.5

Compilation of the Rete Net
Parallelism in OPS5 i e e e
Production Parallelism
Node and Intra-node Parallelism
Extremely Fine Grained Parallelism within the Rete Net

3.6 Action Parallelism
3.7 Application Parallelism
3.8 Parallel Executionof Rules.
3.8.1 Achieving Serializable Behavior in a Parallel Program
3.8.2 Parallel Rule Firing with Fuzzy Logic
3.9 Architectures for Production Systems
39.1 DADO e e
3.9.2 Implementation of OPS50on Non-Von
393 CUPIDandDRete
3.9.4 Message Passing Architectures
3.9.5 Shared Memory Architectures
4 Parallelism in OPS5 — Research to Date
4.1 Implementation of a Parallel OPS5
4.2 Implementation Environment
43 Benchmarks
4.3.1 Experiment 1: Explicit Synchronization
4.3.2 Experiment 2: Synchronization via Conflict Set
4.3.3 Experiment 3: Asynchronous Production Execution
44 Summary of Experiments.

5 Proposed Research

5.1

5.2

Comtrol Issues
5.1.1 Definitions of Control
5.1.2 Removing the Conflict Set Bottleneck
Controlling Parallel Production Systems
5.2.1 Concurrent Control

..............

................

........................

......

523 Meta-Rules, 42

5.3 Research Contribution 43

54 Related Work 44

5.4.1 Parallel Blackboard Systems 44

55 ResearchProgram 46

5.5.1 Models of Rule Interactions 46

5.5.2 Development of Algorithms for Parallel Control 47
5.5.3 Development of an Intelligent Controller for Parallel Rule Exe-

cution 47

5.5.4 Development of a Parallel Production System 47

56 Results. 48

68 Conclusion 48

1 Introduction

Production systems are a popular method for implementing expert (or knowledge-
based) systems and have been proposed as cognitive models of intelligent activity.
The main source of power of the production system formalism is that it allows a rule
to represent a single ‘fact’ or unit of knowledge in a discrete form. This encapsulation
of knowledge simplifies the tasks of knowledge acquisition, learning, program modifi-
cation, interactive transfer of expertise, and explanation. The principle disadvantage
of production systems is that they tend to be slow due to the high overhead required
to match each rule against all the relevant elements of the knowledge base in order to
determine if that rule is eligible to fire. As the number and complexity of rules and
the size of working memory increase, performance decreases proportionally, limiting
the practical applications of production systems.

Various algorithms (e.g. Rete and TREAT) have been proposed to speed up the
matching process. In general, these algorithms take advantage of the observation
that the world (as represented in working memory) changes slowly and therefore the
overhead of the match process can be reduced by storing the results of previous partial
matches. Various studies have been performed to estimate the speedup resulting
from parallelizing these algorithms. These algorithms appear to be very suitable for
parallelism, yet parallelizing them yields disappointing results when benchmarked
using ezisting rule-based systems[Gupta87]. Briefly, one of the reasons for these
disappointing results is that the benefits of parallelism within the matching process
are directly related to the number of productions affected by each working memory
change; due to the focussed nature of existing expert systems this number tends to
be small. Various researchers [Ishida85, Miranker89, Schmolze89, Nii89] have pointed
out that existing rule-based systems on which the benchmarks are based were not
designed with parallelism in mind, and that, in fact, the standard control structures
used in rule-based systems act to limit parallelism.

Research has recently focussed on systems which can better exploit parallelism
by allowing multiple rules to fire concurrently. In order to fully understand the
implications of such systems, consider the typical algorithms employed at the rule level
in production systems and the purposes for which they are employed. Applications
typically use rules for either recognition or data retrieval, as well as for low-level
control. The need for performance (and thus parallelism) is particularly acute in
systems which contain large numbers of rules operating on a large working memory
database, or in systems which operate under real-time constraints in which response
time is critical.

While production systems impose no a prior: control structure on the sequencing
of rule executions, it is possible, by executing productions in a controlled fashion, to
model virtually any conventional Al paradigm: search, forward or backward chaining,
goal-directed reasoning, etc... Each rule execution acts as an operator in each of these

algorithms, and the process of matching can be viewed as the process of updating
the state of the system and identifying enabled operators. The benefit of a parallel
rule-based system depends considerably on the ability of the particular application
to support parallel decomposition of operations.

In a system which allows concurrent production execution, it is necessary to devise
algorithms which will determine when rules can be run in parallel without developing
pathological interactions between productions which would result in mutual disabling
of rules, false firings, and the creation of anomalous working memory states which
could not appear in the corresponding serial version of the production system. Various
methods have been developed which perform syntactic analyses of rules or rule instan-
tiations and determine whether interactions exist. These methods, when performed
statically, serve to limit the available parallelism, and when performed dynamically,
are sufficiently time-consuming so as to impose a severe control overhead on the par-
allel system. When rules are determined to interact, the solution is to synchronize
the rules by selecting only one for execution.

One hypothesis that will be explored in this research is that most undesireable
rule interactions can be avoided if the rule base is designed for parallel execution
with an understanding of the role that each rule plays in the overall algorithm. It is
inevitable, however, that rules will occasionally conflict, for example, cases will arise in
which multiple sources of knowledge apply to the same situation. The synchronization
approach proposed in this work is to generate a meta-language describing the intention
of each rule instantiation so that conflicts can be resolved in keeping with the goals
of the high-level paradigm.

Synchronization is not the only control problem encountered in a parallel produc-
tion system. Not only is control serializing, but most conventional control mechanisms
are simply not appropriate to parallel production systems.

In a typical production system, control is synonymous with conflict resolution. In
order to decide between alternative activities, the scheduler first identifies all possible
actions, evaluates their relative merits, and selects a rule to execute. In a serial system,
the cost of the evaluation function is justified by the increase in efficiency caused
by applying the correct operator. In a parallel rule-based system, the distinction
between conflict resolution and control becomes more sharply defined[Miranker89).
In a parallel system, multiple alternatives should no longer be considered mutually
exclusive and the necessity for choosing between them decreases. Ideally, a problem
solver could investigate all potential solution paths simultaneously, reaching the best
solution in minimum time. In a realistic system, however, the number of processing
resources will be limited and some measure of control must be applied to ensure that
the resources are used effectively. A parallel rule-based system, therefore, requires a
sophisticated control mechanism which not only controls the sequencing of operations,
but which also determines when and if rules should fire, monitors progress towards
a solution, and allocates resources effectively. The implications of these observations

are that the conventional model of a production system as consisting of three separate
stages of match, conflict-resolve, and act must be extensively modified if high degrees
of parallelism are to be achieved.

Finally, the desire to provide the maximum possible rate of production execution
is antithetical to the control goals described above. The need to perform conflict
resolution implies that the system must first reach quiescence so that no further po-
tential operators will enter the conflict set, and this synchronization delay decreases
the rate of rule firing. If conflict resolution is eliminated, then rules may be executed
as soon as they enter the conflict set (asynchronously). Experiments which involved
executing productions asynchronously indicate that this execution strategy results
in significantly improved utilization of processing resources, but at the cost of pos-
sible temporary inconsistencies within the conflict set and the loss of opportunities
for control. This research will investigate techniques for executing productions asyn-
chronously and identify the tradeoffs between maximum execution rates and control
requirements. Many of the techniques developed to allow asynchronous production
execution will also be applicable to distributed systems which present many of the
same problems with temporal inconsistencies due to communications delays in up-
dating conflict sets and working memory[Schmolze90].

To summarize the above: current production systems provide no support for pro-
gramming in parallel and, in fact, encourage programming idioms which tend to se-
rialize production execution. The existence at UMass of a parallel Lisp running on a
multiprocessor gives us the opportunity to develop, study, and benchmark production
system algorithms specifically designed to run in parallel at both the implementation
and application levels. It is the goal of my research to determine what class of prob-
lems are best suited for parallel production execution, which problems require some
degree of control, and to understand the nature of the control algorithms which will

permit the highest degree of parallelism without sacrificing clarity and expressive
ability.

Outline of Proposal: A certain amount of background would be helpful in un-
derstanding the concepts presented in this proposal. Section 2 will present a brief
description of the production system language OPS5. Section 3 discusses previous ap-
proaches to increasing the speed of production systems by compilation of the pattern-
matching routines, construction of special-purpose architectures, and parallelizing the
rule matching and firing process. In Section 4, I discuss the current state of my re-
search in developing algorithms to support parallel production execution and the
implementation which supports this research. Finally, Section 5 describes my pro-

posed research directions, how they relate to previous work, and their contributions
to the field.

2 OPS5: A Case History of a Rule-based
Language

The programming language OPS5 was written by C. Forgy at Carnegie-Mellon Uni-
versity as the fifth in a series of production system languages! [Forgy81)]. It achieved
a great deal of popularity largely because of its use in the R1 project [McDermott80),
its general availability as a public domain program, and its efficiency due to the use
of the Rete net pattern matcher (described in Section 2.2).

An OPSS program consists of rules matching against a working memory. Working
memory consists of a set of facts. Each fact is represented as a linear set of attribute-
value pairs associated with a class, i.e.

(class ~att val “att val “att val ...).

Working memory elements are created using the make command, deleted using the
remove command and modified using the modify command. The modify command
simply does a remove followed by a make which deletes and recreates the working
memory element. At creation time, each working memory element is given a unique
timetag which identifies that element; two otherwise identical working memory ele-
ments created at different times are assigned distinct timetags. A rule consists of a
lefthand side (LHS) pattern and a righthand side (RHS) set of actions. (The terms
lefthand and righthand side are due to the fact that productions have historically
been written as LHS —> RHS). The lefthand side consists of a series of patterns. The
rule is considered eligible to fire when there exists one or more sets of working memory
elements such that there is one working memory element in the set for every positive
pattern in the LHS, and there is no working memory element in working memory
that matches any negated pattern. LHS patterns conmsist of conjuctions; the only
way to program disjunctions (IF A or B THEN ...) is to code them as multiple
productions.

The righthand side of a production consists of actions. These actions can consist
of changes to working memory, I/O operations, or arbitrary function calls. Because
one of the goals of parallelizing OPS is to increase the potential for parallelism in the
matching process by increasing the throughput in working memory, I will make the
assumption in my discussions that the righthand side consists exclusively of changes to
working memory unless otherwise stated. Because the matching process is by far the
most expensive operation in processing a working memory change, this assumption
virtually eliminates the distinction between the matching and execution phases in the
production system.

An example of a small OPS5 rule set is shown in Figure 1.

10PS reportedly stands for Official Production System.

(literalize cat name state action)
(literalize see cat obj)
(literalize attack attacker victim)

JIf cat is hungry and cat sees food, cat will eat food.

(p hungry_cat
(cat “name <kitty> “state hungry)
(see ~cat <kitty> "obj food)

-—>
(modify 1 “action eat))

JIf cat is hungry and cat sees critier, cat will iry to eat critier.

(p hunting cat
(cat “name <kitty> ~state hungry)
(see ~cat <kitty> “obj << pigeon duck fish >> <victim>)
-(attack "attacker <kitty>)
-=>
(modify 1 ~action pounce)
(make attack “~attacker <kitty> “victim <victim>))

JIf cat has nothing betier to do, it will purr,

(p happy_cat
(cat “name <kitty> “actiom <> purr)
-(cat “name <kitty> ~state << aggressive hungry >>)
-=>

(modify 1 “~action purr))
;Cats are territorial beasts

(p aggressive_cat
(cat “name <kitty> “state <> aggressive)
(see ~cat <kitty> “obj cat)

-—>
(modify 1 ~state aggressive ~action hiss))

;Cats have no respect for ezpensive furnilure and houseplants.

