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Abstract

In this paper we study the order statistics of the sojourn times of customers that form a
single batch arriving in a MX /M/c queve. We determine the marginal probability density
functions of each of the order statistics, the density function of the range and the joint
probability density function of all of the order statistics. In addition, we obtain simple upper
and lower bounds on the cumulative distributions of the order statistics of the sojourn times.
The results in this paper can be applied to modeling parallel processing and fault-tolerant

systems.
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1 Introduction

We consider an MX /M /c queue where customers arrive in batches according to a Poisson
process with parameter A and the number of customers in a batch, X, is a random variable
(r.v.) having probability distribution f, = P1[X = n], 1 < n and mean E[X] < co. The service
time requirements for the customers form an independent and identically distributed (1.i.d.) set
of exponential 1.v.’s with mean 1/p. Batches are scheduled in a first come first serve manner

and customers within a batch are served in random order.

Consider a batch containing b customers labeled 1,2,---,b and let To, a = 1,2, ,b denote
the sojourn time of the a-th customer in the batch. It is clear that {T,}5., form a sequence of
identically (but not independent) distributed random variables. Let T'(1,b) < T(2,b) < --- <
T(b,b) denote these sojourn times arranged in increasing order and thus T(a,b) denotes the

a-th order statistic of batch customer sojourn time.

In this paper we derive expressions for the probability density function (p.d.{.) of T(a,b), de-
noted by fr(sp)(t), t 2 0, the joint p.d.{. of the order statistics T(b) = (T(1,b),T(2,d),---,T(b,b)),
denoted by fr(p)(1), t = (t1,22,-++,t), 20,1 <i<h, b2 1, and the p.d.{. of the range of
order statistics, R(b) = T(b,b) — T(1,b), denoted by frw)(t),t > 0.

These results are of interest because batch arrival queuneing systems of this type can be used
to model parallel processing systems. For example, in one model of a fork-join queueing system,
jobs consist of independent tasks that can be executed concurrently. The job is considered to
be completed only when all of its tasks have finished execution. In the queueing model analyzed
in the paper, a job of this type would correspond to a batch and its response time to T(b,b)
defined above. We will sometimes refer to T'(b,b) as the batch sojourn time. In [7] such a
fork-join model was considered and an analysis for the mean response time was presented. Our

results here can thus be viewed, in this context, as an extension of that analysis.

Another application is to fault tolerant computing systems. Many such systems execute
jobs consisting of distinct tasks that perform identical functions. As soon as two tasks (or a
majority) agree in their results, the job execution is comsidered complete. Hence if the job
consists initially of b tasks, its response time is T(2,b) (or T({(b + 1)/2],b) in the case of

majority voting).
The problem of determining order statistics of the sojourn times of customers within a
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batch has not been studied for multiple server queues. In the case of a batch arrival M X/G/1
queue, Whitt [10] and Haflin [4] studied the behavior of the batch sojourn time. The primary

purpose of these studies was to compare this statistic with the sojourn time of a randomly

chosen customer.

There has been recent interest in the problem of modeling parallel processing behavior. A
number of papers [1, 7, 9, 2, 3] have studied the behavior of the maximum order statistic for a
class of queueing systems referred to as fork-join queues. Here there exist ¢ servers, each with
its own queue. At the time of an arrival of a batch, the customers are assigned to different
servers. In our model, on the other hand, there is a single queue and customers need not receive

service at different servers.

The paper has the following organization. The model is formally defined in Section 2.
This section also contains derivations of the probability density functions of the marginal order
statistics, the joint statistics and the range Upper and lower bounds on the order statistics are

obtained in Section 3 and the results are summarized in Section 4.

2 Analysis

In this section we present the analysis for the derivation of the expressions for the pdf’s of
T(a,b), R(b), and T(b). Our approach is to tag a random batch, B, and enumerate all delays
encountered by its customers after arriving to the system. We assume that B has b > 1
customers in its batch. Customer sojourn times clearly depend on the number of customers in
the system at the time of B’s arrival to the system. We denote this random variable by A and
let its stationary distribution be given by 7 = P1[R = k], k > 0. Let Ti(a,b) be a random
variable denoting the a-th order statistic (¢ = 1,2,--,b) of the sojourn times of customers
from B given that K = k,k > 0. We can write

—- Smin(b.c—k)(asb)s k< c ) .
Ti(a,d) = { Wit Si(ab), k>e (1)

In (1) W is a random variable that represents the time B waits in the queue before any of its
customers are selected for service given that K = k and Si(e,b),i=1,2,...,c,1<a<b<cis

a random variable that denotes the time needed to service a customers from a batch of size b
given that B is initially allocated i servers. We denote the p.d.f. of Si(a,b) by fs,a,n)(1)-
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By removing the conditioning, we can write

o0
@) = Tfrent), 1<a<b b1, (2)
k=0

where fr,(a)() is the p.d.f. of Ti(a,b).

