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Abstract

Distributed real-time systems of the future will require specialized network archi-
tectures that incorporate new classes of services and protocols in order to support
time-constrained communication. In this paper, we propose a new local area network
architecture for such systems. This four layered architecture is characterized by new
classes of connection-oriented and connectionless services that take into account the
timing constraints of messages. We describe various aspects of the logical link con-
trol layer of the architecture and various real-time protocols that may be employed at
the medium access control layer in order to support the new classes of services. We
also describe a homogeneous approach to the implementation of medium access control
protocols to support both connection-oriented and connectionless services, based on a
uniform window splitting paradigm.

*This work is part of the Spring Project at the University of Massachusetts funded in part by the Office

of Naval Research under contract N00014-85-K-0398 and by the National Science Foundation under grant
DCR-8500332.
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Figure 1 Model of a Real-Time Control System

1 INTRODUCTION

A real-time system is defined as a system whose correctness depends not only on the logi-
cal results of computation, but also on the time at which the results are produced (Stankovic
and Ramamritham 1988). This is a general definition that encompasses a wide variety of
systems including digital filters, multimedia communication systems, on-line transaction
processing systems, message switching systems, manufacturing control systems and process
control systems. In this paper, we restrict the scope of our attention to the last category
of real-time systems. A real-time process control system (Figure 1), which constitutes the
context for this paper, may be abstractly modeled as a feedback loop consisting of four
components, viz., a controlled process, a controller, sensors and actuators. The sensors
provide the controller with information about the current state of the controlled process.
The controller is an information processing system that makes use of the information pro-
vided by the sensors to compute the actions required to reduce the disparity between the
current state and the specified desired state of the system. The actuators realize the actions
computed by the controller.

A simple illustrative example of a real-time control system is a servomechanism used to
control the position of a motor shaft (the motor may in turn control the rotation of a robot
arm joint). The controller in this system could be a microprocessor that performs a simple
numerical computation such as determining the difference between the current position and
the desired final position of the shaft and multiplying it by a constant. However in many
real-time systems such as nuclear power plant control systems (Alger and Lala 1986), air
traffic control systems (Cristian, Dancey and Dehn 1990), space mission control systems
(Muratore et al. 1990, Strosnider 1988) and industrial process control systems (Martin
1967), the computations performed by the controller are more involved; the controller in
the feedback control loop typically includes human components (in the form of one or more




Figure 2 A Mission Control Scenario: A Distributed Real-Time System

human controllers), in addition to computers (for this reason, such systems are also known
as open loop systems (Martin 1967)). These human controllers make decisions on the basis
of raw or processed sensor data with the help of computers. The space shuttle mission
control scenario depicted in Figure 2 (adapted from (Strosnider 1988)) is an example of
such a system. In this system, network data drivers transmit raw telemetry data received
from space to a real-time host computer for processing. Mission controllers responsible for
various aspects of the mission, with the help of the host and the processed telemetry data,
monitor and control the operation of the mission.

While systems such as the mission control system depicted in Figure 2 are typically large
and distributed, they are not autonomous since many of the high-level activities are per-
formed by cooperating human experts. A lot of work has already been done in the context
of these open loop systems (Stankovic and Ramamritham 1988). The next logical step in
the evolution of real-time systems is the introduction of autonomy. Real-time systems are
steadily evolving towards the next generation of closed loop autonomous real-time systems
(Iyengar and Kashyap 1989) in which human experts in the feedback loop are replaced by
software. Figure 3 depicts an abstract model of such an autonomous control system. In this
system, cooperating human experts are replaced by communicating problem-solving soft-
ware tasks. In Japan (Whittaker and Kanade 1990), the Space Robot Forum, a prestigious
group from Government, industry and academia, funded by the National Space Develop-
ment Agency, recently outlined an ambitious schedule for “third-generation” space robotics,
where machines work without much, if any, human intervention. This trend towards au-
tonomy is driven both by techno-economic objectives such as enhanced productivity, prof-



Figure 3 An Autonomous Real-Time Controller

itability and quality, and by a desire to relieve humans from dangerbué, difficult and dull
tasks (Iyengar and Kashyap 1989). The culmination of this trend towards autonomy would
be the fully autonomous closed loop real-time control system. These real-time systems of
the next generation will be distributed, complex, exhibit highly dynamic, adaptive and in-
telligent behavior and possess several types of timing constraints and operate in a highly
non-deterministic environment (Stankovic 1988, Stankovic and Ramamritham 1990). Ex-
amples of harbingers of this trend towards autonomy are the NASA mission control system
(Muratore et al. 1990), the Lockheed Pilot Associate system (Lark et al. 1990, Rouse, Ged-
des and Hammer 1990) and various ongoing projects in Robotics (Whittaker and Kanade
1990, Bares et al. 1989, Bihari, Walliser and Patterson 1989, Iyengar and Kashyap 1989,
Weisbin et al. 1989).

In this paper, we address the communication requirements that arise in these complex
closed loop real-time systems. The rest of the paper is organized as follows. In Section 2,
we describe the distributed real-time system model that we assume as a basis in this paper.
In Section 3, we discuss the approach to real-time communication in today’s systems and
illustrate the limitations of this approach and the requirements for future systems. In
Section 4, we give a brief description of existing local area network architectures, and in
Section 5, we propose RTLAN, a new local area network architecture for communication in
distributed real-time systems. In Section 6, we describe the logical link control layer of this
architecture. In Section 7, we describe the medium access control layer of RTLAN, and look
at several MAC protocols that may be used at this layer to support the requirements of the
LLC layer. In Section 8, we describe a uniform approach to implementing a homogeneous
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set of MAC protocols based on a window-splitting paradigm. In Section 9, we conclude the
paper with a brief summary.

2 SYSTEM MODEL

The field of next generation real-time control systems is still evolving and we do not have
sufficient experience to generate a precise set of requirements for such systems. We have
adopted a general model that incorporates well accepted requirements for these systems.
We describe our model below:

1.

Distributed System:

The system is distributed and is based on a local area network. The need for dis-
tribution will arise to satisfy performance, reliability and functional requirements.
This trend towards distribution is evident even in today’s real-time systems (Nielsen
1990, Muratore et al. 1990). Local area networks are typically used with distributed
real-time systems because of the limited geographical span! of the system.

Timing Constraints:
Activities in the system may have various types of timing constraints such as period-
icity and deadlines associated with them.

. Dynamic Nature:

In addition to static periodic activities, the system will also be required to handle
dynamically spawned activities.

. Predictability: Predictability (Stankovic and Ramamritham 1990, Stankovic 1988) is

considered an important requirement in real-time systems. For certain activities that
are critical or essential, it is important to be able to determine whether the timing
constraints of the activities will be met prior to actually accepting the activity for
execution.

. Intertask Communication:

The functional requirements of the system will be realized through a set of tasks. Tasks
will cooperate in order to achieve desired objectives. Cooperation will induce inter-
task communication requirements. Like all other activities in the system, intertask
communication activities have timing constraints which will translate to individual
message deadlines. We address this aspect in more detail in the next section.

'Even applications with a wider geographic span mey be based on local area networks. For example, in
air traffic control the entire air space is divided into smaller units (sectors) and the traffic within each unit
is controlled by a distributed real-time system based on a local area network (Cristian, Dancey and Dehn

1990).



3 REAL-TIME COMMUNICATION

The term “real-time comrnunication” may be used to describe any kind of communica-
tion activity in which the messages involved have timing constraints associated with them.
For example, packet-switched voice communication, in which the individual voice packets
have maximum delay constraints associated with them, is often termed real-time communi-
cation. However, in the rest of this paper we restrict this term to mean communication in
distributed real-time systems. While some of the protocols developed here may be applicable
to voice communication, we do not consider that application any further in this paper.

Communication requirements in a distributed real-time system are induced by the need
for interaction between various entities in the distributed system. Messages that arise in a
‘distributed real-time system may be classified into two categories:

1. Guarantee Seeking Messages: These are messages typically critical or essential for
the proper operation of the system. The requirements of these messages include a
guarantee from the system that, if the activity that gives rise to them is accepted for
execution, their timing constraints will be met with certainty.

