Distribution of the Loss Period
for some Queues in Continuous
and Discrete Time

H. Schulzrinne, J. F. Kurose, D. Towsley
COINS Technical Report 91-3
July 1991



Distribution of the Loss Period for Some Queues in Continuous and
Discrete Time*

COINS Technical Report TR91-3

(presented in part at IEEE Infocom, April 1991)

Henning Schulzrinne James F. Kurose and Donald Towsley
Dept. of Electrical and Computer Engineering Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003
hgschulz kurose,towsley@cs.umass.edu

July 17, 1991

Contents

1 Introduction 3

2 Clip Loss in Continuous Time (G/M/1) 5
2.1 Performance Measures . . . . . . .. . . .. . 0, 5
2.2 Distribution of the G/M/1 Initial Jump and Loss Period . . . . .. ... ....... 6
2.3 Consecutive Customers Lost . . . . . . . . . . . . . o v v i 9
2.4 Distribution of Noloss Period . . . . . . . . . . ... ... 10
2.5 Customers per Noloss Period . . .. .... ... .. ... ... ... .. ........ 13
2.6 Simulation Experiments . . . . . .. ... ... ... ... 13

3 Clip Loss in Discrete-time Systems 17
3.1 TheBusyandIdle Period . . .. .. ... ... ... . 17
3.2 TheLoss Period . . . ... .. . . . . 0 e 19

3.3 The Noloss Period . . . . . . .. .. . vt 22
.................................... 23

*This work is supported in part by the Office of Naval Research under contract N00014-90-J-1293, the Defense

Advanced Research Projects Agency under contract NAG2-578 and a National Science Foundation equipment grant,
CERDCR 8500332.




7

8

Queues with Bounded Waiting Time
41 Contimuous Time . . . . . . . . . ...

4.1.1 Erlangian Arrivals: E./M/c . . . . . .. ... . ...

4.2 Discrete Time . . . . . . . . . o o o

Buffer Overflow in G/M/c/K Queues

5.1 Effect of Service Order and Buffer Management on Buffer Loss Correlation . . . . .
Buffer Overflow in Single-Stream Discrete-Time Queues

6.1 First-Come, First-Served . . . . . .. ... ... .. ... ..
6.2 Influence of Service and Buffer Policies . . . . . . ... .................

Summary and Future Work

Notation

A Proof of Lemma 5

Abstract

For soft real-time communication systems, packet loss due to excessive delay rather than
average delay becomes the critical performance issue. While most previous studies of real-
time systems measure loss as a time-average fraction of excessively delayed packets, this paper
characterizes the stochastic properties of time-out loss periods for infinite queues, that is, unin-
terrupted intervals during which the virtual wait is at or above some fixed threshold. We present
analytic expressions and numerical techniques for computing both “time-based” measures such
as the distribution of periods during which all arriving packets are lost due to excessive delay
as well as “packet-based” measures such as the distribution of the number of consecutively lost
packets and the number of successful packets between such periods of loss. Both continuous
and discrete-time systems are examined. It is shown that the assumption of random packet loss
severely underestimates the number of consecutively lost packets. Also, the loss period is found
to be independent of the waiting time threshold for the G/M/1 queue and DI®*°l/D/1 queue,
with very little influence for other queueing models.

Investigations into successive losses for queues with bounded waiting time and bounded
queue length show similar results. Furthermore, it is seen that bounding waiting time and
queue length also limits, as expected, the length of loss runs, with only marginal increase as the
load approaches one.

It is shown that for finite discrete-time queues, FIFO and LIFO service ordering, combined
with either front or rear discarding, engender the same loss correlation.
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1 Introduction

For soft real-time communication systems, packet loss rates rather than average delay becomes the
critical performance measure. Interactive voice, video and distributed measurement and control are
examples of such systems that impose delay constraints, but also show a certain tolerance for lost
packets. Most previous studies of real-time systems only measure loss as a time-average fraction
of missing packets [1-6]. In order to judge the “quality” of loss-prone communication, however, it
is important to know not just how many packets are being lost, but also whether losses occur in
clusters or randomly. The importance of accounting for correlated losses has long been recognized
in specifiying acceptable performance of data circuits. “An errored second is declared when one
or more bits in that second is found in error.” [7] This leads to the metric of the percentage of
error-free seconds (EFS).

Papers on packet voice reconstruction typically assume random, uncorrelated occurrence of
packet loss [8,9]; as we will show, this assumption might be overly optimistic. The work by
Shacham and Kenney [10,11] provides another example. They observed that loss correlation in a
finite-buffer system could completely eliminate the advantage of three orders of magnitude predicted
for forward-error correction under the assumption of independent (Bernoulli) losses.

In this paper, we consider a single FCFS queue with infinite buffer in isolation in which an
arriving customer! which reaches the server after waiting h or longer is considered “lost” (even
though it still receives service). We characterize the stochastic properties of the time-out loss
period, the uninterrupted interval of time during which the virtual work in the queue exceeds the
given threshold k. Given this time-based quantity, we also arrive at measures of customer-based
quantities such as the distribution of the number of consecutive customers which each spends more
than an allotted time waiting for service. We show that the assumption that each customer is
lost independently from the previous one leads to a significant underestimation of the duration of
such loss periods. Using elementary methods of probability, we also prove that for certain classes
of queues the duration of the loss period is independent of the value of the threshold, while we
show through numerical examples that for other important classes the influence of the threshold is
minimal for interesting probabilities of loss. Our numerical results also indicate that the expected
number of consecutively lost customers (for the same loss probability) varies by as much as 50%
depending on the batch arrival distribution used. We also derive measures of the time between
loss periods. Throughout the paper, emphasis is placed on providing results that can be readily
numerically evaluated.

A number of authors have investigated related aspects of the problem. Kamitake and Suda [12]
consider a discrete-time queue in which traffic is generated by a changing number of active callers,
with each active caller generating a packet in a slot according to a Bernoulli process. They compute
the steady state loss rate for a given number of active callers and then consider the variation in
the number of active callers in computing the amount of uninterrupted time from when this loss
rate first exceeds a value { until it drops below another value 7, with 7 < (. Our work differs
from [12] in that we directly characterize those periods of time in which arriving customers are lost,
rather than characterizing loss as being “quasi-stationary” during periods of times during which
the number of active sources remains constant.

Leland [13] mentions, but does not elaborate on measuring consecutive losses per connection
in an ATM simulation experiment. Woodruff and Kositpaiboon [14] mention the desirability of
specifying the probability and duration of periods of high cell loss rates. Ferrandiz and Lazar [15]
investigate the distribution of gaps, that is, consecutive losses, due to blocking and clipping (see

!The terms “customer” and “packet” will be used interchangeably.



below) in a multiclass G/G/m/B queueing system; we discuss similarities and differences between
our work and [15] in the following sections. Van Doorn [16]) and Meier-Hellstern [17,18) characterize
the overflow process from a finite Markovian queueing system. As pointed out earlier, [11] underlines
the importance of taking loss correlations into account, but investigates their effect on forward-
error correction only through simulation. A large body of literature analyzes the overflow process
of blocked-calls-cleared systems, but the results do not seem directly applicable to our problem.

The report is organized as follows. After defining more precisely the systems and measures of
interest in the section below, continuous-time queues are investigated in Section 2. In Section 3
we then apply similar methods to derive the corresponding measures for a discrete-time queue of
interest in packet switching. We conclude by summarizing the work presented and pointing out
some issues to be investigated.



2 Clip Loss in Continuous Time (G/M/1)

2.1 Performance Measures

This paper focuses on a single-server queue, where customers are processed in the order of arrival.
Customers that spend more than a deterministic, fixed amount of time k waiting for service are
tagged as lost on leaving the queue, but are still served. (Ferrandiz and Lazar [15] refer to this as
clipping loss.) This definition of loss is motivated by considerations of traffic with soft real-time
constraints, where packets that are excessively delayed are worthless to the receiver. The loss as
defined here differs from that studied in our earlier work [2], where excessively delayed customers
depart before occupying the server.

A loss period (LP) is an uninterrupted interval during which all arriving customers would
experience a waiting time exceeding h. For infinite queues with FCFS service, the loss period
equals the interval during which the virtual work in the queue is greater than the threshold A.
Loss periods and busy periods are related in that a busy period is a special case of a loss period,
with threshold value A = 0. Also, both busy periods and loss periods start with the arrival of a
customer. They differ, however, in that a busy period ends with a departure of a customer, while
the end of a loss period is not connected with a customer departure. A noloss period is the interval
between two loss periods. For h = 0, noloss periods become idle periods of the queue.

While the loss period is of independent interest, we are particularly concerned with measuring
the number of consecutively lost customers, called loss run for brevity. Note that the number of
customers arriving in a loss period is not identical to the number of consecutively lost customers.
In particular, the first customer triggering a loss period, i.e., the customer that pushes the virtual
work above h, is itself not lost. Thus, loss periods consisting of a single arrival do not contribute to
customer loss. Note that there may also be several noloss periods interspersed between two customer
losses if each of the loss periods separating the noloss periods consists of only the arrival triggering
a loss period. Similar to loss runs, success runs denote the number of consecutive customer without
any loss.

Figure 1: Virtual work sample path

Fig. 1 depicts a virtual work sample path and the measures defined above. Time proceeds along
the abscissa from left to right, while the ordinate shows the virtual work at a given instant. In the
figure, arrivals that will be tagged as lost on departure are marked with ®, the others with @. The



extent of loss periods (LP) and busy periods (BP) are indicated by horizontal bars. Bold arrows
represent initial jumps, the amount of virtual work above & at the beginning of a loss period. The
height of the vertical jumps indicates the amount of work brought to the system by an arriving
customer. The unfinished work decreases at a unit rate as the server processes Jjobs.

