A Hybrid Theory
of Feature Generation

Tom E. Fawcett
Department of Computer and Information Science

University of Massachusetts
Ambherst, Massachusetts 01003

COINS Technical Report 91-8
June 1991

Abstract

Existing approaches to constructive induction have been largely empirical,
starting with structural features and combining them successively into higher
level features. This thesis proposal presents a hybrid analytical/empirical the-
ory of feature generation for inductive concept learning. From this theory a
transformational method of feature generation is developed. The goal of the
method is to generate useful features to improve problem solving performance,
given only a theory of the domain and the ability to perform in the domain.
An implementation of this method is able to generate useful features for the
OTHELLO board game, given just the rules of the game and the ability to in-
teract with an opponent. Additional research and experiments are described
that are expected to provide support for the method, as well as evidence for
its generality.

Contents

1 Introduction
1.1 Induction and Representation

1.2 Existing Approaches to Feature Generation
13 AHybrid Approach i i it it e

2 A Brief Overview of Constructive Induction
2.1 Systems that Support Complementary Representations
211 STABB(Utgoff)
2.1.2 STAGGER (Schlimmer)ot
2.1.3 MIRO (Drastal, Czako and Raatz)
214 LIVE(Shen) iy
215 BACKPROP ittt ittt i
2.2 Systems that Change SearchBias
221 OCITRE (Matheus)00t ennnnn
222 FRINGE (Pagallo) i nn.n
2.3 Systems that Increase Conciseness
2.3.1 DUCE (Muggleton and Buntine)
2.3.2 RINCON (Wogulis and Langley) e
2.4 Limitations of Existing Work

3 A Theory of Constructive Induction
31 TheModel. i ittt it it et e e e i iae
3.1.1 Generalassumptionsottt vttt
3.1.2 The performance component
3.1.3 The concept learning component
314 Thefeatureset i ieeininie..
3.2 A Theory of Feature Discovery
3.2.1 Classes of transformations

3.2.3 Issues with the control strategy
3.2.4 Issues with evaluating features
33 AnExampleDerivation.
3.3.1 Some Prolog background
332 Thederivationof MOVES
3.3.3 The derivation of other mobility features
3.3.4 A note on the implementation

ooooooooooooooooooooooo

4 Proposed Work
41 Domainst it i e e e e e e e
4.2 Experiments

oooooooooooooooooooooooooooooooooooo

44 Comclusion . . . v v v v et e
A The Game of OTHELLO

B Telecommunications Network Management

A Hybrid Theory of Feature Generation 1

1 Introduction

One of the central concerns of machine learning is inductive concept learning from examples,
in which a system is given a set of examples and produces a characterization of them. Many
induction algorithms have been devised that are able to generalize inductively in different
formalisms, using learning rules appropriate for that formalism. For example, decision tree
algorithms [Quinlan, 1986] represent concepts implicitly as boolean expressions and split dis-
junctively on different attribute values at every branch point along a path. Linear threshold
units [Nilsson, 1965] represent the concept predicate as an inequality involving a thresh-
old and a weighted sum of example features. Many concept-learning systems [Michalski &
Chilausky, 1980; Dietterich & Michalski, 1983] represent the concept as different forms of

boolean expressions.

1.1 Induction and Representation

Regardless of the formalism, inductive concept learning methods are sensitive to the set of
features used to describe the examples. This set of features strongly influences not only the
form, size and accuracy of the final concept learned, but the speed of convergence of the
learning method as well. In some cases, as with linear threshold units, the learning method
may never converge if the instance description vocabulary is inappropriate. As a result, a
human is usually responsible for determining whether the example representation must be
changed. If the learned concept is unacceptably inaccurate, or its form unacceptably large,
the human guesses what new features would help the concept learning algorithm, adds the
new features, then runs the algorithm again. The human is therefore part of the learning
cycle, so the process is not automatic.
. The problem of devising new terms for an induction task has been given many names.
It has been called constructive induction [Michalski, 1983] and the new term problem [Diet-
terich, London, Clarkson & Dromey, 1982], to emphasize the fact that the induced concept
is formed from newly-constructed terms, rather than from those that were initially given
to it. The set of representable concepts has been called a bias of the learning method, so
the process of adding new terms has been called shift of bias [Utgoff & Mitchell, 1982]. In
multi-layer connectionist networks, the internal (hidden-layer) nodes can adapt themselves
to recognize recurring input patterns; this phenomenon has been called learning internal
representations [Rumelhart & McClelland, 1986].
Regardless of the names and details of the processes, there are certain aspects common

to all of them. One way of viewing the role of new features in induction is in the layers
illustrated in Figure 1.

