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Abstract

A methodology is presented whereby a nominal assembly trajectory for an as-
sembly operation, computed from kinematic constraints alone, is augmented
with a fine-motion strategy synthesized through uncertainty and force analy-
ses. Insertion clearances and size tolerances are introduced into the assembly
part models in parallel with the manual synthesis of a perturbed nominal tra-
Jectory in contact space. The selection of small clearances, and in turn, small
wnsertion angles allows us to linearize contact space about discrete points in
the nominal trajectory. Contact states are represented as affine spaces in
a generalized C-space of model error annd pose variables. The feasibility
of proposed command velocities to be ezecuted in the presence of position,
control, and model error is determined through an uncertainty analysis tech-
nique based upon the forward-projection of convez polytopes in contact space.

Our approach further automates the so-called “manual” methods of motion
planning with uncertainty.

1Preparation of this paper was supported by grant number N00014-84-K-0564,
from the Office of Naval Research.



1 Introduction

In the 2-phase approach to assembly motion planning, a nominal plan is
first selected or derived with limited regard to the effects of sensor and con-
trol error, and then provisions are made to account for uncertainty. These
provisions might entail refining the nominal plan [20](25] or augmenting the
plan with constraints upon the initial conditions [2] or applied forces [26].
The 2-phase approach differs from the LMT methods [4][11][12](21], in which
the command motions themselves are derived to accommodate uncertainty.
A drawback of the LMT approach is its time complexity of O(2%") in the
number of plan steps [7]. An advantage of the 2-phase approach is that
goal configurations and nominal trajectories may be derived in phase 1 from
geometric constraints alone [1][17][18][19][23].

The approaches to motion planning with uncertainty that have been re-
ferred to by Latombe [15] as the “manual methods” were first developed for
deriving applied force constraints to prevent jamming and wedging in the
context of the 2-dimensional peg-in-hole problem [24][26]. Ohwovoriole [22]
extended peg-in-hole force analysis to multiple insertion tasks in 3 dimen-
sions. As demonstrated in [6], it may be necessary to restrict the path of the
assembly to a single, designated path in contact space, if jamming is to be
prevented using a single applied wrench that satisfies the jamming-avoidance
constraints in all anticipated contact states. Caine [5| developed designer
tools for manually selecting a trajectory of assembly configurations, and for
deriving applied wrench constraints to prevent jamming and the breaking of
contact while traversing the specified contact states.

The methodology presented in this paper combines the 2-phase and LMT
approaches to assembly motion planning, while adopting and partially au-
tomating the “designer” techniques of the manual methods. We are chiefly
concerned with the second phase of the 2-phase approach. Input consists of a
nominal mating trajectory derived by the high-level assembly motion planner
KA3 (18] from the feature symmetries of geometric models that permit zero
clearance at the insertion sites. Small clearances and tolerances are added
to these models, giving rise to local C-spaces of perturbations from discrete
points in the nominal trajectory. The small insertion angles permitted by the
narrow clearances warrant the linearization of these C-spaces, whose bound-
aries are characterized as sets of linearized C-surfacesin a generalized C-space
of model error and pose variables. Linear programming-based tools are em-
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ployed to confirm the existence and adjacency of polytopic contact states in
the contact state lattice. Command trajectories for traversing each polytopic
C-space are then synthesized, while accommodating the uncertainty in the
initial pose, control velocity, and geometric models of the assembly parts.
Finally, applied force constraints are generated for maintaining jam—free
contact in the specified states. The resulting fine motion strategy consists
of an initial target pose, a sequence of command velocities, and the applied
wrench constraints required for a jam-free traversal of a specified sequence
of contact states.

Like the “designer” approach of Caine [5], our methodology does not
exclude human participation in the development of a fine-motion strategy.
Tools for generating and verifying a fine-motion plan permit one to juggle
design variables which include trajectory perturbations, clearances, and tol-
erances. The policy of forming fine-motion plans in parallel with selection of
clearances and tolerances is consistent with the view that a product should
be designed with the feasibility of its assembly in mind [27}. As in Don-
ald’s approach to fine-motion synthesis in the presence of model error, our
method relies on forward-projecting uncertainty regions within a general-
ized C-space augmented with model error dimensions. Whereas Donald’s
error detection and recovery strategies (EDRs) are developed by augmenting
existing fine motion plans with contingency strategies that accommodate er-
roneous transitions due to model error, the method described in this paper
permits the synthesis of fine-motion strategies “from scratch” in generalized
C-space. Once the possibility of an undesired transition is detected through
forward-projection, the designer can modify the command velocities, clear-
ances, or tolerances, until the assembly trajectory is restricted to a single
path of contact states.

2 Enumeration of Primitive Contacts

We assume that a high-level assembly planner ([18]) has supplied a nomi-
nal trajectory, a sequence of connected line segments in R° describing the
motion of a moving part relative to a stationary part. We are also provided
with geometric models of the parts, along with a set of critical points, i.e.,
poses at which the set of contacting surface features change (see figure la).
The contacts that can arise in the presence of insertion clearances are de-



termined by examining the contacts occurring at the critical points prior to
introducing clearances to the models (see figure 1b). Any contact between
the surface features of two polyhedral objects can be represented as a com-
bination of primitive contacts: vertex-face, face-vertex, or edge-edge pairs
(where each pair denotes moving and stationary part features, resp.) involv-
ing convex vertices and edges. The n primitive contacts P, ..., P, associated
with a critical point are enumerated by detecting coincident features in the
clearance-free models. The vertex-face contacts consist of all pairs (V, F)
where convex vertex V lies within the polygon of face F. Face-vertex con-
tacts are similar. Edge-edge contacts involve pairs (E1,E;) of convex edges
whose line segments intersect.