2. Best Effort Messages: These are messages, typically with soft timing constraints, that
do not require a guarantee from the system that their timing constraints will be met.
However the system will try its best to satisfy the timing constraints of these messages,
since minimizing the number of such messages whose timing constraints are violated
will result in increased value (in some sense) for the system.

In the current generation of open loop distributed real-time systems (Strosnider 1988),
the guarantee seeking messages are of two types, viz., periodic messages and alarm (alert)
messages. Periodic messages, as the name implies, are messages that are transmitted peri-
odically. They typically carry sensor information about the current state of the controlled
process. For example, in an industrial process control system, computers at various sites in
the plant periodically collect information about the state of the process such as flow rates,
pressures and temperature, with the help of sensors, and transmit this state information to
a central control room, where human controllers make decisions on the basis of this infor-
mation. Periodic messages require guarantees that their delivery deadlines will be met in
order to ensure that the actual state of the controlled process and the controller’s view of
the state obtained through these messages are close to each other. Alarm messages are used
to disseminate information in an emergency situation. For example, in an emergency, the
controller may have to shut down certain devices within a predetermined amount of time.
Even though alert messages arise very rarely, due to their critical nature the system has to
guarantee that alert messages will be delivered within their deadlines.

Examples of best effort messages in today’s systems include some classes of commands
from human controllers, and some classes of advisories and responses. For example, certain
status and control messages, and trajectory advisory and response messages in the space
shuttle mission control system (Strosnider 1988) may be classified as best effort messages.
These messages occur asynchronously and are usually treated as soft real-time messages.
The system is designed to minimize the response time for these messages.

Most current work in real-time communication (Lehoczky and Sha 1986, Le Lann 1987,
Strosnider 1988, Strosnider and Marchok 1989) is based on the above model of commu-



AUTONOMOUS CONTROLLER

Figure 4 Cooperating Team of Robots

nication in distributed real-time systems, i.e., they assume that the guarantee seeking
messages are either periodic or occur rarely. They also assume that the characteristics
of these messages are statically specifiable. However this conventional model of communi-
cation requirements is likely to prove inadequate for the autonomous real-time systems of
the future. These systems will be characterized by dynamic activities with several types
of timing constraints (Stankovic and Ramamritham 1990). Cooperation requirements of
distributed problem solving software that will replace cooperating human controllers, and
distributed real-time operating system software (e.g., distributed scheduling (Ramamritham
and Stankovic 1989, Ramamritham, Stankovic and Zhao 1989) will necessarily induce richer
communication patterns than periodic state message communication. The system will have
to provide mechanisms to predictably handle, in addition to the traditional communication
requirements, dynamically spawned activities with communication requirements that will
include general kinds of timing constraints. For example, each message in the set of mes-
sages involved in a distributed activity may have its own individual timing constraints that
are independent of other messages. Consider the scenario depicted in Figure 4. A team
of telerobots on a planet is coordinated by an autonomous mission controller. The object
of the mission is to explore the planet. If the controller detects a crater near the current
location of the robots that appears to be worth exploring, then it might decide to command
the robots to explore the crater, if this (dynamically arising) activity can be accommodated
into the system’s schedule without violating the deadlines of other scheduled critical activ-
ities. In order to ensure predictability, the controller will first try to seek a guaraniee that
the timing requirements of this cooperative activity (including the timing requirements of
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all the messages that arise because of cooperation) can be met before actually committing
itself to exploring the crater. Many of the messages exchanged in this high level coopera-
tive activity will be aperiodic, since this is not a low level sensing activity. Depending on
how essential they are to the progress of the exploration, some of the messages exchanged
will require guarantees, while others will be best effort messages. The exact details of the
communication involved in the activity, including the number of messages exchanged, their
contents and individual timing constraints such as arrival times and deadlines will depend
on both the activity and various dynamic factors such as the nature of the terrain near the
crater, the number of robots assigned to this task and the desired degree to which the crater
is to be explored.

While the above example may sound futuristic2, it serves well to illustrate an important
requirement of the evolving generation of autonomous real-time systems, viz., support for
dynamic guarantees of communication activities with general types of timing constraints.
The challenge in designing operating systems and communication mechanisms for the au-
tonomous real-time systems of the future is to develop mechanisms that support these more
complex requirements. The rest of this paper addresses network support for the communi-
cation requirements that arise in these systems.

4 LOCAL AREA NETWORK ARCHITECTURES

A computer network is a collection of geographically dispersed computers interconnected
through a communication network. Depending on the geographic span of the network, a
network may be classified® either as a local area network (LAN) or a wide area network
(WAN). Distributed real-time systems are typically based on a LAN, and therefore we
restrict our attention to LANSs in this paper. A local area network is a network that spans
a limited geographical area (0.1 km - 10 km) such as a building or a campus. A LAN is
typically characterized by high speed, low error rates and ownership by a single organization.

A network architecture defines a set of communication services, and protocols and mes-
sage formats for the implementation of these services. In order to modularize and simplify
implementation, modern network architectures are typically structured in terms of a set of
functional layers. For example, the Open Systems Interconnection (QSI) reference model
proposed by the International Standards Organization consists of 7 layers, viz., physical,
data link, network, transport, session, presentation and the application layers. Each layer
offers certain services to the immediately higher layers shielding them from the details of the
implementation of these services. The services offered by a layer are implemented through
a set of protocols that operate at that layer.

Two different classes of services that can be offered by the various layers of a network are
connection-oriented service (COS) and connectionless service (CLS) (Knightson, Knowles

2In fact, considerable effort is currently being invested to realize such autonomous systems (Bares et al.
1989, Iyengar and Kashyap 1989, Whittaker and Kanade 1990)

3A finer classification, though not relevant to this paper, would include metropolitan area networks
(MAN) that span distances of the order of 50 km and thus fall in between LANs and WANs in terms of
geographical extent.



Figure 5 IEEE 802 LAN Architecture

and Larmouth 1988). COS is based on the establishment of a logical channel known as a
connection. It is characterized by three phases, viz., connection establishment, data transfer
and connection release. COS is typically suited for communication involving a long data
transfer phase or a logically related sequence of messages, e.g., file transfer applications.
Since a context is available (namely the logical connection) within which individual units of
data passed between the communicating entities can be logically related, COS has smaller
control overheads and can provide sequencing, flow control and error recovery. A network
may use either a connectionless or connection-oriented mode of operation internally in
order to provide communication services to its users. An internal connection in a wide area
network that uses the connection-oriented mode of operation (e.g., TYMNET) internally is
called a virtual circuit. For this reason, connection-oriented service is sometimes referred
to as wirtual circuil service.

The second category of communication services, connectionless service (CLS), as the
name implies, is characterized by the absence of a logical connection between sender and
receiver. There are no distinct phases since there is no connection to be established or
released. Each unit of data is entirely self-contained and since there is no context in the
form of a logical connection, the overhead information necessary to deliver the data to the
receiver is duplicated in each unit of data. CLS is simpler and typically suited for short
communications. However CLS does not provide sequencing, flow control or error recovery.
In networks (e.g., ARPANET) that use the connectionless mode of operation internally,
the independent packets involved in this operation are referred to as datagrams. Hence
connectionless service is sometimes referred to as datagram service.

The architecture proposed by the IEEE Project 802 committee for local area networks
(Figure 5) may be used to illustrate these concepts. This is a simple architecture that
addresses only the lowest two layers in the OSI reference model, viz., the physical and data
link layers. However the data link layer provides transport layer functionality in the case
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of an isolated (i.e., not internetworked) LAN and provides both connectionless (or Type
1) service and connection-oriented (or’ Type 2) service. These two classes of service are
sufficient for many applications. If an application requires higher level functionality, it
must implement it itself.

The data link layer in the IEEE 802 architecture is divided into two sublayers, viz.,
logical link control (LLC) sublayer and medium access control (MAC) sublayer. The LLC
sublayer, specified in the IEEE 802.2 Standard (IEEE 1985), is responsible for implementing
medium-independent data link functions, such as connection management, error handling
and flow control, and has the overall responsibility for the exchange of data between nodes.
The main function of the MAC sublayer is the management of access to the shared physical
channel. It is responsible for transmitting data units received from the LLC layer over the
physical channel after adding the required framing, addressing and checksum information.
The 802 Architecture specifies three protocol standards for medium access control, viz.,
the CSMA/CD (802.3 standard), the token bus (802.4 standard) and the token ring (802.5
standard). The physical layer is responsible for the management of physical connections
and for the transmission of bits over the transmission medium.

