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Abstract

Disk mirroring has found widespread use in computer systems as a method for
providing fault tolerance. In addition to increasing reliability, a mirrored disk can also
.reduce I/O response time by supporting the execution of parallel I/O requests. The
improvement in I/O efficiency is extremely important in a real-time system, where
each computational entity carries a deadline. In this paper, we present two classes
of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk
I/0 subsystem and examine their performance in an integrated real-time transaction
system. The real-time transaction system model is validated on a real-time database
testbed, called RT-CARAT. The performance results show that a mirrored disk I/0
subsystem can decrease the fraction of transactions that miss their deadlines over
a single disk system by 68%. Our results also reveal the importance of real-time
scheduling policies, which can lead up to a 17% performance improvement over non-
real-time policies in terms of minimizing the transaction loss ratio.

1 Introduction

In many computer systems, reliability is highly required and of critical importance. This
requirement can be found, among others, in the area of database applications, where the
database is usually stored on one or more disks. Because of the mechanical nature of
disk drives, they are one of the weakest components in a computer system. In order to
gain fault tolerance, these systems are typically designed to provide redundancy so as to
survive single component failures. This forms the basis behind the concept of a mirrored

disk subsystem, whereby each data item is stored on a pair of disks [3,12,9]. It is indicated in
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the literature [4] that by today’s technology, the mean time between failure of a mirrored
disk subsystem will be more than 30,000 years. Besides providing fault tolerance, disk
mirroring is also expected to improve the system performance. |

A real-time transaction system, where each transaction carries a deadline when sub-
mitted to the system, often requires highly reliable service. Here by deadline, we mean
the time by which a transaction is expected to terminate. In such a real-time system, if a
transaction cannot commit before its deadline expires, it is said to be lost. For a real-time
transaction system, the performance metric of most interest is the transaction loss ratio,
and the primary design goal is to minimize the loss ratio. This is quite different from that
of traditional database systems, where the goal is that of reducing the mean transaction
response time. Since the timing constraint is a main concern in a real-time system and
I/O devices are orders of magnitude slower than CPU’s, the improvement in I/O efficiency,
that may arise from the introduction of disk mirroring, is extremely important.

Previous work on the performance evaluation of a mirrored disk system and/or repli-
cated database has mainly concentrated on non-real-time systems. Towsley et.al. [19]
discussed several scheduling policies for a non-real-time mirrored disk system, where I/0
requests are served in FCFS order. Matloff [13] developed an approximate analysis of a
different form of disk redundancy, where three or more disks are used to maintain two
copies of each data item. Bitton and Gray [4] examined a similar policy in the context of k
disks. Nelson and Iyer [14] described and analyzed two protocols for a replicated non-real-
time database system. Other work on replicated database systems can be found in (7,8,2].
For real-time systems, Chen et.al. [6] introduced two new real-time disk scheduling poli-
cies. Abbott [1] and Carey et.al. [5] each proposed SCAN based real-time disk scheduling
policies. These three studies considered a single disk system. Son [17] presented an algo-
rithm for maintaining consistency with replicated data in distributed real-time systems;
this work only considered read-only transactions. To the authors’ knowledge, no discussion
on the performance evaluation of mirrored disk for real-time systems has appeared in the
literature. :

In this paper, we present two policies suitable for disk mirrored real-time systems, and
examine their performance in a real-time transaction system. Each policy maintains two
queues for storing I/O requests. The first policy, labeled RT-DMQ, maintains a queue at
each disk. Write requests are placed in both queues and read requests are placed into one
of the queues. A variation of the SSEDO policy, first proposed in [6], is used to schedule
requests at each queue. The second policy, RT-CMQ, maintains a single queue for both
disks. All read and write requests are entered into this queue upon arrival. A second queue

is required for the disk that lags behind while servicing write requests. Again, a variation



of SSEDO is used at the common queue.