Small clearances are now added to the models at the insertion sites by
“shrinking” various dimensions of the moving part, stationary part, or both.
In figure 2a, for example, clearances are introduced by receding a hole wall
along its negated normal by a distance dc. Model dimension errors are rep-
resented by the displacment dr = [dr.dr,dr.|T of V from its model to actual
position, and scalar dr,, the displacement of F along its normal. These
model error variables are subject to tolerances |dr;| < ¢, it € w,2,y, 2.

3 Linearized C-Surfaces

Each primitive contact P; that can occur around a critical point in the tra-
jectory is characterized by a linearized C-surface in R**9, consisting of the
tangent hyperplane to the actual C-surface of moving part poses associated
with P;. Following Donald [10], we represent model error variables as addi-
tional dofs in a generalized C-space. Linearized C-surfaces for vertex-plane
and edge-edge contacts subject to model error are derived as follows.

Figure 2a shows a vertex V of the moving part and a face F of the
stationary part, separated by a clearance dc. Model error variables dr and
dr,, displace V and F to their real positions. A perturbation of the moving
part from the critical point is denoted by a twist dX = [dx? §x7|T with
differential translation and rotation vectors dx, éx (resp.). The placement
of V against F' is expressed by stating that V' and F' have the same ordinate
along F’s normal n:

(p+r+dr+dx+6éxx(r+dr))-n=(p+r~(dc+dryn)-n (1)



where r is the vector of displacement from the moving part’s origin p to V.
After eliminating the nonlinear term (6x x dr) - n, equation (1) may be
expressed:

n dx

rxn éox
1 Ndre | T —de (2)
n dr

which describes a hyperplane in R!°, whose normal is the left hand vector.

In figure 2b, edges E; and E, are subject to model error displacements
dr, and dr; (resp.), and the edges are parallel to v, and v,. Equating the
ordinates of E, and E; along their mutual perpendicular v, x v, and dropping
nonlinear terms yields:

Vi X Va dx

ry X (vy X vy ox
( ). = vy X vz -de (3)

Vi X Va dr,

—Vi X V3 dr,

where r; is the displacement from the moving part’s origin p to point q,
on E;, and q; coincides with point q; on E, prior to introducing clearance
vector dc. For parallel edge-edge contacts, a distinct r does not exist and
vy X V3 = 0, so we employ values of r and v, x v, associated with target
assembly poses (see section 5). Equation (3) describes a hyperplane in 2,
whose normal consists of the lefthand vector. In general, linearized C-surfaces
are constructed in a (¢ + 6)-dimensional C-space, where ¢ is the number of
model dimensions subject to size tolerance.

4 Convex Regions in C-space

In addition to a linearized C-surface equation, our representation of a prim-
itive contact’s linearized C-surface must also include an inequality for each
C-surface boundary arising from a real surface boundary. In figure 3a, the
moving part is situated at the critical point at which its base is aligned with
the outside rim face F of a hole in the stationary part. An edge E; of the
moving part’s base may contact one of the rim edges E, so we characterize



this contact by a linearized C-surface, represented by the hyperplanar equal-
ity formulated in equation (3). For E; to contact E;, however, E,’s vertex |4
must lie on the left side of hole wall G;. This constraint may be represented
by an inequality, bounded by equation (2). We thus establish a vertex-face
C-surface as a barrier beyond which the edge-edge C-surface does not extend.
Erecting a similar inequality constraint to represent the finite extent of E,,
the primitive contact between E;, and E, is represented by a constraint set
containing the original equality, plus two inequalities, in Re+6,

Each primitive contact P; is thus characterized as a convex, hyperplanar
polytope H; in R¢té. Each polytope H; is represented by a constraint set S;
consisting of a single equation and a number of inequalities in Rt+8, as one
might represent a polygon in R2. Primitive contact constraint sets may also
include artificial constraints involving imaginary faces, such as G; in figure
3a, which splits the concave primitive contact between V' and F into two
convex primitive contacts.

The set of nonoverlapping configurations surrounding a critical point,
denoted by set “LEGAL”, is also concave but can be constructed as a union
of convex volumes L, ...Ln in R¢*%. The planar moving part in figure 3b,
for example, moves in a 3—dimensional C-space whose subset LEGAL is
concave, owing to the convex hole rims. LEGAL may be partitioned into
four convex volumes in R3, corresponding to the four possible assignments
of the moving part vertices V; and V; to the convex regions above or below
their adjacent hole rims. Each volume £; may be represented by artificial
constraints confining each of V; and V; to its assigned convex region, plus
constraints prohibiting overlap between a vertex and a hole wall. Assuming
all concavities in LEGAL arise from convex hole rims of the stationary part,
we can generally characterize LEGAL as a union of convex volumes L;, where
each £; corresponds to an assignment of the moving part’s “rim vertices” to
halfspaces on one side or the other of their adjacent stationary part hole rims.