Let us briefly touch upon other measures of loss behavior for queueing systems. For finite queues
with m deterministic servers and bulk arrivals, at least m of the arriving packets are always served.
For an individual source, the probability of consecutive losses depends on its position within the
bulk, which might be fixed, uniformly distributed or a time-varying stochastic process, depending
on the buffer management policy. This system was treated extensively by Li [19]. Li defines as
blocking those states where the buffer is full prior to service completion.

We may also look at loss-correlation through a frequency-domain perspective. As an example,
the first-order autocorrelation coefficient of intervals between losses was measured experimentally
for a five-stage virtual circuit model with bounded waiting times. Using the von-Neumann sta-
tistic [20] as a robust estimator, it was found that the intervals between losses were essentially
uncorrelated. Autocorrelation information might be useful in comparing different buffer manage-
ment schemes or service disciplines, but cannot readily be used to predict the performance of packet
reconstruction algorithms.

The stochastic properties of the loss period or consecutive customer losses can be quantified
in the usual manner, for example through its distribution or its average duration, either in terms
of time or the number of customers affected. Details are discussed in the next two sections for
continuous and discrete-time queueing systems of interest.

As a first model, we investigate a system with general arrival process of rate A and exponential
service with rate u. The buffer is infinite, so that only loss due to excessive waiting time occurs. All
packets, regardless of whether they exceed the waiting time threshold or not, are served. (A system
where late packets are dropped will be treated later.) The special case of Poisson arrivals, i.e., the
M/M/1 system, will be treated in detail since it yields closed-form expressions for the measures
of interest. The M/M/1/co system was also investigated by Ferrandiz and Lazar [15] as a special
case of their G/G/m/ B analysis. Their analysis seems considerably more involved, does not readily
yield numerical results and does not make use of the simple connection to the busy period pointed
out here. The model is applicable, if only in approximation, to systems with variable packet sizes,
for example the PARIS network [21] or a variation of the Knockout switch [22).

Throughout this section, we will verify and illustrate our calculations through a running example
consisting of an M/M/1 queue with arrival rate A = 0.8, service rate p = 1 (and thus a load of
p = A/p = 0.8) and a clipping threshold of h = 3 so that @ = 1 - pe(*~#)* = 43.905% of all
arrivals experience a delay of more than 3 (are “lost™). The methods presented below apply equally
well at lower loss probabilities; we have chosen this (impractically) high loss to speed simulation
verification of our results through simulation.

2.2 Distribution of the G/M/1 Initial Jump and Loss Period

As pointed out above, a loss period commences when an arrival causes the virtual work to cross
the threshold A from below. In order to establish the distribution of the loss period, the following
lemma describes the distribution that governs the initial jump, i.e., the virtual work immediately
after the arrival of the first customer in a loss period.

Lemma 1 For a G/M/1 queue, the initial jump has the same distribution as the service time and
does not depend on the threshold h.



ProOF Let the random variable J represent the height of the initial jump and f;(j) its density.
The density f;(j) can be expressed through conditioning, where we define V as the virtual work
Jjust prior to the arrival of the customer whose new work pushes the virtual work above h.

h
fi3)= [ PV =olv < B
Plnew work = h + j — v|new work > h — v] dv (1)
The second conditional probability can be rewritten as
—u(h+i—
pe—#hti-v) —
e—p(h—v)

which follows immediately from the memorylessness property of the exponential distribution.
Now we can rewrite the jump density as

. P Plv= h
pl) = weow [PHZITEEN

i1 h
= ue “JWA‘ P[‘U'—’y]dy

= P‘e_“j

1
FoomflV < H

= ue—#j O
Given this property of the initial jump, the following theorem follows immediately:

Theorem 1 In a G/M/1 queueing system, a loss period is stochastically identical to a busy period.
The loss period distribution is independent of the threshold h. For G/G/1 queues, a loss period is
stochastically identical to a busy period with special first service.

Busy periods with special (or exceptional) first service are covered by Wolff {23, p. 392-394).

The independence of the loss behavior from the threshold recalls a similar observation made by
Li [19] regarding the buffer overflow process in a packet voice system. There, the time spent in the
overload state was found to be independent of the buffer size.

Let the random variable L denote the time duration of a loss period. Then, given Theorem 1,
busy and loss periods for the M/M/1 queue have the density [24, p. 215]

fo(y) = y—;;e-“ﬂ)mzy\/m

and mean
1 1 1

=X pl-p’
where I;(y) is the modified Bessel function of the first kind of order one. The distribution is best
computed by numerical integration.

For non-G/M/1 queues, the computation of the initial jump can be difficult. In general, the
relationship

E[L] =

. b w(v)b(h+j - v)

11G6)= || W= B(h - v))
holds, where b(z), w(z), B(z) and W(z) are the densities and distributions of arriving work and
the virtual work seen by the arrival, respectively.

However, some stochastic ordering results for busy periods with special first service and loss
periods may be of interest.

dv




Lemma 2 The loss period for a G /GI/1 queue is stochastically longer than (shorter than) a busy
period if the initial jump is stochastically larger (smaller) than a service duration.

Proor We prove the first, non-parenthesized part; the other proceeds similarly. Let the random
variables X and Y denote a regular service time and an initial Jjump, respectively. From the coupling
theorem (see [25, Proposition 8.2.2]), we know that if Y >, X , then there exist random variables
X and ¥, with the same distributions as X andY,suchthat ¥ > X i.e., P(Y > X) = 1. Without
changing the duration of the loss period, we preempt the first customer after X and then complete
its service in ¥ — X at the conclusion of the loss period. Denote the sum of the service periods
of the remaining customers in the busy or loss period by S and the extension of the loss period

caused by arrivals during the Y — X segment as E. Since
X’+S>a=>)2’+5+(}-’—).()+E>a,

we write ) ; } N
P[X+S+(Y—X)+E>a]2P[X+S>a],

from which the stochastic inequality for the coupled loss and busy periods follows. Finally, we
uncondition to make the result apply to any busy and loss period.

Alternatively, we can argue by using (25, Example 8.2(a)], where it is shown that fN,...,Y,) >4
f(Xy,...,X,) for any increasing function f if Y; >, X; and given that X3,..., X, and ¥3,...,Y,
are independent. Clearly, the length of the busy period is an increasing function (the sum) of the
service periods that constitute it. O

Using this lemma, it is easy to show the following general relation between loss periods and
service times.

Theorem 2 If the service time has decreasing failure rate (DFR ), the loss period is stochastically
longer than a busy period. Conversely, for service times with inreasing failure rate (IFR ), the loss
period is stochastically shorter than a busy period.

Proor In [25, Proposition 8.1.3), it is shown that iff X is DFR, then X; >, X and iff X is IFR,
then X; <. X. This is true for any value of ¢.

Let the conditional random variable X, denote the initial jump initiating a random loss period,
given that the amount of service time needed to reach from the virtual work to h equals t. Let X’
be the unconditional initial jump and X the service time. We show the proposition for the IFR
case; it follows for the DFR case by reversing the relational operators.

If X is IFR, then X, <, X, so that

P[Xtr< .X] > P[X < 22].
X' can be computed from X ¢ by removing the condition:
PIX' <z = f P[X, < z]dF,(t)
0
Thus,
oo (= <]
PIX'<z]= / P[X, < z]dF,(t) > / P[X < z)dF,(t),= P[X < a].
0 0

In other words,
X ! Sst X )

from which Lemma 2 yields the proposition. O



Note that the initial jump does not equal X, for any one t. As an example, consider the M /D/1
queue with unit service time. The survivor function of the residual service time is given by

F(t+a) _{ 1 fort+a<l

Fi(a) = F‘(t) ~ ] 0 otherwise

for t < 1 and undefined otherwise. Thus, the density is zero everywhere except at the point t+a = 1.
The initial jump, on the other hand, is given by

P[J=j]=P[V=h=-1+jV<Ah

A closed-form expression for the distribution of the virtual wait for the M/D /1 is not available,
so that the above equation cannot be further simplified. However, Theorem 2 tells us that the
loss period will be stochastically shorter than busy periods. In particular, the mean loss period
will be less than 1/(1 — p). The simulation data in Table 1 shows that the expected initial jump
and, consequently, the expected loss period depend only weakly on A for “interesting” values of
h. 1t is conjectured that this property holds for general queueing systems. A possible justification

can be sought in the exponential form of Kingman’s approximation for the tail of the waiting time
distribution [26, p. 45].

h initial jump loss period

0.0 1.000 5.00
0.2 0.815 4.07
0.5 0.588 2.93
1.0 0.567 2.82
2.0 0.483 2.39
3.0 0.467 2.32
5.0 0.465 2.31
Table 1:

2.3 Consecutive Customers Lost

While the duration of a loss period is distributed like the duration of a busy period, we recall from
Section 2.1 that the number of consecutive customers lost does not have the same distribution as
the number of customers in a busy period. Defining C¢c and Cp as the number of consecutively
lost customers and the number of customers in a busy period, respectively, we have

P[Cp =n+1]
P[Cg>1] °’

where P[Cp > 1] is the probability that the busy period contains more than one customer.
Let us apply these results to the M/M/1 queue. With P[Cp = n] given by [24, Eq. (5.157)]

P[Cc =n]= n>0

1 2n -2 n— -2n
P[ngnlzz(:'_l)p 1(1+p)12,n>0

we compute

1 P
PlCg>1]=1-PlCg=1]=1-— =
[Cs > 1] (Cs=1] T5p - 147



Thus,

_,_ 1 fan) prn?
P[Cc—n]— n+1(n)(1+p)2"’ n > 0.