The basic real-time transaction system simulation model we use has been validated on
an actual real-time database system testbed, called RT-CARAT. Our experimental results
using this model show that the real-time policies , RT-DMQ and RT-CMQ), can lead to a
17% performance improvement over non-real-time policies (termed DMQ and CMQ) with
respect to the transaction loss ratio. Also, by providing an additional disk, a disk mirrored
system can outperform a single disk system by as much as 68%. Other performance metrics
of interest include the mean response time for successfully committed transactions, and
the mean I/O queue length.

Finally, based on our results, we consider a non-real-time setting and observe that a
modified DMQ policy that uses the shortest seek time first (SSTF) at each queue out-
performs a modified CMQ policy that also uses SSTF. This contrasts with the results in
our earlier study [19], where CMQ outperforms DMQ. Here the original CMQ and DMQ
policies used FCFS.

The remainder of this paper is organized as follows. Section 2 describes the real-time

transaction system model. Section 3 introduces the two real-time scheduling policies,
RT-DMQ and RT-CMQ), for disk mirrored I/O subsystems. The performance results are

presented in Section 4. Section 5 summarizes this paper.

2 The Real-Time Transaction System Model

The real-time transaction system is modeled as a closed system (Figure 1), which consists
of multiple users, a CPU, and a mirrored disk I/O subsystem. While our intention is to
specifically study real-time disk I/O scheduling policies for a mirrored disk subsystem, we
do so in a complete system setting. The overall goal is to minimize the transaction loss
probability.

In this system model, each user spends a random amount of time in a think state before
generating a transaction. Each transaction is considered to have the same importance and
is assigned a deadline when submitted to the system. If a transaction cannot commit before
missing its deadline, it is lost and immediately removed from the system. The user who
submitted the lost transaction returns to the think state. Each user is assumed to have a
private buffer which is large enough to accommodate all pages necessary for a transaction.

A transaction consists of a random number of operational steps, which are executed
sequentially. When a transaction is submitted, it waits for the CPU in order to initialize
execution of its operational steps. During each step, the transaction needs to access the

database once. In our database model, in order to maintain database consistency, serializ-
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Figure 1: The Real-Time Transaction System Model

ability is enforced by a two phase locking protocol. Specifically, ‘each page is associated with
a lock. If during a step, a transaction wants to access a database page, it must request and
hold the lock for that page before being allowed to access the disk. For any transaction,
all locks obtained at previous steps are held until it commits or aborts. After obtaining
a lock for a step, a transaction queues up in the I/O subsystem waiting to be scheduled
if the page is not in memory. While receiving service, it brings the desired page to its
memory buffer, after which it competes for the CPU in order to manipulate the retrieved
data. This process is repeated until all steps have finished, after which it is prepared for
commit. If there are any dirty pages in its buffer, they are written back to the database.
A transaction commits only when all of these writes complete.

It is possible that a transaction’s deadline will expire before it commits. Two cases are
identified. If a transaction is lost before it completes all of its steps, it is simply removed
from the system and the user is notified. Otherwise, if a transaction misses its deadline
while performing the write operations, it remains in the system until all writes complete.
In this case, a notice is sent to the user, indicating his transaction missed its deadline, but
that the database has been updated. _

For the lock mechanism in our model, we distinguish between two types of locks. A
shared lock can be granted to multiple users for read operations, and an ezclusive lock
is granted to only one user for an update operation. A lock conflict may occur when
a requested lock has been granted to other transactions, and either the requesting or the
holding transaction is to perform an update operation. In this case, we always suspend the
requesting transaction, i.e., it joins a queue waiting for the lock. There is no preemption,
since all transactions are assumed to be of the same importance. Although there may be

better concurrency control policies [10,11], we are only interested in the effécts that I/O



scheduling have on performance, hence this policy is adequate for our purpose.

The locking scheme used may cause deadlocks. A simple cycle detection deadlock
detection algorithm is employed in the model. When a deadlock is detected, the requesting
transaction is aborted. In this case, it releases all resources held and proceeds according
to a restart strategy. The restart strategy in our model is simple. A transaction aborted
from a deadlock is restarted as long as its deadline has not yet expired.

When a transaction aborts or commits, it releases all locks held. For each of these
released locks, if there are any transactions waiting for it, we select the one with earliest
deadline to wakeup, and grant it the associated lock.