The construction of LEGAL as a union of convex volumes is performed
for 3—dimensional assemblies as follows. The part variations permitted by
the tolerances and the rigidity of the parts permit some n partitionings of rim
vertices to the halfspaces above or below their adjacent rim planes. Given
n above/below vertex assignments, we construct LEGAL as a union of n
convex C-space volumes L, ..., L,. Each volume £; is represented by a con-
straint set S; of inequalities in R®. For each above/below vertex assignment,
we construct volume L; by restricting the moving part vertices associated
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with the two sets of projections to the halfspaces above or below their rim
planes, as the assignment dictates. The inequalities that make up a convex
volume’s constraint set S; include inequalities that restrict the vertices to
their assigned halfspaces, as well as inequalities to prevent overlap between
the surfaces of the parts.

Refer again to figure 3a, which shows a vertex V' of the moving part ad-
jacent to a hole with rim edges E, and Ej, and rim face . The moving
part lies at a critical point placing V in the plane of face F. To construct
an inequality constraint set S; for a LEGAL subvolume £, that places V
above the plane of F, we first calculate the linearized C-surface equation
formulated in equation (2) for the V-against-F contact, and express it as an
inequality (negating it if necessary) that restricts V' to the halfspace above F.
Constraints are also added for other rim vertices’ above/below placements.
Other inequality constraints in S; include (among others) inequalities formu-
lated by equation (3) for the E;-against-E, contact and the E,-against-E;
contact. :

To construct a constraint set S, for a C-space volume L, that places V
below the plane of F', we express the V-against-F' equation (2) as an inequal-
ity (negating it if necessary) restricting V' to the halfspace below F'. This
constraint is added to similar constraints for other rim vertices’ above/below
placements. The constraint which keeps V/, submerged in the hole, from
overlapping with the interior hole walls G, is formulated by equation (2).
A constraint preventing Vs overlap with its other adjacent wall, plus edge-

against-edge constraints similar to those described above, are also included
in Sz.

5 Generating Paths in Contact Space

Once the primitive contacts Py, ..., P, that may occur around a critical point
are characterized by their hyperplanar polytopes Hy, ..., Hn and correspond-
ing constraints sets Sy, ..., Sp, we can determine through linear programming
which combinations of primitive contacts might occur simultaneously. A con-
tact state C = {P!,..., P} is a k-element subset of {P},..., Pn}, such that
P!,..., P! can coexist in C-space without overlap, and without necessarily
the presence of an additional P/. The contact states Ci,...,Cm, plus the
empty set O and {P,,..., P}, form a lattice under the relation of set inclu-



sion [14]. The region in C-space represented by a contact C = {P{,..., P}
is the intersection (%, H!) N LEGAL of the primitive contacts’ polytopes
with LEGAL. We shall refer to a contact state C as an n-dimensional state
if its tangent space in R¢*® has rank n, or equivalently, if the vector space
spanned by the H/s’ hyperplanar normals has rank ¢ + 6 — n.

To generate tentative paths of traversal in the contact space around a
critical point, we require computational tools to (1) decide if a set of prim-
itive contacts forms a contact state, and (2) identify its adjacent states.
As for (1), k primitive contacts Pj,...,P; can coexist without overlap iff
(Nk, H)N L; # 0 for some convex component £; of LEGAL. This decision
is performed as a linear programming feasibility test involving constraint
sets S},... S5} of the k primitive contacts and the constraint set S; of L;.
We moreover determine whether {P],..., P} can coexist without any ad-
ditional contact P/ by determining if {P/,..., P}, P/} can coexist without
overlap, where imaginary contact P/ represents a slightly separated P, con-
tact. Regarding (2), we enumerate the contact states C' adjacent to a given
state C = {P],..., P.} by adding or subtracting a P/ and checking that the
new combination is a valid contact state.

The decision procedures described above may be utilized to generate can-
didate sequences of traversable contact states around each successive critical
point. As seen in the contact state graph in figure 4a, for example, the
assembly motion begins in free space Cy = 0. The 1-point contact states
surrounding the first critical point include an edge-edge contact state C; and
a vertex-plane contact state C;. After verifying the legality of these states,
we choose (say) C; and enumerate its adjacent 2—point contact states, which
include C; and Cj, and so on. The final contact state in the selected sequence
must be shared by the contact state lattice associated with the next critical
point, where it will serve as the initial contact state in the next sequence of
contact states.

6 Command Velocity Synthesis
Once a path of contact states Co,...,Cn, is selected for traversing the con-
tact space around a critical point in the nominal trajectory, we specify target

poses in some or all of the contact states. Each target pose dX; € R® is a
perturbation of the assembly’s pose away from the critical point. In the case
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of the first critical point, the initial target pose dX, serves as the approach
position in free space to which the moving part is (say) visually servoed.
Every dX; thereafter is the goal point associated with a contact state tran-
sition involving the establishment of an additional primitive contact, i.e.,
a transition to a lower-dimensional contact state (see figure 5a). The tar-
get poses dX,, . ..,dX; associated with a contact state sequence Cy,...,Cnm
(with ! < m) comprise a perturbed nominal trajectory (PNT) in the contact
state lattice surrounding the critical point.