The services and protocols defined by the IEEE 802 architecture and other network ar-
chitectures, although sufficient for many applications today, have an important limitation.
Comer and Yavatkar (1989) point out that existing protocols do not make provisions for
applications to specify their performance needs such as maximum delay, minimum through-
put, maximum error rate etc., and existing network architectures do not have mechanisms
to meet and guarantee these performance requirements. While they make this observation
in the context of research in voice and video communication in future wide area networks,
a similar observation may be made in the context of distributed real-time systems. It is
important for tasks executing in a distributed real-time system to be able to specify their
performance requirements including timing constraints of individual messages to the oper-
ating system, and for the operating system and the underlying network to provide support
for meeting and guaranteeing these requirements. However existing operating systems and
networks provide little support for this. For example, the Type 1 LLC service in the IEEE
802 architecture does not take timing constraints of messages into account explicitly, and
the Type 2 service does not try to guarantee timing requirements of connections. Below, we
propose the elements of RTLAN, a new local area network architecture for communication
in distributed real-time systems, that alleviates this deficiency.

5 RTLAN

The RTLAN (real-time local area network) architecture is a local network architecture
for communication in distributed real-time systems, that permits applications to dynami-
cally specify their communication timing requirements and provides mechanisms to guar-
antee these requirements, if needed and if at all possible. RTLAN is targeted for complex
embedded control applications and so we do not consider internetworking aspects. We
therefore propose a simple four layer structure for RTLAN (Figure 6), along the lines of the
IEEE 802 architecture. The four layers are the physical layer, the medium access control
(MAC) layer, the logical link control (LLC) layer and the application layer. Some of the
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Figure 6 RTLAN Architecture

salient features of the RTLAN architecture are listed below:

1. Real-Time Applications:
RTLAN is targeted for complex real-time applications which have time-constrained
communication requirements that range from simple best effort delivery requirements
to dynamic guarantees of general timing requirements.

2. Time-Constrained Services:
RTLAN provides both connection-oriented and connectionless services, both of which
consider the timing requirements of applications.

3. LLC Layer supports Guarantee:
Connection establishment at the LLC level is more complicated than in conventional
architectures. The LLC layer incorporates scheduling algorithms that take a set of
message timing requirements and try to guarantee that the requirements will be met.

4. Real-Time MAC Protocols:
The MAC layer employs specialized real-time protocols to help the LLC layer provide
its real-time services. Some of the protocols are geared to supporting the connec-
tionless class of service, while others are geared to supporting the connection-oriented
class of service.

5. Multiple Physical Channels: The physical layer consists of multiple physical chan-
nels and interfaces for fault-tolerance and for meeting performance and functional
requirements.
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We describe the various aspects of the RTLAN architecture in more detail below, focus-
ing mainly on the LLC and MAC layers. In order to maintain readability, wherever possible
we stick to natural language in preference to OSI terminology. We also discuss only those
elements of the architecture that are either novel or relevant to real-time communication.
Thus we have omitted certain routine aspects such as protocol data unit structures and the
details of link control rules of procedure.

6 RTLAN LLC LAYER

The logical link control layer provides communication services to the layer above it by
implementing functions that are responsible for medium-independent data link functions
such as connection management, error handling, flow control and fragmentation. The RT-
LAN architecture distinguishes itself from a conventional LAN architecture by providing
new classes of connection-oriented and connectionless services, that provide support for
meeting the timing requirements of application messages. In order to meet the timing re-
quirements of messages, it also takes an unconventional approach to error handling and flow
control. We describe these aspects of the LLC layer in the following sections.

6.1 SERVICES

The LLC layer in RTLAN offers a connection-oriented service known as RTCOS (real-
time connection-oriented service) and a connectionless service known as RTCLS (real-time
connectionless service). These services are accessible to applications ‘through LLC service
access points.

6.1.1 REAL-TIME CONNECTION-ORIENTED SERVICE

RTCOS is a connection-oriented service that permits the sender to specify its timing
requirements at the time of connection establishment. RTCOS is meant for supporting
the requirements of the class of guarantee-seeking messages. The service is characterized
by the establishment of a logical connection known as a real-time connection. A real-time
connection (Figure 7) represents a simplex end-to-end communication channel between two
communicating application level entities, a sender and a receiver. In order to set up a
real-time connection, the sender specifies the timing requirements of the messages that it
plans to send over the connection to the LLC layer at the time of connection establishment
(connection establishment is done at the time of scheduling a task; the connection request is
typically made by the operating system, which is also part of the application layer, on behalf
of the sender). The timing constraints may be fairly general and may include periodicity,
arrival time, laxity, deadline, etc. Figure 8 depicts an example of the requirements that
may be specified by an application task to the LLC layer. In this example, the application
task requires guarantees that the timing constraints of a session involving four messages will
be satisfied. The first message is periodic and a guarantee is requested for N1 consecutive
instances of the message. The remaining three messages are aperiodic with various arrival
time and deadline requirements. As in a typical connection-oriented service, the service

. provider tries to set up the requested connection through a process of negotiation that may
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Figure 7 Real-Time Connection

involve the sender and the receiver in addition to itself (Knightson, Knowles and Larmouth
1988). The connection is set up only if the specified requirements can be guaranteed;
otherwise the sender is informed that the connection cannot be established. In order to set
up the connection, the RTCOS service provider employs the services provided by the MAC
layer and suitable scheduling algorithms, which we discuss later. The following operations
that comprise real-time connection-oriented service summarize the above descriptions:

e rtcid «— connect(receiverid, requirements)
The communication service provider checks to see if it can set up a connection that
satisfies the specified real-time requirements. If so, it returns a real-time connection
identifier; otherwise it returns an error code.

¢ send(rtcid, message)

Sender requests delivery of a message to the receiving end of the specified real-time
connection.

e message — receive(rtcid)
Receiver requests receipt of a message sent over the specified real-time connection.

o delete(rtcid)
Sender or receiver requests termination of specified real-time connection.

6.1.2 REAL-TIME CONNECTIONLESS SERVICE

RTCLS is an unreliable connectionless service used for transmitting time-constrained
messages. It is unreliable in the sense that the timing constraints of messages transmitted
using this service may not be satisfied. However RTCLS tries to deliver messages within
their timing constraints on a best effort basis. Thus this service is suitable for the class of
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RTC REQUIREMENTS

MESSAGE #l

Periodic Period: P1

Maximum Number of Cycles: N1
MESSAGE #2

Aperiodic

Latest Arrival Time T2

Deadline D2

MESSAGE #3
Aperiodic
Latest Arrival Time T3
Deadline D3

MESSAGE #4
Aperiodic
Latest Arrival Time A4
Earliest Delivery Time E4
Deadline D4

Figure 8 Real-Time Connection Requirements

best effort messages. By best effort, we mean that at each decision making point within the
service, decisions are made on the basis of timing constraints of the pending packets. For
example, if there are several packets waiting to be transmitted, then the system would try
to transmit them in an order that minimizes the number of messages whose deadlines are
not met. Since real-time connectionless service does not involve setting up a connection, it
is defined by a simpler set of operations:

¢ send(receiver, message, requirements)
Sender requests delivery of a message to the specified receiver; sender also specifies
timing requirements (e.g., a deadline for the message) that it would like to be met if
possible.

o (message, sender) «— receive()
Receiver requests receipt of a message.

In order to support RTCLS, the LLC layer makes use of the services provided by suit-
able protocols at the MAC layer that explicitly consider timing constraints of packets in
arbitrating access to the medium.