o Examples are expressed using a vocabulary called the input representation, or
instance-level features. The input representation consists of functions and predicates
on the example, as well as relations among parts of the example. For example, in the
domain of chess an example chess state might be represented by listing the pieces occu-
pying each board square, expressed as occupies(piece,square), along with the neighbor

-2 A Hybrid Theory of Feature Generation

Component Structure created
Col descriptio
Induction onotaatonal "
multiple examples)
[
Constructed Augmented stats
features descriptions

Descriptions of
problem states

Figure 1: The role of feature creation in induction

relations among the board squares, as neighbor(squarel,square2,direction). The input
representation is immutable.

o The constructed feature layer augments the input representation by adding descrip-
tors to the examples. For example, in chess a constructed feature for a fork might add
a description like fork(fsquare,tsquarel,tsquare2), indicating that the piece at square
fsquare is involved in a fork threatened by tsquarel and tsquare2. The descriptions
added by features may also be numeric; for example, mobility(white,23). Constructive
induction operates by adding new features at this intermediate level.

e The induction layer performs induction over the augmented example descriptions
and forms a final concept. That is, it performs a search for an acceptable concept
description based on the set of example descriptions provided by the layers below it.
The induction process can be as simple as the absolute correction rule for a linear
threshold unit [Nilsson, 1965] or as complicated as an algorithm like AQ11 [Dietterich
& Michalski, 1981] that performs induction over structured, symbolically represented
examples.

1.2 Existing Approaches to Feature Generation

Constructive induction may then be seen as a process that changes the features computed
in the second layer. Generally, feature learning involves a separate process that is able to
examine the result of a concept learning algorithm and suggest new useful features that will

improve it. There are many existing systems that create new features, many of which are
reviewed in Section 2.

A Hybrid Theory of Feature Generation 3

Two general approaches have been taken. The predominant approach has been data-
driven, in which new features are created by combining existing features in various ways.
Systems of this type, such as CITRE [Matheus & Rendell, 1989] and STAGGER [Schlimmer
& Granger, 1986], start with the input representation features and build up more complex
ones, for example by creating the conjunction of two features. Typically, feedback from the
learned concept is used to suggest plausible combinations. Usually, new features compete
with old ones and the best are retained. This process continues until the learned concept
is acceptable, which is usually defined in terms of size or accuracy. Data-driven techniques
are limited in the amount of improvement that they can accomplish because they start with
the example features and combine features one step at a time. If useful features are complex
combination of the example features, a data-driven system will need to generate and test
prohibitively many features before a useful one is derived. As a result, data-driven systems
have only been applied to toy domains in which useful features are simple combinations of
example features.

The second approach is analytical, and makes use of a domain theory to construct fea-
tures. Systems of this type, such as STABB [Utgoff, 1986a], use information about the
domain to deduce appropriate new features, rather than combine example features in new
ways. Because such systems exploit information about the domain, they are able to create
complex features in one step, and can guarantee that the features will be useful to the con-
cept learner. However, such systems can only create features that follow deductively from
the domain theory. Many real-world domains require useful features that are not deducible
from the domain theory, and these analytical systems are incapable of deriving them. In
addition, these analytical systems place strong restrictions on the domain theories to which
they can apply.

Because of their deficiencies, neither of these approaches is acceptable as a general model
of feature creation. Performance of feature discovery systems is far behind human capabil-
ities. People are able to learn useful features of a domain given little more than a theory
of how the domain works. For example, through experience people can become excellent
chess players given just the rules of chess and some background knowledge about two-person
games. Programs should be able to develop features as sophisticated as those that people
use, given the same information that people are given.

Specifically, given information about a domain and the ability to perform in the domain,
a system should be able, unaided, to generate useful features. When utilized by an inductive
learning method, these features should enable the system to improve its performance steadily,
and ultimately to exhibit human-level performance in the domain.

1.3 A Hybrid Approach

This proposal offers a different approach to feature generation, the central thesis of which is
that

Useful features can be derived from abstractions and combinations of abstractions
of the domain theory.