CPU scheduling is another important issue when dealing with real-time transaction
processing [10]. The earliest deadline scheduling policy is used in our model.

Last, a real database system will include logging operations to a separate I/O device.
We account for it as part of the CPU cost in our model.

Our basic transaction system model, in which the I/O subsystem is replaced by a sin-
gle disk that services I/O request in a FCFS fashion, has been validated on a real-time
database testbed, called RT-CARAT [10], running on a VAX Station II/GPX '. Since
RT-CARAT uses a fixed number of steps for each transaction, we selected workloads by
setting the number of users to 8 and varying the number of steps for each transaction from
4 to 20. In particular, we ran each of these workloads on RT-CARAT and gathered statis-
tics on the computation time required for a transaction step (including operating system
overhead). We then ran the same workloads with these step computation times and al-
gorithm settings (including: CPU scheduling, lock conflict resolution, deadlock resolution,
and restart strategy) in our simulation. The results from the simulation match quite well

with the measurements taken from the testbed.

3 The Mirrored Disk I/O Subsystem

It is our main interest to examine the impact of mirrored disk I/O subsystem on the overall
performance of the real-time transaction system. In our model, each I/O request arriving
to the I/O subsystem carries a deadline which is inherited from the transaction issuing the
request.

In our previous work [19], we studied the performance of a non-real-time mirrored disk
system under different FCFS based scheduling policies. It was observed that two multiple
queue policies, DMQ (for Distributed Multiple Queue) and CMQ (Centralized Multiple

1Since the VAX Station II, where the RT-CARAT is running, does not support mirrored disk, we have
no way to validate the various policies discussed in this paper on RT-CARAT -



Queue), outperform various single queue policies in terms of minimizing the mean read
and update response time, and that CMQ slightly outperforms DMQ. On the other hand,
in [6] we proposed two real-time disk I/O scheduling policies, SSEDO (Shortest Seek and
Earliest Deadline by Order) and SSEDV (Shortest Seek and Earliest Deadline by Value),
for a single disk system. They exhibit better performance over all other suggested real-time
disk scheduling policies. In the following, as a supplement to our previous studies on non-
real-time mirrored disk systems, we first describe two modified versions of DMQ and CMQ
policies. Then we merge the features from the non-real-time mirrored disk policies and
the real-time single disk policies to provide two real-time scheduling policies for a mirrored
disk I/O subsystem. Finally, we describe another proposed single disk real-time scheduling
policy, FD-SCAN [1], and apply it to our mirrored disk context. The performance of all
these policies are compared in next section.

3.1 Non-Real-Time Policies DMQ and CMQ

These two policies were first introduced in [19]. In this section, we describe a modified

version of these two policies.

e The Modified DMQ Policy: .

- The DMQ policy maintains two separate queues, one for each disk. Every update
request generates two write requests that enter the two queues. Consider the arrival
of a read request. If both disks are idle then it goes to the disk where the current
arm position is closest to the track required by the read. If only one disk is idle,
the read request always goes to that disk. Otherwise, it joins a queue waiting to be
served. We consider several possible strategies for determining which queue it should
join. The first strategy is to let reads randomly choose one queue to enter (DMQ-
RD). In the second alternative, when a read arrives to the I/O subsystem, it selects
the shortest queue to enter (DMQ-SQ). In the third strategy, the read request joins
.both queues. Whenever the first read begins service, its peer is removed from the
other queue. We refer to this alternative as the minimum read strategy (DMQ-MR).
Unlike the original DMQ policy described in [19], where the I/O requests are served
in a FCFS order, the modified version applies the shortest seek time first (SSTF)
policy to each queue to select the next request for service 2. Since the disk service
time under SSTF is less than that of FCFS (18], the disk I/O response time, and

therefore the overall system performance, is expected to improve.

20ther alternate policies applicable include SCAN and C-SCAN.