6.2 FRAGMENTATION

One of the functions implemented by the logical link control layer is the transformation
of messages provided to it by the application layer to a form suitable for the medium access
control layer. One step involved in this function is known as fragmentation or packetization.
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This refers to the division of a long message into smaller packets or frames that satisfy the
maximum packet length requirements of the medium access control layer. Since messages
have timing requirements associated with them, the LLC layer propagates these require-
ments to the individual packets, by propagating the requirements of a message to each of its
fragments. For example, the deadline of a message could be copied to all its fragments, or
the deadlines of the fragments can be staggered such that the last fragment is assigned the
deadline of the message and the leading fragments are assigned earlier deadlines. We refer
to a fragment that is derived from a RTCLS message as a real-time datagram, in analogy
with datagrams in a wide area network.

6.3 GUARANTEEING REAL-TIME CONNECTIONS

One of the distinguishing characteristics of the RTLAN architecture is its connection-
oriented communication service, RTCOS, that permits the sender to specify its timing
requirements at the time of setting up a connection and seek a guarantee from the system
that these timing requirements will be met. In this section, we examine mechanisms that
the LLC layer may use in order to provide such a guarantee.

6.3.1 PRIORITY ASSIGNMENT APPROACH

The first approach that we discuss assumes that all the messages are periodic and
statically specified. By dedicating a separate physical channel for these messages, this
approach may be used to handle the static periodic message components of systems that
involve both static and dynamic communication requirements.

This approach is based on the rate monotonic priority assignment scheme (Liu and
Layland 1973). The rate monotonic priority assignment scheme, originally developed in
the context of scheduling periodic tasks on a uniprocessor, is a fixed priority assignment
scheme in which tasks with a smaller period (i.e., higher rate) are assigned higher priorities.
Scheduling then consists of merely allocating the processor to the pending task with the
highest priority, preempting the currently running task if necessary. Liu and Layland (1973)
have shown that the rate monotonic priority assignment scheme is optimal in the following
sense - if some priority assignment scheme can assign suitable priorities to tasks such that
every task will complete within its period, then the rate monotonic priority assignment
scheme can do so. They also show that a sufficient condition for such a priority assignment
to exist is that the sum of the utilizations of the individual tasks must satisfy

n
S uisn(2-1), (1)
i=1
where n is the number of tasks and U; is the utilization of task i de’ﬁned as
C;
U; = T’

where C; and T; are respectively the computation time and period of the task. Lehoczky
and Sha (1986) have extended this result to the problem of scheduling n periodic messages
on a shared bus. Strosnider (1988) has further extended this result to the deferrable server



Figure 9 Real-Time Virtual Circuit Scheduling

algorithm that makes use of a periodic server to service aperiodic messages. He has used
this algorithm to provide guarantees for both periodic messages and a limited class of alert
messages that are assumed to occur rarely.

Guaranteeing an application’s message timing requirements, in the priority assignment
approach, consists of merely assigning fixed priorities to each of the periodic messages (and
the periodic server that services aperiodic messages) involved (on the basis of their periods),
and ensuring that the utilizations of the messages satisfy Eq. (1). Actual implementation
of priority arbitration is left to suitable MAC protocols.

6.3.2 REAL-TIME VIRTUAL CIRCUIT APPROACH

Anq alternative approach, that may be used to guarantee the timing requirements of both
statically known and dynamically arising messages, is to use the notion of real-time virtual
circuits (RTVCs). An RTVC is a logical channel that has the property that the service time
of a packet queued on this channel, the length of the interval between the instant at which
the packet enters service and the instant at which transmission of the packet completes
successfully, is bounded for a fixed packet length. Thus the LLC layer can assume that
once a packet queued onto a RTVC has been accepted for service, it will be transmitted
within a bounded amount of time. This bound is determined by the MAC protocols used
to implement RTVCs.

The LLC layer makes use of RTVCs as follows. Each RTVC has a transmission queue
associated with it. When an application entity requests a real-time connection from the
LLC layer, the LLC layer firsts fragments messages in the request that are longer than
the maximum packet length into multiple packets and propagates the timing constraints
of messages to their fragments. The set of fragments are then passed on to a LLC layer
entity known as the scheduler. The scheduler takes a set of message fragments with timing
requirements, and applies a scheduling algorithm (Cheng, Stankovic and Ramamritham
1988) to determine if the set of fragments can be inserted (according to some insertion
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Figure 10 Abstractions provided by RTLAN layers

discipline, such as the first-in first-out (FIFO) or the minimum laxity first (MLF) discipline?)
into the queue associated with some RTVC, without violating the timing constraints of the
packets that have already been admitted into the queue and that are awaiting transmission.
In order to make this determination the scheduler makes use of a worst case assumption,
since the scheduler cannot predict the service time exactly. The assumption made is that
each packet in the queue will have a service time equal to the worst case service time. Such
a worst case service time is guaranteed to exist, since an RTVC by definition has a bounded
packet service time. The example shown in Figure 9 illustrates these ideas. In this example,
there is one RTVC (with a worst case service time of 10) which already has three guaranteed
packets waiting to be transmitted. Packet M1 has a laxity (time until deadline for start of
transmission) of 10, M2 has a laxity of 30 and M3 has a laxity of 40. If a packet M4 of
laxity 10 arrives, then it cannot be admitted into the system, if the MLF discipline is used,
since the deadlines of both M1 and M4 cannot be simultaneously met. However a packet
M5 with a laxity of 20 can be admitted, since it is possible to meet its laxity requirements
without violating the requirements of any of the messages already in the queue. It should
be pointed out that, for the real-time virtual circuit approach to guarantee a reasonable
fraction of the connection requests that are made, the worst case packet. service time must
be of the same magnitude or smaller than the average laxity of the packets involved.

Note that RTVCs are abstractions provided by the MAC layer to the LLC layer, Fig-

*A commonly used discipline in the scheduling of real-time tasks is the minimum lazity first (MLF)
discipline, which is known to be optimal in the following sense - if some discipline can schedule a set of
independent tasks so that all the tasks meet their deadlines, then the minimum lazity first policy can do so.
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ure 10 illustrates how each layer in the architecture provides an abstraction that is used
by the layer at the immediately higher level to implement its services. The physical layer
receives a bit stream from the MAC layer and converts the bits into electrical signals that
are transmitted over the physical link. The physical layer hides the physical details of the
link and thus provides the abstraction of a virtual bit pipe (Bertsekas and Gallager 1987) to
the MAC layer entities. Protocols in the MAC layer make use of this raw multiple access bit
pipe with potentially unbounded packet service times to provide the abstraction of logical
channels with bounded packet service times, viz., RTVCs. The LLC layer employs these
channels to provide the abstraction of a real-time connection to the application layer.
Note that the MAC layer has to employ suitable protocols in order to provide such an
abstraction. For instance, an Ethérnet based system is unsuitable, since a message that has
entered service may never get transmitted because of the randomized collision resolution
strategy used in the Ethernet MAC protocol. In Section 7.1.2, we will look at several
medium access control protocols that may be used to realize the RTVC abstraction.

6.3.3 RESERVATION APPROACH

The real-time virtual circuit approach that we described in the previous section dis-
tributes the available channel bandwidth into RTVCs and tries to guarantee connections on
individual RTVCs based only on local knowledge of connection requests. This forces each
node to pessimistically assume a worst case packet service time for each packet. This can
result in connection requests that can actually be guaranteed to be unnecessarily rejected.
The reservation approach tries to make use of global knowledge of all the connection requests
in the system, thereby increasing the chances of guaranteeing connections.

The reservation approach treats the entire channel as a single schedulable entity on
which the LLC layers at the various nodes try to schedule their connection requests. Such
an approach requires that the LLC layers have a system-wide view of all the accepted
reservation requests made at any node in the system. With such a global view, the LLC
layer at a node can apply a scheduling algorithm based on an appropriate insertion discipline
(as in Section 7.3.2) to determine whether a connection request can be accepted or not.
However, since the scheduling algorithm has global knowledge of all the packets (in all
the nodes) in the system that are awaiting transmission, it does not have to make worst
case assumptions about the service time of a packet. Thus the chances of guaranteeing
connections can be expected to be better under this approach.

Implementation of such a system-wide view requires special support from the MAC
layer in the form of suitable MAC protocols. We discuss approaches to implementing such
a queue in Section 7.1.3.