An expression for the joint p.d.f. of the order statistics, fL(b)(L), can be written similarly.

Let T,(b) denote the value of T(b) conditioned on the number of customers in the system at

the time of B's arrival being k. We can write

S . o (b), k<c
— smin(b,e—k)\Y)s ’
Le)= { Wil + S0), k2 c. @

where 1, is a vector containing b 1’s and $;(b) = (5:(1,b), Si(2,b),---, Si(b,b)) are the joint
order statistics for the times needed to serve all b customers from B. We denote the p.d.f. for

this random variable as fg (4)(1).

Similar to equation 2, we can write
o
frey®) =Y, mfr,m(t), 1<a<b b1 (4)
k=0

where fr,(5)(1) is the p-d.. of T)(b).

Expressions for 7, the density of Wi, fs,(a) and fs(s)(t) that are needed to evaluate (2)

and (4) are derived in the following sections.
We first define three random variables that will be subsequently used.
o E; - An Erlang k 1.v. with parameter cg, density function g(t;k) = cp(cpt)k—le=Ht [k,
k> 1,0< 1, and expectation Er=k/cp.

¢ Hmn - The m-th order statistic of a sequence of iid. exponential r.v.’s, each with mean

1/p. The density function and mean are

-1
h(t;m,n) = p ( 17:1. ) (] - e"ut)"‘ e-l‘t(n-m-l-l), 0<t;1<m<n,
_ n
Hmn = 9. 1(p), 1€m<n
l=n—-m+1



respectively.
¢ Himn = Ex+ Hmn (note: Homn = Hm,n) with density function
tk—r

k
—pct
e z(lc—r)!p’(c—n+m—l)'

r=1

h(tik,m,n) = p(ep)* ( :,ZL )i( T__]] )(-1)'

=1

e—pt(n—m+l)

T pkc—n+m-=1Ik

],Osi;ﬂsk;lﬁmﬁn

and expectation Hymn = kfcp + Ziep—ms1 1/(I1)- The density function is obtained by
convolving g(t; k) and h(t;m,n) together.

We denote the convolution of two non-negative p.d.f.’s by [f(t) * g(¢)] = fo' f(z)g(t — z)dz.

2.1 Derivation of Waiting Time Statistics

The stationary probability, 74,k = 0,1,..., that an M X /M /c queue has k customers is given
by (see [11]):

k-1
cp '
=—-F gl k> 1,
T = in(e, k) ,Z.—.o 75 Bi—js 21 (5)

where 8} = %, Bi/ E[X] and p = AE[X]/(cp). The probabilities =, i = 0,1,---,c —1, are
obtained from the first ¢ — 1 equations of (5) along with the normalizing equation
c—1
(1-p)= T (1 - kfo)m.
k=0
The remaining probabilities can be computed directly from (5) in a recursive manner.
We can write Wy as

0 k<c
7 — ) )
uk - { Ek-c-l-la k 2 c. (6)

The mean wait time until a batch begins service, W,is (11, 7))

c-1
W= (F-i-l—c-l»Zvrk(c—k—])) /(cp) (7)

k=0
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where K, the mean number of customers in the system, is given by

c~-1

K= [p (i kB + 1) +> (- k/c)kn'k] /(1 = p).
k=1 k=1

2.2 Derivation of Service Time Statistics

To calculate fg,(, ) We define a Markov process called the service path which accounts for the
number of B’s customers in the queue and in the servers during the time it has at least one
of its customers in service. Let X, = (Q:,N,) for r = 0,1,... be a Markov process where
Q, is a random variable denoting the number of B’s customers that are in the queue and N,
is the number of servers it holds. The transitions of X, correspond to particular departure
epochs from the system. Specifically, the service path is composed of two disjoint periods, the
increasing period during which B has at least one customer in the queue (@, > 0 and thus the
number of servers it holds can only increase) and the decreasing period during which B has no
customers in the queue (@, = 0 and thus the number of servers it holds can only decrease).
The increasing period does not exist if, when scheduled, B obtains b servers.