(p playful_cat
(cat “name <kitty> “state playful)

(see ~“cat <kitty> "obj << string houseplant hallucination >> <victim>)
-(attack ~attacker <kitty>)
-=>

(make attack ~attacker <kitty> “victim <victim>))

Figure 1: A “Complete” Cognitive Model of Felis Domesticus

Hunting Cat
((CAT ANAME LILY ASTATE HUNGRY)
(SEB ACAT LILY ~OBJ PIGEON))

PR
((ANAME FRED ASTATE PLAYFUL))

Pla fu Cat Rule Interpreter
(((SEB ACAT FRED mﬂ%m! W L)) performs conflict resolution

Ha Cat
«c&’&'m MORGAINE ASTATE PLAYFUL))

Selects

gy >

Figure 2: An example of conflict resolution.

Hungry Cat
((CATANAME GREASER ASTATE HUNGRY)
(SEBACAT GREASER ~OBJ] FOOD})

Conflict Set

2.1 Control of OPS5 Programs

A rule-based system is data-driven; the rules which are considered to be eligible to fire
depend entirely on the state of working memory. Because only one rule can execute
at a time in a serial system, if more than one rule is eligible to fire, the production
system must perform conflict resolution. During conflict resolution, all eligible rules
are examined and the one which is perceived to be most useful according to the conflict
resolution algorithm is fired (see Figure 2.1). Because of the lack of imperative control
mechanisms, programmers of production systems frequently manipulate the conflict
set in order to obtain a specific sequence of rule executions. As productions fire,
they change working memory which in turn changes the contents of the conflict set.
Therefore, conflict resolution must be performed after each production execution.

Conflict resolution algorithms are typically optimized to be fast and heuristic,
using only syntactic information which can be quickly accessed [McDermott78]. The
conflict resolution algorithms in OPS5, MEA and LEX, are typical in this respect;
they select rule instantiations based primarily on the creation time of working mem-
ory elements and the number of condition elements in the lefthand side of a produc-
tion. The use of more sophisticated meta-rules or scheduling algorithms [Davis80,
Hayes-Roth85] is difficult due to the inability of OPS5 to express meta-level pat-
terns. The issue of control in OPS5 and possible modifications to the language will
be addressed in greater detail in a later section of this proposal.

10

2.2 The Rete Net

In production systems, most of the processing time is spent determining which rules
are eligible to fire. In OPSS5, this process consists of matching the lefthand sides of
productions against working memory. When a set of working memory elements is
found such that there is a working memory element for every non-negated condition
element in the lefthand side and there exist no elements which match negated con-
dition elements, the rule is eligible to fire. As a principle bottleneck in rule firing,
this matching process should be as fast as possible. The Rete net is an efficient
implementation of a pattern matcher based on the following observations:

e Working memory changes only incrementally from cycle to cycle.

e Many productions in a rule base are frequently structurally similar and may
share one or more terms.

The first observation implies that it should be possible to store partial matches
and only match against those working memory elements which change, rather than
implementing the naive approach of comparing each production against all of work-
ing memory after each set of working memory changes. Sharing of tests between
productions reduces the total number of comparisons that must take place.

The matching process works by passing tokens consisting of one or more working
memory elements through the net, performing tests on them at each node. The ‘top’
of the Rete net is composed of alpha nodes which consist of simple tests on the class of
the working memory element and specific fields. This part of the network possesses
no memory and resembles a conventional discrimination net; tokens are passed to
suceeding nodes in the network only if the tests at the current node succeed. Alpha
tests are not very time-consuming and parallelizing their execution does not lead to
large improvements in performance.

Beta tests are responsible for unifying variable values between fields of a condition
element (intra-element tests) or between two condition elements (inter-element tests).
Each of the beta nodes has two inputs and two memories, one associated with each
input. As a token arrives at a beta node, it is stored in memory and tested against the
opposite memory to see if one or more consistent bindings can be achieved. If so, a new
token is constructed from the incoming token and the stored token. This new token
is then propagated through the beta node’s out list (a list of successor nodes). The
memories associated with the beta nodes store partial matches, making it unnecessary
to repeat the entire computationally expensive unification process after each working
memory modification. The cost of executing a beta node is proportional to the size
of the memory against which the incoming token is tested. The two main beta nodes
are the AND and NOT nodes. Beta nodes present numerous opportunities for
parallelism; for example, multiple beta nodes can be executed in parallel, or, if the
architecture supports sufficiently fine-grained processing, an incoming token can be
compared to each corresponding token in memory simultaneously.

11

MATCH

CAT SEB
HALLUCINATION,
R ' FODSEPLANT DOCK
HUNGRY|]AGGRESSIVE | {-PURR |lPLA —AGGRESS STRING [car] FOOD FISH
AND Node
NOT Node HAPPY_CAT PLAYFUL_CAT AGGRESSIVE_CAT HUNTING_CAT
HUNGRY_CAT

Figure 3: The Rete net for a simple OPS5 program

At the bottom of the Rete net is a series of production nodes; when a token
arrives at one of these nodes, the production corresponding to the node is placed in
the conflict set, instantiated with variable bindings from the incoming token. The
production node has no memory, thus only one production firing ever results from a
given combination of working memory elements.

Figure 2.2 shows the Rete net for the simple OPS5 example.

The implementation of the Rete net is quite complex and a complete discussion
is beyond the scope of this document. For a more thorough reference see [Forgy82],
or, for an implementation specific description of the public domain version of OPS5,
see [Neiman87).

3 Research in Parallel Production Systems

A considerable amount of research has been done on increasing the speed of pro-
duction systems and of OPS5 in particular. The research divides into a number of
categories:

12

o Increasing the efficiency of pattern matching through compilation.
e Specialized architectures customized for rule matching and execution.

e Parallelism.

These categories are not necessarily distinct; in particular, many of the architec-
tures proposed for production systems have incorporated parallelism in their design.

3.1 Compilation of the Rete Net

The Rete net algorithm, as originally coded, was interpreted. The tests for a partic-
ular node were evaluated at run time and applied to incoming tokens. In his original
paper on the Rete net[Forgy79], Forgy described an approach towards compiling the
pattern matching network directly into assembler which he then used in implement-
ing the programming language OPS83. Compilation of rules allows the production
system to run substantially faster than the interpreted version. The opsSc compiler,
a compiled version of the TREAT algorithm written by Miranker was reported to
provide speedups of 50-200 times [Miranker90).

There are disadvantages to the compiled approach to pattern matching; typically,
new productions can not be incrementally added to the system, debugging of rules
is more difficult (because less information about the state of the network can be
accessed), and the compilation itself is time-consuming. While compilation can reduce
the time required to match productions against working memory substantially, there
still exists an upper bound on the rule execution speed which can be achieved using
a uniprocessor simply because the righthand side of a rule can contain an arbitrary
number of actions, including relatively slow I/O operations and calls to arbitrary Lisp
code.

It is not clear whether the compiled implementations of the pattern matching
algorithms allow for low-level parallelism, although such an approach should be effec-
tive for applications in which the average size of node memories or number of node
activations are large. Increased performance can certainly be achieved by executing
multiple productions in parallel; the effectiveness of the parallelism will probably also
be increased due to decreased time spent in critical regions.

3.2 Parallelism in OPS5

One of the principle studies on parallelism in OPS5 has been done by Anoop Gupta
in CMU[Gupta84]. In a very thorough analysis, he demonstrated that the average
speedup in production systems due to parallelism would be much less than expected
(on the order of 10’s rather than 1000’s). There is little question that this analysis
holds for ezisting applications of production systems, however, it can be argued that
the analysis is based principally on these existing systems, and that architectures can

13

be developed which provide opportunites for much greater degrees of parallelism. The
unfortunate implication of this conclusion is that rather than gaining a speedup from
a simple change in machines and implementation language; the programmer of the
production system must explicitly think in terms of exploiting parallelism.

In his work, Gupta identifies a number of types of parallelism which can occur
within the execution of a production system and analyzes their effect on the perfor-
mance of the system. These types of parallelism are:

e Application parallelism
o Production parallelism
e Action parallelism

e Node parallelism

e Intra-node parallelism

The above levels of parallelism describe a hierarchy in which each level essentially
implies all the levels above it. Each level of parallelism adds a certain degree of
speedup to an application. Thus, the system with the highest performance would
be one which employs parallelism at all levels. The following discussion briefly de-
scribes each type of parallelism and indicates the assumptions that Gupta makes
when estimating the effect of that type of parallelism on the performance of an OPS5
system.

3.3 Production Parallelism

Gupta defines production parallelism as the assigning of processors to each production
and the matching of each production affected by a working memory change at the
same time. It does not employ parallelism at lower levels of the implementation.
According to Gupta’s analysis, the effect of production parallelism on performance
is very small, in fact, approximately a factor of two. The reasons are as follows:
first, only a small number of productions (on the average, 26, in Gupta’s test set) are
affected by any one working memory change. This would seem to indicate an average
speedup of 26; however, there are further factors limiting parallelism in the canonical
rule-based architecture. Once the productions are matched, conflict resolution must
still be performed, therefore the matching process cannot terminate until the last
production has been entered into the conflict set. Because the expressions which
determine whether rules can fire can be arbitrarily complex, and because matching
is performed by propagating tokens through a potentially unbalanced tree-like data
structure, the time required for productions to match is typically unbalanced.? Some

2But see [Oflazer84].

14

productions enter the conflict set considerably later than other instantiations enabled
by the same changes to working memory. This causes a loss of parallelism of a factor
of five. Additional losses are incurred because of loss of sharing in the Rete net and
the overhead due to parallelism.

Several of these assumptions can be questioned. In situations which possess action
parallelism (see below), the number of working memory elements and thus the number
of productions affected might be much larger. In an asynchronous system, it may not
be necessary to examine the conflict set before executing productions, in fact, the
conflict set may turn out to be unnecessary (or undesirable) in a parallel system.
Without the conflict set bottleneck, an additional factor of 5.1 (according to Gupta)
could be obtained.

3.4 Node and Intra-node Parallelism

In node and intra-node parallelism, the execution of each node in the Rete net is
assigned to a separate processor. If a node in the network has multiple descendants,
all of the subsequent nodes can be evaluated concurrently (see Figure 3.4). If a
particular working memory change can affect many productions then the branching
factor of the associated nodes will be high and so will the speedup provided by node
parallelism.

Node parallelism assumes that no other process affects the data of a particular
node while it is executing. Intra-node parallelism allows the same node to be executed
by several processors simultaneously; this gain in parallelism avoids long delays during
which access to a node must be restricted, but incurs a cost in terms of contention for
the resources of the node and problems in keeping the memory of the node consistent
during parallel memory accesses.

In his analysis of node and intra-node parallelism, Gupta assumes the fairly simple
pattern matching operations available in OPS5. In OPSS5, the number of operations
computed at a given node is only an order of magnitude greater than the overhead
required to schedule and execute parallel processors. Very little computation occurs
within a particular node, perhaps fifty to one hundred instructions, on average. In
order to be beneficial, parallelism must be achieved with very little overhead.

The speedup gained by node parallelism alone is therefore only marginal and
acquired only by optimizing the scheduling mechanism both in hardware and software.
If the complexity of computations performed at each node increases, the advantage
to be gained from node parallelism also increases. It might be possible to increase
this complexity either by enhancing our pattern matching language to allow more
sophisticated expressions or by greatly increasing the size of the memories stored
at each node, a natural consequence of applying production systems to applications
requiring very large databases.