Note that this result differs markedly from the geometric distribution postulated by Ferrandiz
[15, Corollary 5.3].

Since the average number of customers per busy period is 1 /(1—p), we have that for the M/M/1
queue the average number of consecutive customers lost is

1 1 1+p

This result differs markedly from that obtained under the assumption that losses occur indepen-
dently as Bernoulli events with the time-average loss probability a. In that case, the conditional
probability mass function (pmf), given one loss, for the number of consecutive losses would be
distributed geometrically as

PlCc =n]=a™ (1 - a)

with an average value of E[C¢] = 1/(1- a). For our running example, the independence assumption
leads one to conclude that a loss period consists of 1.78 customers on average, while our analysis
above shows that the actual number for this system is 9. Thus, customer losses are far more
clustered than the assumption of independent losses would suggest.

An additional characterization of loss periods is provided by the conditional probability of packet
loss given that the previous packet was lost, denoted here by r. It is directly related to the average
loss run length, E[Cc], through [15, eq. (5.1)]

E[Cc] = zl+r+r2+...

1-»
1
= 1= —=.
E[Cc]

For the M/M/1 case,

r= 2p
T l4p

The clustering of losses in a queueing system is naturally also reflected in this measure. For our
M/M/1 example, the conditional loss probability equals 0.89, while the assumption of independent
losses would result in a conditional loss probability » equal to the loss probability a, which evaluates
to 0.44 for our running example.

2.4 Distribution of Noloss Period

The distribution of the time between loss periods is more difficult to determine. This interloss time
comprises the interval between the time the virtual work W drops below h from above up to the
first time instance it rises above this mark again, i.e., the event min{t : W(t) = h|W(0) = h}.
The sample path with respect to time ¢ of this stochastic process is continuous in time and right-
continuous in state, with drift of rate ¢t and Jumps of exponential height at Poisson intervals. The
difficulty appears since the process is “sticky” at the zero line, with dwell time corresponding to
the interarrival (or queue idle time) distribution. We are interested in the distribution of the time
to absorption of this process at the W = h barrier.

10



To make the problem tractable, a Markovian arrival process has to be assumed; otherwise the
duration of the noloss period would depend on the time of the last arrival during the preceding loss
period. Thus, the computation of this section will be limited to the M /G/1 model.

Aspects of this problem or approximations of it appear in a number of applied stochastic
models [27]. In collective risk theory [28] the insurance company starts out with some fixed capital,
increasing through premiums at a constant rate and decreased (or increased) by claims occurring
at Poisson instants. Of interest is the time until the capital reaches zero, that is, the company is
ruined. To model noloss periods, the capital would represent the mirror image of the virtual work,
with an initial value of zero. However, the model does not allow for the fact that the state cannot
exceed h (idle system). Thus, it would tend to overestimate the duration of the noloss period
and be most suitable for heavy traffic where the idle period is short. It would give exact results,
however, for t < h since the system cannot have reached h by that time.

We select a model involving an approximation that is based on the so-called Moran dam model
(29,30] [31, p. 336f] [32, p. 200]. In this model, the water content of a dam or Teservoir is
represented by a continuous or discrete-state, discrete-time homogeneous Markov process. For
reasons of computability, we choose a discrete-state representation, yielding a discrete-time Markov
chain (DTMC). Time is discretized in quantities of 7, a fraction of the service time, and the Markov
chain tracks the virtual work W,, in the queue at epochs of integer multiples of 7. Thus, the Markov
chain has k = h/7 states. At the end of each discretization interval, at (n7)~, the virtual work,
if positive, decreases by one unit, reflecting the fact that the virtual work decreases at unit rate.
Arrivals bring in an amount of work X,, again in multiples of 7, and occur just after the beginning
of the discretization interval, at (n7)*. The noloss period ends as soon as the virtual work reaches
h or state k — 1. We model this by making state k — 1 an absorbing state and compute the duration
of the noloss period as the time to absorption into & — 1. Given this description of the DTMC, we
can write the state evolution recursively as

Wot1 = min(k, W, + X,,) - min(1, W, + X,,).

Let us define aj, as the probability that k units of work of size 7 arrive. Also, denote the comple-
mentary cumulative distribution function g; as

00 i-1
g; =Zaj=l—z:aj.

i=j i=0

The state transition matrix follows readily:

[ 0 1 ... k=2 k-17
0 a+a a; ap-1 gk
P = 1 ao 151 Qp—2 grk-1 (3)
k-2 0 0 a, g2
| k-1 0 0 0 1

The last row stems from the fact that state k — 1 is absorbing. The state transition probabilities
are computed as

ej = P[rj < X < 7(j +1)], (4)
where X is the amount of work arriving in a slot. We know that the accumulated work from n
arrivals in a G/M/c system is Erlang-n distributed with density

n(unz )1
f(z) = pmpnz) (‘Ii(n)) e~ HE,

11



and cumulative distribution function F(z) = P(n, uz), where P(a, z) is the normalized incomplete
gamma function

A7(aaz)_ 1 z —tia-1
P(G,KB)—W—TG‘)./O et dt.

The distribution of arriving work needed in evaluating Eq. (4) is hence given by

PlX<z] = Y PX<zn arrivals] P[n arrivals]

n=0

-AT = —'rATn
= e + Y P(n,pz)e> (_nT)

n=1

The distribution of the time to absorption can be computed in two basic ways. First, since the
probability of having been absorbed by the nth transition is simply the probability that the DTMC
is in state k — 1 after n steps, we can use the basic state probability equation in its recursive or
matrix-power form,

7™ = 7(n-1)p — L(0)pn

where 7(0) = (0,0...0,1,0),i.e., k — 2 is the initial state. The matrix power form can be evaluated
as a special case of the general relationship for any functional [ of a matrix, given by f(P) =
Vf(A)V~1, where V is the matrix of eigenvectors of P and the function [ is applied element-by-
element to the diagonal matrix of eigenvalues A [33, p. 8]. The eigenvalue approach may be more
accurate for large values of n.

The other alternative defines fi(l") as the probability that the system first enters state ! after
n steps, given the initial state is i. To use the first-passage formulation, the matrix P has to be
returned to its recurrent form by replacing the last row with (0,...,0,aq,91). It is readily seen
that this first-passage pmf is recursively defined for all transition matrices as

i = Piferi=o,1,... (5)
£ = 3 Py (6)
il

We obtain a lower bound on the cumulative probability by using k — 2 as the initial state, an upper
bound by using &k — 1.

Sample calculations showed that state equations, matrix computations and the approach using
fa yield the same numerical result to within four significant figures, indicating that roundoff errors
are not a serious problem here. Also, the computational effort is about the same.

The discretization error incurred by using a particular value of 7 can be estimated by computing
the expected duration of the noloss period. Since the fraction of packets lost, a, is related to the
expected loss period E[L] and the expected noloss period E[N] by?

_ - E[I]
= E[I]+ E[N] (7)

the expected noloss period can be computed as

mm=Eum§-Q;

2Replacing a by the load, p, noloss and loss periods by idle and busy periods yields the well-known relation for
busy cycles, again underlining the strong connection between loss and busy periods.

12



Given the DTMC approximating the virtual work process, the expected noloss period (equivalent
to the time to absorption) can be computed as

s= (1) )
k-1

where 7} _, is the steady-state probability that the return process corresponding to the DTMC
is in state k — 1. The transition probability matrix of the return process is derived from P by
replacing the last row with all zeros, except for a one in column k — 2. This relationship is derived
in [34, p. 112, Problem 3] for the case of two absorbing states, but the result generalizes readily to
any number of absorbing states (see also [35, p. 103]).

For our example, the exact value of E[N]is 6.388. For the discretization with 7 = 0.1, Eq. (8)
yields a value of 6.109, which improves to 6.237 and 6.327 for T = 0.05 and 7 = 0.02, respectively.

2.5 Customers per Noloss Period

It appears difficult to derive an expression for the distribution of the number of customers in a noloss
period. The expected value, however, is readily available since the average number of customer
arrivals during loss periods, E[Cy], and noloss periods, E[Cp], are related in a similar fashion as
the respective duration measures, Eq. (7), yielding

E[CL]
E[CL] + E[CN]

ElCy] = E[Ci] (2-1).

a

The difficulty in determining the distribution arises due to the fact that noloss periods do not
“see” the same Poisson arrival process with rate A as a random observer, just as the the arrival
rate measured during busy periods is higher than the arrival rate measured over all customers.
Thus, the conditional probability of the number of arrivals given a noloss period duration cannot
be readily computed.

2.6 Simulation Experiments

A simulation experiment for our running example was performed to lend credence to the perfor-
mance measures computed in the sections above. The simulation extended over 500000 customers
and encompassed 55936 loss and noloss periods.

The comparison between simulation and analysis is carried out in Table 2 for expected values,
in Table 3 for the cumulative distributions (of initial jump, loss period duration and customers per
loss period) and in Table 4 for the distribution of the noloss period. The results in the latter two
tables are also depicted in Fig. 2 and Fig. 3.

The numerical values for the duration of the noloss period were computed using Eq. (6). The
lower and upper value of the range indicated for each value of T were computed with starting states
k-2 and k — 1, respectively. In all cases, the range falls within the 90% confidence interval.