Among the three alternatives, since the performance of the shortest queue strategy is
close to that of the minimum read strategy and the former is easier to implement, we
use the DMQ-SQ in most our expeﬁmenté in order to compare it with other policies.
In the following we simply use DMQ to refer to the shortest queue strategy. The other
two alternatives will be indicated explicitly when we describe their performance.

e The Modified CMQ Policy:

The CMQ policy maintains a common queue for all arriving requests. When any
disk becomes free, the scheduler selects one request from the queue for service. If the
request is an update, it spawns two write requests, one of which begins service at the
idle disk and the other which either initiates service on the second disk if it is idle, or
queues up at that disk if it is busy. Hence an auxiliary queue of write requests may
dynamically develop at the disk that lags behind under this policy. Similarly, in the
modified CMQ policy, SSTF is used on both the common queue and the auxiliary
queue for scheduling rather than FCFS.

Corresponding to the two policies, we present two real-time disk scheduling policies,
RT-DMQ and RT-CMQ), for a mirrored disk system, which take into account not only the
disk seek time but also the timing constraint of each I/O request when making decisions.

3.2 The RT-DMQ Policy

The RT-DMQ policy maintains separate queues for the two disks in the same way as the
DMQ policy. These policies differ from each other in the scheduling rule used at each
queue. Under RT-DMQ), requests are scheduled from each queue according to the SSEDO
policy, first introduced in [6]. The SSEDO policy sorts the requests in a queue according

to their deadlines. Consider one queue and let

r; : be the I/O request with the i-th smallest deadline at a scheduling instance;

d; : be the distance between the current arm position and request r;’s position.

A window of size m is defined as the first m requests in the queue, i.e., the m requests with
smallest deadlines, 71,732,...7m. The scheduling rule assigns each request in the window a
weight, say w; for r;, (where w; = 1 < w; < ... < wp,), and chooses the one with the
minimum value of w;d;. This quantity w;d; is referred to as the priority value associated
with request ;. If there is more than one request with the same priority value, the one with
the earliest deadline is selected. Although there are many ways to assign these weights w;,

in our experiments, they are simply set to

w; =671 (B>1) i=1,2,..,m.



where 3 is an adjustable scheduling parameter. Observe that when § = 1, the policy
schedules requests within the window according to the SSTF rule. On the other hand, as
8 — oo, the policy converges to the earliest deadline policy. In this way, a request with a
loose deadline is allowed a higher priority only when it is “very” close to the current arm
position.

Corresponding to the three non-real-time DMQ strategies, we can define RT-DMQ-RD,
RT-DMQ-SQ, and RT-DMQ-MR policies in the same way. Since most of the results in the
next section are for the RT-DMQ-SQ, we refer to it as RT-DMQ in the remainder of the
paper except indicated explicitly.

3.3 The RT-CMQ Policy

The RT-CMQ policy, like the CMQ policy, maintains a common queue for all arriving
requests. This common queue is also sorted by the requests’ deadlines. Whenever a disk
becomes free, the SSEDO policy described in the last subsection is applied to schedule the
next request for service. The same auxiliary queue mechanism, as in CMQ, is adopted if
the request is an update. Depending on the service discipline used for the auxiliary queue,
there are also three variants. The simplest way is to service the auxiliary queue in a FCFS
manner (RT-CMQ-F). Another way is to perform the SSTF (or SCAN) strategy for the
auxiliary queue (RT-CMQ-S). The third alternative is to apply the window strategy to the
auxiliary queue (RT-CMQ-W). As we shall see, there is no significant difference between
these alternatives, since the queue length for the auxiliary queue is very short. Again, we
use RT-CMQ to refer the RT-CMQ-S strategy in the remainder of the paper because it is

used in most of our experiments.

3.4 The Modified FD-SCAN Policy

The FD-SCAN policy was first introduced in [1] for a single disk system, and is based
on the classical SCAN policy. In FD-SCAN, the track location of the request with the
earliest feasible deadline is used to determine the scan direction. A deadline is feasible if
we estimate that it can be met. Determining the feasibility of a request’s deadline is simple
since once the current arm position and the request’s track location are known, its service
time can be determined. A request’s deadline is feasible if it is greater than the current
time plus the request’s service time. At each scheduling point, all requests are examined
to determine which has the earliest feasible deadline. After selecting the scan direction,
the arm moves toward that direction and serves all requests along the way. A potential
problem with this pglicy is the high cost to run it. For a mirrored disk, the DMQ policy



can be modified to use FD-SCAN on each disk.