15

Add:
(CAT ANAME FRED ASTATE PLAYFUL) m

Given:
(SEE ACAT FRED AOBJ HOUSEPLANT)

Cear)
(ATTACK)
HALLUCINATION
CURTAIN PIGEON
HUNGRY HOUSBPLANT DUCK
HUNGRY AGGRESSIVE | {=PURR ||PLAYF —AGGRESSIVH STRING CAT FOOD FISH

TS e
. |

AND Node
NOT Node
HAPPY_CAT PLAYFUL_CAT AGGRESSIVE_CAT HUNTING_CAT
Hi Cat Playful Cat
((%MH FRED ASTATE PLAYFUL)) ‘fgﬂ% FRED \STATE mvm.)) HUNGRY_CAT

* .. Denotes potential parallel node activations.

Figure 4: Node parallelism for a single working memory change in the cat example.

16

3.5 Extremely Fine Grained Parallelism within the Rete
Net

When a token enters a two input AND node, it is compared against all elements in
the opposite memory. This operation can certainly be executed in parallel, however
the tests are so simple that parallelism can only be beneficial at the finest levels of
parallelism. This approach is taken by Kelly and Seviora using DRete on the CUPID
architecture[Kelly89]. While their experiments indicate a very high degree of speed
up in the matching process, it’s not clear that a corresponding increase in speed would
be achieved in a full implementation.

3.6 Action Parallelism

Action parallelism is the changing of multiple working memory elements simulta-
neously. In OPS5, action parallelism is equivalent to executing all the elements of
the righthand side of a production in parallel, or executing the righthand sides of
multiple productions in parallel. By allowing action level parallelism, the number
of productions affected per matching cycle increases, as well as the number of node
activations (see Figure 3.6). With the use of action parallelism, the potential for
increasing speedup within the match process is proportional to the number of rules
executing concurrently and the average number of righthand actions in each rule.
The level of programming complexity encountered by both the OPS5 implementor
and the OPS5 programmer in systems which allow action parallelism is considerable,
At the implementation level, there are all the problems of intra-node parallelism as
well as possible consistency errors due to race conditions in the network and multi-
ple simultaneous writes to memory nodes. At the programming level, there are the
problems of non-serializable behavior, that is, behavior which could not have been
achieved had all the working memory changes taken place in a serial order. To avoid
implementation level errors, the system must provide mechanisms for locking memory
nodes and synchronizing conflicting actions, as a result the contention for resources
within the net can potentially degrade system performance drastically as the number
of parallel actions increases.

3.7 Application Parallelism

Gupta notes that the SOAR architecture appears to be capable of a type of parallelism
which he calls application parallelism® The SOAR system makes the assumption that
all rules in the conflict set can be fired simultaneously, thus providing for potentially
large degrees of production parallelism and high degrees of parallel node activation.

3Also called production parallelism or rule parallelism by various researchers.

17

Add:

(CAT "NAME FRED ASTATE PLAYFUL)

(CAT ANAME MORGAINE ASTATE HAFPY)

(SEE ACAT LILY "OBJ PIGEON)
(SEE ACAT FRED "OBJ HOUSEPLANT)
(SEE ACAT GREASER ~OBJ FOOD)

HALLUCINATION ‘
CURTAIN PIGEON
HOUSEPLANT DUCK
HUNGRY STRIN FooD FSH
AND Node
NOT Node - d
HAPPY _CAT PLAYFUL_CAT AGGRESSIVE_CAT HUNTING_CAT
Hagpy Cat
< i ﬂmwmmm " HUNGRY_CAT
Happy Cat -
(R wcaaAD® TATE FLAYROL) Hungry Cat Hunting Cat
(cAT: GREASER ASTATE HUNGRY) ANAME AGTATE HUNGRY)
'—mm GIEASER 4021 FOODD “(sclgw Thoss FIGEON))
* .. Denotes potential parallel node activations.

Figure 5: Action parallelism combined with node parallelism greatly increases the

number of concurrent node activations.

18

Hunting Cat
((CATANAME LILY ASTATE HUNGRY)
(SEE ACAT LILY AOBJ PIGEON))

I-{zgpy Cat(1)

((CAT ANAME FRED ASTATE PLAYFUL))

Rule Interpreter
(}()é:aﬂ:'l‘ ANA% tFRED ASTATE PLAYFUL) performs conflict resolution
(SEE ACAT FRED AOBJ HOUSEPLANT))

Happy Cat(2)
((CATANAME MORGAINE ASTATE PLAYFUL))

Selects

Hungry Cat
((CATANAME GREASER ASTATE HUNGRY)
(SEE ACAT GREASER AOBJ FOOD))

Hunting Cat
Happy Cat(1)
Playful Cat

Happy Cat(2)
Hungry Cat

Conflict Set

Figure 6: Application parallelism allows all the instantiations in the conflict set to be
executed concurrently.

This property of SOAR has been extensively studied due to its promise of considerable
parallelism [Tambe88, Nayak8s8].

Application parallelism allows individual rules which co-exist in the conflict set to
be executed concurrently (see Figure 3.7).

In OPS5, the righthand side of productions contain mostly modifications to work-
ing memory, therefore application parallelism is similar in nature and effect to the
previously described action parallelism except that the concurrently executing pro-
ductions need not be referring to, or modifying the same working memory elements.
Therefore, problems of contention for resources in the Rete net are reduced and the
potential speedup in the matching process is significantly increased.

The speedup offered by application parallelism is directly proportional to the
number of productions which can be usefully be concurrently executed. But this
number is dependent only on the application; a system which is executing a large
number of loosely coupled tasks may be able to maintain a very high level of rule
activations. It is this aspect of parallelism in production systems which offers the

19

most hope for substantial speedup. But there are many questions which remain
unanswered. For instance:

e What classes of problems require (or at least allow) application parallelism?
e How can you insure that parallel applications do not interfere with each other?

e Is the Rete net the appropriate data structure for problems which run essentially
independent of each other?

e How do you synchronize and pass data between nearly independent applica-
tions?

3.8 Parallel Execution of Rules

Ishida and Stolfo have described an approach which proposes that productions which
coexist in the conflict set be fired in parallel [Ishida85]. This approach is similar
in concept to the application parallelism mentioned by Gupta. They describe two
major problems in this approach, sychronizing concurrent production firings to avoid
interference between productions, and decomposing problems to achieve maximum
parallelism. They propose algorithms for detecting interference. Tellingly, these al-
gorithms produced disappointing results on most benchmarks until the benchmarks
were rewritten in a less serial form. On one (rewritten) problem, they report an
expected speedup of 7.5 on a 32 processor system, not including possible speedups
due to node and intra-node level parallelism. The algorithms derived by Ishida and
Stolfo for detecting interactions between productions are static, and are performed on
the rulebase before execution. In work which builds upon that of Ishida and Stolfo,
Schmolze has developed three algorithms which contain both static and runtime com-
ponents and more precisely determine when rules can co-execute without violating
serialization constraints, thus producing larger subsets of productions which can be
co-executed [Schmolze89).

3.8.1 Achieving Serializable Behavior in a Parallel Program

When productions run in parallel, the possibility exists that they will interfere with
each other. Schmolze identifies two types of rule interactions, disabling and clashes.
A production disables another production when it causes a change in working memory
which removes the second production from the conflict set* (see Figure 7.).
Productions clash when they cause conflicting changes in working memory. For
example, when production A adds a working memory element, and production B

4Strictly speaking, it is an instantiation of a production rather than the production itself which
is placed in the conflict set, but for brevity, I'll use “production” to mean “ instantiation of a
production” when it won’t cause confusion.

20

(A1 (B 2)

P1 P2
(A1)(B2) (A1)B2)
(C1HDI) P1&P2 (C2)(E2)
No P2 match No P1 match
if P1 is executed serially. if P2 is executed serially.

(A1)(B2) IfPIand P2 execute concurrently,
(C1)(D 1) the result is an impossible working
(C2)(E2) memory state for a serial system.

P1: HA <x>), -(C <y>) -> HC <x>), HD <x>).
P2: +(B <x>), -(C <y>) -> HC <x>), HE <x>).

Figure 7: Mutually disabling productions cannot be executed concurrently.

21

deletes it, the final state of working memory depends on the order in which the
productions fire (see Figure 8.).

If productions can interfere with each other, then the results of running them
in parallel will not necessarily be the same as running them serially, and the an-
swers achieved by such a system may not be deterministic. In order to guarantee
serializable results, Schmolze develops algorithms which analyze rules for potential
disabling/clashing behavior and uses this information to synchronize the conflict sets.
A conflict set is said to be synchronized if it possesses no instantiations which can ei-
ther clash with or disable each other. Schmolze reports on three algorithms of varying
precision for identifying rule sets which can be synchronized. Each algorithm has a
static phase which examines the rule set, and a runtime Select phase which processes
the conflict set and produces a subset of co-executable productions. The trade-off
between the algorithms is between speed and precision. Static analysis is imprecise,
because values have not yet been determined for many of the variables used in the
matching process making it impossible to determine all the possible non-serializing
relationships. A static analysis, therefore, must err on the side of safety and prevent
rules from co-executing which only potentially interact. An algorithm which exam-
ines actual instantiations within the conflict set at runtime can be more precise, but
dynamic detection of serialization violations increases the cost of conflict resolution
and thus reduces the speedup obtained from parallel execution of the productions.

While the dynamic analysis of the conflict set does allow potentially co-executable
productions to be precisely identified, it also limits potential parallelism in that it
requires that an instantiation be compared with all other instantiations in the conflict
set. This implies that the system must achieve quiescience, that is, that there be
no matching taking place during the Select process. The quest for the maximum
synchronization sets of executable productions thus effectively prohibits asynchronous
production execution.

Miranker discusses the issue of asynchronous production execution and proposes
an approach in which the production system is partitioned into sets of rules such that
each rule can execute concurrently with each rule within its partion, and each separate
partition can be executed asynchronously with respect to any other partition[Miranker89].
This approach still leaves the somewhat difficult task of statically assigning each rule
to its correct partition.

3.8.2 Parallel Rule Firing with Fuzzy Logic

An alternative approach to resolving conflicts between executing productions has been
taken by Siler, et. al. in the programming language FLOPS (Fuzzy Logic Produc-
tion System)[Siler87]. In the FLOPS system, all eligible productions are executed
concurrently. There is no conflict resolution and no backtracking. Instead, a memory
conflict algorithm is employed which resolves contradictions in memory using weakly
monotonic fuzzy logic. Each rule generates both values for attributes and confidence

22

AD@B DD

P1 P3

AlB1) ADBDED
§C DDOI1) P1&P3
No P3 match

if P1 is executed first.

(A1)(B 1) IfPIand P3 execute concurrently,
(C1)(D1) the result must be the same as the
(El) one possible serial execution order.

Pl: +A <x>), (C <y>) -> HC <x>), HD <x>).
P3: {B <x>), -(C <y>) -> «(D <x>), HE <x>).

ADB DI

P1):2]
ADNBLHDLD Pl & P3 (A @B1)(D2)
P2 P1
(A1) (B 1) (D2) ADBLHOI
\{
(A)(B1) Al)(B
(A1 @B1)({D2) or (D 1) DD or (A)B1®I)

If P1 and P3 execute concurrently,
the final result will be unprediciable.

P1: A <x>), +(D <y>) -> -(D <x>), HD 1).
P2: +(B <x>), HD <y>) -> -(D <x>), HD 2).

Figure 8: An exampleﬁ)f clashing productions.

levels. If a rule produces an attribute value with a confidence level greater or equal
to the existing value, then the previous attribute value is replaced with the most
recent value. Naturally, this approach depends on the ability to generate meaningful
and accurate confidence values. In order to ensure program correctness, parallel rule
firing with fuzzy logic still requires that the state of working memory be independent
of the order in which rules are executed.