6.4 FLOW CONTROL AND ERROR CONTROL

Flow control and error control are two important functions for which the LLC layer is
responsible. Flow control is a synchronization technique to ensure that a sending entity does
not overwhelm a receiving entity with data, causing its buffers to overflow. Flow control
is typically implemented through acknowledgement based sliding window protocols. Error
control mechanisms are responsible for detecting and correcting errors that occur in the
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transmission of packets. These mechanisms are required because it is possible for a trans-
mitted packet to be lost or damaged because of noise on the communication channel. Error
control is typically implemented through ARQ (automatic repeat request) mechanisms. In
an ARQ mechanism, the receiver sends a positive acknowledgement to the sender, if it
receives an undamaged packet (damage is typically detected through the use of an error-
detecting code such as cyclic redundancy check); if it receives a damaged packet, it sends
a negative acknowledgement. If the sender receives no acknowledgement within a time-
out period or receives a negative acknowledgement, then it retransmits the packet to the
receiver.

In the real-time connection oriented service, low control schemes based on sliding win-
dow protocols where the receiver may block the sender by withholding acknowledgements,
are inappropriate. If a receiver can block the sender for an arbitrary amount of time (be-
cause of an insufficient number of buffers), then the timing constraints of guaranteed packets
may be violated. In order to guarantee the timing constraints of packets, the required num-
ber of buffers will have to be reserved at the destination node. This will permit the sender
to transmit its packets whenever they are ready, rather than wait for permission from the
receiver. This buffer reservation is part of the three way negotiation involved in setting
up a real-time connection. When a connection is requested under any of the approaches
described in Section 6.3, the LLC layer makes sure that sufficient buffer space is reserved
at the destination nodes for the packets involved in the request. In a real-time connection-
less service, low control can be exercised by merely dropping packets that arrive when the
receiver’s buffers are full. This is acceptable, since RTCLS does not offer any guarantee on
the delivery of packets. .

Two kinds of error control schemes may be used for RTCOS. The first scheme is an ARQ
scheme based on temporal redundancy that is appropriate when the deadlines of the packets
involved in a connection are large enough to permit the use of timeouts. At the time of
connection establishment, the maximum number of retransmissions possible for each packet
is computed based on the packet’s deadline and the retransmission timeout (alternatively,
this number may be included in the specification of the requirements for the connection).
The scheduler takes into account all the potential retransmissions in determining whether
the requested connection can be guaranteed or not. When the packet is actually trans-
mitted, the receiver returns an acknowledgement (transmitted as a real-time datagram) to
the sender. If the acknowledgement is received within the retransmission timeout period,
then all the remaining duplicates are dequeued; otherwise, the next duplicate is transmit-
ted, when its turn comes. A variation on this scheme is to use temporal redundancy and
avoid acknowledgements all together (Kopetz 1983). In this variation all the duplicates are
transmitted, irrespective of whether or not the earlier duplicates suffer transmission errors,
leaving it to the receiver to select an error-free duplicate and discard the others.

The second scheme is based on spatial redundancy and is appropriate when the deadlines
of the packets involved in a connection are too small to permit retransmissions based on
timeouts. In this scheme, the LLC layer tries to schedule a connection request on multiple
physical channels. A request for a real-time connection is guaranteed only if it is possible
to redundantly schedule the request on the specified number of physical channels. Thus
multiple copies of each message involved in an accepted connection are transmitted on
multiple channels, thereby improving the probability of error-free receipt. The receiver is
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then responsible for discarding duplicates.

Note that neither of the above schemes can guarantee reliability with certainty; they can
only provide a conditional guarantee that if the number of faults (errors) does not exceed a
certain number, then a packet will be transmitted successfully because of the redundancy
in the system. However this is true of any mechanism for fault-tolerance. RTCLS does not
require any error control mechanism, since it does not guarantee reliability.

7 RTLAN MAC LAYER

A local area network is typically based on a shared physical channel such as a bus
or a ring, commonly referred to as a multiple access channel. Since multiple nodes may
simultaneously contend for access to this shared channel, a mechanism is needed to manage
access to it. The main function of the medium access control layer is to arbitrate access
to the channel. The MAC layer implements this arbitration mechanism through a suitable
multiple access protocol. Kurose, Schwartz and Yemini (1984) provide a good survey of
multiple access protocols. Multiple access protocols can be classified into real-time and
non-real-time protocols on the basis of whether or not they provide support for real-time
communication. Many protocols that have been proposed in the literature, such as the
Aloha protocol (Abramson 1970) the CSMA protocols in (Kleinrock and Tobagi 1975) and
the Ethernet protocol (Metcalfe and Boggs 1976) are non-real-time protocols since they do
not incorporate any notion of packet timing constraints. In this section, we look at examples
of real-time protocols that have been proposed in the literature that may be used to provide
support for RTCOS and RTCLS.

7.1 RTCOS/MAC PROTOCOLS

In Section 6.1.1, we defined RTCOS as a connection-oriented service that permits an
application layer entity to specify its communication timing requirements to the LLC layer
and seek a guarantee that these requirements will be satisfied. We also described three
different approaches to providing such guarantees, viz., priority assignment approach, real-
time virtval circuit approach and reservation approach. The LLC layer invokes the services
of the MAC layer in order to provide such guarantees. In this section, we look at several
MAC protocols that may be used to support the services required by the LLC layer, for each
of these approaches. The priority assignment approach requires priority resolution protocols
at the MAC layer; the real-time virtual circuit approach requires MAC protocols that can

guarantee bounded packet service times and the reservation approach requires reservation
protocols.

7.1.1 PRIORITY RESOLUTION PROTOCOLS

In Section 6.3.1, we described a priority-based scheduling approach based on the rate
monotonic algorithm and the extensions to this algorithm proposed by Lehoczky and Sha
(1986), and Strosnider (1988). This approach may be used to guarantee certain classes of
statically specifiable messages. In order to ensure that packets are actually transmitted
according to the priorities assigned to them by the LLC layers, the MAC layers will have
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to employ an appropriate priority resolution protocol. A priority resolution MAC protocol
always selects for transmission, the packet with the highest priority among all the contending
packets in the system.

The IEEE 802.5 standard for token ring local area networks includes a priority resolution
scheme. In a token-passing ring network, access to the ring is arbitrated through a short
control packet known as a token. At any moment, only the node that is in possession of
the token is permitted to transmit. A node that has completed transmission or that has
no packets to transmit passes on the token to the next node. This simple token-passing
scheme may be augmented to support priority resolution by including additional fields in
the token. In the IEEE 802.5 standard, priority resolution is supported using two 3 bit fields
in the token known as the priority field and the reservation field. The priority resolution
scheme works as follows. When a station captures the token, it sets a one bit field in
the token known as the token bit to indicate that the token has been claimed. It then
transmits the claimed token followed by the data packet. Each node examines the claimed
token as it passes by. It overwrites the reservation field in the token with the priority of
its pending packet, if this priority is greater than the value in the reservation field. Thus
the reservation field contains the priority of the packet with the highest priority among all
the packets at the heads of MAC transmission queues at the-various nodes in the system.
After the transmitting station has received the token and the data packet back, it removes
the data packet from the ring and clears the token bit in the token. It also copies the
reservation field of the token to the priority field before releasing the free token. Any node
with a pending packet with priority greater than or equal to the priority field of the free
token may now capture the token. Strosnider and Marchok discuss the use of the token ring
priority resolution scheme for scheduling statically specified message sets in more-detail in
(Strosnider and Marchok, 1989).

Priority resolution protocols for bus-based systems are classified by Valadier and Powell
(1984) into three categories, on the basis of the underlying scheme involved:

1. Deference delays: In this scheme at the end of a packet transmission, each node
defers transmission of its packet (if any) by a period of time whose length in round
trip propagation delay units is equal to pmez — p. Here p is the priority associated
with a node and pmq- is the largest priority value possible. At the end of its deference
period, each node senses the channel. If the channel is sensed to be idle, it means
that no other node has a value of p greater than that of the node that sensed the
channel. So this node is allowed to transmit its packet. Thus this scheme selects the
node with the largest value of p (highest priority) that has a packet to transmit. Note
that the length of the deference delay, the worst case overhead (in the form of wasted
channel time) per packet that arises because of priority resolution, lies in the range
[0, Pmaz — Pmin). The average overhead, assuming all possible values of the overhead
are equally likely, is given by % (Pmaz — Pmin), i-e., it is a linearly increasing function of
the number of priority levels. The protocols proposed by Franta and Bilodeau (1980)
and Tobagi (1982) are examples of this class.