4 Performance Results

In this section, we illustrate the performance benefits gained by applying the previously de-
scribed real-time scheduling policies on a mirrored disk. In section 4.1, we first describe the
system parameter settings for our experiments, including: system configuration, transac-
tion characteristics, deadline settings, and the parameters for the two real-time scheduling
policies, RT-DMQ and RT-CMQ. The experimental results are given in section 4.2. In
particular, we assess the system performance over a wide range of workloads, determine
the impact of varying transaction deadline settings, and examine the system behavior by
varying the read probability. Finally, we investigate the behavior of the modified policies
DMQ and CMQ in a non-real-time environment.

4.1 System Parameter Settings
4.1.1 System Configuration

In our model, the disk has 1000 tracks. The database consists of 6000 pages, which are
uniformly distributed on the disk with each page corresponding to a disk block. The disk
service time is the sum of seek time, latency, and transfer time. The latency is assumed to
be uniformly distributed among [0,16.7] milliseconds, and the transfer time is considered
to be a constant (0.8 ms). The seek time 7, is defined by,

_ a+b/i i>0; .
T’_{O 1:=0; (1)

where a is the arm moving acceleration time (8 ms), b is the seek factor (0.5 ms), and i is

the number of tracks for the arm to move [16,4].

4.1.2 Transaction Characteristics

Transaction characteristics and the load to the system are defined as follows: the number
of users, N,, which limits the maximum number of transactions in the closed system,
ranges from 4 to 20. Each user may think for a random of time, which comes from an
exponential distribution with mean 1/ur = 1 second, before generating a transaction.
A transaction consists of a random number of operational steps, N,, which is uniformly
distributed between 1 and 20. Each step needs to access the database once and is followed
by a manipulation of those data items fetched. The computation time of each step, T,

is assumed to be 15 ms, and the time required to abort a transaction, T4, is 5 ms. With



these parameter settings, the workloads we use exhibit a I/O bound characteristic, which
allows us to examine the difference in the disk scheduling policies.

In most of our experiments, the read probability, p,, is set to 0.6, since more often users
are querying thé database. We also investigate the effect of varying the read probability
from 0 to 1.

4.1.3 Deadline Settings

The deadline setting for each transaction in our model depends on the system load and
the transaction’s length. The system load can be characterized by the number of users
in the closed system (with the mean think time 1/ur fixed), and the transaction length
corresponds to the number of steps. Specifically, we define Trnin to be the average system

time when there are no additional transactions in the system; it is given as
Tmin = (TC + TD) * Nn

where T¢ is the average step CPU time and Tp is the average disk service time during the
execution of a single transaction. The value of Tp is approximately 25 ms. '
The transaction deadline is set by,

Trans_Deadline = Tppin 7

where 77is a 7.v. drawn from a uniform distribution on [DL_LOW, DL_U P), where DL_LOW
is the deadline lower bound selected to be proportional to the number of users in the sys-
tem, DL_LOW = min{l,k* Num_Users} ?, and the DL_UP is the deadline upper bound
which is a linear function of the lower bound, DL.UP = aDL_LOW. In most of our
experiments, k is equal to 0.25 and a is 3. However, we also examine the case where
transactions’ deadlines are very tight and/or very loose by varying DL_LOW.

The deadline setting for each I/O request is inherited from that of the transaction
issuing the request in our experiments.

All of the above parameters are summarized in Table I, and II.

4.1.4 Parameters for SSEDO

The scheduling parameters 3 and the window ‘size for the RT-DMQ and RT-CMQ policies
are set to 2 and 3, respectively. These values are shown to be suitable for the window
strategy operating in a single disk environment [6]. Certainly, a further tune up of these

parameters may achieve some additional performance improvement.