4 A Hybrid Theory of Feature Generation

Abstractions are created by relaxing conditions specified in a domain theory, so the ap-
proach is a hybrid of the data-driven (bottom-up) and theory-driven (top-down) approaches.
The use of a domain theory allows the system to start with complex initial features that
are sensitive to the goals and operators of the domain, rather than simply starting with the
instance-level features. The domain theory also allows the system to perform goal regres-
sion, a powerful goal-based feature transformation. However, the system must also be able
to generalize and combine features as well. Generalizing a feature increases its applicability,
and combining features can increase discriminability by excluding negative instances.

The purpose of this research is to investigate a theory of constructive induction based
on this hybrid approach and to explore its strengths and weaknesses. The theory will be
supported empirically with an implemented system, and the limits of the theory will be
determined by characterizing the features that it can and cannot discover. The primary
contribution of this research will be to demonstrate that aspects of both data-driven and
theory-driven learning are necessary for the generation of useful features in non-toy domains.
Because the method creates useful abstractions from an intractable domain theory, it will
also address the intractable domain theory problem and the problem of automatic generation
of abstractions.

The rest of the proposal is organized as follows. Section 2 discusses three classes of related
work in constructive induction, and concludes by analyzing their strengths and weaknesses.
Section 3 presents a theory of constructive induction, along with the model on which the
theory is based, and an example derivation of several features. Section 4 describes the
proposed work of the thesis, including a discussion of how the thesis will be demonstrated,
and how the work will affect research in machine learning.

A Hybrid Theory of Feature Generation 5

2 A Brief Overview of Constructive Induction

Existing work in constructive induction (CI) may be divided into three categories according
to the purpose for which new features are created. This division stresses the relationship
between the concept formation component and the feature generation component.

1. Supporting complementary representations: The features use a representation
different from the concept’s; therefore, the space searched by the CI component is
fundamentally different from that searched by the induction component.

2. Changing search bias: In this case, the features use the same representation as the
concept description; therefore, the CI component is not expanding the representation
space of the induction component, but may be changing the order in which concepts are
considered. This is the idea behind CITRE [Matheus & Rendell, 1989] and FRINGE
[Pagallo, 1989], both of which create new features that are conjunctions extracted from
the concept representation itself.

3. Increasing conciseness: Some systems create new terms not to increase accuracy
directly, but to increase conciseness of the domain theory. This conciseness may either
be an end in itself (as in DUCE [Muggleton & Buntine, 1988]), or as a way to increase
the efficiency of the domain theory (as in RINCON [Wogulis & Langley, 1989]). Many
clustering systems (e.g. COBWEB [Fisher, 1987]) have conciseness as a primary goal,
with the assumption that conciseness will aid accuracy.

The next three sections review related work in constructive induction organized by these
categories.

2.1 Systems that Support Complementary Representations
2.1.1 STABB (Utgoff)

STABB [Utgoff, 1986a; Utgoff, 1986b)] is the constructive induction component of LEX, a
system that acquires problem-solving heuristics in the domain of symbolic integration. LEX
contains a problem solver, a critic to extract training instances from a problem solution trace,
and a generalizer that takes instances from the critic and produces generalized heuristics.
LEX has a set of operators that perform algebraic manipulations and integration operations.
Each operator has one or more associated concepts, each a heuristic, that represent the
problem forms to which its operator may usefully be applied. The learning goal of LEX is to
refine these heuristics as much as possible, in order to reduce search in applying operators
to solve integration problems.

LEX represents incompletely learned heuristics using Mitchell’s version space method
[Mitchell, 1977], by which the most general and most specific boundaries (versions) of a
concept are explicitly stored. These boundaries may be adjusted by the generalizer after
every training instance involving the heuristic. Version spaces depend on a generalization

6 A Hybrid Theory of Feature Generation

hierarchy appropriate for the learning task; LEX’s hierarchy contains mathematical terms
such as transcendental function, integer, +, and monomial.

STABB generates new terms for LEX’s hierarchy, and is invoked when the version space
of an operator collapses (when there are no terms left in the region between its general and
specific boundaries). STABB is given the sequence of operators that solved the integration
problem, and the operator in the sequence whose version space is now empty as a result
of generalization. STABB has two methods for creating new terms: constraint back-
propagation and least disjunction.