2. Preamble lengths: In this scheme, at the end of a packet transmission, each node
transmits a preamble signal for a period of time whose length in round trip propaga-
tion delay units is equal to p— Pmin, Where Pmin is the smallest priority value possible.



22

Thus a node with a higher priority will transmit a longer preamble signal. Collision
detection is suppressed at a node during the period that its preamble is being trans-
mitted. If a node detects a collision at the end of the transmission of its preamble, it
means that there is another node with a larger value of p that is still transmitting its
preamble. Only the node which does not detect a collision at the end of its preamble,
i.e., the node with the longest preamble length or the largest value of p, is allowed to
transmit its packet. The per packet overhead that arises because of priority resolution
again lies in the range [0, Pmesz — Pmin) units of time. Thus the average overhead is
again a linearly increasing function of the number of priority levels. The protocol
proposed by Iida et al. (1980) is an example of a protocol that employs this scheme.

3. Forcing Headers: The forcing header scheme makes use of the inherent wired-OR
property of a broadcast bus, namely the property that the value of the bit received
by a node from the bus is equal to the logical OR of the bits transmitted by all the
nodes. In this scheme, each packet transmission is preceded by a header epoch, during
which all the nodes with packets to transmit, simultaneously transmit their priorities
from the most significant to the least significant bit in successive slots (of length equal
to a round trip propagation delay). The nodes sense the medium as they transmit
their priority bits. If a node has transmitted a 0 bit in a slot and receives a 1 bit,
it means that some node with a higher priority value is contending for access to the
channel. In this case the node that transmitted the 0 bit drops out of contention. At
the end of the header epoch, only the node with the highest priority value remains
and this node transmits its packet to completion. The length of the header epoch is
equal to the number of bits required to represent the range of values [Pmin, Pmaz), i-€-,
[log, (Pmaz — Pmin + 1)] time units. This represents the priority resolution overhead
and is constant for all packets and hence also represents the average overhead. Thus
the average overhead for this scheme increases logarithmically with the number of
priority levels. The MLMA or multilevel multiaccess protocol (Rothauser and Wild,
1977) employs such a scheme.

It is clear that, among the above schemes for bus-based systems, the scheme based on
forcing headers incurs the least overhead, because of the logarithmic relationship between
the overhead and the number of priority levels in this scheme. In fact, such a scheme is used
in the Distributed Systems Data Bus (DSDB) developed by IBM, which forms the hub of a
large distributed real-time system (Strosnider 1988). In Section 8.1, we describe a priority
resolution protocol based on a window splitting paradigm whose overheads are about the
same as the forcing headers scheme.

7.1.2 REAL-TIME VIRTUAL CIRCUIT PROTOCOLS

A real-time virtual circuit is a logical channel that has the property that the service
time of a packet queued on the channel is bounded. The packet service time consists of two
components, the physical channel access time and the packet transmission time (Figure 11).
The channel access time arises because the underlying physical channel in a local area
network is typically a multiple access channel that is shared by all the nodes on the network;
a node may therefore have to wait for the channel arbitration mechanism to permit it to
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Figure 11 Packet Service Time

transmit. The packet transmission time is the time required to transmit a packet. Note that
the packet transmission time may be bounded by restricting the maximum size of a packet.
However, unless a suitable medium access control (MAC) protocol is used, the channel
access time can be unbounded. For example, in a CSMA/CD (Ethernet) based system,
a message that has entered service may never get transmitted because of the randomized
collision resolution strategy used in the MAC protocol. In this section, we look at several
MAC protocols, each of which can guarantee a bounded channel access time.

In Time Division Multiple Access (TDMA), time is divided into fixed length intervals
known as frames. Each frame is further subdivided into slots with at least one slot per
node. If there are S slots in a frame, then the maximum separation between two instances
of the same slot is given by the frame length S P, where P is the packet transmission time
(assuming that only one packet is permitted per slot). Real-time virtual circuits may be
implemented by dedicating one slot per real-time virtual circuit. In this case the worst case
channel access time for a packet quened on a real-time virtual circuit is given by SP.

In token-passing protocols, the nodes are organized in a logical (e.g., token bus (IEEE
1982)) or physical ring (e.g., token ring (IEEE 1986)). A real (e.g., token ring, token bus)
or virtual (e.g., BRAM (Chlamtac, Franta and Levin 1979), MSAP (Kleinrock and Scholl
1980) token that circulates around this ring is used to arbitrate access to the channel. The
token confers upon its holder the privilege to transmit on the channel for a bounded amount
of time (the token holding time). If there are no packets to transmit, or if the token holding
time has been exceeded, the token is passed onto the next node in the ring. If the token
holding time per node is P time units (i.e., a node is permitted to transmit only one packet
in each cycle), then the maximum length of the interval between successive channel accesses
by a node is given by N(P + 7), where N is the number of nodes in the system and 7 is
the token passing overhead.

The 802.3D protocol proposed by Le Lann (1987) is another MAC protocol that may
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be used to guarantee a bounded channel access time. The ‘802.3’ in the name refers to the
IEEE 802.3 MAC layer standard (IEEE 1985) for CSMA/CD (the access control method
used in Ethernet) which, owing to the collision resolution strategy (binary exponential
backoff) used, cannot guarantee an upper bound on the channel access time. The D’ refers
to the fact that the 802.3D protocol is deterministic, i.e., it can guarantee an upper bound
on the channel access time. This protocol is essentially an adaptive tree walk protocol.
Normally, the nodes are in the random access mode in which they access the channel
randomly without any coordination. Thus under low load conditions, channel access is
immediate. However, the moment a collision occurs, the nodes switch to the epoch mode
in which a tree search process is used to resolve the collision within a bounded amount of
time. The worst case channel access time for the 802.3D protocol is the worst case time
required to resolve a collision involving all the nodes and is equal to N(P + 7), where 7 is
the round trip propagation delay. ,

The notion of waiting room priorities (Valadier and Powell 1984, Ramamritham 1987)
has been used to implement the watting room protocol which is characterized by bounded
channel access times. The waiting room protocol is based on a logical waiting room which
a packet has to enter before it can be transmitted. A packet can enter a waiting room
only when the waiting room is empty. However, since packets belonging to different nodes
can simultaneously find the waiting room to be empty, more than one packet can enter it
simultaneously. The packets in the waiting room are then transmitted in some prespecified
order (e.g., descending order of node addresses). If there are N nodes in the system and the
transmission order is the descending order of node addresses, then the worst case channel
access time occurs for a packet belonging to the node with the smallest address and is equal
to 2(N — 1) P units of time (Valadier and Powell 1984).

Thus a variety of paradigms may be used to realize the abstraction of a real-time virtual
circuit, all with approximately the same worst case channel access time (except the waiting
room protocol that has a larger worst case channel access time). In Section 8.2, we describe
another protocol, this time based on a window splitting paradigm, that has approximately
the same bound on the channel access time as most of the protocols above, but which also
provides structural homogeneity.

7.1.3 RESERVATION PROTOCOLS

In Section 6.3.3, we described the reservation approach to implementing RTCOS, in
which LLC layers make use of global knowledge of all the connection requests in the system
in deciding whether a connection request can be accepted or not. We also pointed out
that such an approach requires that the LLC layers have a global view of all the accepted
reservation requests made at any node in the system. In a distributed system, such a global
view may be realized through a replicated, globally consistent queue of reservation requests.

One approach to maintaining such a global queue is to broadcast each arriving connec-
tion request to all the nodes, during specific time slots (reservation slots) dedicated for this
purpose. Schedulers at the LLC layer of each node execute identical scheduling algorithms
to determine if a connection request is to be accepted or rejected, and update the local copy
of the global queue accordingly. In a broadcast channel, in the absence of transmission
errors or component failures, since all the nodes receive the same request messages at the
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Figure 12 Priority-Oriented Demand Assignment

same time, and all the schedulers apply the same scheduling algorithm, the local copies of
the queue at each node remain consistent.