3.9 Architectures for Production Systems

The previous section described a number of algorithms for incorporating parallel pro-
cessing into production systems. Pragmatically, the algorithm chosen depends almost
as much on the available hardware as it does on the inherent parallelism within the
problem area. A number of machine architectures have been proposed for the rapid
execution of production systems; they range from uniprocessors to machines with
thousands of processors which support extremely fine-grained parallelism. There is
by no means universal agreement on the correct degree of granularity for these archi-
tectures; the questions of how many processors, and how powerful, are closely tied
to the degree and location of maximum potential parallelism within the production
system. This section will discuss a number of proposed architectures for executing
production systems.

3.9.1 DADO

The DADO machine [Stolfo84] is an attempt to develop a parallel tree-structured
architecture which will efficiently execute expert system programs. The prototype
DADO2 machine has 1023 8-bit processors each producing approximately 0.5 MIPS.
The tree architecture minimizes communication costs; each node is responsible for
transmitting to the nodes immediately below it, and propagating results from lower
nodes upwards through the tree. Each node is implemented using a microprocessor
with a small (16K) amount of memory. The DADO architecture can operate in either
a semi-SIMD mode (in which the single instructions are function calls rather than
machine language calls) or MIMD in which nodes execute autonomously. The DADO
architecture can apparently support most levels of parallelism present in rule-based
systems by assigning tasks to different levels of the hierarchy. To implement produc-
tion parallelism, each production is assigned to a processing element (PE) at a fixed
level of the tree. Processing Elements below the PE assigned to production match-
ing are assigned to specific working memory elements. In the ideal case, the DADO
architecture should produce matches independant of the number of productions or
working memory elements. Because it is unlikely that there will be enough processors
to map to each production and working memory element, multiple assignments can
be made, causing some decrease in performance. The algorithms available for DADO
can be tailored to the nature of the production system program being executed, for

24

example some programs may not have a significant amount of production parallelism
but may have extremely large lefthand sides to productions; thus more processors
might be allocated to matching working memory [Stolfo84].

There has been a certain amount of controversy regarding the DADO archi-
tecture, particularly whether the power of the large number of DADO processors
could be utilized given the properties of OPS5 programs as analyzed by Gupta
[Gupta84, Stolfo84a]. The results of the DADO2 project have been reported in
[Stolfo87]. Work is now proceeding on DADO4, an architecture which 15 high-speed
16-bit RISC processors each running at approximately 12.5 MIPS; an OPS5 imple-
mentation should be running on DADO4 by summer 1990°.

3.9.2 Implementation of OPS5 on Non-Von

The Non-Von architecture, a massively parallel multiple-SIMD machine developed
at Columbia University, has also been considered as a vehicle for executing OPS5
[Hillyer86]. The key to Non-Von’s performance is the heterogenous nature of its
architecture. Working memory elements are assigned to small processing elements
(SPEs) and operations which refer to attributes of the working memory elements are
performed associatively. Operations at a greater level of granualarity are carried out
in the large processing elements (LPEs). The architecture contains a large number of
SPEs (on the same order as the average number of working memory elements in the
standard production system), and a much smaller number of LPEs (approximately
32). Benchmarks based on simulations of the Rete algorithm using data gathered from
existing expert systems promise upwards of 850 production executions per second as
compared to 1-5 on a Lisp-based interpreter running on hardware of equivalent cost
(a VAX 11/780). Whether this performance would actually be achieved by a working
prototype is not known, as the project has been discontinued.

3.9.3 CUPID and DRete

Another approach to fine-grained parallelism has been taken by Kelly and Seviora
with the distributed Rete (DRete) algorithm designed for the Cupid architecture
[Kelly89]. This architecture consists of a matching processor networked to a host.
The host performs conflict resolution; the matching processor performs the matching
actions. The CUPID architecture consists of a large number of small processors. The
underlying approach is that of very fine granularity. Each beta node in the Rete net
has to perform a number of comparisons proportional to the number of tokens in
that node. The DRete splits each node so that a copy exists for each token stored in
that node’s memory. This allows each comparison to be performed on each node in
parallel, thus allowing each beta node to proceed in essentially unit time. There is,
however, an overhead associated with generating new copies of nodes for new tokens

5Stolfo — Personal communication.

25

as they are propagated through the net. The effectiveness of the DRete algorithm
increases as the number of tokens stored in each node increases.

3.9.4 Message Passing Architectures

Multi-processors with distributed memory are not ideally suited for executing pro-
duction systems because the communication costs required to transmit updates to
working memory largely eclipse the advantages gained by parallel processing at the
node levels. These architectures are most suited for large grained parallelism in which
each processor contains its own working memory and productions and works on sep-
arate tasks. Communication costs are decreasing, however, and distributed memory
architectures are becoming more effective. They are particularly attractive because
they provide more processors at less cost than the more expensive shared memory
machines. Research on executing production systems on message passing computers

is described in [Tambe89, Acharya, Schmolze90].

3.9.5 Shared Memory Architectures

The work by Gupta predicted fairly low levels of concurrent node activation and a
relatively high overhead associated with scheduling fine-grained parallelism. The con-
clusion reached was that the preferred architecture for executing a parallel production
system (based on studies of existing systems) is a shared memory system containing
no more than 64 high-speed processors augmented with a hardware scheduler for
allocating processors to node activations.

An advantage of the shared memory architecture is that it is currently available
state-of-the art technology for which production systems can be written without being
preceeded by massive hardware development projects. Architectures such as the
Connection Machine which employ very large numbers of processors are available,
but typically provide weak processing elements and an SIMD control flow; while
some research has been done concerning the implementation of a production system
on such an architecture[Brooks85, Morgan88], the mapping is not straightforward,
particularly if the lefthand side does variable binding and unification.

The choice of computer architectures is strongly influenced by the estimated de-
gree of parallelism within the matching process. As algorithms and applications are
developed for production systems which display increased levels of parallelism, the
demand for processors and processing capacity should increase.

4 Parallelism in OPS5 — Research to Date

The preceding section has described a number of algorithms and architectures for
implementing parallel production systems. With few exceptions (e.g. [Gupta88]),

26

these experiments were carried out using simulated parallelism on existing production
systems designed for parallel execution. In order to experiment with an actual parallel
production system, I have added mechanisms to OPS5 to support rule and node level
parallelism[Neiman90a).

The implementation of parallel OPS5 is intended to serve several purposes:

e To provide a working implementation of a parallel production system which
could provide significant speedups in appropriately constructed programs.

e To provide a series of benchmarks for parallelism at various degrees of granu-
larity within a production system.

e To provide an experimental vehicle for testing different program structures and
control strategies for parallel production systems.

The results of the experiments with the parallel OPS5 and future directions are
presented in the following section.

4.1 Implementation of a Parallel OPS5

The availability of a shared memory multiprocessor and a Lisp which supports par-
allel programming has made possible the construction of a version of OPS5 which
can provide parallelism at the action, node, intra-node, and application levels. Only
extremely fine-grained levels of parallelism cannot be implemented. The system has
been tested on a number of small benchmark programs including a simple circuit sim-
ulator, an OPS5 program for solving Rubik’s cube, and a couple of implementations
of Waltz’s algorithm for line labelling.

The implementation of the parallel OPS5 is based on a public domain OPS5
written by C. Forgy at Carnegie-Mellon University. There are several advantages
and disadvantages to using an existing implementation of OPS5. The most obvious
advantage is the savings in implementation time. The Common Lisp OPS5 already
contains the necessary parser, compiler, and matching algorithms. In addition, a
large part of the production system-using community is familiar with or has access to
this implementation; this will make the description of the parallel mechanisms easier
to follow. The disadvantage of using the public domain OPS5 is that it is largely
undocumented and was written in a highly optimized form for some previous version
of Lisp. The result is a body of Lisp code which is not up to currently accepted Lisp
programming standards. The code is, at times, very difficult to follow and the exact
algorithms used to implement the nodes of the Rete net must be determined by very
careful reading of the code, not to mention considerable experimentation. One of
the principle disadvantages of using the existing OPS5 code is the unfortunate use
of globals (specials) which are used to pass information between functions instead of
parameters, undoubtedly for efficiency purposes. These globals must be eliminated

27

from all code which is expected to run concurrently. Another disadvantage of the
OPS5 code is the implementation method used for node memories. At the time of
the OPS5 implementation, most Lisps did not support structures or arrays. Thus,
the memory nodes are represented as unstructured lists. The use of structures would
allow faster and more sophisticated access methods to be used, as well as allowing
changes to the node structures to be made more easily.

The OPS5 language itself is not without shortcomings; it possesses a somewhat
awkward syntax, cannot easily express disjunctions, and does not allow the expression
of meta-level rules. The final disadvantage of using an existing language is that
one inherits a programming methodology which is extremely well-established; this
discourages innovation and causes features to be retained which might not be optimal
for parallel execution. ‘

The research program described in the following section is not compromised by
these features of OPS5: the goal of the research is to study properties of production
systems and languages which require the support of parallelism, rather than the im-
plementation of a commercial quality programming system for rule-based languages.
While the current version of OPS5 has proven suitable for adapting to parallelism,
the disadvantages noted above may make it advisable to substantially rewrite and
modify the implementation during the course of the research.

4.2 Implementation Environment

The parallel OPS5 was programmed on a Sequent shared-memory multiprocessor us-
ing Top Level Common Lisp®, an implementation of concurrent Common Lisp. The
use of a shared memory multiprocessor allows a reasonably fine-grained approach to
parallelism with low communication costs. The Sequent only supports a limited num-
ber of high performance processors (in this case, 16), so considerations of processor
utilization are fairly important.

The programming language TopCL is a standard implementation of Common Lisp
with mechanisms for invoking different levels of parallelism using lightweight processes
(threads) and futures.

4.3 Benchmarks

The principle benchmark program for the parallel OPS5 is a very simple circuit sim-
ulator. While unimpressive in terms of circuit simulation technology, this application
displays the desirable property of task independence, and does not require an exten-
sive knowledge-engineering effort. Conceptually, a circuit simulator is event-driven,
with each device capable of being simulated in parallel without reference to other
entities in the system. For each type of device in the system, the simulator contains

6TopCL is a trademark of Top Level, Inc.

28

a production which “knows” how to simulate the behavior of that device. The circuit
is represented by working memory elements describing the devices, the connections,
and the signal values seen on inputs and outputs. At each time quantum (which is
equivalent to a production execution cycle), each device is simulated by the execution
of one production. Each simulation is followed by a propagation phase in which the
outputs of each device are propagated to the appropriate device inputs. The problem
displays parallelism in that each device can be simulated independently, but has a
sequential component in that devices must be simulated at time ¢ before their value
at time ¢-+1 can be computed.

The initial test set consisted of fifteen devices containing a total of twenty seven
inputs and thus required fifteen productions to execute in the simulation phase and
twenty seven in the propagation phase. The system was configured to run using only
production-level parallelism. Due to the relative independence of the productions
in this system and their ability to execute concurrently, my initial predictions were
that the performance of the system would be very nearly linear, with the speed of
execution being roughly proportional to the number of processors and some penalty
due to contention for shared resources within the Rete net.

4.3.1 Experiment 1: Explicit Synchronization

In the first experiment (see Figure 9A), the two phases of the program, simulation
and propagation, were synchronized using a working memory element of type mode
- a conventional OPS5 programming technique. Two ‘demon’ productions detected
when it was time to change the mode of the system from simulate to propagate
and vice-versa. The assumption was made that all productions in the conflict set
were capable of being executed concurrently and therefore no runtime checking for
potential conflicts was performed [Schmolze89]. If the conflict set contained more
instantiations than there were processors in the system, the surplus rules were placed
on a process queue and executed as processors became available. The rule execution
mechanism achieved synchronization by explicitly waiting until all productions had
completed execution and the system had achieved quiescence before re-examining the
conflict set.