For all parameters, the tables and figures show that numerical and simulation results agree
quite closely, in the case of noloss measures even for the relatively coarse value of 7 = 0.1, with
agreement improving on the tail of the distribution.
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Performance measure Theory Simulation
Waiting time 4.00 3.774... 3.942
System time 5.00 4.771... 4.941
Customer loss, % 43.91 43.034

Idle period 1.25 1.241... 1.255
Busy period 5.00 4.825... 5.004
Customers per busy period 5.00 4.844... 5.002
Initial jump 1.00 9.851... 1.004
Loss period 5.00 4.756... 4.883
Consecutive customers lost 9.00 8.618... 8.818
Noloss period 6.39 6.267... 6.470
Customers per noloss period 11.50 11.330...11.750
Conditional loss probability 0.89 0.884... 0.887

Table 2: Expected values of selected performance measures for our running example

z Initial - Length of Number of

jump loss period customers/LP
Anal. Simul. | Anal. Simul. | Anal. Simul.
0.6321 0.6338 | 0.5032 0.5055 | 0.3086 0.3089
0.8647 0.8668 | 0.6592 0.6628 | 0.4611 0.4639
0.9502 0.9512 | 0.7354 0.7386 | 0.5551 0.5580
0.9817 0.9823 | 0.7818 0.7851 | 0.6202 0.6242
0.9933 0.9934 | 0.8136 0.8176 | 0.6684 0.6725
0.9975 0.9976 | 0.8372 0.8413 | 0.7058 0.7107
0.9991 0.9991 | 0.8553 0.8587 | 0.7358 0.7394
0.9997 0.9997 | 0.8698 0.8738 | 0.7605 0.7649
0.9999 0.9998 | 0.8818 0.8852 | 0.7812 0.7851
10 | 1.0000 1.0000 | 0.8918 0.8947 | 0.7989 0.8038
11 | 1.0000 1.0000 | 0.9003 0.9026 | 0.8142 0.8184
12 1 1.0000 1.0000 | 0.9077 0.9104 | 0.8275 0.8318
13 | 1.0000 1.0000 | 0.9143 0.9173 | 0.8393 0.8428
14 | 1.0000 1.0000 | 0.9199 0.9231 | 0.8497 0.8545
15 | 1.0000 1.0000 | 0.9250 0.9283 | 0.8591

00 =3 O O QO =

©

Table 3: Cumulative distributions for selected performance measures; analysis and simulation
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Figure 2: Cumulative distributions for selected performance measures; analysis and simulation

DTMC approximation Simulation

t 7=0.1 7=0.05 7= 0.02
10.3899...0.4180 0.3962...0.4104 0.4000...0.4057 0.4014
2| 0.5168...0.5459 0.5221...0.5368 0.5253...0.5312 0.5263
3 | 0.5807...0.6083 0.5846...0.5986 0.5869...0.5925 0.5872
4 10.6236...0.6490 0.6257...0.6386 0.6269...0.6322 0.6279
5 [ 0.6591...0.6822 0.6595...0.6714 0.6597...0.6645 0.6608
6 | 0.6905...0.7115 0.6895...0.7003 0.6888...0.6932 0.6889
710.7188...0.7379 0.7166...0.7265 0.7152...0.7192 0.7147
81 0.7445...0.7619 0.7413...0.7504 0.7393...0.7430 0.7387
9 [0.7678...0.7836 0.7639...0.7721 0.7614.. .0.7648 0.7607
10 | 0.7890...0.8034 0.7845...0.7920 0.7816...0.7847 0.7813
11 | 0.8083...0.8213 0.8033...0.8101 0.8000...0.8029 0.7998
12 | 0.8258...0.8376 0.8204...0.8267 0.8170...0.8195 0.8162
13 | 0.8417...0.8524 0.8361...0.8418 0.8324...0.8348 0.8312
14 | 0.8562...0.8659 0.8503...0.8556 0.8466...0.8488 0.8443
15| 0.8693...0.8782 0.8634...0.8681 0.8596...0.8616 0.8566

Table 4: Approximation of distribution of noloss period
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Figure 3: Approximation of distribution of noloss period for M /M/1 queue
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3 Clip Loss in Discrete-time Systems

We now turn our attention to a queueing model that is commonly used for packet switches and
ATM-type networks [36,37). In this model, time is discretized, with deterministic service (of
duration 7 = 1) and batch arrivals, which, in many instances, allow somewhat simpler solutions
than their continuous-time counterparts. Batches arrive at the beginning of a slot of unit width,
while at most one customer departs at the end of a slot. (Hunter (38, p. 193] refers to this as an
early arrival system.) We allow the batch size, A, to have a general distribution, but require the
batch sizes to be independent from slot to slot and independent of the state of the queue itself.

We will say that batch sizes are geometrically distributed if their probability mass function
(pmf) is @, = pg", with ¢ = 1 - p and an average batch size of p = q/p. We will also cover the
Poisson distribution with mean Ps

-pan

= ° for n € [0, 00),

n!

and the binomial distribution with mean p=vp,

_) Bp¢"™ forne [0, 7]
=10 otherwise

While numeric solutions are possible for general batch size distributions, a queue with geometric
batch sizes, i.e., the system DIGee] /D/1, will be shown to share the identity between busy period
and loss period described in Section 2 for the continuous-time GI/M/1 system. Also, restricting
batch sizes to be geometrically distributed will yield closed-form expressions for many distributions
of interest. Due to the close relationship between busy and loss periods, we will investigate busy
periods in some detail in Section 3.1, followed by derivations of the properties of loss and noloss
periods in sections 3.2 and 3.3, respectively.

3.1 The Busy and Idle Period

In discrete-time systems, we define that a busy period begins when the first customer in a batch
experiences no waiting, i.e., finds the server free. Note that, unlike in continuous time, a server may
be continuously occupied for more than one busy period. This occurs if the last customer in a busy
period, departing in (n", n), is immediately followed by one or more new arrivals in (n,n*). Thus,
the first customer in that batch enters service immediately, starting a new busy period, while the
server experiences no idle slot. Later, we will discuss the composite busy period which encompasses
time intervals without server idling, consisting of one or more busy periods.

Let us return now to the busy period and compute its distribution. Because each customer
occupies the server for one slot, duration and number of customers served are equal in the discrete-
time case. For geometric batches®, we can compute the number of customers in a busy period by
making use of Takacs combinatorial arguments (39, p. 102f], [24, p. 225f]. Let B be the number
served in a busy period and A, the number of arrivals during the service times of customers 1
through n, where no assumption is made as to whether these n customers belong to the same busy
period(s).

3The ensuing development requires that the work arriving during the service of each customer be i.i.d.. For batch
arrivals, the arrivals that occur while the first customer is being serviced consist of the batch starting the busy period
minus one. The distribution of this “shortened” batch has the same distribution as a regular batch only if batches are
geometrically distributed. For other batch distributions, the following calculations can serve as an approximation.
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The probability mass function of the number served in a busy period is given by [24, Eq. (5.166)]
P[B=n]= %P[/in =n-1].

For the case of deterministic service and batch size distribution a,, the probability on the
right-hand side can be readily derived:

P[A, =n-1]= P[n—1 arrivals in n slots] = al2",.

Here, a7* denotes the n-fold convolution of a,, with itself. For the case of geometrically distributed
batches, the convolution becomes the negative binomial or Pascal distribution with probability

mass function
u r+n-1
a, = ( n )p'q“-

Thus, the busy period for geometric batches is distributed according to

PB=n) = qin(zj_‘f)(qp)" ©)
= ;1;(2:_' 12)p"-1(1+p)1-2". (10)

The last transformation makes use of the fact that the system load p is related to the batch
distribution parameter p through p = 1/(1+ p)- We recognize the last expression as the distribution
of the number of customers served in an M/M/1 busy period [24, p. 218).

The z-transform of the number served in a busy period, B(z), follows from the M/M/1-
derivation [24, p. 218):

B(z)=1+p[1— 1 4pz |  1-+/1-4pgz

2p S (1+p2] T 2g (11)

The expected number served (and arriving) in a busy period can be computed by evaluating an
infinite series using Eq. (11) or directly copying the M /M/1 result:

b 1
E[B)= Y nP[B=n]= \/1f4pq =i
n=1

The idle period I for general batch sizes is geometrically distributed with density P[I = n] =
ag(1 - ao),n > 0. Recall that ao is the probability of a batch having zero members. Thus, the
average idle period is given by ag/(1 — ag). For geometric batch sizes, ap = p and thus an idle
period last an average of 1/p slots.

In contrast to the continuous-time case, an idle period may have zero duration. This occurs if
a new batch arrives immediately after the last customer of a busy period departs. We will call a
period of continuous server occupancy spanning several busy periods a composite busy period and
identify random variables associated with it by a tilde. A composite busy period consists of ¢ busy
periods with the geometric probability P[¢ = k] = (1 - ag)*1ao. In the z-transform domain, the
number of customers in the composite busy period, B, is determined as B(z) = #(B(z)), where

9(z) = 1 fZqz
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is the probability generating function of the number of busy period constituting a composite busy
period.

For geometric batches, B(z) can be expanded using Eq. (11):

By - PL-VITHE
- gl++/1-4pgz
Ppl-2{1—4pgz+1- 4dpqz

q 4pqz
_ 1 11-+1-4pgz p
2q 2q q

The bracketed fraction is recognized as B(z) and thus B (2) can be inverted easily, yielding

Ao = ()

gn+1\n (1+ p)nt2
1 (2a)! pn?
R F L (AR (11 )

(n>1).

The expected number of customers in a composite busy period (and its expected duration in slots)
is seen to be

515) = 5(8) 5lg) = 22,
in general or .
E[B) = 1—%

for geometric batches.