3In any case, the deadline lower bound may not be less than 1. Otherwise, all the transactions might be
lost



Table I: Disk Parameters

Tracks - 1000
Seek Factor 0.5
Arm Acce. Time 8 ms
Latency Uniform in [0,16.7]
Transfer Time || 0.8 ms

Table II: Transaction Characteristics

Num _Users 4-20
Mean Think Time 1 sec
Steps/per Trans. ‘Uniform in [1,20]
Step Comp. Time 15 ms
Abortion Time 5 ms
Pr 0.6
DL_Lower Bound 0.25 * Num_Users
DL_Upper Bound || 3 * DL_Lower Bound

4.2 Experimental Results

In this section, we report our experimental results. The performance of RT-DMQ and
RT-CMQ policies are compared with their non-real-time counterpart DMQ and CMQ), as
well as to the real-time policy SSEDO [6] and non-real-time policy FCFS for a system
with single disk. Results of each experiment are averaged over 20 runs. In each run 1050
transactions are executed. 95% confidence intervals are obtained by using the method
of independent replications. Confidence interval widths are less than 11% of the point
estimates of the loss probability in all cases (these intervals are not shown in our figures in
order to clearly show the results). For each run, the execution of the first 50 transactions

are considered the transient phase and is excluded from our statistics.

4.2.1 Performance of RT-DMQ and RT-CMQ Policies

In this experiment, we explore the system performance under different I/O subsystems
and disk scheduling policies.

Single Disk vs. Mirrored Disk: Figure 2 illustrates the performance is improved by
introducing a mirrored disk. This improvement is due to the fact that the mirrored disk
can support concurrent reads which has the potential of increasing the disk bandwidth
and decreasing the I/O response time. The improvement is significant; The RT-DMQ and
RT-CMQ can yield up to a 68% improvement over the real-time SSEDO policy and an



81% improvement over the FCF'S policy for a single disk I/O subsystem. The two real-time
policies, RT-DMQ and RT-CMQ, perform basically the same.

Real-Time Policies vs. Non-Real-Time Policies: In Figure 3, we plotted the
performance of different real-time and non-real-time policies in combination with the DMQ
policy. The original DMQ policy uses the FCFS discipline for its two queues, whereas the
modified DMQ applies the SSTF discipline to each queue. The two real-time policies adopt
SSEDO and FD-SCAN, respectively.

From this figure, we observe the importance of using policies that account for real-time
constraints on a mirrored disk subsystem. As a transaction’s deadline becomes closer, it
is reasonable to assign it a higher priority to let it go first. As we can see, DMQ coupled
with FCFS is the worst, since it takes care of neither the time constraint nor the service
time. DMQ coupled with SSTF is better because it accounts for the service time factor
when scheduling. The RT-DMQ coupled with SSEDO and FD-SCAN outperform the non-
real-time policies, since they consider not only the disk service time but also the deadline
information of I/O requests in making their decisions. These RT-DMQ policies differ in the
weight placed on the two factors. While using FD-SCAN puts more weight on reducing the
service time, using SSEDO puts more weight on the time constraint (e.g., it will schedule
the request with earliest deadline most of the time). The curves show that the SSEDO
variant performs slightly better than the FD-SCAN variant with the only exception being
at an extremely high workload. Henceforth, RT-DMQ will refer to the RT-DMQ coupled
with SSEDO.

Mean I/O Queue Length: The mean I/O queue lengths for different policies are
illustrated in Figure 4. From this figure we observe that the I/O queue length for a single
disk policy (SSEDO) is much longer than that for mirrored disk policies. The queue length
for RT-DMQ-MR is greater than the queue length for RT-CMQ because of the duplicate
read requests. An important observation is the small mean queue length (less than 0.2)
for the auxiliary queue under RT-CMQ (also true for non-real-time CMQ). In fact, the
probability that the auxiliary queue length exceeds 1 is less than 0.03. Thus, there is no
benefit provided by the use of a scheduling policy such as SSTF for the auxiliary queue.