The results of the first experiment were disappointing, the speedup due to par-
allelism was only a factor of three and the utilization of processors was poor. My
analysis of the system indicated that the fault lay with the mode-changing produc-
tions. These productions, by necessity, did not share the conflict set with any other
productions and could only be executed serially. These mode-switching productions
are responsible for deleting and adding the mode working memory elements. Inside
the Rete net, these elements act as gates which prevent the matching process from
proceeding past a given point and adding instantiations into the conflict set. Thus,
execution of the mode-switching productions initiate considerable matching activity,
cause many productions to be instantiated, and consume a disproportionate amount

29

of processing resources. While node parallelism reduced the length of the serial bot-
tleneck, it could not eliminate it entirely. Therefore, a second experiment was devised
to increase the level of asynchronous behavior in the program by removing the explicit
working memory-based control.

4.3.2 Experiment 2: Synchronization via Conflict Set

In the second experiment (Figure 9B), the conflict set was used as an explicit synchro-
nization mechanism. The observation was made that the computation was logically
divided into phases, with all the rules composing one phase capable of executing in
parallel. The purpose of the mode-changing technique is to prevent instantiations
from one phase from being prematurely inserted into the conflict set and being exe-
cuted out of order. However, because production parallelism allows all instantiations
in the conflict set to execute simultaneously, the instantiations belonging to the next
phase can be safely added to the conflict set, avoiding the necessity for explicit mode-
changing. Effectively, this approach to synchronization allows a greater proportion
of the matching process for the next phase of the computation to take place during
the current phase. Note that because each instantiation in the conflict set contains
a separate copy of the working memory elements which caused it to be instantiated,
once a production begins execution, it cannot be disabled by succeeding changes to
working memory.

In this second experiment, the speed of processing increased by an additional
factor of two, however, processor utilization remained low. Analysis of the results of
this experiment revealed that the bottleneck was the delay imposed by the necessity
for achieving quiescence in the system before the next round of productions can be
executed. That is, an instantiation of a production may be eligible to fire, not conflict
with any other existing instantiation or executing rule and yet remain in the conflict
set for a considerable length of time until the entire previous round of production
firings are completed.

Assuming that all productions in the conflict set can be executed simultaneously
and that no conflict resolution need be performed, the time that a production A
remains in the conflict set is equal to the amount of time between the insertion of
A and the time that the system reaches quiescence and all actions affecting working
memory are completed. This time is dependent on a number of factors: the number
of productions being concurrently executed, the number and type of righthand side
actions to be performed, and the number of processors available.

For example, consider the case of a 16 processor machine, attempting to execute
17 productions concurrently. Assume each production contains roughly the same
number of righthand side actions, and therefore takes roughly the same amount of
time, ¢, to execute. Assume also that each production causes one instantiation to be
placed within the conflict set, each of which could be executed without conflicting
with any other. After time £, 16 instantiations are present in the conflict set, the 17th

30

production is being executed, and 15 processors are idle. If the righthand side (RHS)
of the productions contain a significant number of actions, produce output, or perform
calls to the operating system, the time ¢ could become quite large. If the RHS actions
consist solely of working memory changes, applying the surplus processors towards
low-level node parallelism can reduce ¢, however, my experience has been that the
degree of effective node parallelism in problems which support multiple production
firings is fairly low.

4.3.3 Experiment 3: Asynchronous Production Execution

The final version of the experiment (Figure 9C.) was optimized for maximum asyn-
chronous behavior. Given the realization that any time that an eligible production
spent in the conflict set was time wasted, a new scheduling policy called “fire when
ready” was devised. In this scheme, the conflict set was continually monitored; when-
ever a new production entered, it was immediately fired. The OPS5 code implement-
ing the simulator had to be substantially re-written in order to support this level
of parallelism. This approach to scheduling did not employ conflict resolution, so
it was no longer possible to guarantee that rules would be executed in any given
order. Therefore, the rules had to be rewritten to be self-synchronizing, that is, to
examine the appropriate working memory elements for ordering information (explicit
timetags) to ensure that the simulation of devices proceeded in the correct temporal
order.

Because the computation was asynchronous, it was possible that some working
memory elements (representing inputs) could be modified before all the devices con-
nected to those inputs had been simulated. To avoid this problem, separate working
memory elements representing successive inputs to a device were created, rather than
modifying the existing elements. This approached created a potential for explosive
memory growth and required an architecture in which working memory management
was knowledge based, and elements were only deleted when it could be guaranteed
that they would no longer be needed.

This asynchronous approach to rule firing produced very high levels of proces-
sor utilization (nearly 100%), and a speedup of 8-10 over the strictly serial case.
Considerable extra matching and production execution took place to synchronize the
computation and to garbage collect unneeded working memory elements; unlike the
previous experiments, additional processors would have resulted in increased perfor-
mance.

4.4 Summary of Experiments

The experiments described above demonstrated that performance can be greatly in-
creased in a production system by eliminating the conflict resolution stage and ex-
ecuting productions asynchronously in parallel. This improvement was gained at

31

Fig. 1a —- Explicit Synchronization
P
al P
a3
. Pbl P,
Production b3
Implication Py P
and Duration p__ P c3
¢ T2 P 43
P
z1 Pz3
Processor __
Utilization
Time
T1 'l‘2 T3
Fig. 1b -- Synchronization by Conflict Set
Pa P2 Pa3
P P2 Pb3
Production P
Implication el Pe2 Pe3
and Duration Fa1 Paz Pa3
PZl PzZ P.3
Processor
Utilization
Time
T, T, Ty
——————————
Fig. 1c -- Asynchronous Production Firing
pal Pnz l:'a3
Po1 Po2 Pus
Production P, P P
PR 3
Implication p_ c2 °
and Duration ; P,s Py
P
Processor
Utilization
Time
Ty T, T

Figure 9: Controlling Production-Level Parallelism
32

the cost of considerable extra programming effort. The asynchronous version of the
benchmark program was significantly more difficult to write and debug than the con-
ventional “lockstep” versions. Furthermore, the circuit simulator did not perform
any meaningful kind of search activity and research has to be done to determine if
these results can be applied to “real” Al applications. In cases in which a fully asyn-
chronous model is not possible, we would like to develop methods for reducing the
overhead inherent in control. This research is the subject of the following section.

5 Proposed Research

Summary of Research Goals: In the course of my research, I intend to perform
a study of the nature of parallel production systems, concentrating in particular on
the semantics of rule interactions, and the control, language, and design issues raised
by parallel and parallel-asynchronous execution of rules. The goals of this research
are briefly summarized below:

o Identify the limitations of current methods for extracting production level par-
allelism using syntactic analysis of rules.

o Create a taxonomy of potential rule interactions, the implications of the rule
interactions, and the action to be taken by the scheduler when the interactions
are detected.

e Demonstrate rule-based language idioms for supporting well-known Al paradigms
in parallel systems without excessive serialization.

e Analyze the performance of asynchronous execution for rule-based implemen-
tation of various AI algorithms such as search and task-based programming.

o Analyze the validity of existing working memory representations and matching
algorithms for parallel production execution.

o Generate a meta-rule syntax for specifying rule and data interactions necessary
for resolving conflicts and scheduling parallel rule execution.

o Generate an algorithm for a controller which will monitor instantiations as they
arrive in the conflict set and execute productions according to the constraints
imposed by the meta-rules, while sychronizing conflicting rules in a knowledge-
based manner.

o Construct a production system language which provides robust support for par-
allel data manipulation and incorporates the previously mentioned meta-rule
syntax and parallel controller.

33

5.1 Control Issues

Much of the proposed research centers around the problem of control, that is, the
problem of imposing a structure to a parallel rule-based computation without incur-
ring prohibitive levels of overhead. These control issues are discussed in the following
sections:

5.1.1 Definitions of Control

Control exists at a number of different levels in a production system. Low-level, or
imperative control, consists of sequencing from episode to epsisode in a deterministic
fashion, in the way that control is transferred from statement to statement in a
conventional language such as C or Pascal. At this level of control we have loops,
conditionals, calls to subroutines, and the straightforward execution of sequential
program statements.

In a serial production system, control usually consists of the process of looking
at all the computations which can potentially be performed (that is, all the items
in the conflict set) and deciding which one is most appropriate under the current
circumstances. A common programming trick is to manipulate working memory to
force the conflict resolution routine to select a particular sequence of productions in
order to emulate a particular low-level control idiom. Emulation of these constructs
in a production system tends to lead to a serial program structure.

At a more interesting level of sophistication, we can think of control as the process
of deciding “what to do next” based on a consideration of the goals of a system, its
current world state, and the possible actions available to it. Control can be arbitrarily
complex; decisions can be made using a fixed control policy which examines only local
state information, or a system can use multiple control policies and select its next
actions according to longterm global strategies. Naturally, the more complex the
control strategy, the longer the decision process takes.

Part of the need for control comes because serial systems can only perform one
action at a time; therefore, in a resource-limited situation, the best alternative should
be tried first. In a parallel system, it is possible to investigate multiple solution
paths simultaneously which may reduce the need for sophisticated control strategies.
However, given a realistic number of processors and the combinatorial nature of search
spaces, the number of solutions which can be tried is likely to be less than the number
of alternatives.

Control, as it is conventionally implemented, is a serializing process. If one has to
examine all the actions available, then there must be a synchronization step during
which all the alternatives can be examined. The problem of reducing the inherent
overhead of control is addressed in the next section.

34

5.1.2 Removing the Conflict Set Bottleneck

There is near-universal agreement in the literature that the bottleneck in OPS5 pro-
cessing is the match stage, based on Forgy’s contention that matching can consume as
much as 90% of the total computation time [Forgy79]. However, as the experiments
described above indicate, this is not the whole story. The necessity for performing
some kind of conflict resolution imposes a bottleneck on the matching process which
may make it irrelevant how much parallelism takes place in the match. Because the
conflict resolution cannot take place until all productions have matched, the minimum
cycle time is the time of the longest match.

In general, a production system is most efficient when it can execute as many rules
in parallel as possible, thus maintaining the number of node activations and thus the
maximum degree of parallelism within the matcher. Any time that a useful produc-
tion spends in the conflict resolution set is time that that same production could
be executing, thus, performing conflict resolution as a separate serial step between
episodes of rule firing and matching is detrimental to parallelism [Miranker90]. The
experiments in parallel rule execution indicate that the highest performance will be
achieved by an asynchronous control strategy in which productions are executed as
soon as they are enabled [Neiman90]. Because this ‘fire-when-ready’ policy executes
productions before sufficient information is available to generate completely accurate
control decisions, the computation must either generate only the correct productions
to execute or be able to recover from the occasional erroneous production execution.

5.2 Controlling Parallel Production Systems

The most satisfactory way of eliminating the sequential overhead of conflict resolution
is to eliminate the need for conflict resolution; that is, to design the system so that
it proceeds in a focussed manner with only relevant productions being enabled and
no productions being mutually interfering or disabling. While it was possible to
achieve this kind of completely asynchronous performance in the circuit simulator
benchmark, it was only done at the cost of much additional complexity and loss of
comprehensibility in the program. More compellingly, the circuit simulator does not
perform search, therefore, any rule which become eligible to fire can be fired without
redundancy.