A human designer may specify the target pose in a contact state by
constraining any dofs in the assembly configuration left unconstrained by the
primitive contacts. As shown in n figure 4b, the target pose in a contact state
involving a single edge-edge contact is specified by supplying five “virtual”
vertex-face contacts involving imaginary faces formed by perturbing existing
faces by various distances d;. Constraining the pose of an assembly to a single
point dX; in R® generally requires 6 — k such artificial constraints, where k is
the rank of the space spanned by the primitive contacts’ normals. As shown
in figure 5a, each adjacent pair of target poses dX;, dX;,, gives rise to a unit
command velocity v; parallel to dX;,; — dX;. Instead of specifying the PNT
in terms a sequence of target poses, the designer may alternatively supply
the sequence of command velocities directly, together with an initial target
pose dX,. Beginning with ¢ = 0, each sequential pair dX;, v; determines the
next target pose dX;,;. When the fine-motion plan executes, recognition of
each new contact via force sensing triggers the command velocity associated
with the new contact state.

After selecting a PNT within the chosen sequence of contact states, we
must ensure that trajectory deviations arising from position and control error
will not give rise to undesired contact state transitions. At the start of the
assembly operation, the pose of the moving part is confined to an uncertainty
region Ry in (t+6)-dimensional free space. As shown in figure 5a, we “verify”
a candidate PNT by recursively forward-projecting the current uncertainty
region R; within contact state S;, to obtain the uncertainty region R;4; in
the next contact state S, that contains a target pose. Each R; sweeps out
a forward-projection volume F; centered around command velocity v; and
(due to velocity uncertainty) expanding laterally to v;.

We employ a linear-programming feasibility test to determine if a forward-
projection F; intersects any undesired primitive contact’s polytope Hj. A
positive test result shows that for some universe allowed by the part dlmen-
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sion tolerances, an undesired contact state transition might occur, due to
position and control error. Accordingly, the PNT, the clearances, or the
tolerances must be modified. Tightening the tolerances permits the forward-
projections to bypass the unwanted contacts more easily. But since tighter
tolerances increase the cost of manufacturing the parts [13], it is desirable to
obtain a fine motion strategy with as wide tolerance ranges as possible. If F;
is shown not to intersect any undesired primitive contacts’ polytopes in R¢+8
then the command velocity v; defined by the sequential target poses dX; and
dX;,, is valid. To verify subsequent command velocities, the process repeats
by forward-projecting the uncertainty region R;;, from S;,, to Sit+2, and so
on.

As seen in figure 5a, the forward-projection F of a 3—dimensional region
R; is bounded by planes, such as Iy, formed by translating a 1—dimensional
facet g along some deviating velocity w,. A 1—dimensional facet g gives rise
to such a bounding plane of F; iff g does not pierce the interior of R; when
displaced along +w,. Only 6 of the 12 1-dimensional facets so qualify. We
assume that the maximum angular deviation of a control velocity w from the
command velocity v is available as a function €»(u) of the lateral deviation
direction u L v (see figure 5b). When calculating ¢’s deviating velocity Wy,
we choose u L v, g, as shown in figure 5¢c. The resulting constraint plane L,
defines a halfspace which contains all possible trajectories from g. I'; and
five similarly-derived constraint planes define the boundary of F;, together
with the constraint plane of the new primitive contact in state Cit1, as well
as the 3 “upper” 2—dimensional facets of R; (see figure 5a).

We now address the process of forward-projecting pose uncertainty re-
gions in a generalized, (t + 6)—dimensional space. In figure 6a, a polytopic
uncertainty region Ry projects to a lower-dimensional C-surface that varies
in position orthogonally to its normal, with tolerance limits +dr imposed
upon its deviation from the nominal position. As the C-surface varies, the
polytope’s projected image varies, generating polytopes that are similar, with
parallel corresponding facets. This observed similarity and parallellism is pre-
served when the projected polytopes themselves are in turn projected onto
subsequent variable C-surfaces. In general, any two projected images of the
original polytope onto successive, variable C-surfaces must always have the
same number of facets. Most importantly, there exists a 1-to—1 correspon-
dence between the two images’ facets, and this is true for all in-tolerance
positions of the C-surface. The 1-to—1 correspondence stems from the fact



that the two sets of facets are multiply-projected images of the same subset
of facets of the original polytope.

By performing forward-projections in generalized C-space, all the possible
variations in the projected images arising from model error variations may
be computed “in parallel”, using a single, higher-dimensional facet to encode
the possible variations in a facet of the projected uncertainty region. The
preceding discussion indicates that such a generalized facet takes on all values
of the tolerance variables, i.e., the facet will not vanish for some model error
parameterization.