3.2 The Loss Period

A loss period begins when one or more customers arriving in a batch see h or more customers
already in the system (in other words, if their wait is equal to or greater than h.) Thus, a busy
period is (again) a special case of a loss period with A having the value zero. A loss period ends
when there are h or fewer customers left after a departure. Just as discussed above for the case
of busy periods, a loss period may be followed immediately by another loss period. This occurs if
the number of customers reaches h at some point 7, i.e., the loss period ends, and a batch arrives
in (n,n*), starting a new loss period. An uninterrupted interval where the number of customers
in the system just prior to an arrival never drops below h (or, equivalently, where the occupancy
after the arrival instants remains above h) will be referred to as a composite loss period. Clearly,
it consists of an integral number of loss periods.* The random variables L and L represent the
loss period and composite loss period, respectively, while the random variable V represents the
occupancy on the slot boundary, equivalent to the work in the queue seen by an arriving batch
(virtual work). Because of the deterministic service time and the slotted arrivals, duration and
customer count properties are the same, i.e., a loss period of ! slots leads to ! consecutive losses.

Fig. 4 depicts an example of a sample path showing a composite loss period made up of two
loss periods (LPs) for a threshold of h = 3.

Just like for the continuous-time case, we are interested in determining the distribution of the
initial jump J, that is, the work load or, equivalently, the number of customers that begins a loss

*However, unlike in the M /M /1-case, we do not have to factor out the single-customer busy periods.
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Figure 4: Loss periods in discrete time (h = 3)

period. Fig. 4, for example, shows two initial jumps, one occurring at the arrival of batch {c... f},
with a height of two, and the second at the arrival of {9}, with a height of one.

Lemma 3 The initial jump J into a loss period has the distribution

Temi ™ P[Vh = h+j - aPl4 = a]

P[J = J] = min(h,v) )
>2h) Pl > h— a)P[A = o] + P[4 > A]

where the distribution of the batch size random variable A is zero outside the range [0,v] and the
conditional system occupancy distribution seen by an arriving batch is defined as
s PV =1]

PIVe == 5y

PrOOF We sum the probabilities of all events leading to a jump of size j (given that a jump

occurred), noting that the random variables A and V are independent. Thus, we have for jumps
into loss periods,

P[J = 4]

= ) PlVa=vNnAd=ad+Vi>h
v+a=h+j
Ev+a=h+wP[Vh=‘UﬂA= aNA+V, > h]

P[A+ Vs> A
2otazhiw P[Va = v]P[A = d]
Ev+a>h P[Vh = 'U]P[A = a]
_ yonlhi¥) ply, = h 4 j - a]P[A = d]
ST PV, > h - P[4 =a] + P[A> ]
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Among loss periods, we have to distinguish those that form the first loss period in a composite loss
period. While an arriving batch that starts a loss period may see between 0 and A in the system,
a batch that initiates a composite loss period, i.e., the initial jump conditioned on the fact that
the loss period is the first in a composite loss period, can see at most h — 1 customers. Thus, the
following lemma provides a separate expression for the jump into a composite loss period, J.

Lemma 4 The initial jump into a composite loss period J has the distribution
Saektd#) P[Viho1 = h+ j — a]P[A = d]
o=2 PVaio1 > h—a|P[A=a)+ P[A > &]

The derivation of P[J] proceeds as in the proof of the previous lemma.

Finally, initial jumps of all but the first loss period within a composite loss period always start
at h. Since the queue occupancy seen by an arriving batch and the batch size itself are independent,
the jump into these “interior” loss periods is distributed like a regular non-zero batch.

In close parallel to the continuous-time case, the memorylessness property of the geometric
distribution makes the distribution of both types of initial jump a shifted version of the batch
distribution, independent of h. We formulate more precisely in a lemma:

P[J =j]=

Lemma 5 For the DIGee] /D/[1 queue, the initial jump J and the initial Jump into composite loss
periods J are distributed like non-zero batches, with pmf P[] = j] = P[J = j] = pgi-1 = pi-1 /(p+
1)7,

The derivation of this invariance property is algebraically rather tedious and relegated to the
appendix.

Given the characteristics of the initial jump, the (composite) loss period are seen to be stocha-
stically identical to (composite) busy periods with a special first service given by the initial Jjump
distribution. By the previous lemma, loss periods in a system with geometric batch arrivals have
the same distribution as regular busy periods of the same system. Since the members of a batch
that initiate a loss period also experience delays of at least h, the number of customers lost in a
loss period and the number served in a busy period with the above-mentioned special first service
are stochastically identical as well.

For general batch-size distributions, the probabilities for loss periods of length one can easily
be written down exactly:

P[L = 1] = P[J = 1]

PIL=1] = P[J=1]a
Closed-form expressions for measures of I and I for longer durations seem difficult to obtain, howe-
ver. We therefore model the queue state during loss periods as a discrete-time Markov chain with
an absorbing state. Since the composite loss period is of greater practical significance, indicating
the number of consecutively lost customers, we will focus on this random variable for the remainder
of this section. The states of the chain indicate the amount of unfinished work above h just after
a batch has arrived. For computational reasons, we truncate the transition matrix to K + 2 states
and write

01 2 ... K K+1
0 1 0 0 ... o0 0
P 1 a a @ ... ag 1-YK, Py;
= 2 0 a a ... ag 1‘2;':0 Py;
| K4+1(0 0 0 ... aq 1-ao A
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Note that the zero state is absorbing since the loss period ends when the amount of unfinished work
above h reaches zero. We therefore obtain the duration of a composite loss period by evaluating
the chain’s absorption probabilities over time, given the initial state probabilities determined by
the distribution of the initial jump, also truncated to X + 2 values.®

Since the distribution of the composite loss probability typically has very long tails, computing
its expected value through summation of the weighted probabilities was found to be numerically
inaccurate and computationally expensive. However, an alternative approach exists [41, p. 425).
Let d; be the expected time to absorption into state 0, starting at state j. By the law of total
probability, we can write a system of linear equations

K+1
d; = Z Pjrd + 1.
k=1

In matrix from, the linear system consists of the P matrix with its first row and column removed.

It is instructive to compare the computational costs of the first method, based on the probability
density function, to those of the second, based on solving the linear system. The first method
requires a matrix multiplication for each time step. If we assume that the time horizon is of
the same magnitude as K (judging from examples, a value of 10K seems more appropriate for
comparative accuracy), the computational cost is approximately O(K*), while the solution of the
linear system is a O(K®) operation.

The expected value is also of interest in estimating the effect of truncating the transition pro-
bability matrix P and the time horizon in computing the distribution of L. Typically, little change
is observed for values of K above 30 to 50.

Note that the methods presented in this section can also be used to compute the composite busy
period of queues of the D[G]/ D/1 type. Finally, the conditional loss probability may be evaluated
as detailed in Section 2.3.

3.3 The Noloss Period

The state evolution during a noloss period can also be modeled by a discrete-time transient Markov
chain with initial state k. Unlike in the continuous-time case, this model is exact. Since the number
of possible states is limited to h + 1 (including the absorbing state h + 1 representing a new loss
period), no truncation error is incurred.

We track the number of customers in the system just after arrivals, at nt. Since we cannot
easily accommodate zero first-passage times, we compute the conditional pmf of noloss periods
lasting at least one slot. The pmf of the unconditional loss period is then simply the conditional
pmf scaled by ag. We denote the respective random variables by N’ and N.

The transition probability matrix is similar to the one used to approximate the noloss period
for the continuous-time case, Eq. (3), but since there are no departures when the system is empty,

®For the tail of the loss-period, this random walk with drift and one absorbing barrier may be represented by the
corresponding Brownian motion [40, p. 437).
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the first and second row are identical.

[ 0 1 ... h-=1 h h+1]
0 la a Gh-1 Gn  Ghp1
1 la a Gh-1 Gh Ghp1
P = -
h — 1 0 0 ay a9 g3
h 0 0 % a g
| h+1]|0 0 0 0 1 |

where

g k-1
gk=Zaj=1—Zaj.

. =k =0
The expected length of the noloss period can be obtained as in the continuous-time case by

evaluating the steady-state probabilities of the return process. The state transition matrix of the

return process is derived from the matrix P by replacing the last row (h + 1) with zeros except for
a one in column k (see Eq. (8)).

Possibly due to batch effects, the relation

_1 B 1 E[L]
" PE[L)+ E[N]) ~ pE[L]+ E[N]

between a, the loss probability and the expected composite loss period, E[z], and expected con-
ditional noloss period, E[N ], holds exactly for geometric batches (due to their memorylessness
property), but only approximately otherwise. The correction factor 1 /p accounts for the fact that
ap packets with excessive waiting time complete service.

The expected number of consecutive successful customers can be computed as discussed in
Section 2.5.

Table 5 lists expectations of the performance measures computed for the standard discrete time
queues for a load of p = 0.8 and a threshold & = 3. The values were verified by simulation.