Mean Disk Service Time: The mean disk service time is of interest (Figure 5).
When the system is lightly loaded, all of the mirrored disk policies can take advantage of
allowing a read to go to the disk with the smallest seek time when both disks are idle at
the time of its arrival. As system load increases, this advantage disappears since most new
arrivals may not see both disks idle. However, all of the real-time policies begins to take
advantage of the shortest seek time component inherent in the window strategy when the

queue length is greater than one. The disk service time under the SSEDO policy decreases



quickly as the load first increases and then remains at the same level. This is because the
window size in our experiments is set to 3 and the I/O queue length exceeds 3 when the
number of users is equal to 8 (Figure 4).

It is not surprising that the mean disk service time is greater under RT-CMQ than
under RT-DMQ. This is because each disk is scheduled using separate SSEDO policies
under RT-DMQ whereas a single SSEDO policy is used to schedule both disks under RT-
CMQ. Recall that SSEDO attempts to reduce seek times as the number of the requests
in the queue increases. Thus SSEDO operating under RT-DMQ is able to do so at both
disks. However, in the case of RT-CMQ, SSEDO is only able to reduce the seek times of
a write at one disk, when the queue length is large. The other write enters the auxiliary
queue associated with the second disk. Unfortunately this queue rarely contains more than
one request and so it is impossible to reduce the seek time of a write at this disk. Hence
the overall disk service times are larger under RT-CMQ.

As expected, the mean disk service time is smallest under the DMQ policy that uses
SSTF, especially at high loads, and FCFS has the highest mean disk service time.

Comparison of Variations of RT-DMQ and RT-CMQ Policies: The perfor-
mance of the different variations of RT-DMQ and RT-CMQ policies are plotted in Figure
6 and Figure 7, respectively. From Figure 6, we observe that RT-DMQ-MR performs
better than the other two policies. This is consistent with what we observed for a non-
real-time environment in [19] where DMQ-MR exhibits the smallest mean response time
from among the three variations. The RT-DMQ-SQ performs reasonably well, particularly
as the system load increases. However, for the RT-CMQ policy, there is no big difference
between the three variants, RT-CMQ-S, RT-CMQ-F, and RT-CMQ-W, due to the short
queue length of the auxiliary queue under CMQ.

In Figure 6, we also plot RT-CMQ in order to compare it with the different RT-DMQ
variants. Although our previous studies [19] for a non-real-time environment show that
CMQ exhibits better performance than DMQ when each queue is served in a FCFS order,
the reverse is true here. This is due to the fact that the mean disk service time is smaller
under RT-DMQ than under RT-CMQ. The DMQ and CMQ policies studied in [19] used
FCF'S policies for all of the queues. Consequently, there was no difference in the mean disk
service times under both policies and the benefit of having a common queue under CMQ
was observed.

Mean Response Time for Committed Transactions: The mean response time
for committed transactions under RT-DMQ and RT-CMQ are almost the same (Figure 8).
The SSEDO policy for a single disk system, as shown in Figure 8, exhibits the smallest

mean response time as the system load increases. This is because the window strategy



used by SSEDO favors those transactions with tight deadlines, which, according to the
way deadlines are determined (see in 4.1.3), are often associated with relatively short
transactions. In high load cases, the transaction loss probability under SSEDO is high,
and only short transactions are likely to commit. Therefore the mean response time for a
committed transaction is the smallest. This conclusion is verified by Figure 9, where the

size of committed transactions are plotted.

4.2.2 Varying Transaction Deadline Settings

This experiment is designed to examine the effects of the deadline settings on the perfor-
mance of different disk scheduling policies. At one extreme the deadline is loose so that
every transaction is successfully served and none are lost. At the other extreme, the dead-
lines are tight so that most transactions miss their deadlines. From the results shown in
Figure 10, we observe that a mirrored disk subsystem outperforms a single disk subsystem,
and that the RT-DMQ and RT-CMQ policies perform the best over the entire range of
deadline settings. The average transaction response time for committed transactions is
depicted in Figure 11. For the case of loose deadline settings, when nearly all the transac-
tions can make their deadline, the mean transaction response time for a mirrored disk is
almost half of that for single disk. This is because the I/O throughput is nearly doubled
for a mirrored disk subsystem, especially when the read probability is high. On the other
hand, when the deadline is tight, the mean transaction response time for a single disk
subsystem is low because only short transactions are able to commit. It is interesting to
observe that the transaction response time under DMQ is less than that of the RT-DMQ
and RT-CMQ when the system loss ratio is small (less than 10%, see Figure 10 and Figure
11). This is reasonable since in this case, almost every transaction can commit successfully
and the DMQ has been shown to exhibit the smallest disk service time (Figure 5). This

results in a smaller response time for each transaction.