Figure 6b shows a 3-dimensional, generalized C-space with 2 spatial di-
mensions (z and y) and a single tolerance dimension (T'). The uncertainty
region R, is a rectangular block, bounded above and below by planes I't
and I'~, which represent tolerance limits. Ry is projected along command
velocity vo onto the planar surface S of a primitive contact. Two of Ro’s
1-dimensional facets (g1 and g;) project to boundary facets (g and g;) of
the projected image R;. As discussed above, g; and g; take on all values of
T. Since R, is entirely bounded by g}, g5, I'*, and I'", and because I'* and
'~ are invariant for all R;s, the boundary of R; (and subsequent projected
regions R;) is defined by multiply-projected images of a subset of Rq’s pose
uncertainty-related (vertical) facets, and by I'* and I'".

The preceding observations extend to R‘+®. We assume that the initial
uncertainty region in free space is a hyperrectangle Ro in Rf+®. R, can
be characterized by the 2¢ + 12 (¢ + 5)—dimensional facets of its border,
or by the 2t + 12 R**-halfspaces associated with those facets. Ro has 2t
facets of dimension ¢ + 5 associated with plus-and-minus tolerance bounds,
and 12 facets of dimension ¢t + 5, as well as 60 facets of dimension ¢ + 4,
associated with initial pose error bounds. When Ry is projected onto the
(t + 5)—dimensional affine space associated with the first primitive contact,
a subset of the (¢t + 4)—dimensional facets project to border facets of Ro’s
projected image R,. If R, itself is projected onto the affine space of a second
primitive contact, some of its (¢ + 3)—dimensional facets project to border
facets of the projected image R,, and so on.

As demonstrated previously, the boundary facets of an uncertainty region
R; always consist of multiply-projected images of a subset of the original Ro’s
pose uncertainty-related facets, plus Rq’s 2¢ hyperplanes associated with tol-
erance limits. Since Rq's pose uncertainty-related facets are just the facets
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of a 6-dimensional pose uncertainty hyperrectangle (lifted to R*+9), it is con-
venient to construct a boundary model for a hyperrectangle in R8, to serve
as a data structure to hold affine space descriptions of the pose uncertainty-
related facets of Ry. As a decreasing subset of the hyperrectangle’s facets
are successively projected onto the hyperplanes of new C-surfaces, the facets’
affine spaces are updated to describe their projected images. The boundary
model consists of an adjacency graph of 0— to 9—dimensional facets, with
associated affine space descriptors. The affine space of a facet f is repre-
sented by a vector subspace basis in R+6, denoted by “basis(f)”, and a
representative point in R+8 denoted by “point(f)”.

The calculation of Ry's projected image R, in the first contact state entails
(1) determining which (t +4)—dimensional, pose uncertainty-related facets g
of Ry project to an outer boundary facet g’ of R;, and then (2) updating the
affine space representation of g to describe its projected image g'. More gen-
erally, we can project an uncertainty region R; from a (t+6—k)—dimensional
contact state into its image Ry, in a (t+5- k)-dimensional contact state
by (1) determining which (t + 4 — k)—dimensional facets g of R; project to
an outer boundary facet g’ of Ry, and then (2) updating the affine space
representation of g to describe its projected image g¢'.

We present an algorithm at the end of this section which forward-projects
a polytopic uncertainty region R; from a (t+6—k)—dimensional contact state
C; onto its image R;,; in a (t+5~ k)-dimensional contact state C14,. In
addition to calculating R;,,, the algorithm constructs the forward- projection
F; of R;, i.e., the volume in R+ swept out by R; in the presence of velocity

The variables and data structures employed are: & linearized C-surface
descriptors (N, Dy), ... (N, Dy) associated with the (¢ + 6 — k)-dimensional
contact state’s primitive contacts, where (N; ¢ R*8, D; € R) denotes the
equation N; -dX = D; in generalized C-space; the descriptor (Niyy, Diyq)
associated with the new primitive contact in the (¢ + 5 — k)-dimensional
state; REGION;, a list of R*+8_halfspaces of the form N-dX < D whose
intersection with the C-surface hyperplanes of (NI,DI),...,(N,,,D,,) de-
fines uncertainty region R;; FORWARD;, a list of §R‘+"—ha.lfspaces of the
form N .dX < D whose intersection with the C-surface hyperplanes of
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(N1, D1),. .. (N, Dy) defines forward-projection volume Fj; FACES;, a list
which contains the (£ +5— k)—dimensiona.l facets of R;; and EDGES;, a list
which contains the (£ + 4 — k)—dimensional facets of R;. Prior to the first
forward-projection, lists FACES, and EDGES, are intialized to contain all
the pose-uncertainty-related, (t+5)— and (¢t + 4)—dimensional facets (resp.)
of Ro. REGION; is initialized to hold the Rt+6-halfspaces associated with
each facet in FACES,. The subroutines used in the algorithm are described
as follows:

e projdir(g, vi): computes the direction w, toward which a facet
g of R; projects when R, is forward-projected along command
velocity vi. As illustrated in figures 5b and 5c, Wy is derived
as the weighted vector sum (sin eo())u+(cos €(u))v, where
u L v, basis(g),Ni, .- Ne.

o exterior(g,wy): a predicate which returns true iff facet g of
R;, whose projection direction is w,, projects to an exterior
boundary facet of Riy1. gisa (t+4- k)—dimensional facet
of R; adjacent to two (t +5— k)—dimensional facets f1, fa of
R;, and f, and f2 confine R; to two halfspaces Ny - dX < D,
and N, -dX < D, (resp.). This predicate returns true iff
sign(wg - Ni) # sign(wg - N,).

o perp({uy, ..., Un}): returns the t + 6 — n vectors in R¢*¢ which
span the vector space orthogonal to span{uy,. .. ,Un}t.

o halfspace(N, D, p): if N-p < D then the halfspace N-dX < D
(ie., its descriptors N, D) is returned. Otherwise, halfspace
-N.dX < -Dis returned.