Batch size | qq @ E[J] E[J) E[L) E[I] E[N] E[N]
Geometric | 0.5556 0.51200 1.800 1.800 5.000 9.000 7.2071 12.9727
Poisson  |0.4493 0.29738 1.371 1.272 2857 6.358 9.1509 20.3670
Binomial | 04182 0.22947 1.286 1.162 2.431 5.812 10.8095 25.8477

Table 5: Measures of the loss period and related quantities for h =3, p = 0.8, » = 5 and K = 50

3.4 Numerical Examples

For a first impression of the behavior of the loss period, we plot the mean value of the composite loss
period as a function of the system load p in Fig. 5. As expected, the curves follow the characteristic
pattern of loss probability and delay curves for queueing systems, with a gradual rise up to a
“knee” point, followed by a region of high sensitivity to p for high loads. Exhibiting a pattern that

will be seen in the following curves as well, the geometric case is clearly separated from the other
distributions, which track each other closely in mean composite loss period.
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Figure 5: Expected composite loss period as a function of system load for h = 5
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We stated as Lemma 5 that the distribution of the initial jump and (composite) loss period of
the DIG¢l/D/1 queue are independent of the threshold h. It seems therefore natural to investigate
to what extent these quantities depend on h for other batch distributions commonly used for
modeling data communication systems. As an example, consider the Poisson distribution and
binomial distribution® with an average batch size of p = 0.8. For values of h ranging from 3 on
up (corresponding to losses of about 30% and less), Table 6 shows that h plays no significant
role in E[J] and consequently E[L]. (The same observation also holds for the distribution, not
shown here.) It other words, for loss probabilities of practical interest, the loss period is basically
independent of the threshold.

Poisson Binomial (v = 2)
h| o EJ] Efl| o EJ] E[
0| 1.0000 1.453 7.264[1.0000 1.25 6.25
1]0.6936 1.304 6.520 | 0.5556 1.00 5.00
204569 1.275 6.376 | 0.2469 1.00 5.00
3102974 1.272 6.358 | 0.1097 1.00 5.00
4101933 1.272 6.358 | 0.0488 1.00 5.00
5101256 1.272 6.358 | 0.0217 1.00 5.00
6 | 0.0816 1.272 6.358 | 0.0096 1.00 5.00
710.0531 1.272 6.358 { 0.0043 1.00 5.00
810.0345 1.272 6.358 | 0.0019 1.00 5.00
10 | 0.0146 1.272 6.358 | 0.0004 1.00 5.00

Table 6: Probability of loss, expected composite loss period and jump for Poisson batches as a
function of A for p = 0.8

Batch a=0.01 a=0.1 a=06

distribution p E[IL] ratio| p E [I] ratio| E[L] ratio
Geometric 0.398 2.323 1.00 | 0.631 4.42 1.00|0.904 19.72 1.00
Poisson 0.595 2.937 1.26 | 0.780 5.74 1.30 | 0.948 25.57 1.30
Binomial (N =10) | 0.655 3.075 1.32|0.798 6.03 1.36 0.953 26.96 1.37
Binomial (N =5) | 0.624 3.254 1.40] 0817 6.39 1.45 0.958 28.63 1.45

Table 7: Expected composite loss period for fixed probability of loss; h = 5

As a final comparison, we adjust the load p so that the loss probability a remains constant over
all distributions, as shown in Tab. 7. The column labeled “ratio” depicts the ratio of the expected
composite loss period for each distribution with respect to the geometric distribution. It can be
seen that the difference is relatively small, on the order of less than 40%, and, surprisingly, increases
only slightly with increasing loss probability.

The distribution of the composite loss period is shown in Fig. 6. It is seen here that the
distributions differ little for small composite loss periods, with most of the difference in expectation

®The value of » = 2 used here is the smallest non-trivial value. As v increases, the behavior should approach that
of the Poisson distribution.
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Figure 6: Probability mass function of the composite loss period fora = 0.1 and h = 5
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caused by the divergence in the tail of the distribution. The loss period for geometric batches tails
off significantly faster than those for the either the Poisson or the binomial distribution.
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4 Queues with Bounded Waiting Time

4.1 Continuous Time

In our earlier analysis in this report, we had assumed that all customers, including those exceeding
the waiting time threshold A, are served. In this section, we consider the case when excessively
delayed customers are dropped by the server. The queueing model with Poisson arrivals and
exponential service was considered in [43] (called FIFO-TO there) and (2] (labelled FIFO-BW).

For exponential service, multiple servers can be handled without difficulty as the c-server system
acts like a single, faster server with rate cpt during loss periods. (Departures from the servers occur
as the minimum of exponential service times and interdeparture times are therefore exponentially
distributed with rate cu.)

Let us briefly review the terminology established earlier in this report. A loss period commences
when an arrival causes the virtual work to cross a given threshold h from below. The amount of
work that exceeds h at that instant is called the initial Jump. It was shown in Theorem 1 that the
height of the initial jump is independent of k for G [/M/c systems.

Since customers that arrive during a loss period do not enter the system, the duration of
the loss period is completely determined by the height of the initial jump J. To determine the
distribution of the number of consecutively lost customers (the loss run), we compute the number
of arrivals during a random interval of length J. For non-Poisson arrivals, it needs to be taken into
account that the interval J has an arrival at its beginning. Thus, while the relationship is general,
closed-form computation is most likely limited to G /M/c queues due to the independence property
noted above. The pmf of the number of arrivals with interarrival density a(t) in an interval (0, ),
given that an arrival occurred at 0, is labeled P[CL = n|t] and computed from standard renewal
theory [23, p. 57]

PCr 2 nll) = £ {Lar (@} = [ 27 Aoy @ (12)

where A”(s) is the Laplace transform of the interarrival density a(t) and £! {} denotes the inverse
Laplace transform. E[CL|t] can be obtained similarly:

E[Cilf) = £ {§ i[A‘(s)]"}

n=1

Given the conditional distribution, we can compute the inverse cumulative distribution and expec-
tation of the number of arrivals during an exponentially distributed loss period, Cf, as

P[CL >n] = cp/ P[CL > njtle** dt, n > 0,
0

E[Cy]

oo
cp/ E[CL|tle~** dt
0

which can also be expressed in terms of the A* evaluated at s = cu,

P[CL>n] = [A*(ep)]", forn>0 (13)
ElC1] = Z[A*(Clt)]"- (14)
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The distribution and expectation of the loss run, Cc, follows by appropriate conditioning:

P[CC = n] = iT[éLTOJP[CL = n], n 2 1
E[CC] = 1— P[é}_‘, — 0] E[CL]

Finally, the noloss period is the same as when all customers are served.

4.1.1 Erlangian Arrivals: E./M/c

Closed-form solutions can be obtained for the E, /M/c system, i.e., where the interarrival time with
mean 1/ is distributed as an r-state Erlang distribution with parameter § = r). The service time
is exponentially distributed with parameter y. The system load is given by p = A /(ep).

First, we compute P[CL > nlt] as

PlCL2nlt] = £ {% (ois)m}

- [ () ) o

oo rn-~-1_-—0t
= 1 —/ ———-——0(0t) ¢ dt
t

(rn-1)!
mz_l (0t 0t
k=0

from which the unconditional survivor function follows readily as

rn-1
P[CLZn] = c”/ [1_ (Ot ] —eut gy
k—O
-1 .o k
_ —cut (0t) —(0+cu)t
= cp,/; dt — cuZ/ TR dt
el

= 1-0”' ﬁ(e_i_cﬂ)k_i_l

k=0

_ cp rn—1< 9 )k
- 0+ cpu ize \0+cu
8 ™
o 1- (0+cu)
JERETRT ey

6 T _ P bt £
(7va) = (55p)

r "‘; n
(r + l/p) =

where we introduce the definition in the last line as shorthand for the remainder of this section.
The result also follows directly from Eq. (13).
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Sometimes, it is convenient to have the probability mass function available as well:

P[CL = n]

In particular, P[CL, = 0] =1 - a.

= P[CL <n+1]- P[CL < n]
= 1-a™! - (1-a")
= a*(l-a)

E[CL] and E[Cc) are computed next:

[ <] [~ <]
E[CL] = ZP[CLZn]=Za"=1fa
n=1 n=1
1l «a 1
ElCe] = El—a=1—a
For Poisson arrivals, i.e., r = 1:
1— pe~vh
PW <h] = — ;fze‘”" 1
A n
P[CL>n] = (A+cp)
_ _cp D AN
Pl =n] = Atep (/\+c;z)
N 3 cp A n-1
PlCc=n] = At cp (A-{-cp,)
E[CL] = »p
E[Cc] = p+1
r =1 1 d A

ElCc]l  p+1 A+p
Note that the loss probability result [43] is only valid for the single-server case. The results for
the loss period also follow naturally from the well-known relation [24] V(2) = B*(XA — Az), where
V(z) is the z-transform of the probability distribution of the number of Poisson arrivals with rate
A during a time interval with Laplace transform B*(-). Also note the geometric form of the loss
run distributions.

It is instructive to compare E[C¢]| for the M/M/1 queue with (= 1+ p) and without discar-
ding (= (1 + p)/(1 - p)). Particularly for high values of h, the loss probabilities for the systems
with and without discarding (given by 1 — pe~"") are virtually identical, while the queue without
discarding will have significantly more losses without interruption than the queue with discarding.
For example, for a load of p = 0.8, the value of E[Cy] for the M/M/1 queue without discarding is
five times higher than for the same queue with discarding.

The case of deterministic (periodic) arrivals, i.e., the D/M/c system, emerges as r tends to

infinity, where .
[(1 + M)r] = e~H/A
r
This result follows also directly from Eq. (13) since P[C = n|t] = 1for n/A < z < (n + 1), zero

otherwise. Then,
(n+1)/2
7 / e M dt
n/A
= e ™/ (1 - e"‘/A) , n>0.

lim a = lim
=00 r—00

P[CL = n] =

30



4.2 Discrete Time

As in continuous time, discarding excessively delayed customers before they enter service simplifies
the performance evaluation. Regardless of the batch arrival at some instant n, at (n + 1), no more
than A—1 customers will be in the system, allowing the first arrival at (n+1)* to complete on time.
Using the terminology of Section 3.2, composite and simple loss periods are identical. Furthermore,
loss periods have the same length as the initial jump J.