Least disjunction is a goal-free method that creates a new term as a disjunction of existing
terms. The new term is guaranteed to be sufficient to match all of the positive examples
and none of the negative examples. Least disjunction is the default method of STABB, and
will always derive a new term. However, because it is insensitive to the goal, it is much
weaker than constraint back-propagation. That is, it will create the minimal disjunction
necessary to encompass two terms, whereas constraint back-propagation will derive a term
that characterizes every state for which the operator sequence may be applied.

Constraint back-propagation (CBP) generates new terms by propagating the set of all
solved states back through an operator sequence that yielded the original solved trace. Given
an operator sequence OP;,0P,,---,0P,, and a solution state S, CBP computes the oper-
ator preimages OP;!,0P;1,...,OP? to S in reverse order. The expression S, backed up
through an operator preimage OP;, yields a sufficient condition (call it Si) for which OP,
will yield a solution. Therefore, if OP, is the operator whose version space is now empty,
CBP generates Si, adds it as a new term to LEX’s hierarchy, and uses it to regenerate the
version space for OF,.

In summary:

o STABB is a knowledge-based constructive induction component for LEX. STABB’s
CBP method is able to create new terms that are exact sufficient conditions of useful-
ness for LEX’s operators.

e STABB’s CBP is an analytical method closely related to explanation-based general-
ization [Mitchell, Keller & Kedar-Cabelli, 1986]. CBP’s use of operator preimages
accounts for both its strength (that of creating terms that are exactly sufficient) and
also its weakness (that of needing computable operator preimages).

e LEX’s generalization hierarchy (concepf description language) represents an initial
strong bias used for induction. STABB is able to alter that bias on concept failure by

composing conditions from LEX'’s operator language. Two assumptions underly this
relationship:

1. STABB’s CBP method is assumed to be too expensive to be used in place of
induction, and should only be used when necessary (defined by concept failure).

2. The terms added by CBP, while created expressly for a single operator, are as-
sumed to be useful for the domain in general. By placing these terms in the

A Hybrid Theory of Feature Generation 7

hierarchy, other operators’ heuristics can take advantage of them when their ver-
sion spaces are adjusted.

2.1.2 STAGGER (Schlimmer)

STAGGER [Schlimmer & Granger, 1986] integrates weight learning with boolean function
learning in a principled manner. Subsequent work [Schlimmer, 1987] added numeric attribute
value partitioning (i.e., learning ranges).

In STAGGER, a concept description is a set of numerically weighted features, called
elements. Each element is a boolean function of attribute values, e.g. (SIZE=MEDIUM) AND
(coLorR=RED). Each of these elements has two weights associated with it: a measure of its
logical necessity (LN) and logical sufficiency (LS). These weights are computed as:

IS = p(matched|example) LN = p(—matched|ezample)
"~ p(matched|-ezample) "~ p(-~matched|-ezample)

Whenever a new instance is presented to STAGGER, each element is matched against
the instance and its weights are used to make a prediction about whether the instance is a
positive or negative example of the concept being learned. After the prediction is made, the
LS and LN of each element are updated by recomputing the conditional probabilities above.

Without the ability to learn new elements, STAGGER is effectively a single-layer con-
nectionist network. As such, it has the well-known limitation inherent in a linear threshold
unit: it can only represent concepts that are linearly separable (although these include purely
conjunctive and purely disjunctive concepts).

Feature learning in STAGGER is triggered by concept prediction failure. This is different
from (and less exact than) concept failure in LEX, which is defined by there being no concept
description consistent with positive and negative examples. In STAGGER, prediction failure
may also be caused by inappropriate weights.

New features are formed by applying the boolean operators AND, OR and NOT to
existing features according to a set of heuristics. For example, if STAGGER predicted a
negative example to be positive (an error of commission), it might conjoin two features
having large LN values to form a new, more specific feature. This new feature would then
compete with the others, and if its predictive accuracy fell below that of its component
features, the new feature would be removed.

Thus, the concept learning of STAGGER allows it to learn linear combinations of features,
and the feature learning in turn employs feedback from the weights to direct it. Since
STAGGER only generates new features upon prediction failure, it may be seen as having a
strong bias toward linearly separable concepts. Its feature generation component serves to
shift this bias, using boolean operators, when it is inadequate.

8 A Hybrid Theory of Feature Generation

2.1.3 MIRO (Drastal, Czako and Raatz)

MIRO [Drastal, Czako & Raatz, 1989] is related to both comstructive induction and
explanation-based learning, in that it generates new terms for induction from concepts (de-
scriptors) implied by deductive rules from a domain theory. The authors refer to this as
induction over an abstraction space, since the new terms are presumably more abstract than
the instance features. The authors also characterize the process as using a strong form of
deductive (and thus justifiable) bias.