The state transitions for the service path are defined differently for each of the above
periods. In the increasing period, a transition corresponds to a departure from the system of
any customer from any batch. In the decreasing period, a transition corresponds to a departure
from the system of any customer from B's batch. In the following, we will also refer to state

transitions as steps of the service path.

Assume that No = i > 1 and furthermore that the increasing period exists, ie. Qo=b-1>
0. This implies that the service path is in the increasing period for 0 < r < b-4{and is in
the decreasing period for b—i < r < b— i+ Np—i. The number of departures of customers
belonging to B by the r-th step during the increasing period is given by D, = No+ r — N,,
0<r<b- No.

To write the transition probabilities for the increasing period, assume that Q, = ¢, > 0
and that r=0,1,...,b— i. We then have

nr/c, @r41=Gr — 1,041 = 0y,
Pr[Xr-H = (91+1’nr+1) | X, = (Qranr)] = 1- nr/ca G+1=¢—-1np=n,+ Ln, <cg,
0, otherwise,

(8)



To write the transition probabilities for the decreasing period assume that @, = 0 and that
r=b-t+1,...,b—1+ Np_;. We then have

» 1, gr1=¢r,Nr1=nr—1,
Pr[X, 41 = (gr41,m41) | Xr = (gr )] = { o aherwise, ©)
The value of the random variable S;(a,b) is equal to the first hitting time of state (0,0) of
the Markov process X,. To calcuate its expected value we let

(10)

Ko i = 1, Nr=ja-ndNr—1=js
™77 1 0, otherwise,

for r = 1,---,b—i. The indicator random variable «,;,1<r<b—-i1<j<cis equal to 1
if step r is a departure of a customer belonging to B and customers in B hold j servers. We
define n,(r) = Xj.; k1, to be the number of steps up to step r that occur while B holds j
servers.

Let p(j;i,7) = PI[N, = j|No = i}, for j=i,i+1,--+,¢, r=0,1,---,b—4, i=1,---,c and

equal to 0 elsewhere. ;From (8 ) we can write

pUsi,r) = > ﬁ(%)mm ﬁ (1—%), i <j<min(c,i+r). (11)

I mir)mr—jti 1= I=i

This expression has the following closed form (see [5, 6])

p(Giir) = ( o )ZJ: ( e ) (é)'(-ly", i<j<min(eitr).  (12)

I=t

Let Bi*<(r | {),@ € v < b— i, be the probability that the a-th departure from B occurs at
step r in the increasing period given that B begins its service period with ¢ servers. This event

can happen only if there are a — 1 departures from B at step r ~ 1 and a departure from B at
step r. We thus have, after conditioning on No, Bir<(r|i) = Pr[D,-1 = a — 1{No = i]N,—1/c.
Rewriting we have
Binc(rli) = Pr[Nyoy=i+r—alNo=i](i+r—a)/c,
= p(i+r—a;i,r)(i+r—a)fc . (13)
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In a similar manner, let B9<(r|i) , 0 < b—i < r, be the probability that the a-th departure
from B occurs at step r in the decreasing period given that B begins its service period with ¢
servers. This event can happen only if there are a + b — r — ¢ departures from B at step b—1¢
in the increasing period. This implies that Ny =i+r—a and, since Np—; < min(b,c), that

s < min(b, c)+a —i. We thus have g3(r|i) = Pr[Dp—i = a+b—r1- i|No = i]. Rewriting yields
piec(rli) = PiNyi=i+r—a|No=1i],

= p(i+r—a;i,b—1). (14)

The pdf of Si(a,b) can be expressed by conditioning on the step within the service path

that the a-th customer completes and then removing the conditioning by using Bir<(r|i) and

ﬁg“(rli). This results in

b—i min(b,c)+a~—1i
fsam®) = 3 Br(rlidg(tr) + > Bi€Crldh(tdb—di+r—bi+r—a) (1)
r=1 r=b=—1+1

We can write the average value of Si(a,b) as

_ b—i _ min(b,c)+a—1 _
Si(a,b) =Y Be(rli)Er + S Bl Himiitr—bitr—a: (16)
r=1 r=b—1+1

2.3 Derivation of the a-th Order Statistic
Using equation (1) allows us to write the following expression for fr,(ab)(1),

fsnin(i.t—l)(a:b)(t) k<e,
Inen(t) = an)
g(t;k_c"'])*fsl(c,b)(t), k Z c

which can be substituted into equation (2) to yield frqs)(t).