Again, the noloss period is unaffected by whether or not customers are discarded.
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5 Buffer Overflow in G/M/c/K Queues

After having investigated systems with constraints on waiting time in some detail, let us now
consider Markovian continuous-time queues with finite buffer (of size K, including the customer
in service). For G/M/c/K systems, it turns out to be relatively easy to derive measures for loss
correlation and noloss periods.

For the G/M/c/K queue, a Markov chain can be embedded at (just before) arrival instants.
The conditional loss probability r can be read directly from the transition probability matrix P as

r= Pg k.
For the G/M/1/K queue, P is of dimension K +1by K +1 [44, p. 305]:
[ 1 bo 0 0 ]
1-Yieb b bo ... 0
po| 1-Zhebi b b ... 0
1-2K3 0 by bxes ... by
| -2 0 bk bk ... b |

Note that the two last rows are identical. Here, b, represents the probability of n service completions

during an interarrival time.
0o ,—put n
b, = / MdA(t)
0

n!
Thus, with A(t) as the interarrival time distribution, the conditional loss probability becomes
o0
rbo= [ e dA(t) = a*(u), (15)
0

where a*(p) is the Laplace transform of the interarrival time density evaluated at s = p. For the

multi-server case where K > ¢, Pk i is given by [44, p. 313] 24, p. 246). Eq. (6.12) in [24] shows
that the conditional loss probability

r=f= /:o e~ dA(t) = a*(cp),

where 8, is the probability of serving n customers during an interarrival time given that all ¢ servers
remain busy during this interval.

By now, the similarity to the results in Section 4 should have become apparent. The stochastic
Process is exactly the same as for a queue with bounded wait and exponentially distributed initial
jump. Thus, all the results in Section 4 carry over directly.

For the M/M/1/K queue, the conditional loss probability can also be deduced by noting that
it is the probability that the next event is an arriv , given that the queue is full. That probability
is given by A/(A + p) and is independent of X.

The computation of the distribution of the number of consecutive customers without buffer
overflow (called success runs) is slightly more involved. Using Eq. (6) to compute the first passage
times of the embedded DTMC with matrix P, the pmf of the success runs, s,, is given by

K-1
Sn= ) f‘('}{)—PKL- for n > 1.
i=0 B PKK

The fraction describes the probability that the first admitted customer after a loss run sees state
i. Note that the distribution is in general not geometrically distributed as assumed in the Gilbert
error model.
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5.1 Effect of Service Order and Buffer Management on Buffer Loss Correlation

The effect of buffer management on loss probabilities on delay and blocking probability of marked
and unmarked traffic was considered by [45,46].

Both papers hint at the issue of loss correlation, but do not elaborate further. Lucantoni and
Parekh state that I/0 discarding may “mitigate the ‘hysteresis effect’, i.e., the possibility that the
time spent on serving the marked traffic can adversely affect the performance of the unmarked
traffic that might follow in a burst.” Yin and Hluchyj state that “since the loss at the destination
tends to occur to successive packets, which may seriously degrade voice fidelity, we need to avoid
or reduce this loss.”

For the M/D/1/1 system, all customers that arrive during a service period are lost. Thus,

'}

1 1 pm _
P[Cc=n]=*1_aoan=1-e_pme 14

where a,, designates the probability of n arrivals during a service period. The expectation follows
from the definition:

1 & p
E = = —
[Cc = =] eP—l’gnn!
- P
1-e-r

As for the discrete-time case investigated in Section 6, the influence of the scheduling and
buffer management policy on loss runs was studied, with similar results (and, unfortunately, again
no proofs for the general case). The distribution of the loss run lengths appears to be independent
of the scheduling discipline and on whether packets are dropped from the front or the rear of the
queue.
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6 Buffer Overflow in Single-Stream Discrete-Time Queues

6.1 First-Come, First-Served

In this section, we will derive properties of the loss correlation for a class of discrete-time queues with
restricted buffer size. As our queueing model, we consider a FIFO single-server discrete-time queue
where arrivals occur in i.i.d. batches of general distribution with mean batch size A\. Each arrival
Tequires exactly one unit of service. For short, we will refer to this system as DI€l/D/1/K [47).
Let K denote the system size, that is, the buffer capacity plus one. Arrivals that do not find space
are rejected, but once a customer enters the system, it will be served. This buffer policy will be
referred to as rear dropping in section 6.2. Arbitrarily, arrivals are fixed to occur at the beginning
of a time slot and departures at the end, creating, in Hunter’s terminology [38), an early arrival
system. This model is used to represent the output queue of a fast packet switch, for example [48].

The waiting time and loss probability for this model have been analyzed by a number of authors
[49,47,36,48,50,51,1]. For Poisson-distributed batches, Birdsall et al. [49, p. 392] computes the
conditional probability of a run of exactly n slots in which one or more arrivals are rejected given
that an arrival was rejected in the preceding slot. We will call it P[Cp = n]. The quantity is seen
to be the product of the probability that two or more arrivals occur during the next n — 1 slots and
the probability of zero or one arrivals occurs in the terminating interval.

PICr=1n]=e(1+) [1- (14 1)e]",

Birdsall et al. [49, Eq. (11)] also compute the probability that exactly d arrivals are rejected in the
next slot, provided that one or more was rejected in the previous slot. Their result is related to a
relation we will derive later (Eq. (18)).

We define Q& to be the event that the first customer in an arriving batch sees k customers
already in the system and g to be the probability of that event. For general batch size probability
mass function (pmf) ay, the g;’s are described by the following recursive equations [48]:

do
= ~—~(l—ag9g—a
a1 ao( 0 1)

1 n
n = — [%-1 "Zaan-kJ y2Sn< K
do k=1

K-1 K-1 -1
o = 1- 29n= [1+ ZQn/QO]
n=1 n=1
The probability that a packet joins the queue, P[J], is given by
1 - goao
A 3
since 1 — agqo is the normalized throughput. Note that ¢,, n = 1,2,.. - depends only through the
factor go on the buffer size, i.e., ¢,/go is independent of the buffer size [38, p. 236).

For later use, let us compute the probability P[S] that one or more losses occurs during a
randomly selected time slot. By conditioning on the system state probability ¢, we can write

P[J) =

K-1 K-1 (= K-1 K-k
PIS] = Y aPlSIQ=Ya Y o= a (1— Za,-)
k=0 k=0 j=K-k+1 k=0 =0
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Let the random variable Cc be the number of consecutively lost customers. The distribution
of loss run lengths follows readily,

K
P[Cc =n] = )" P[s spaces available | loss occurs in slot] - any,,

s=1
1 K
= P_[S] z_; GK-sC8n+, (16)

as the number of arrivals in a slot is independent of the system state.

The expected number of consecutive losses can be computed from Eq. (16) or directly by
observing that loss runs are limited to a single slot since the first customer in a batch will always
be admitted. The expected loss run length is simply the expected number of customers lost per
slot, given that a loss did occur in that slot. The expected number of customers lost in a slot is
given by A(1 - P[J]), so that

M1-PJ) A-1+ga
s - rE o D

E[Cc] = E[losses per slot | loss occurs in slot] =

Numerical computations show that influence of K on the distribution of C¢ is very small (see
Table 8). The table also shows that E[C¢] is roughly a linear function of .

Losses that occur when a batch arrives to a full system, i.e., a system with only one available
buffer space, are independent of the system size and can thus be used to approximate the distri-
bution of C¢ quite accurately. For K = 1, n consecutive losses occur if and only if n + 1 packets
arrive during the slot duration, conditioned on the fact that two or more packets arrived. Thus,

PlCc=n] ~ P[Cc=n|K =1]= 1_“;%@ (18)

1 [~ <]

E[Cc] = —Zna,ﬂ_l

l_ao_a1n=1
oo
na‘n—zan]
2

o0

1
- 1—00—(11

n= n=2
1
= m[A—al—(l—aﬂ—al)]
1
= ——[A- . 19
T—ag—a *~1+ad (19)

As can be seen readily, the above agrees with Eq. (16) and Eq. (17) for K = 1.
Also, by the memorylessness property of the geometric distribution, Eq. (18) and Eq. (19) hold
exactly for geometrically distributed batches with parameter p and evaluates to

Peo=n) = (oD g
E[Cc] = %=1+>‘

(Regardless of what system occupancy an arriving batch sees, the packets left over after the system
is filled are still geometrically distributed.)

35



aj K [A=05 A=08 X=1 A=15

Poisson 1 | 1.18100 1.30397 1.39221 1.63540
2 [1.15707 1.27511 1.36201 1.60574
3 | 115707 1.27158 1.35911 1.60403
4 | 1.15226 1.27153 1.35910 1.60403
5 | 1.156238 1.27159 1.35914 1.60404
6 |1.15242 1.27160 1.35914 1.60404
oo | 1.15242 1.27160 1.35914 1.60404

Geo any | 1.5 1.8 2.0 2.5

Table 8: Expected loss run length (E[Cc)) for DIS1/D/1/K system

6.2 Influence of Service and Buffer Policies

It is natural to ask how the burstiness of losses is affected by different scheduling and buffer
management policies. As scheduling policies, FIFO (first-in, first-out) and non-preemptive LIFQ
(last-in, first-out) are investigated. For either policy, we can either discard arriving packets if the
buffer is full (rear discarding) or push out those packets that have been in the buffer the longest
(front discarding). Note that this dropping policy is independent of the service policy. From our
viewpoint, LIFO serves the packet at the rear of the queue. Obviously, only systems with X greater
than one show any difference in behavior.