MIRO takes as input a set of positive and negative instances, each expressed as a set of
features. The features can be positive or negative literals. MIRO has a domain theory, com-
posed of Horn clauses, whose inferences must be representable as a finite acyclic AND/OR
graph. Negations (negative features) can occur in the right-hand side of a clause, but the
left-hand side must assert a positive literal.

At the center of MIRO’s operation is its construction of an abstract concept description
language, L 4, based on the domain theory provided. The definition of L4 is in turn based on
the notion of a mazimally proven descriptor. Informally, if a descriptor z (the conclusion on
the right-hand side of a rule) can be deduced from some example e, but no other descriptors
may be deduced using @, then z is said to be a maximally proven descriptor. MIRO assumes
that the domain theory’s rules deduce abstract descriptors from less abstract descriptors,
thus z can be thought of as a maximally abstract descriptor of e. The set of all such max-
imally proven descriptors, computed from each positive and negative example, constitutes
the abstract concept description language L4.

After this language is defined, MIRO uses a greedy algorithm to induce a concept descrip-
tion from it. Similar to the AQ11 algorithm [Dietterich & Michalski, 1981], MIRO repeatedly
selects a seed from the set of positive examples and creates a partial concept description that
covers the seed and none of the negative examples. The partial concept description is created
using a one-sided variant of the candidate-elimination algorithm [Mitchell, 1978]. The one-
sided candidate-elimination method computes a G set, in the abstract language L4, that is
consistent with the seed and the set of all negative examples. MIRO heuristically selects an
element of this G set as a “cover” of the seed, which is a partial concept description of the
target concept. MIRO then chooses another seed, and continues until all positive examples
are covered. Finally the partial concept descriptions are disjoined into a complete concept
description, which MIRO returns.

It may happen that MIRO cannot produce a consistent concept description because the
abstract language L4 is insufficient to discriminate the positive and negative examples. In
this case, MIRO is able to decrease the inductive bias by incrementally adding non-maximally
proved descriptors into L4. After every change to L4, the examples are reprocessed. MIRO
continues to extend L 4 as long as L 4 is insufficient to discriminate the examples. Eventually,
MIRO will add the instance language descriptors into L 4; if these are still insufficient, MIRO
will declare failure.

MIRO is one of the few models of constructive induction that incorporate both deduction

and induction. There are a number of weaknesses of MIRO as a general model of constructive
induction:

A Hybrid Theory of Feature Generation 9

e MIRO is limited in the kind of domain theories it can use. The domain theory must be
representable as a finite acyclic AND/OR graph, so recursive rules are not allowable.
Furthermore, the experiments in [Drastal, Czako & Raatz, 1989] use an even more re-
strictive propositional logic domain theory; although MIRO could theoretically employ
any domain theory consisting of first-order (but non-acyclic) Horn clauses, the authors
admit that substantial problems arise when such domain theories are allowed.

o MIRO makes the assumption that rules in the domain theory make inferences from
less abstract descriptors to more abstract descriptors. Careful engineering of the do-
main theory may be required to assure that this condition is met. MIRO is currently
incapable of being used in a domain in which rules specify transitions from one state
to another, rather than from a description to a more abstract description.

2.1.4 LIVE (Shen)

LIVE [Shen & Simon, 1989] learns predictive rules of an environment, given some basic infor-
mation about the environment and the ability to perform experiments in the environment.
Specifically, LIVE is given a set of actions that it can execute, a set of features that it can
perceive in the environment, a set of constructors for creating new features, and a goal to
achieve in the environment. By performing experiments in the environment, LIVE is able to
create rules (STRIPS-style operators with pre- and post-conditions) describing the conditions
under which an action will have a certain effect.

LIVE’s learning can be characterized as difference-based specialization of rules. It starts
with overly general rules that describe the effects of its actions. When these rules are violated,
new, more specialized rules are created to account for the violating event. LIVE specializes
the rules by discriminating between a state in which its rule predicted correctly and the state
that violated the rule.