The mean sojourn time E[T(a,b)] is given by

W+ T8 miSe(a,b) + Tich_p4n ThSe—k(a,b)
E[T(a,b)) = +(1 - ZiZo m)5a(a,d), b=1,---,¢, 18)

W"' Ei;}) "kgc—k(a! b) + (l - i;{) 7rk)-shl(as b), b=c+1,---,
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Similar expressions can also be obtained for the Laplace transform and higher order mo-
ments of T(a,bd).

2.4 Derivation of Range and Joint Order Statistics

To derive the pdf of the joint order statistics we focus on the joint service statistics. Let r}
be the first step at which i tasks of B have completed execution and A; be the number of
transitions within the service path that occur between the i** and i — 1** departures of tasks
in B. Thus rf, 1 < i < b is the unique value that satisfies D,;_l =t—1and D,; = ¢ and
A; = 7 — r;_; where we set r; = 0. Assume that Np—; = j; i.e. that b — j departures from
B occurred in the increasing period and j departures occurred in the decreasing period. Let

féi(b)lpb_i(1| 7) denote the conditional pdf of S;(b) given the value of D,—;. It is given by

b—; -1

fse)py-i (i) = Ea,(t2) I oti = tici; 80 JIG - i)pe~U—Mlt-pin=b-isi)  (19)
=2 =0
where 1 = (t3,12,-+-,15). Removal of the conditioning on D,—; yields
fs @ =Y p(i1,b = ) fs,)py-i(Lli)- (20)

For the case where there is no increasing period, i.e. where b — ¢ = 0, we can easily write
the following expressions

b-1
s oy(1) = bpe™h [ (b = i)pe~ =), 0< <12 <+ <t 21
S,(b)

=1

The above results leads to the following expression for the joint response time order statis-
tics,

fs

-—min(b,e-l)(b)('t') k<e,
frm@) = (22)
o o(zsb — c+ k= 1) * fg (L —2)dz, k2ec.

We now determine the pdf of the range of order statistics. We condition on the number of

servers available to B when it begins its service period. Let R;(b) be the range when 1 servers
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are available to B,i = 1,---,c. Suppose the first departure from b occurs at step j in the service
path, where 1 < j < ¢ — i+ 1. The range has the same distribution as Sj-14i(b—1,b—1). We

can thus write the pdf of the range as

c—t1+1

frap® = 3. BN ) * fs,mppi-15-1D)]- (23)

J=1

Removal of the conditioning on the number of servers available yields

c—-1

c-1
Frey®) =Y TSR eny®(® + (1 - 3 ) Ry (@)- (24)
k=0 k=0

The moments of the range can be obtained in a similar manner.

3 Bounds on the Order Statistics of the Sojourn Times

In this section we derive bounds on the random variables {S;(a,b)} defined in section 3. Specifi-
cally we define two sets of 1.v.’s one of which contains r.v.’s that stochastically dominate S;(a,b)
and the other containing r.v.’s that are stochastically dominated by Si(a, b). Here the stochastic

dominance relation >, is defined as

Definition 1 The random variable X stochastically dominates the random variable Y, written
as X 2 Y iff
Pr[X <] < P1fY < 1]

Definition 2 Let Z, be a r.v. corresponding to the a-th smallest of a set of b independent

ezponential .v.’s each with parameter p.

The 1.v. Z,, exhibits the following property, Zop 25t Zo-16-1, 1 < @ < b. We have the

following theorem.

Theorem 1 The following stochastic dominance relation holds among the set of r.v.’s

Eb-] +Sb((1,b) 2 st Eb—c' +Sb(aab) 231 Si(aab) .>.$! Sb(asb) ’] S b S (5}

Ec—]'*'sc(asb) 2 st Ec-i+Sc(a’b) st S,-(a,b) st Sc(a,b) ,c < b.