The conflict set plays a critical role in controlling most existing rule-based pro-
grams; for example, low level control of OPS5 programs depends on firing produc- .
tions in an order based on explicit properties of the the conflict resolution algorithm.
Removing this control property of OPS5 would not be a bad thing — as discussed
previously, lack of a reasonable control mechanisms is an archaic feature of OPS5 not
necessarily present in later systems such as OPS83. Without some notion of a conflict
set, however, developing rule-based systems would be much more complex. The ideal
approach of executing productions as soon as they are enabled is only appropriate

35

if productions never conflict or perform the same task. Otherwise, the system must
contend with problems of redundant rules consuming processing resources, cluttering
working memory, and disabling more useful rules. In any application which performs
any kind of search (and virtually all Al applications can be viewed as performing
search) it is necessary to maintain some degree of control over the computation. For
example:

e Assume that more than one production is eligible in a given situation, but only
one action should be executed. After executing the first eligible production, the
remainder should be suppressed as they enter the conflict set.

e If a production is eligible, but is not guaranteed to produce the desired results,
it is necessary to monitor the results of the production execution and execute
other productions as necessary.

o Executing multiple productions in parallel could result in inconsistent states —
we want to recognize these states and eliminate them.

o If executing a parallel search, possibly composed of multiple pipelined chains
of inference, once a satisfactory answer is achieved, we want to terminate all
extant processes to free up computing resources.

e If the number of eligible rules becomes greater than the number of available
processors, then the most useful or highly rated rules should be run first.

A number of methods of maintaining some level of control over a computation
while eliminating the strict need for global control and conflict resolution are presented
below. The following definitions will be useful in the ensuing discussion.

Goals: In systems in which control is necessary, we use the convention of creating
goals to direct the computation. The creation of a goal is a signal that any processing
which potentially contributes to that goal should be given higher priority. The process
of satisfying a goal can lead to the creation of subgoals, that is, goals which have to be
satisfied before the original goal can be satisfied. In systems which display uncertainty,
a computation may be selected which could potentially lead to the satisfaction of the
goal, and satisfaction of sub-goals are likely, but not certain to lead to the achievement
of the super-goal. There may be multiple ways of achieving (or possibly achieving)
any given goal.

Tasks: A task can be considered as a series of one or more sub-computations, each of
which is represented by one or more goals or sub-goals. These subcomputations may
have to be performed serially, or they may allow for partial or complete parallelism. A
production can be associated with a particular task according to the working memory

36

elements which enabled it. For example, in a vehicle monitoring system, a task might
be to track a single vehicle. All the productions which execute in the process of
tracking this vehicle would be identified with this task.

Quiescence A production system can be said to be quiescient when all working
memory changes have been processed and all possible instantiations have been en-
tered into the conflict set. Determining when a system has become quiescient is
simple in a serial system (one just waits for a function call to complete), however,
in a system which employs any degree of parallelism it is necessary to develop syn-
chronization mechanisms which monitor active processes and determine when they
complete. Synchronization can be expensive; one or more processors may have to be
assigned just to identify quiescence in a timely fashion.

Match Episodes A maich episode is the process of identifying all productions
affected by a single working memory change. If each working memory change is
associated with a single task or computation, then any productions stimulated during
a match episode will be relevant to the same problem and can be considered by the
same conflict resolution routine or process (See Figure 10). This is a simplifying
assumption which reduces to a large extent the number of interactions between tasks,
and eliminates many potential clashing and disabling behaviors.

Note that a single match episode can enable multiple productions. Each pro-
duction instantiation enters into the conflict set when the working memory change
propagates through the matcher to the appropriate bottom node; the time differen-
tial between the instantiations depends on the complexity of the matches, the total
number of matching productions, and whether the matching process makes use of
internal parallelism or proceeds serially breadth first or depth first.

A single production execution can execute many working memory changes, each
one representing a separate match episode. The easiest way to define quiescence in
the system is to wait until a production has completely executed, however, it can
be seen by examining Figure 10, part B., that this can result in significant delays in
evaluating and executing instantiations. By executing all the righthand side actions
in parallel, this delay can largely be eliminated, but this is only an option if there are
no interactions between the righthand side actions (see Figure 10, part C). Finally,
multiple productions can execute concurrently, creating multiple simultaneous match
episodes; determining T in this case is difficult as it must be determined when all
executing productions relating to a particular computation have terminated.

5.2.1 Concurrent Control

Given that the canonical conflict resolution schemes tend to serialize a computation,
it is worth asking whether control can take place in parallel with the computation.

37

| |
| |
I Hunting Cat (tg+A;) l
unting Cat (tg+
: A. (make cat name Lily Astate hungry) (to) I— — 1. :
| Hungry Cat (tg+A3) |
| |
| |

|
Hunting Cat (ty+4;) |
gmie ca: A’;nameg.ﬂl\"‘:me ;mngr)y) (!o)) I
cat Aname state i
B. (make see Acat Fred Aobj hou':e’;lyfnﬂ:) Eé) Hungry Cat (tg+) I
‘ |
]
|

Playful Cat (ty+A3)

- ean e amn e emn o= o=

Hunting Cat (tg+4;)

(make cat Aname Lily Astate hungry) (ty)
C. (remove see Aca Lily Aobjpigeon) (1) Matcher)—— Hungry Cat (tg+42)

]
|
i
~Hunting Cat (t;+4;) :
|
4

PO T s G w—te —— n a—

-

| |

l (make cat *name Lily Astate hungry) (tg) Hunting Cat (tO"'Al) |

| e (make cat name Fred "state playful) ~ (t;)

I (make see Acat Fred Aobj houseplant) (1) Hungry Cat (tg+Ay) :

: Playful Cat (ty+A3) |

' '

i D. Hunting Cat (Tg+4;) :

|

I Hungry Cat (Ty+4,) |

ake cat “name Morgaine Astate hi

I e oot e S mate pray e T O] Playful Cat (To#dg) | |
i |

| (make see Acat Spiker Aobj houseplant) (’1‘;)

] |

I 1

: Creating Working Memory Changes (Time) Conflict Set (Instantiation Time) :

Production

Figure 10: Examples of match episodes.

38

Time Instantiation(Rating)

B
1 P3(7) Execute P2
Conflict Set Concurrent Control Process
Instantiation(Rating)
P1(5)
P2(10)
14A 11;3(;% Select P4 Execute P4
nglzg Retract P2 Retract P2
P7(9)
Conflict Set Concurrent Control Process

Assumptions: All instantiations in conflict set are relevant to same task.
Therefore, same conflict resolution process is applicable.

Figure 11: Concurrent Conflict Resolution

A few researchers have proposed pipelining the conflict resolution phase with the
production matching phase, but given the superficial nature of most conflict resolution
algorithms, this would not result in much of a speedup. A more effective approach is
to perform asynchronous process monitoring. In this paradigm, a conflict resolution
process is assigned to a particular match episode. As instantiations are matched,
the process incrementally selects those which are to run. If a rule is fired, and a
better choice later enters into the conflict set, then the earlier rule execution could
be halted, or, with the appropriate bookkeeping, ‘unwound’ in a manner not unlike
retracting an incorrect assumption in a truth-maintenance system (see Figure 11).
Note that with a functionally accurate approach (discussed below), the only reason
for retracting production firings may to remove unneeded working memory elements.

An advantage of this approach is that it allows the “fire-when-ready” approach to
rule execution while avoiding complete saturation of processing capacity with useless
or redundant instantiations. Because a separate process monitors each production
cycle, the conflict resolution scheme used at each stage of the computation can be
situation specific. The conflict resolution process can be made sensitive to the current
state of working memory and, in one extreme architecture, can be implemented as a
separate concurrent rule set (see Figure 12). The disadvantages are the complexity of
programming the parallel conflict resolving mechanism, the necessity for extra book-
keeping to monitor all executing instantiations, and the potentially large overhead

39

Time Instantiation(Rating)
P1(5)
P2(10)
P3(7)

Conflict Set

Instantiation(Rating)
P1(5)

1+A

Conflict Set

Working
Memory

Select P2 Execute P2

Concurrent Control Process

Working
Memory

Production P6 is the best choice
given the current state of working memory.

Execute P6

Select P6
Retract P2

Retract P2

Corcurrent Control Process

Assumptions: All instantiations in conflict set are relevant to same task.
Therefore, same conflict resolution process is applicable.

Figure 12: Concurrent Conflict Resolution with Meta-rules

required to retract incorrect working memory changes. Because the assumption is
made that all the instantiations in the conflict set being monitored are relevant to the
same problem, this approach implies an architecture which supports multiple conflict

sets and task-oriented productions.

5.2.2 Algorithms for Functionally Accurate Computations

To say that a computation is functionally accurate is to be able to guarantee that
it converges on a correct solution despite transient inconsistencies in the knowledge
base. A computation which can guarantee this property despite inconsistencies due
to lack of coordination between concurrent processes is said to be Functionally Accu-

rate/Cooperative (FA/C) [Lesser81].

40

Conclusion:

Fact: XXxxxxx

Depends on:
XXXXXXX
XXXXXXX
XXXXXXX
XXXXXXX

Satisfies: Goalxxx

Production

Monitor Working Memory }

(goal “retract fact)
(goal Ais goalxxx)

Figure 13: An active approach to FA/C computation.

To be able to demonstrate that a computation is functionally accurate, it must be
possible to enumerate the expected inconsistencies and errors resulting from a lack
of control or coordination and to prove that the computation successfully reaches a
correct solution despite them. Many of the standard failure modes of parallel produc-
tion systems (disabling, clashing, etc..) have been enumerated by Stolfo, Schmolze
and others.

A functionally accurate computation must either tolerate errors or repair them.
To reduce the burden on the creator of the system, this process must be made as
automatic as possible. The production system architecture is remarkably well-suited
to the FA/C approach in that it is, by nature, data-driven. Therefore, a correctly
structured computation can recognize when a goal has failed to be achieved and re-
try. Two approaches to developing an FA/C computation are presented in figures 13
and 14.

In the first approach, the system takes an active role in ensuring the consistent
nature of the computation by explicitly establishing conditions which validate a con-
clusion and monitoring the database to ensure that these conditions do not change.
This is similar in principle to establishing protection axioms in a conventional plan-
ning system. If suitable representations can be established in working memory, then a
single demon production (or class of productions) could be used to perform the mon-
itoring task and retrigger productions if necessary. This active approach to FA/C
requires that the programmer be able to determine the critical data in the computa-
tion and specify what changes in working memory would invalidate the results.

The second approach to FA/C relies on robust design to ensure that the correct

41

[Working Memory J

Inference
Production
T1 T2
Production P1 Fires Production P1 Fires Production P1 Fires
Triggered by: Triggered by: Triggered by:
VMEL W WMEI
WME2 WME2 WME2
WME3 WME3 WME3
WME4 WME100 WME200
Creating: Creating: Creating:
WMES WME101 WME201
WME6 WMEI02 WME202
WME7? WMEI103 WME203
<] Supersedes Previous

Figure 14: A passive approach to FA/C computation.

solution is reached. If working memory changes, then any productions which are re-
sponsible for drawing inferences from the changed data are re-executed. If the system
performs “pure” forward chaining inference, than the conflict set could actually be
used as a truth maintenance mechanism. When a production is withdrawn from the
conflict set, the working memory elements that it has added can be withdrawn in
turn.

Some mechanism must be employed to make sure that looping behavior does
not occur in which the same rule is fired over and over without results. In-depth
checks should be reserved for the point at which the results of the algorithm consume
scarce resources or perform some non-reversible “real-world” action (e.g. before you
actually spend money, fire a missile, prescribe a drug...). In order to automate the
FA/C checking, representations will have to be devised to allow the controller to
recognize states which are invalid or undesirable.