LIVE learns new features when its existing features are unable to discriminate between

these “correct” and “surprising” states. It creates features using its given set of constructors.
For example, one of LIVE’s tasks was that of deriving Mendel’s Law (that the dominant gene
determines an attribute) given the ability to simulate the artificial fertilization of garden peas,
and a set of constructors. In this task, LIVE’s goal is to predict the color of peas that result
from cross-breeding peas of various colors. In the process of deriving these laws, LIVE used its
constructor functions to generate features to discriminate states upon which the action had
different effects. In deriving the notion of dominant gene, LIVE first generated the feature
of different parent’s genes, then of one gene’s representation being greater than another.
After another false prediction, LIVE was forced to examine the grandparent peas’ colors in
corder to find some distinguishing characteristic that would account for the differences in the
grandchildren peas’ colors. The final rule that LIVE produces expresses the color of the
offspring of a union as the bitwise-OR of the inherited genes. This works because there were
two genes, represented as 1 and 0, with the dominant gene represented as 1.

I the rule preconditions are viewed as a concept, then LIVE is performing concept
learning. LIVE is unusual as a concept learner in that it generates concepts to differentiate

10 A Hybrid Theory of Feature Generation

only two states at a time. Its features — the new terms required to discriminate rule
preconditions — are generated by its constructors when the existing features are inadequate
for doing this differentiation.

The main shortcoming of LIVE’s feature generation is that the set of constructor functions
given to it represents a bias that may not be correct for the features that are needed. In
the example of [Shen & Simon, 1989], the “bitwise-OR” function is not obviously useful for
predicting pea color, and indeed only works if the dominant color is represented as 1, and the
recessive color represented as 0. Other problems exist that are common to data-driven feature
generation methods. The constructors may produce a very large feature space, depending
on their number and the order in which they are searched. There is also the problem of
finding the right feature: LIVE stops as soon as it finds some feature that can account for
a difference between two states, but there may be many such features, and LIVE may not
be able to recover if the wrong choice is made. Other feature generation systems are less
sensitive to this problem because they only demand that the features be predictive of the
concept, not that they uniquely determine it.

2.1.5 BACKPROP

The simplest connectionist architecture is the one-layer network, called the linear threshold
unit (LTU) [Nilsson, 1965]. An LTU maintains a set of weights, and given a set of numeric
feature values, produces a thresholded linear sum of the weights as output. Geometrically,
the weights of the LTU represent a hyperplane. In general, n weights constitute an (n —
1)-dimensional hyperplane that splits the n-dimensional feature space. Given an instance
feature vector, if the output of the LTU is less then zero, the instance represented lies on
one side of the hyperplane; if the output is greater than zero, it lies on the other side.

The LTU has the well-known restriction that it can only discriminate instances that
are linearly separable. This restriction can be eliminated by using multi-layer connection-
ist networks, in which there is a hidden layer that can compute intermediate results that
may then be used by the top-level (output) node. The generalized delta rule [Rumelhart
& McClelland, 1986, Chapter 8], commonly called the BACKPROP algorithm, can learn
weights for a network of LTUs by back-propagating error signals from the output node down
into the hidden layer. Through training, the hidden-layer LTUs can learn to compute useful
intermediate features of the input nodes for use in the output LTU, and this is a form of
constructive induction. Every distinct set of weight vectors for the hidden layer is a separate
representational bias.

Rumelhart et al (1986) have used the generalized delta rule in a number of multilayer
connectionist networks applied to known non-linearly separable problems. For example,
BACKPROP was applied to the parity problem (determining whether a set of n bits has
even or odd parity) using a network with n input and n intermediate nodes. BACKPROP
created features that counted the number of inputs that were on. That is, intermediate
node k became active when k or more of the input lines were on. The output LTU learned
positive links to each of the odd-numbered intermediate nodes, and negative links to each
of the even-numbered intermediate nodes. This resulted in the output LTU becoming active

A Hybrid Theory of Feature Generation 11

only when an odd number of input nodes were on.
It is impressive that such useful features can be created virtually ez nihilo by a simple,
uniform algorithm; however, there are some drawbacks to BACKPROP:

o The algorithm is purely empirical, and incorporating background knowledge into it
is an open problem. The method of [Towell, Shavlik & Noordewier, 1990] can build
a connectionist network from a domain theory, but the method is limited to domain
theories expressed in propositional logic.

e Empirically, BACKPROP requires significantly more presentations than symbolic al-
gorithms. Two recent empirical studies, [Mooney, Shavlik, Towell & Gove, 1989] and
[Fisher & McKusick, 1989], observed that BACKPROP takes substantially longer than
ID3 on the same task (this conclusion was consistent over the six tasks total studied
in the two research projects). The former study concluded that BACKPROP needed
one to two orders of magnitude more presentations than ID3 to achieve the same level
of accuracy, although BACKPROP was slightly more noise-tolerant.