The Priority Oriented Demand Assignment (PODA) reservation protocol proposed by
Jacobs et al (1978) in the context of satellite-based communication is an example of a MAC
protocol that uses this approach. In this protocol, channel time is divided into frames
each of which consists of an information subframe and a control subframe (Figure 12).
The information subframe is used for scheduled packet transmissions. These transmissions
may contain additional reservation requests in their headers. The control subframe is used
to broadcast reservations that cannot be sent as part of the data transmissions in a timely
manner (e.g., when a station wants to make a reservation for a high priority message or when
a station wants to join the system). In the PODA protocol, all stations maintain a local
copy of a scheduling queue ordered by reservation urgency, which is a function of the delay
class and priority of a message. Reservations with the same urgency are ordered further
to ensure fairness to all the stations involved. Channel time in the information subframe
is allocated to the stations according to this queue. Whenever a reservation request for a
message is broadcast, all the nodes that successfully receive the message enter the request
in their respective local scheduling queues (on the basis of its reservation urgency).

The main problem with a reservation protocol such as PODA is the lack of robustness. In
the presence of transmission errors and failures, the local copies of the global queue at each
node may become mutually inconsistent resulting in possible simultaneous channel access by
more than one node. This would cause collisions and a violation of the guarantees offered.
In order to ensure proper operation despite failures and errors, additional mechanisms for
fault-tolerance are required. :

One approach to improving the system’s tolerance of errors and failures is the standard
approach based on redundancy. The shared bus is replicated n times with the same MAC
protocol being employed on all the buses. There are n copies of the global queue at each
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node, one associated with each bus. The queue associated with a bus is constructed entirely
using the reservation requests that are received on the bus. This ensures that as long as
there is at least one copy of the queue that is consistent across all the nodes, the system
will function correctly.

An alternative approach is to employ a synchronous atomic broadcast protocol (Cris-
tian 1990), again based on redundancy. Such a protocol guarantees the following three
properties:

1. Atomicity: Every message whose broadcast is initiated by a sender is either delivered
to all receivers or to none.

2. Order: All delivered messages are received in the same order at all receiving nodes.

3. Termination: Every message broadcast by a sender and delivered to some correct
receiver, is delivered to all correct receivers after some known time interval.

These properties and the fact that the scheduling algorithms executed at each node are
identical ensure that the local copies of the global queue are mutually consistent in spite of
errors.

The reservation approach is a good way of avoiding the pessimism inherent in the real-
time virtual circuit approach that makes use of worst case assumptions. However, as we
saw above, it incurs high implementation complexity in the form of special mechanisms for
fault-tolerance.

7.2 RTCLS/MAC PROTOCOLS

In Section 6.1.2, we defined RTCLS as an unreliable connectionless service that tries to
deliver messages within their timing constraints on a best effort basis. In order to provide
such a service to the application layer, the LLC layer invokes suitable MAC layer services
that are implemented through a class of MAC protocols which we refer to as best effort
protocols. Best effort protocols take into account the timing constraints of the individual
contending packets in arbitrating access to the shared channel. Even though these protocols
do not provide the ability to guarantee that the timing constraints of messages will be
satisfied, they try to minimize the number of messages that are lost, i.e., that do not meet
their deadlines.

The window protocol proposed by Kurose, Schwartz and Yemini (1983) is an example
of a protocol that considers timing constraints of messages in arbitrating channel access.
The protocol assumes that all packets have identical laxities, as would be the case in a voice
communication application. The protocol effectively implements a global first-in first-out
(FIFO) policy of message transmission augmented with an additional policy element that
dictates the discarding of messages that have missed their deadlines before transmission.

The FIFO policy is appropriate when all the packets have identical laxities. This policy
chooses the packet that arrived first, i.e., the packet that has waited longest and hence is
likely to miss its deadline first (the most “urgent” packet). However other policies have also
been proposed in the literature. For example, Kallmes, Towsley and Cassandras (1989) have
considered the LIFO (Last In First Out) policy, and shown that under certain conditions
(when the deadlines are i.i.d. with concave CDFs) this policy is optimal. In (Panwar,
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Towsley and Wolf 1988) the minimum laxity first policy (also known as the shortest time to
extinction policy) or its variations have been shown to maximize the fraction of the number
of customers in a queueing system that meet their deadline under fairly general conditions.
The virtual time CSMA protocol (Zhao and Ramamritham 1987) and the MLF window
protocol (Zhao, Stankovic and Ramamritham 1990) try to implement a global minimum
laxity first policy for message transmission on a bus-based system, i.e., they select the
message with the smallest laxity in the entire system for transmission.

In the virtual time CSMA protocol (Zhao and Ramamritham 1987), each node main-
tains two clocks, a real time clock and a virtual time clock that runs at a higher rate than
the real-time clock. Whenever a node senses the channel to be idle, it resets and restarts
its virtual-time clock. When the reading on the virtual clock is equal to some parameter
value of a message waiting to be transmitted, the node transmits the message. Collisions
are resolved through a random backoff procedure. Different transmission policies are im-
plemented by using different message parameters to control the operation of the virtual
clock. For example, choice of message arrival time as the parameter used by the protocol
corresponds to the first-in first-out transmission policy (Molle and Kleinrock 1985), while
use of message laxity corresponds to the minimum laxity first policy.

The MLF window protocol belongs to the class of inference-seeking protocols (Zhao,
Stankovic and Ramamritham 1990). In the window protocol, a window that slides along
the real-time axis is used to identify the node that has the message with the most urgent
transmission requirements (the message whose ‘latest time to send’ is smallest) and this
node is granted transmission rights on the channel. The protocol effectively tries to imple-
ment a global minimum laxity first policy. In this protocol, each node maintains a window
that spans a segment of the real-time axis. When a node has a message to transmit, it
waits for the channel to become idle and then transmits the message, if the latest time to
send the message falls within the current window. If there is a collision (which can occur
if another node also had a message that fell within the window), then all the nodes split
the window into two halves and examine the left window first. If there is only one node
with a message in the left window, then that node transmits its message successfully. If
there are two or more nodes in the window, then a collision occurs again and the splitting
process is repeated until a message is successfully transmitted. If there are no nodes with a
message whose latest time to send falls within the left window, the window is expanded to
include the left half of the right window and the window examination process is repeated
again. This process is continued until a message is transmitted, or the whole of the initial
window has been examined. The window protocol has been shown to very closely approx-
imate an ideal protocol that implements, without incurring any arbitration overheads, the
minimum laxity first policy for message transmission (Zhao, Stankovic and Ramamritham
1990). An important advantage of this protocol over traditional window protocols is that a
newly arriving message need not wait for all the messages currently involved in contention
resolution to be transmitted, before being considered for transmission.



28

8 A UNIFORM APPROACH TO MAC PROTOCOLS

In the previous section, we looked at several kinds of MAC protocols that may be used to
support RTCLS and RTCOS, including forcing header protocols, token-passing protocols,
tree walk protocols, virtual time protocols and window protocols. Each of these protocols
is based on a particular distinct medium access control paradigm and is suitable for a
particular kind of communication service. In (Arvind, Ramamritham and Stankovic 1990),
we have proposed homogeneous MAC protocols, all based on a uniform window-splitting
medium access control paradigm, to support RTCOS and RTCLS.