4.2.3 Varying the Read Probability

In this experiment, we study how the various disk scheduling policies behave as a function
of the read probability, p,. In our database model, an increase in update probability (i.e.,
a decrease in read probability) results in more lock conflicts since update requests require
exclusive locks. This will result in more transactions being blocked waiting for locks and
more deadlocks which in turn causes more transactions to be aborted. The increase in
update probability results also in an increase in I/O load because more writes occur at the

end of transaction execution. Both of these phenomena result in a decrease in the loss ratio



as a function of p,. The experimental results are shown in Figure 12. The transaction loss
probability decreases for all of the I/O scheduling policies as a function of p.,. However,
the mirrored disk subsystems remain more beneficial than single disk subsystems even as
pr approaches 1. This is again due to the presence of concurrent reads provided by the

mirrored disk subsystem.

4.2.4 Mean Transaction Response Time in a Non-Real-Time Environment

Finally, we compare the performance of the modified version of DMQ and CMQ presented
in this paper to that of original DMQ and CMQ policies introduced in [19] in a non-real-
time environment. In our previous studies [19], we observed that the mean I/O response
time for CMQ is less than that of DMQ when FCFS is used to service I/O requests.
Figure 13 plotted the improvement of mean transaction response time produced by the
modified DMQ and CMQ policies in a non-real-time database environment, where no time
constraint is imposed on transactions. This is because SSTF used by the modified DMQ
and CMQ reduces the disk service time, which in turn speeds up transaction processing. In
contrast to our observation in [19], the mean transaction response time under the modified
CMQ policy is greater than that of the modified DMQ policy. This is because the mean
disk service time for CMQ is greater than that for DMQ due to the short queue length of
the auxiliary queue in CMQ, for the reasons discussed in section 4.2.1. Among the three
variations of DMQ, DMQ-MR provides the best performance, followed by DMQ-SQ. These
results are consistent with the our previous observations in [19] where each queue is served
in FCFS order. As the performance of CMQ(FCFS) is only marginally better than that
of DMQ(FCFS), it is not included.

5  Summary

In this paper we examined the performance a mirrored disk I/O subsystem in an integrated
real-time transaction system. Specifically, we first presented two real-time disk scheduling
policies, RT-DMQ and RT-CMQ), for such a mirrored disk I/O subsystem, and then com-
pared their performance with their non-real-time counterparts, DMQ and CMQ), as well as
policies for a single disk I/O subsystem. In addition, we also considered another proposed
SCAN based real-time policy, FD-SCAN. The results show:

e A mirrored disk I/O subsystem not only provides fault tolerance, but also improves
system performance significantly for a real-time system in terms of the transaction

loss ratio.



e If a mirrored disk is used in a real-time environment, then real-time disk scheduling
policies should not only take into account the disk service time but also the time

constraint of each I/O request.

e The RT-DMQ policy exhibits slightly better performance than the RT-CMQ policy.
These qualitative results also hold between the DMQ and CMQ policies that use the

'SSTF policy while operating in a non-real-time environment.

e The difference in performance between a mirrored disk and a single disk increases as

the probability that a request is a read increases.

Although our study focused on a specific real-time database system using specific CPU
scheduling and concurrency control policies, we believe that the results will remain qual-
itatively the same for other database architectures and for other real-time applications.
Finally, many interesting problems remain to be solved in the design of I/O scheduling
policies for high performance real-time computer systems. We are currently studying the
problem of scheduling disk arrays [15] in real-time systems.
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