The analysis of all but FIFO with rear discarding appears to be difficult. Let us briefly discuss
the behavior of FIFO and LIFO, each either with front or rear discarding.

FIFO with rear discarding: The first customer in an arriving batch always enters the buffer
and will be served eventually. Thus, a loss run never crosses batch boundaries.

FIFO with front discarding: Here, a batch can be completely lost if it partially fills the buffer
and gets pushed out by the next arriving batch. However, if a batch was completely lost, the
succeeding batch will have at least one of its members transmitted since it must have “pushed
through” until the head of the buffer.

LIFO with rear discarding: The first packet in a batch will always occupy the one empty buffer
space and be served in the next slot. Again, loss runs are interrupted by packet boundaries.

LIFO with front discarding: A run of losses can consist of at most than one less than arrive in
a single batch since the last customer in the batch will be served during the next slot. A loss
run never straddles batch boundaries.

For all four systems, indeed over all work-conserving disciplines, the queue state distribution
(and, thus, the loss probability) are the same [52,53,46]. The mean waiting time results favoring
front dropping agree with those of [46] for general queueing systems. Clare and Rubin [53] show that
the minimum mean waiting time for non-lost packets is obtained using LCFS with front dropping
(referred to as preemptive buffering in [53]).

For all systems, a batch arrival causes the same number of lost packets. If there are ¢ packets
in the buffer (0 > ¢ < K) and ¢ arrive in a batch, [(g + a) — K)* will be lost.

For rear dropping, at least the first packet in the batch will always enter the system, interrupting
any loss run in progress. Thus, we have:
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Lemma 6 The same packets (as identified by their order of generation) will be dropped for all
work-conserving service policies and rear dropping.

Here, we visualize packets within the same batch generated sequentially in the interval (t,t+0).
Lemma 7 The distributions of loss runs for FIFO with rear and front dropping are the same.

PrOOF We number packets in the order of generation and arbitrarily within a batch so that
they are served in order of increasing sequence number. We note first that the buffer for front
dropping always contains an uninterrupted sequence of packets. Assume that the buffer contains
an uninterrupted sequence. A service completion removes the first element of the sequence, without
creating an interruption. A batch arrival that is accepted completely or will also not create a gap.
A batch that pushes out some of the customers likewise will continue the sequence. Finally, a batch
that pushes out all customers certainly does not create a gap. Note that this property does not
hold for rear dropping, as the example of two successive batch arrivals with overflows demonstrates.

As pointed out before, the loss runs for rear dropping are confined to a single arriving batch
and comprise [¢+ a — K ]* packets. For front dropping, the losses are made up of packets already
in the buffer and possibly the first part of the arriving batch. By the sequence property shown in
the preceding paragraph, all these form a single loss run (again of length [g + a — X %), which is
terminated by serving the next customer. Thus, while the identity of packets dropped may differ,
the lengths of the loss runs are indeed the same for both policies. OJ

The issue is more complicated for front dropping and general service disciplines. A number
of simulation experiments were performed to investigate the behavior of the four combinations of
service and buffer policies, with results collected in Table 9. (The rows labeled “theory” correspond
to the values for FIFO and rear dropping, computed as in discussed in the previous section.) These
experiments suggest the following conjecture:

Conjecture 1 The distribution of loss runs is the same for all combinations of FIFO, LIFO and

rear and front dropping. The sample path of loss run lengths is the same for all systems ezcept for
LIFO with front dropping.

arrivals service dropping E[W] 1- P[J] E[Cc]
geometric theory 1.985 0.3839 2.500
FIFO  rear 1.984...1.987 0.3833...0.3840 2.496...2.502
front 1.349...1.351 0.3833...0.3840 2.496...2.502
LIFO  rear 1.984...1.987 0.3833...0.3840 2.496...2.502
front 0.867...0.869 0.3833...0.3840 2.495...2.500
Poisson theory 2417 0.341 1.604
FIFO  rear 2.416...2.418 0.340... 0.341 1.602...1.604
front 1.582...1.584  0.340... 0.341 1.602...1.604
LIFO  rear 2.416...2.418 0.340... 0.341 1.602...1.604
front 0.549...0.553  0.340... 0.341 1.603...1.604

Table 9: Performance measures for geometric and Poisson arrivals, A = 1.5, K = 4, 90% confidence

intervals
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Let us briefly outline a possible approach to a more formal analysis. We focus on one batch
and construct a discrete-time chain with the state

(¢,7) = (left in buffer, consecutive losses in batch) i ¢ [1,K - 1]; j €[0,00)

The initial state, that is, the state immediately after the arrival of the batch of interest, is deter-
mined by the batch size and the system state and should be computable. The states (0, ) are
absorbing.

The transition matrix is given by:

(4,5) = (i,4) = o Vi, j;

(4,5) = (i - 1,5) = ao j>0;
(43) = (i-1,7+1) = a 4,3 >0;
(6,7) > (i-2,+2) = a i>1,§>0;
(Z,])-—’(Z—k,]-}-k) = Gk41 i>k:j>0;
(1‘:])—)(0)1'{"]) = 2]:°=i+la'k 7':.7>01
(0,5) — (0,4) =1

All other entries are zero.

The probability of j losses given initial state (0, Jo) is the probability distribution of being
absorbed in state (0, j).

Intuitively, random dropping, i.e., selecting a random packet from among those already in the
buffer, should reduce the loss run lengths, particularly for large buffers. However, this policy
appears to be difficult to implement for high-speed networks. Simulation results for geometric
arrivals support this result, as shown in Table 10 as a front or rear dropping would result in an
average loss run length of 2.5 for A = 1.5 and 1.8 for A = 0.8.

A=15 A=08
K | EW] 1-PlJ] E[Cc)| EW] 1- P[J] E|[C¢]
310913 0.4148 2.304 | 0.750 0.1731 1.669
41509 0.3833 2.175 | 1.120 0.1213 1.573
6| 2.842 0.3534 2.008 [1.771 0.0659 1.451
8 | 4304 0.3415 1.915 | 2.300 0.0386 1.382
10 | 5.851 0.3365 1.849 | 2.721 0.0234 1.328
15 | 9.884 0.3331 1.755 | 3.399 0.0071 1.238

Table 10: Effect of random discarding for system with geometrically distributed batch arrivals

It should be noted that average run lengths exceed a value of two only for extremely heavy load.
Thus, on average, reconstruction algorithms that can cope with two lost packets in a row should
be sufficient.
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7 Summary and Future Work

In the preceding sections, we have developed probabilistic measures for the behavior of losses in
single-server queues commonly used in analyzing high-speed networks and fast packet switches.
These measures should be useful in the design and test of packet recovery systems, which face a
much harder task than predicted by the optimistic assumption of independent losses.

We found that for certain important queues, the distribution of the loss period is independent of
the threshold value used, while for all discrete-time batch distributions investigated the threshold
value has very little influence on the loss period. It remains to be seen whether there exists a
certain value of ~ above which the initial jump (and, hence, the loss period) changes no further
with increases in h.

It seems natural to extend these results to finite queues in order to analyze periods of buffer
overflow, as was done in [19] for a packet voice arrival process.

For G/M/1 and DI®*°l/D/1 queues, a busy period can be regarded as a special case of a loss
period. Thus, computation of the distribution of busy periods is of particular interest in studying
loss phenomena. Our computation of the busy period using combinatorial arguments applied
strictly only to geometric batches, but it might provide a readily computable approximation for
other distributions.

It is anticipated that the study of correlated arrival processes and non-FIFO service disciplines
will require significantly more sophisticated techniques than those found sufficient here.
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8 Notation

K % & > g

b by S &> o

=SS N290 9

!

=

fx(=)
X(2)
E[X
P[.

loss probability

system load

number of busy (loss) periods per composite busy (loss) period
population parameter of the binomial distribution
P(batch size or work per slot = k]

number of servers

waiting time threshold

parameters of the geometric and binomial distribution
batch sizes

busy period

composite busy period

customers per busy period

customers in a loss period

number of customers lost consecutively

customers per noloss period

idle period

loss period

composite loss period

noloss period

noloss period of one or more slots

state transition matrix for DTMC

pdf of random variable X

z-transform of random variable X

] expectation of random variable X

] probability of event
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A Proof of Lemma 5

ProOF Note that since the geometric distribution has infinite support, ¥ = co. We first need to
establish the pmf of the system occupancy at batch arrival instants, V. A simple partial fraction
expansion of the generating function V(z) (see [38, p. 278]), using A(2) = p/(1 - ¢z),

yields the pmf
PV =] = (1- p)[é(v) + p°*),

where §(-) denotes the Kronecker delta. Since the cumulative distribution function evaluates to
PV < h]=1-ph*2,
the conditional (scaled) density can be written down as

l—i—;,é,- forv=0
PlVp =] = (11;_‘:3,{-’:7“ for v € [1, A

0 otherwise
Since
PlV<h-a] _p***(p=-1)
PV < h] - 1= phtz

the denominator of the expression for P[J = j] becomes

= 1-—- ph+2 p° (P+ 1)a+1 1+p

PlVp>h—-a]l=1-

P11 - p)
1- pht2
The numerator is expanded into
1-p2  pht 1-p & phtie

1— ph+2 (1 + p)h+.'i+1 + 1- ph+2 (P + 1)h+j—a+1 ?

a=1

which simplifies to _
Pt (1= p)ptt
(1+py 1-pht2”

from which the result follows immediately. The derivation for J proceeds in a similar fashion. OdJ
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