The starting point for this work was provided by the MLF window protocol proposed
by Zhao, Stankovic and Ramamritham (1990). This protocol can be used to closely approx-
imate the system-wide minimum laxity first policy for message transmission over a shared
bus. Thus it is well-suited to supporting RTCLS. However this protocol cannot guarantee
bounded channel access times for nodes. Therefore this protocol, as it is, is not suitable
for implementing RTCOS. In (Arvind, Ramamritham and Stankovic 1990) we have gen-
eralized and extended this protocol and developed uniform window protocols to support
both RTCLS and RTCOS. The unifying thread that is common to all the new window pro-
tocols is a contention resolution technique known as parameter-based contention resolution
(PBCR). The term PBCR describes the following channel arbitration problem. Consider a
set of N nodes sharing a multiple access channel. Each node is associated with a parameter
P € [Pmin, Psup) that can vary with time. The problem is to allocate the channel to the node
that has the smallest value of p, whenever there is contention for the channel. PBCR may
be implemented using a window splitting paradigm as follows. Each node maintains a data
structure known as a window that is characterized by the current position = of its left edge
and its current size §. The window at any moment spans the range of values [r,7 + §). If
the parameter p associated with a node lies in the range of values spanned by the window,
the node is said to be in the window. At the end of a packet transmission epoch, each
node that lies within the initial window [Pmin; Pmin + Omaz), Where §mge is the maximum
size the window is allowed to assume, starts transmitting its packet. If there is only one
node in the window, then that node continues to transmit its packet to completion; if two
or more nodes lie within the window, then the window is split into two and the protocol
is recursively repeated with the left half of the window, and if necessary again with the
right half of the window, until a packet is transmitted successfully. In the example shown
in Figure 13, the initial window spans the range [0,128) and there are three nodes with p
values 75, 90 and 120 respectively that are in the window. All of them start transmitting,
and consequently there is a collision on the channel. The nodes sense the collision and split
the window into two, making the left half of the window the current window. Since none
of the nodes lie within this half, the nodes sense the channel to be idle. The right half is
then made the current window. All the nodes lie within the current window once again,
resulting in a collision. The window is therefore split into two and the left half considered
first. Only one node, the node with the smallest value of p, lies within this half and it
transmits to completion. This window splitting paradigm may be used to implement MAC
protocols that can support RTCOS and RTCLS as described below.
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Figure 13 An example of the window protocol in operation
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8.1 RTCOS/MAC: PRIORITY RESOLUTION PROTOCOL

Implementation of priority resolution using the above contention resolution approach is
straightforward. Note that priority resolution is an instance of PBCR, where the parameter
p associated with each node is the priority associated with the packet with the highest
priority (assuming that higher priorities correspond to smaller p values) at the node®. It
can be shown that the contention resolution overhead per packet for the priority resolution
window protocol lies in the range [0,2 [log, K| — 1], where K is the number of priority
levels. Note that the average overhead, given by [log, K] — 0.5, increases logarithmically
with K and is about the same as that for the forcing headers scheme.

8.2 RTCOS/MAC: REAL-TIME VIRTUAL CIRCUIT PROTOCOL

We have proposed a protocol known as the RTVC window protocol, based on the same
window splitting approach, that can guarantee bounded channel access times and hence can
be used to support the abstraction of real-time virtual circuits. This protocol assumes that
the system consists of a fixed number (Nyyc) of real-time virtual circuits, chosen a priori.
Each real-time virtual circuit is characterized by a unique identifying integer known as its
capability value. The packets at the heads of real-time virtual circuit transmission queues
contend for channel access using the window protocol described above. The parameter p
in the window protocol that is associated with a node is equal to the capability value of
the enabled real-time virtual circuit with the smallest capability value (a real-time virtual
circuit is said to be enabled, if it is permitted to contend for access to the channel; oth-
erwise it is said to be disabled). A real-time virtual circuit is disabled, whenever a packet
belonging to a real-time virtual circuit with a higher capability value is transmitted. It
remains disabled until all real-time virtual circuits, with a capability value that is higher
than that of the real-time virtual circuit that just transmitted a packet, have had a chance
to transmit. These actions of enabling and disabling real-time virtual circuits ensure that
the channel access time for each real-time virtual circuit is bounded. The reader is re-
ferred to (Arvind, Ramamritham and Stankovic 1990) for more details. The RTVC window
protocol has a worst case channel access time given by Ny (P + &), where the overhead
€ = (2 [logy Nytye| — 1) 7 and 7 is the round trip propagation delay. This is slightly larger
than the worst case channel access time of Npgye (P + 7) for some of the other protocols
that we saw in Section 7.1.2. The fractional increase in the worst case channel access time
because of using the RTVC window protocol is given by MM’HL;“-EH), where a is the
ratio of the round trip propagation delay to the packet size. Thus the fractional increase
in the worst case channel access time for a system with 32 real-time virtual circuits and
a = 0.01 is about 8 percent; for a system with 1024 real-time virtual circuits the increase is
about 18 percent (note the logarithmic relationship between the number of real-time virtual
circuits and the worst case contention resolution overhead). However, results of a simula-
tion study in (Arvind, Ramamritham and Stankovic 1990) indicate that the performance of
the RTVC window protocol (measured in terms of the guarantee ratio, the fraction of the
number of packets that arrive that get guaranteed) is close to that of an idealized protocol

S A similar protocol is specified in the IEEE 802.4 token bus standard for station addition. However this
protocol uses recursive quarternary partitioning, while our protocol uses recursive binary partitioning.
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that can guarantee a bounded channel access time of N, P with zero overhead. This is to
be expected since the guarantee ratio is mainly dependent on the worst case channel access
time. It is not significantly affected unless the worst case channel access time increases by
an amount that is of a magnitude similar to that of packet laxities. But packet laxities have
to be greater than the worst case channel access time in order for packets to be accepted
for transmission. Therefore, fractional increases in the worst case channel access time do
not significantly affect the performance.

8.3 RTCLS/MAC PROTOCOL

Implementation of real-time datagram arbitration based on the minimum laxity first
policy using the above window splitting paradigm is again a simple matter. The parameter
p associated with each node is made equal to the laxity of the packet with the smallest laxity
awaiting transmission at the node. However, since laxity values need not be bounded, a
maximum window size is chosen so that the window protocol will have a starting point.
Packets whose laxities are greater than the maximum window size do not participate in
the contention resolution process. Thus only the most “urgent” packets are considered
for transmission at any instant of time. However since the laxity of a waiting packet
continuously decreases with time, the laxity of every packet will eventually fall within
the window. We have incorporated these ideas into a new window protocol for real-time
datagram arbitration known as the RTDG window protocol. The results of simulation
experiments indicate that the performance of the RTDG protocol is close to that of an
idealized protocol that implements the minimum laxity first policy for channel arbitration
with zero overhead, and is superior to the performance of protocols that have no notion of
packet timing constraints.

The RTDG protocol and the RTVC protocol have further been combined to implement
two integrated window protocols known as INTPVC and INTPDG, that can be used to
support both RTCLS and RTCOS on a common channel. In addition to the usual advan-
tages of integrated protocols, including reduced costs resulting from common interfaces and
cabling, and efficient bandwidth utilization, these protocols also display an improvement in
the quality of support for RTCLS and/or RTCOS over a range of system parameters. The
protocol INTPVC accords greater importance to servicing real-time virtual circuit packets;
real-time datagrams are considered for transmission, only if there are no real-time virtual
circuits with packets pending for transmission. The protocol INTPDG accords greater
importance to real-time datagram services; real-time datagrams are considered for trans-
mission even if there are real-time virtual circuit packets pending for transmission (but in a
manner that does not violate the bounded channel access time property of real-time virtual
circuits). The reader is referred to (Arvind, Ramamritham and Stankovic 1990) for more
details on these protocols. ’

In this section, we described a suite of window protocols that represents an attempt
to support both RTCOS and RTCLS in a uniform manner. In addition to providing the
advantage of homogeneity (enabling the use of a uniform medium access control logic and
LAN controller hardware to support both RTCOS and RTCLS), these protocols also have
performance characteristics that are close to the best available (or ideal) protocols that can
be used to provide the same functionality.
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9 CONCLUSION

Most current work in real-time communication deals with static systems in which mes-
sages with timing constraints are mainly periodic, or occur only rarely. However the dynamic
closed loop distributed real-time systems of the future will be characterized by richer com-
munication patterns. Specialized network services and protocols will be required to support
the communication requirements of these systems. In this paper, we proposed RTLAN, a
new local area network architecture for communication in such systems. RTLAN provides
new classes of connection-oriented and connectionless services known as RTCOS and RT-
CLS respectively, that take the timing constraints of messages explicitly into account. In
order to provide these services, RTLAN employs specialized real-time medium access con-
trol protocols. We presented several medium access control protocols that can be used at
the MAC layer of RTLAN. Finally, we also described a homogeneous set of MAC protocols
that may be used to support both RTCOS and RTCLS using a uniform window splitting
paradigm.
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