Proof. These dominance relations follow from simple path coupling arguments. We will
present the proof of the relation Ey_; + Sp(a,b) >4t Si(a,b) in the caseof 1 < b < c.

The service time S;(a,b) can be expressed in the form of either

e Si(a,b) = Ex(pc),a <k<b—1,0r

o Si(a,b) = Epi(pc) + Zkp—k+as 1 < kL 0.

As a consequence of the above relations and properties of Z,p, it follows that Ep_;(pc) +
Si(a,b) >4t Si(a,b).

The remaining relations stated in the theorem can be proven in a similar manner. )

This theorem yields simple bounds on the cumulative marginal distribution of the random
variables T'(a,b), 1 < a < b which can be found in the Appendix. Bounds on E[T(a,b)] are also
found in the Appendix.

We observe that the maximum difference between the loosest lower bound and the up-
per bound is (¢ — 1)/(pc). Consequently, the bounds are very tight as the load increases,

AE[D)/(uc) — 1, and/or the batch size increases, b — oo, while a/b remains constant.

4 Summary

In this paper we have obtained the order statistics of the sojourn times of customers in an
MX [M/[c queue. We have derived expressions for the densities of random variables T'(a,b),
T(b), and R(b). In the case of T'(a,b), and T(b) the expression requires evaluation of an infinite

summation. The pdf of R(b), however only requires a finite summation.

These results can be used to analyze models of parallel processing systems. Jobs in such
models are assumed to consist of tasks that can be executed in parallel. The value of T'(b, b) in
such a system corresponds to job response time, an important performance measure. The value
of R(b) corresponds to the time that tasks of a job wait for their siblings to complete execution.
In systems where system locks are used, this time corresponds to the amount of time that a job
holds a lock.
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A Bounds on the Sojourn Time Order Statistics
We present the bounds on the cumulative distribution and expected value oiT(a,b),1<a<b.

[ <]
PIE < cJH(t;b—1,a,b) + Y mH(;k —c+b,a,b) <

k=c
c=-1 oo
ZWkH(t;min{c_ k,b},a,b)+Z‘lr;,H(t;k—c-l-b,a,b) .<_
k=0 k=c

[- ]
Pr{T(a,b) < 1) < P[K < cJH(%;0,0,0) + Y_mH(t;k —c+1,a,0), 1<b<c,

=c

P[K <c]H(t;b--l,c+a-b,c)+27rkH(t;k—c+b,c+a—b,c)_<_

k=c
c=-1 - )
EwkH(t;c— k,c+a-— b,c)+27rkH(t;k—c+b,c+a—b,c) < Pr[T(a,b) < 1]
k=0 k=c

< PIlK <c]H(t;b—c,c+a-b,c)+ZrkH(t;k—c+1,c+a-b,c), 1<c<b;db-c<a<,

k=c
and
PIKE <G(tic+a—-1)+ ) mG(t,k+a) <
k=c
) c—-1
Y mG(Lk+a)+ Y mG(tic+a—k) < PrT(e,b) < 1] <
k=c k=0
oo
PlK < G(t;a)+ Y mG(tk—c+a+1), 1<c<bh0<aLb—g,
k=c
where
t
Gwi) = [ sz,
0

t
HGi k) = ] h(z;i, 4, k)dz,
0
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These inequalities can be used to establish the following bounds on E[T(a,b)],

. b-1 b <! min(c—k.b) b
EW)]+ —+ Z 1/(kp) > EW]+ Z H—— + z 1/(kp)
HC  k=b—o+1 k=0 Ke k=b—a+1
b
> E[T(a,b)] > E[W]+ 2 1/(kp), 1<b<e
k=b—a+1
. c—1 <
EW)+—+ Y 1Ykn2
pe k=b—a+1
i c—-1 ¢ — k c
EW)+ L m—+ 2 Ykp)2
k=0 pe k=b—a+1 .
b—c <
E[T(a,b)] 2 EW]+——+ Y 1(kp), 1£c<h; b-c<ash,
K€  koboa+l
and
E[W]+ c-l+a >
pic
c=1
EW}+ Y wk."_ﬁ_"'_a +P[L> c].c___l_"'i >
k=0 He He
E[T(a,b)] > E[W]+a/(pc), 1<c<b; 0<a<lb-c
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