5.2.3 Meta-Rules

The conflict resolution scheme used in OPSS5 is essentially an institutionalized kludge.
Control is based solely upon syntactic characteristics of rules, and it falls upon the
programmer to insure that the rules are written in such a way that they execute in
the correct order. The use of meta-rules [Davis80] allows a more knowledge intensive

42

approach to control. Although the use of meta-rules does not necessarily eliminate
the conflict set, meta-rules can be developed which contain knowledge about parallel
control [Decker90]. The idea of using the same representation for control as for
domain directed knowledge is not new [Hayes-Roth85], however care would have to
be taken to ensure that the control rules were suitable to parallelism; if not, then the
serial bottlenecks implicit in control would merely have been transferred to the rule
component of the system.

Development of meta-rules for parallel control will involve developing a vocabulary
containing predicates which will allow the meta-rules to refer to the contents of rules,
relationships between rules, the number and nature of instantiations in the “conflict”
set, the status of each current match episode, and the current contents of working
memory, among others.

5.3 Research Contribution

Why is the work described here interesting, and why, in particular, should it be of
interest to people working in A.L.?

First, Gupta’s basically pessimistic results (and others) have discouraged many
researchers from attempting to apply parallelism to A.I. techniques[Kibler85). The
reasoning seems to be that even if we could build systems that contained thousands
of reasonably powerful processors, most of them would remain idle most of the time.
Therefore, it is more worthwhile to attempt to devise faster algorithms for serial
machines or which only require low degrees of parallelism.

So it is important to examine the contention that the use of parallelism in A.IL
systems is limited. If it does turn out, as seems intuitively true, that large numbers of
processors are useful when attempting to devise an intelligent system, then we’d like
to be able to define the situations in which large degrees of parallelism are appropriate,
and algorithms by which this parallelism can be exploited.

In order to apply production systems to interesting real-time applications it will
be necessary to employ parallelism. Currently, it is very difficult to write production
systems that employ production level parallelism. The methodologies that I develop
should ease the task of system design. Because the detection, avoidance, or toleration
of inter-production interactions is an integral part of such a system, the process of
incrementally adding new productions to the system should become easier than it is
existing rule-based languages.

Finally, any system operating in the real world is going to find itself making
assumptions about the state of the world which no longer are true when it comes
time to act [Schoppers87, D-McDermott78]. There’s no way of placing the entire
world in a critical region. The only way to cope with a dynamic environment is to
be functionally accurate. A system which is trying to produce coherent results while
working on many concurrent tasks employing large numbers of processing elements in
a dynamic environment is going to find it necessary to continually monitor its goals,

43

internal state, and surroundings to ensure that its actions remain relevant, consistent
and timely. This continuous monitoring represents a first step towards truly self-aware
systems which is one of the principle goals of artificial intelligence.

5.4 Related Work

Control of parallel rule-based systems is a relatively new topic in A.I. Much of the
relevant work in this area has been done using blackboard systems [Nii89, Corkill89].
Nii, et al., mention the serializing nature of global control schemes. Corkill proposes
using the FA/C paradigm to detect and repair inconsistencies in the database caused
by non-atomic actions in the knowledge source firings. Research on controlling parallel
production systems are being undertaken by Schmolze who is studying asynchronous
production systems [Schmolze30] and Gamble who is studying methods of avoiding
serializing control constructions using Swarm, a parallel language which allows formal
proofs of correctness[Gamble90].

5.4.1 Parallel Blackboard Systems

Blackboard systems resemble production systems in many ways: they consist of multi-
ple knowledge sources acting upon a central database; they are primarily data-driven;
and they employ a central scheduler which is responsible for conflict resolution and
knowledge source invocation. The primary differences are that knowledge sources in
a blackboard system tend to be of a large granularity and may take a substantial
amount of time to execute, the database is structured in a (usually) hierarchical fash-
ion, and the instantiation of knowledge sources is not necessarily performed strictly
by pattern-matching, so applicability of knowledge sources is not guaranteed.

Many of the issues which arise when parallelizing production systems also arise
when attempting to apply multiprocessing to blackboard systems.

Blackboard systems can potentially support the following levels of parallelism:

o Implementation of low-level blackboard operations (object creation, deletion,
retrieval, and modification).

o Internal parallelism within each knowledge source(KS); this results in an in-
crease in speed of a specific KS, but the degree of speedup is dependent on the
nature of the task being performed by the knowledge source.

e Knowledge source parallelism in which multiple KSs are executed as separate
processes.

e Control parallelism in which the scheduling of knowledge sources is carried out
in parallel with the execution of the knowledge sources.

44

In the work on Cage and Poligon described by [Nii89], a number of observations are
made. One of the principle concerns of this work is eliminating the serializing effects
of global control. When a global control mechanism is used, the scheduling processor
must evaluate the state of the system and decide which action to take next. While this
process of reflection takes place within the control processor, no work is being done
elsewhere in the system. Because the global controller needs complete knowledge of
the state of the system, it may be forced to wait for all extant processes to complete,
thus increasing the delay imposed by the central control scheme. The Cage and
Poligon projects attempted to determine whether a knowledge-based approach could
eliminate global control, or alleviate its serializing delays.

As in rule-based systems, the approach which promises the greatest potential
speedup for blackboard systems includes executing multiple knowledge sources in
parallel, possibly in conjunction with other levels of parallelism. Ensuring the con-
sistency of the database during concurrent KS execution is difficult in a blackboard
system[Fennell77]. If the executing KSs access mutual data items, then the value of
blackboard objects can change between the time when a precondition is computed
and when a KS is executed. This may result in the creation of inconsistent items on
the blackboard, or the unnecessary firing of knowledge sources.

Corkill addresses this problem in [Corkill89], noting that simply locking individual
slots in blackboard objects is not sufficient to ensure consistency. Postponing execu-
tion of KSs which might semantically interact with a currently executing knowledge
source is unreasonable and is likely to seriously reduce parallelism. The argument
in this case is that an intelligent scheduler would require knowledge about every po-
tential interaction between every knowledge source instantiation (KSI); not only is
this computationally expensive, but in cases in which the KSI behavior is strongly
dependent on the data, predicting potential interactions can lead to over-conservative
scheduling and loss of concurrency.

The “dataflow” model of programming in which new versions of blackboard ob-
Jects are created to reflect changes, and existing objects are never modified represents
a potential solution, but greatly increases memory and processing costs. Another
approach is to treat a KS computation as an atomic operation, using locks on black-

board objects and regions in order to avoid conflicts while minimizing interference
with other KSs.

Production system differ from blackboard systems in a number of ways which
make the control issues analogous rather than identical. Productions automatically
enter the conflict set whenever they become enabled while a blackboard system must
explicitly execute a (potentially expensive) precondition to determine if a knowledge
source is eligible to fire. The blackboard data structure is much more structured than
the production system’s working memory. This allows a more precise approach to
locking and updating resources. This advantage is largely negated by the relatively
long duration of knowledge source executions which can result in significant losses

45

of parallelism if resources have to be locked. The long lifetime of knowledge source
executions allows more time for deliberation over control issues; a typical production
system rule must be executed as soon as it is enabled or it will spend more time in
the conflict set than it does executing.

Rules represent (or are intended to represent) very small focussed “chunks” of
knowledge, potentially many of which are applicable to a given situation. Knowledge
sources are more monolithic and may not be able to achieve high degrees of parallelism
unless the KS supports internal parallelism.

5.5 Research Program

The following section contains a list of the tasks involved in completing the proposed
thesis and their expected start dates and durations. All the dates are subject to
change as the research proceeds.

5.5.1 Models of Rule Interactions

Description of Work Previous research in parallel production systems have fo-
cussed on clashing and disabling rule interactions, terms which are borrowed from
database systems. There are significant differences, however, between the function of
working memory and a database’s memory. In addition, the operations which affect
a production system’s knowledge base are, in most cases, algorithmic and purposeful.
The phase of the research will attempt to model the causes of rule interactions and
identify the actions to be taken by the scheduler in each event.

Contribution We have ways of identifying rules which interact over the course of
one conflict set iteration but we have no real model of why rules which affect the same
data are occurring concurrently. Is it a case of two types of knowledge applying to
the same problem? Is one production instantiation redundant? Are the productions
mutually exclusive? Can we model multiple production firings as operators in an
AND/OR tree? What is the role of conventional conflict resolution techniques in a
parallel rule-firing system?

Without a clear model of the semantics behind a production instatiation, it will
be difficult to make the correct control decisions required to determine when and
if that production should be executed. As a result of this phase of the research,
it will be possible to develop language constructs which avoid many of the more
common production interactions and will generate a better model of those remaining
interactions.

46

5.5.2 Development of Algorithms for Parallel Control

Description of Work The level of control present in a parallel production system
ranges from the tightly controlled "lockstep” processing model which examines the
conflict set after quiescence and selects only non-interacting rules to the fully asyn-
chronous “demon” model in which productions clamor to be executed as soon as they
are satisfied.

A number of approaches for controlling (or not controlling) these parallel rule-
based systems have been discussed. These include totally asynchronous rule execution
with functionally accurate monitoring, concurrent control monitoring with incremen-
tal conflict resolution, meta-rules, and predictions of future matching quality. The
selection of the appropriate “conflict resolution” algorithm depends on both the high-
level model of the computation (search, forward-chaining, pattern-recognition) and
the low-level nature of the data. This phase of the research will attempt to define
efficient algorithms for controlling a parallel production system and will define the
computation models and situations for which they are appropriate.

Contribution One of the major contributions of this work is to determine whether
it is possible to control a parallel rule-based system without imposing undesireable
serialization or unreasonable complexity upon the system.

5.5.3 Development of an Intelligent Controller for Parallel Rule
Execution

Description of Work This phase of the research will concentrate on the design
of a sophisticated controller which will intelligently schedule productions to execute
according to their expected interactions with other productions, incoming data, and
the current state of the computation.

Contribution We have observed that the highest efficiency results when produc-
tions are executed as soon as they are enabled, however, as in any parallel system,
certain operations must be synchronized in order to avoid data inconsistency. I would
like to show that in a “knowledge-based” system, sufficient information is available
to allow a sophisticated scheduler to flexibly decide when rules are eligible to fire.

5.5.4 Development of a Parallel Production System

Contribution The proposed work requires an experimental vehicle to test asser-
tions about program constructs and control algorithms.

Description of work The parallel rule-based language will have a syntax essen-
tially similar to OPS5, but will support the major levels of parallelism: production,

47

node, and action level parallelism. The principle innovation in the language will be the
control mechanism which will differ in several ways from the conventional recognize-
select-act control cycle and the data constructs required to support consistent parallel
execution of rules.

Provisions should be made for switching between parallelism modes, or operating
serially for benchmarking purposes. The probable need to experiment with the control
mechanisms, syntax, and semantics of the language to optimize it for parallel opera-
tion makes Lisp a logical choice for an implementation language. Documentation and
an accompanying technical report describing the language will be provided.

5.6 Results

If research progresses as described in this document, the following results should be
obtained:

e A list of the causes of rule interactions in terms of the underlying language
idioms.

e Algorithms and language constructs for implementing common Al paradigms in
a parallel rule-based language. When possible, analyses of expected performance
will be performed.

e A description of a controller which is responsible for controlling the execution
of productions and maintaining database consistency.

e A programming language which implements the language constructs and con-
troller.

o Benchmarks which demonstrate the effectiveness of the control algorithms in
maximizing parallel rule executions.