) projpoint(p,w,N,D): returns the point at which the line
formed by point p and vector W intersects the hyperplane
N.dX=D.

o solvesys(Nq, D1, Nn, D,) returns a point in Rt+€ satisfying
a possibly-underdetermined system N; - dX=D;,i=1...7n

o top(H,v;): a predicate which returns true iff (£ +95 — k)—dim.
facet f of Ri, associated with halfspace H of R;, is one of the
“top” facets of Ri with respect to a «Jownward” command
velocity v; (eg., facet f in figure 5a), signifying that the for-
ward projection of f passes through the interior of R;. This
predicate returns true iff v points into halfspace H.

-
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Procedure Forward-Proj /*Forward-project pose uncertainty region R;*/
Initialize FORW ARD;, REGION;,,, FACES;,, EDGES;4, to empty
For each facet g in EDGES; do

w, — projdir(g, vi)
If exterior(g, w,)
then
/*Build (t + 5 — k)—dim affine space I'; swept out by g*/
basis(Ty) «— basis(g)U {w,}; point(T,) «— point(g)
/*Derive halfspace descriptors Ny, Dy for T'g*/
N, « perp(basis(T'y) U{Ny,...,Ne}); Dy — Ny - point(g)
Add halfspace(Ngy, Dy, piy1) to FORWARD; and REGION;,
/*Update g’s affine space to represent its projected image*/
point(g) «— projpoint(point(g), Wg, Nis1, Dis1)
basis(g) «— perp({Ngy,N1,...,Nepa}) '
Add g to FACES;,
For each (t + 3 — k)—dim facet g’ adjacent to g do
Add ¢’ to EDGES;,, (if not already present)
Endfor
Endif
Endfor
For each facet ¢’ in EDGES;y, do
/* Compute g'’s affine space from its adjacent facets*/
Find g'’s 2 adjacent facets g,,g2 in FACES;;,
ba"’i"(gl) - pE‘l'p({Ng! ) sz Ny,..., N’¢+1})
point(g’) « SOIvesys((Nyn Dyx )1 (Nyz: Dyz): (NI’ D1)1 R (Nk+lr Dk+1))
Endfor
/*Seal off the “top” of the forward-projection volume*/
For each halfspace (N, D) in REGION; do
If tOp(N, D ) Vi)
then
Add (N, D) to FORW ARD;
Endif
Endfor
/*Seal off the “bottom” of the forward-projection volume*/

Add halfspace(Ney1, Dis1,P;) to FORW ARD;
Endprocedure
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The forward-projection volume computed above as list FORW ARD;,,
is submitted to a linear programming feasibility subroutine, together with
any undesired primitive contact’s hyperplanar polytope constraint set. A
positive result indicates that the undesired contact can occur in the presence
of uncertainty. In that event, the command velocities, clearances, and/or
tolerances require modification.

7 Applied wrench constraints

After choosing a path of contact states to be traversed during an assembly
operation, we must ensure that jamming (static friction) will not occur in
any of the selected states, and that the contacts will not be broken once
they are established. Figure 7a shows a point mass m sliding on a surface
whose friction cone of reaction forces has half-angle tan=! x, where p is the
coefficient of friction. If the force F,p, applied to m is directed toward the
surface but does not point into the friction cone, the component of F,,,
unopposed by reaction force F. generates an acceleration & of m. If F,pp
points into the friction cone, the mass sticks on the surface.

We shall assume that the direction of the moving part’s velocity in R® is
sufficiently constrained so that the direction of the moving part’s velocity at
any contact point p; will be very close to the unit velocity v; associated with
the moving part’s perturbed nominal velocity. This assumption, together
with our assumption of quasistatic conditions, enables us to express the re-
action force f; at each contact as a function of a single variable, the normal
force f;:

£ = filmi - pvi) (4)
where n; is the contact normal (see figure 7b).

Following Caine [5], the applied wrench (force and torque) imparted to
the moving part in a k—point contact state can be expressed

F = T fi(—n 4+ pvi) + 8v; 5)
M = 2?=1 firi X (—n + pv;) + 1 X 8v;

where r; is the vector from the origin of the moving part to the contact at
p;i, and 0 < § < 1 is associated with acceleratory sliding, while —1:> 6 > 0
represents the jamming condition.
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7.1 Jamming avoidance in 1-point contact states

I k = 1, the applied wrench (5) can be written:

F = fiA +6V (6)
M = fiB;+6W

where A]_ = —n + uvy, B1 =r X (—n1 +‘LV1), V = vy, W = r X viy.
Figure 7a shows the 3-dimensional space of applied forces F. Line {; =
{F | F = fiA,, fi € R} contains the applied forces associated with nonac-
celeratory sliding. The forces related to jamming lie in region R = {F |F =
fiA1+68V, fi,€ R+, 6 € R~}, which is bordered by £,. Any constraint plane
T containing ¢; but not R divides R* into two halfspaces, one of which con-
tains R. Jamming can be prevented by confining F to the halfspace which
contains V. More generally, the subspace S of applied wrenches associated
with nonacceleratory sliding, and the sticking region R, may be expressed in