It should be mentioned that measuring the training time by the number of presentations
may be misleading. Connectionist networks can typically process examples faster than
symbolic algorithms (e.g., ID3). However, they are usually not an order of magnitude
faster.

e The design of connectionist networks has not been completely automated because
several aspects of network architecture are not automatically determinable. The initial
settings of a network’s weights have a strong influence on both the learning speed and
the generalizing ability of the resulting network [Towell, Shavlik & Noordewier, 1990].
Also, the number of intermediate nodes needed for a network to solve a given problem
varies a great deal, and is generally not determinable [Fisher & McKusick, 1989]. If
too few are used, the network will not attain 100% accuracy on the problem; if too
many are used, the network will “memorize” the inputs and not form useful features,
and thus not generalize well to unseen inputs. It is possible to use a dynamic network
architecture whereby more intermediate nodes are added when necessary [Ash, 1989],
but this trial-and-error approach increases the number of presentations required.

12 A Hybrid Theory of Feature Generation

2.2 Systems that Change Search Bias
2.2.1 CITRE (Matheus)

CITRE [Matheus & Rendell, 1989] creates new terms for (and from) decision trees, and has
been applied to the domain of tic-tac-toe. The initial attributes are structural: they are the
board position pos;;,posia, posas, etc., which can take on values x, o and blank. Thus, a
feature is an expression like equal(pos11,x), which can be tested in a decision tree.

CITRE creates new terms when there is more than one positive-valued leaf in a decision
tree (and thus, when the concept is disjunctive). It has only one feature-creation operator,
described as and(_,), which conjoins two features. CITRE considers every positively-labelled
branch of the decision tree and applies its operator to every pair of features on the path.
It also uses two domain-specific filtering heuristics (one filters out features of different piece
types, the other filters out features involving non-adjacent squares) in the selection process. It
then generalizes its features by changing common constants to variables. Finally, it evaluates
the resulting features using an information-theoretic “utility” metric, which measures the
discriminability of each feature individually. CITRE keeps only 27 features at any one
time: the initial 9 primitive features, which are never discarded, and the 18 highest-ranked
constructed features (no justification has been given for these numbers).

In later work [Matheus, 1990], Matheus added heuristics that are able to generalize
newly-created features using domain-dependent methods. - For the domain of tic-tac-toe,
Matheus used heuristics that performed spacial translations of patterns. Using both the
filtering heuristics and the generalization heuristics, CITRE is able to increase the accuracy
of the learned concept about 15% over what ID3 can achieve with the instance features alone
[Matheus, 1990, Figure 6].

In summary,

o CITRE is cyclical and concept-based, in that the examples are processed using an
existing set of features, then new features are created from the induced concept. After
these new features are added, the learning algorithm is applied again to the examples
and the process continues until no new useful features are created.

o CITRE does not change the representation of the produced concepts, because CITRE
creates only conjunctions of existing features, and a decision tree can implicitly repre-
sent conjunctions anyway. The performance increase comes about because CITRE is
changing the search bias of the decision tree algorithm (ID3). Because ID3 considers -
only one attribute at a time in choosing an attribute on which to split, CITRE may
be seen as constructing promising attribute conjunctions. If two attributes A and B
correlate poorly with the concept, but their conjunction A A B correlates highly, then

by creating this conjunctive feature CITRE will probably increase the accuracy of the
resulting decision tree.

o CITRE is able to use some domain information, but it must be programmed in as a
filtering or generalization heuristic. CITRE’s feature composing operator, and(.,.),
exploits no domain information in selecting features for arguments.

A Hybrid Theory of Feature Generation 13

2.2.2 FRINGE (Pagallo)

FRINGE [Pagallo, 1989; Pagallo & Haussler, 1990] was designed to address the replication
problem, in which some portion of a decision tree occurs more than once in the tree. FRINGE
is very similar to CITRE, in that it acquires features by examining decision trees, but the
feature forming heuristic is slightly different. FRINGE forms conjunctions of two features
that occur at the fringes (the leaf nodes) of a decision tree. That is, given a positive leaf
node, FRINGE creates a new feature by conjoining the features that are immediately above
the leaf on the path.