6 Conclusion

The benefits of parallelism in productions systems appear to be limited only by the
degree of parallelism inherent in the application itself. By decomposing applications
into semi-independent tasks, each composed of one or more production firings, the
level of parallelism can be shown to increase dramatically. At the same time, the
increased number of potential interactions betwen productions, and the increased
complexity of parallel systems impose a burden on the implementor. In order to take
full advantage of the available parallelism, new control mechanisms must be devised
which do not present serializing bottlenecks or unacceptable overhead. The research

proposed here will focus on new techniques for creating, analyzing, and controlling
highly parallel rule-based systems.

48

References

[Acharya)

[Brooks85]

[Corkill89]

[Davis80]

[Decker90]

[Durfee87]

[Fennell77]

[Forgy79)

[Forgy81]

[Forgy82]

Acharya, A., Milind Tambe, “Production Systems on Message
Passing Computers: Simulation Results and Analysis”, School

of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA 15213-3890.

Brooks, Ruven and R. Lum, “Yes, An SIMD Machine Can Be
Used for AI”, IJCAI85, pp. 73-79.

Corkill, Daniel D., “Design Alternatives for Parallel and Dis-
tributed Blackboard Systems”, in Blackboard Architectures
and Applications, V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, eds., Academic Press, pp. 99-136.

Davis, Randall, “Meta-Rules: Reasoning about Control”, Arti-
ficial Intelligence 15 (1980), pp. 179-222.

Decker, K., A. Garvey, M. Humphrey, V. Lesser, “Effects of
Parallelism on Blackboard System Scheduling”, COINS Dept.,
Proceedings of the Fourth AAAI Blackboard Workshop, August,
1990.

Durfee, E. H. and V.R. Lesser, “Planning to Meet Deadlines in
a Blackboard-based Problem Solver”, COINS Technical Report
87-07, University of Massachusetts, February 1987.

Fennell, Richard D., Victor R. Lesser, “Parallelism in Artifi-
cial Intelligence Problem Solving: A Case Study of Hearsay II”,
IEEE Transactions on Computers, Vol. C-26, No. 2, February
1977, pp. 98-111.

Forgy, C.L., On the Efficient Implementation of Production Sys-

tems, Dept. of Computer Science, Carnegie-Mellon University,
1979.

Forgy, C.L., “OPS5 User’s Manual”. Technical Report CMU-
CS-84-135, Dept. of Computer Science, Carnegie-Mellon Uni-
versity, July 1981.

Forgy, C.L., “Rete: A Fast Algorithm for the Many Pat-
tern/Many Object Pattern Match Problem”, Artificial Intelli-
gence, 19 | 1982, pp. 17-37.

49

[Forgy84|

[Gamble90]

[Gupta84]

[Gupta87]

[Gupta87a]

[Gupta8s]

[Gupta89)

[Gupta89a)

[Harvey89]

[Hayes-Roth85]

[Hillyer86]

Forgy, C.L., “The OPS83 Report”, Technical Report CMU-CS-
84-133, Department of Computer Science, Carnegie-Mellon Uni-
versity, May 1984.

Gamble, Roseanne Fulcomer, “A Methodology for Develop-
ing Correct Rule-based Programs for Parallel Implementation”,
Thesis Proposal, Washington University, Sever Institute of
Technology, 1990.

Gupta, Anoop, “Implementing OPS5 Production Systems on
DADO”, CMU-CS-84-115, Department of Computer Science,
Carnegie-Mellon University, 1984.

Gupta, Anoop, Parallelism in Production Systems, Morgan
Kaufman Publishers, Inc., Los Altos, CA, 1987.

Gupta, Anoop, Charles Forgy, et al., “Results of Parallel Imple-
mentation of OPS5 on the Encore Multiprocessor”, CMU-CS-
87-146, Computer Science Dept., Carnegie-Mellon University,

-1087.

Gupta, Anoop, Milind Tambe, Dirk Kalp, Charles Forgy, and
Allen Newell, “Parallel Implementation of OPS5 on the Encore
Multiprocessor: Results and Analysis”, International Journal of
Parallel Processing, Vol 17, No. 2, April, 1988.

Gupta, A., C. Forgy, A. Newell, “High-Speed Implementations
of Rule-Based Systems”, ACM Transactions on Computer Sys-
tems, Vol. 7, No. 2, May 1989, pp. 119-146.

Gupta, A. and C. Forgy, “Static and Run-Time Characteris-
tics of OPS5 Production Systems”, Journal of Parallel and Dis-
tributed Computing, 7, 64-95, 1989.

Harvey, Wilson, Dirk Kalp, Milind Tambe, David McKeown,
and Allen Newell, “Measuring the Effectiveness of Task-Level
Parallelism for High-Level Vision”, CMU-CS-89-125, March 27,
1989.

Hayes-Roth, B. “A Blackboard Architecture for Control”, Art:-
ficial Intelligence Vol. 26 (1985) 251-321.

Hillyer, B.K., and D. E. Shaw, “Execution of OPS5 Production
Systems on a Massively Parallel Machine”, Journal of Parallel
and Distributed Processing, August, 1988.

50

[Ishida85)

[Kalp85]

[Kelly89]
[Kibler85]

[Laird87)

[Lehr85)

[Lesser81)

[D-McDermott78]

[McDermott 78]

[McDermott80}

[McDermott83]

[Miranker89]

Ishida, T. and Stolfo, S., “Towards the Parallel Execution
of Rules in Production System Programs”, Proceedings of the
IEEE International Conference on Parallel Processing, pp. 568-
575, 1985.

Kalp, Dirk, et al., Parallel OPS5 User’s Manual, CMU-CS-88-
187, School of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, 1088.

Kelly, Michael, and Rudolph Seviora, “An Evaluation of DRete
on CUPID for OPS5 Matching”, IJCAI-89, pp. 84-90.

Kibler, D. and Conery, J., “Parallelism in AI Programs”, IJCAI,
1985.

Laird, J.E., A. Newell, and P.S. Rosenbloom, “Soar: An Ar-
chitecture for General Intelligence”, Artificial Intelligence 33:1-
64,1987.

Lehr, Theodore, “The Implementation of a Production System
Machine”, CMU-CS-85-126, Department of Computer Science,
Carnegie-Mellon University, May, 1985.

Lesser, V. and Corkill, D., “Functionally Accurate, Cooperative
Distributed Systems”, IEEE Transactions on Man, Machine,
and Cybernetics, Vol. SMC-11, No. 1, January 1981.

McDermott, Drew, “Planning and Acting”, Cognitive Science,
Vol. 2, pp. 71-109, 1978.

McDermott, J. and C. Forgy, “Production System Conflict Res-
olution Strategies”, in D.A. Waterman and F. Hayes-Roth, eds.,

Pattern-Directed Inference Systems, New York, Academic Press,
1978, pp. 177-199.

McDermott, J., “R1: A Rule-Based Configurer of Computer
Systems”, Technical Report CMU-CS-80-119, Computer Sci-
ence Dept., Carnegie-Mellon University, Pittsburgh, PA.

McDermott, J., “Extracting Knowledge from Expert Systems”,
IJCAI-83, pp. 100-107.

Miranker,Daniel, Chin-Ming Kuo, and James C. Browne, “Par-
allelizing Transformations for a Concurrent Rule Execution Lan-
guage”, TR-89-30, Department of Computer Science, University
of Texas at Austin, October, 1989.

51

[Miranker90]

[Morgan88]

[Nayak88]

[Neiman87]

[Neiman90]

[Neiman90a)

[Nii89]

[Oflazer84]

[Okuno88]

[Schmolze89]

[Schmolze90]

Miranker, Daniel P., “An Algorithmic Basis for Integrating Pro-
duction Systems and Large Databases”, Proceedings of the Sizth

International Conference on Data Engineering, Los Angeles,
CA, February, 1990.

Morgan, Keith, “BLITZ: A Rule-Based System for Massively
Parallel Architectures”, In Proceedings of 1988 ACM Conference
for Lisp and Functional Programming, Snowbird, Utah, 1988.

Nayak, Pandurang, Ancop Gupta, Paul Rosenbloom, “Com-
parison of the Rete and Treat Production Matchers for Soar (A
Summary)”, AAAIL88.

Neiman, Daniel, “Adding the Rete Net to Your OPS5 Toolbox”,
Al Ezpert, January, 1987, pp. 42-49.

Neiman, Daniel, “Control Issues in Parallel Production Sys-
tems”, Technical Report in preparation, COINS, 1990.

Neiman, Daniel, “Parallel OPS5 User’s Manual and Technical
Report”, COINS Technical Report 91-1, Computer and Infor-
mation Sciences Dept., University of Massachusetts, 1991.

Nii, H. Penny, Aiello Nelleke, James Rice, “Experiments on
Cage and Poligon: Measuring the Performance of Parallel Black-
board Systems”, in Distributed Artificial Intelligence, Vol. II,
Les Gasser and Michael N. Huhns, eds., Morgan Kaufman Pub-
lishers, Inc., 1989, pp. 319-384.

Oflazer, Kemal, “Partitioning in Parallel Processing of Produc-
tion Systems”, Proceedings of the IEEE International Confer-
ence on Parallel Processing, 1984.

Okuno, H., A. Gupta, “Parallel Execution of OPS5 in QLISP”,
Proceedings of the Fourth Conference on Artificial Intelligence
Applications, March 1988, pp. 268-273.

Schmolze, James G.,“Guaranteeing Serializable Results in Syn-
chronous Parallel Production Systems”, Technical Report 89-5,
Department of Computer Science, Tufts University, October,
1989.

Schmolze, James G. and S. Goel, “A Parallel Asynchronous Dis-
tributed Production System”, AAAI-90, pp. 65-T1.

52

[Schoppers87]

[Selfridge60]

[Siler87]

[Stolfo84]

[Stolfo84a)

[Stolfo87]

[Tambe88)

[Tambe89]

[Tenorio85]

Schoppers, M. J., “Universal Plans for Reactive Robots in Un-
predictable Environments”, Proceedings of the 10th Internation
Joint Conference on Artificial Intelligence, pp. 852-859.

Selfridge, Oliver G. and Ulric Neisser, “Pattern Recognition”,
Scientific American, August, 1960, pp. 60-68.

Siler, William, Douglas Tucker, and James Buckley, “A Parallel
Rule Firing Fuzzy Production System with Resolution of Mem-
ory Conflicts by Weak Fuzzy Monotonicity, Applied to the Clas-
sification of Multiple Objects Characterized by Multiple Uncer-
tain Features”, International Journal of Man-Machine Studies,
(1987) Vol. 26, 321-332.

Stolfo, Salvatore, Daniel Miranker, “DADO: A Parallel Proces-
sor for Expert Systems”, Proceedings of the 1984 Int. Conference
on Parallel Processing, August , 1984, pp. 74-82.

Stolfo, Salvatore, “Five Parallel Algorithms for Production Sys-
tem Execution on the DADO Machine”, Proceedings of the Na-
tional Conference on Artificial Intelligence, AAAI-84, pp. 3

Stolfo, Salvatore J., “Initial Performance of the DADO2 Proto-
type”, Computer, january, 1987, pp. 75-82.

Tambe, M., D. Kalp, A. Gupta, C. Forgy, B. Milnes, and

"A. Newell, “Soar/PSM-E: Investigating Match Parallelism in

a Learning Production System”, Proceedings of Parallel Pro-
gramming Environments, Application Languages, and Sys-

tems(PPEALS), July, 1988.

Tambe, Milind, Anurag Acharya, Anoop Gupta, “Implemen-
tation of Production Systems on Message Passing Computers:
Techniques, Simulation Results, and Analysis”, CMU-CS-89-
129, School of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.

Tenorio, M. and D. Moldovan, “Mapping Production Systems
into Multiprocessors”, Proceedings of the IEEE International
Conference on Parallel Processing, 1985, pp. 56-62.

53