((B(E)s(3)aes)
e {(5)|(2)4(8) (%) nemaer]

We can employ any 5-dimensional constraint hyperplane H € R° that con-
tains S, but not R, to divide applied wrench space into two regions, one
of which contains the sticking region R (see figure 8a). Such a hyperplane
H may be specified by selecting five independent vectors in R® that include
[ATBT]T but are independent of [VIWT|T. The five vectors form a basis
for the vector space comprising H and determine H’s normal in R¢, which is
computable via the Gram-Schmidt procedure.

7.2 Jamming avoidance in 2-point contact states

If £ = 2, the applied wrench (5) can be written:

F
M

f1A1+szz+5V 9
HB1 + f2A + W (9)
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where A; = —n; +pv;, B; =y x (—n; + pv;) (i = 1,2), V = v; + vy,
and W = r; X v; + rp X vo. As seen in figure 8b, vectors A, and A,
span a plane I' € R3, which contains the applied forces associated with
nonacceleratory sliding. The forces related to jamming lie in a 3-D region
R={F|F = fiA,+ f2A2+6V, f1, f» € R,§ € R"}. Asa constraint plane,
I' divides R3 into two halfspaces, one of which contains R. Jamming can be
prevented by confining F to the halfspace which contains V. More generally,
the subspace S of applied wrenches associated with nonacceleratory sliding,
and the sticking region R, may be expressed in R® as

(2 ](5)-Ba(&) w0
e {(5) () (&) (%) semsen]

(11)
Any 5-dimensional constraint hyperplane H € R® that contains S, but not
R, divides applied wrench space into two regions, one containing the sticking
region R. H is chosen by selecting five independent vectors in R® which
include [ATBT]T and [ATBZ]T but are independent of [VIWT|T. The five
vectors determine H’s normal in R®, which is computable via the Gram-
Schmidt procedure.

7.3 Jamming avoidance in 3-point contact states

If k = 3, the applied wrench (5) can be written:

F
M

(Tt fidi) + 6V

(55 £:Bi) + 6W (12)

i

where A; = —n; +pv;, Bi =1 x (-n; + pv;) (1 =1,3), V= >,V and
W = Y2, r; X v;i. Generalizing the discussions of sections 7.1 and 7.2 to 3-
point contacts, we can express the subspace S of applied wrenches associated
with nonacceleratory sliding, and the sticking region R as sets in R®:

(B (5)-Eal8)aer) oo
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e {(2) (5) - () o(%)nemsen]

(14)
If 2 5-dimensional hyperplane H € R¢ contains S, but not R, then H divides
the applied wrench space into two regions, one of which contains the sticking
region R. ‘H is determined by five independent vectors in R that include
[ATBT]T(i = 1...3) but are independent of [VIWT|T. H’s normal in R® is
then computed by the Gram-Schmidt procedure.

7.4 Maintaining a 1-point contact

According to equation (6), line £, = {F|F = fiA,, f1i € R} contains the
applied forces associated with nonacceleratory sliding (§ = 0) in a 1-point
contact state. The contact remains unbroken as long as the normal force f;
is positive. As shown in figure 8¢, any constraint plane I'; that contains the
origin but not ¢; divides £; into two rays: one is related to contact, and the
other is related to separation. More generally, any hyperplane H; € R° that
does not contain [ATBT)T divides the 1-dimensional subspace S of equation
7 into two regions, one of which contains all the applied wrenches associated
with the breaking of contact. ; may be specified by any 5 independent
vectors in R® that do not contain [ATBT]T in their range space.

7.5 Maintaining a 2-point contact

From equation (9), the applied forces associated with nonacceleratory sliding
(6 = 0) and unbroken contact (f1, fz > 0) in a 2-point contact state lie within
a 2-D angular sector s = {F|F = fiA, + f2Aq, f1, f € R*}, bordered by
lines 81 = {FIF = f1A1, f1 € §R} and 22 = {F lF = sz.z, fz € 92} As
shown in figure 8d, any pair of constraint planes I'y and I'; that contain
¢, and ¢; (resp.), but not ¢; and £, (resp.), may be employed to restrict F
to s. More generally, the applied wrenches associated with 2-point contact
maintenance are contained in a 2-dimensional angular sector in RE:

() |(2)-Eal8)eew) oo

i=1
Any pair of constraint hyperplanes H,, H, € R® that contain [AIBZ|T and
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[ATBT]T (resp.) but not [ATBT|T and [AIBT]|T (resp.) can be used to
restrict the applied wrench to S, with each H; enforcing f; > 0. H; may be
specified by any 5 independent vectors in R® that contain [ATBZ]T but not
[ATBT|T in their range space, and H, may be specified similarly.

7.6 Maintaining a 3-point contact

The results of sections 7.4 and 7.5 generalize to 3-point contact states as
follows. The applied wrenches associated with maintaining all contacts are
contained in a 3-dimensional cone in RE:

(R (5] -Ee(8)eex) oo

Three constraint hyperplanes H;, Hz, Hs € R® are employed to restrict the
applied wrench to §. To enforce f; > 0, H; must contain [ATBI]T and
[AT BT|T, but not [AT BT])T. H, may be specified by selecting any 5 indepen-
dent vectors in R€ that do not contain [ATBI|T or [ATBI]|7 in their range
space. Similarly, H, (for f; > 0) must contain [AT BY]T and (AT BI|7, but
not [AT BT|T, while H; (for f3 > 0) must contain [AT BT|T and [AT BT, but
not [ATBIIT.

8 Discussion

We have thus far highlighted the earliest stages in a mating operation,
in which the moving part traverses the contact state lattice around the first
critical point encountered in the trajectory. Traversal of this lattice begins
in a region R, surrounding the initial target pose in free space. If there is
more than one critical point, then the goal state in the first lattice must
be present in the second lattice, where it serves as the initial state in the
second sequence. The traversal of a contact state shared by two lattices
constitutes a global transit between two critical points. To restrict the pose
uncertainty resulting from such a transit, we must force the assembly to follow
multiple-contact states, i.e., the crevices and corners of C-space [9][14]. If the
contact state shared by adjacent lattices is 1-dimensional in R, then there
will be virtually no uncertainty associated with the traversal of that state
(except for uncertainty in the state’s own location in R®, which varies with
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the toleranced part dimensions). When a new contact occurs, signalling the
end of the global transition, the uncertainty region will be reduced to a single
point in N8, albeit lifted to R**®. The next lattice’s traversal then commenses
in a quite constrained uncertainty region.

The designer tools described in sections 2 — 6 have been implemented
in the POPLOG environment running on a Sun 3 workstation. Surface de-
scriptions of CSG-modelled assembly parts are obtained from a geometric
modeller [3] and placed in POP-11 records, which serve as nodes in an adja-
cency graph of part facets [8]. Geometric data from the models parameterize
linearized C-surface equations (2) and (3), to generate the contraint sets
representing the primitive contacts’ hyperplanar polytopes, as well as the
convex components of LEGAL. A FORTRAN simplex procedure is em-
ployed to perform the feasibility tests mentioned in sections 5 and 6. The
forward-projection algorithm described in section 6 was also implemented
in POP-11, utilizing a 6—dimensional hyperrectangle boundary model to
store and update the affine space descriptions of successively-projected un-
certainty region facets. The algorithm relies heavily upon the Gram-Schmidt
procedure, which performs the orthogonalization process in subroutine perp.
Wrench constraints for jamming avoidance and contact maintenance in the
chosen contact states are also generated, using the inequality formulae in sec-
tion 7. Fine motion strategies for traversing contact state sequences, similar
to those in figure 4a, have been designed interactively with this system.

As we described in sections 2 through 6, the process of designing a fine-
motion trajectory involves (1) selecting a contact state sequence, (2) propos-
ing command velocities (either directly or implicitly with target poses) for
traversing the selected contact states, and (3) verifying that only the chosen
states will be traversed in the presence of uncertainty. Alternatively, (1) or
(2) may be reversed: the direct specification of command velocities deter-
mines not only the target poses, but also the contact states to be traversed.
A target pose dX; and a desired velocity v; together define a ray in RS.
The first new primitive contact encountered along the ray becomes the next
contact to establish. Moreover, the contact state formed by the additional
contact is guarranteed to exist without overlap, since the new contact was
the first encountered along the ray. In this alternative approach, the vali-
dation of legal contact states described in section 5 is unnecessary. With a
view toward further automation, future research will explore the heuristic
generation of command velocities (see, for example, Laugier [16]).
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9 Conclusion

A methodology for augmenting a nominal assembly motion plan with a fine-
motion strategy was introduced. Linearizations of C-space around critical
points in the trajectory enabled us to use linear programming to synthesize
perturbed nominal trajectories for traversing local, polytopic contact spaces
in the presence of position, control, and model error.
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Figure 1: (a) Critical points in a nominal trajectory. (b) Primitive contacts
at a critical point.



é"dr-"' >
actual F model
wall wall
de >
n
actual < s
vertex
(a) / V
A
V2
vy 4
y x
P
z O / dr,
a1 &’Qz
dr, de
El B:
model model
edge edge
actual actual
edge edge L
(b)

Figure 2: (a) A vertex-face contact. (b) An edge-edge
contact.
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Figure 3: (a) A critical point in the nominal trajectory.
(b) Rim vertices.
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Figure 4: (a) Alternative sequences of contact states.
(b) Specifying a target pose in a contact state.



Figure 5: (a) Uncertainty analysis in C-space. (b)
Control velocity error cone. (c) Deriving the motion
of an uncertainty region facet.
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Figure 6: (a) Uncertainty region projected onto
a toleranced surface. (b) A forward-projection
in generalized C-space .
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Figure 7: (a) A friction cone. (b) Contact force.



Figure 8: Jamming avoidance for 1-point contacts. (b) Jamming
avoidance for 2-point contacts. (c) Maintaining a 1-point-contact.
(d) Maintaining a 2-point contact.