FRINGE was applied to five different concept domains, including small random DNF
functions, a multiplexor, and 4- and 5-bit parity. By creating new features from conjunctions,
FRINGE was able consistently to outperform a decision tree algorithm that had access to
only the instance-level features. Both classification accuracy and average iree size were better
with FRINGE.

FRINGE has also been applied to more extensive machine learning domains, such as
the mushroom classification domain [Schlimmer, 1986] and the hyperthyroid data [Quinlan,
1987]. The decision trees generated by FRINGE were more concise and at least as accurate
as those generated by 1D3.

14 A Hybrid Theory of Feature Generation

2.8 Systems that Increase Conciseness
2.3.1 DUCE (Muggleton and Buntine)

The goal of DUCE [Muggleton & Buntine, 1988] is to produce a small, concise domain
theory. DUCE begins with a domain theory in propositional logic and repeatedly applies
rule-collapsing operators to it with the goal of reducing the total number of symbols in
the theory. The operators all work by finding common subexpressions of the theory, and
factoring them out into new rules. For example, one of the operators is absorption. Given
the two rules:

X « ANBACADAE
Y « AANBAC

the absorption operator will generate the rules:

X « YADAE
Y « AABAC

The other operators are similar. Note that, in isolation, absorption constitutes simple
truth-preserving factoring, but in the context of a larger set of rules this factoring may
introduce generalization, because other rules may assert Y.

DUCE depends upon an oracle (the user) to determine whether a given generalization is
valid, and to name the intermediate concepts that it creates. Thus DUCE is by nature an
interactive system, although it does remove some of the burden from the user by searching
intelligently for the transformations it proposes. It does a best-first search based on the
locally maximum reduction transformation; it proposes this transformation, and if the user
accedes, performs it. DUCE continues this cycle until no further reduction is possible.

Note that the goal of DUCE is only to produce the smallest, most concise domain theory;
this is an end in itself. There is no explicit link of this goal to performance accuracy (as in
CITRE or FRINGE), or performance efficiency (as in RINCON below).

2.3.2 RINCON (Wogulis and Langley)

RINCON [Wogulis & Langley, 1989] is very similar to DUCE in that its explicit goal is to
increase the conciseness of the domain theory, and that it performs a hill-climbing search
for the transformations that allow it to do so. RINCON, however, is incremental, and its
implicit goal is to increase the classification efficiency, rather than accuracy.

In RINCON, a domain theory is represented as a directed acyclic graph (tangled hierachy)
of concepts, organized from general to specific. Each of the concepts may have one or more
definitions, expressed as Horn clases. An instance is an instantiated clause, e.g.:

uncle(walter, jim) «— male(walter) A sibling(walter, carol) A
sibling(walter, carol) A mother(carol, jim).

A Hybrid Theory of Feature Generation 15

For every instance given to RINCON, if the instance can be classified (i.e., proved) by
the domain theory, no learning is done. Otherwise, RINCON begins a two-step process to
learn and assimilate intermediate concepts:

1. RINCON finds the most specific concepts in the theory that match the instance, and
the most general concepts in the theory that do not match the instance. The latter
are used to rewrite the instance, so that the instance is effectively re-expressed with
the highest-level matching concepts’. The resulting instance is added to the domain
theory.

2. The instance is generalized with the lowest-level concepts that did not match. RINCON
chooses as its generalization that which can allow it to re-express the greatest number
of concepts in its domain theory. This generalization step is similar to DUCE’s ab-
sorption operator, and its metric for choosing the generalization is similar to DUCE’s
metric as well.

Since RINCON is an incremental system, it performs these re-expressions and gener-
alizations after every instance seen. Thus RINCON is susceptible to local minima effects,
depending on example order. Furthermore, its purpose is not just to produce a more concise
domain theory, but to improve the efficiency of matching instances. However, the authors
point out that in some cases, a “flat” domain theory (one without intermediate concepts) is
more efficient than one with intermediate concepts.

1This is similar to MIRO’s use of maximally-proven descriptors (see Section 2.1.3).

16 A Hybrid Theory of Feature Generation

2.4 Limitations of Existing Work

The feature creation systems surveyed above were categorized by the purpose for which the
features are created; that is, the relationship between the concept formation and feature
generation components. In discussing their limitations, it is also useful to place them into
two general classes according to the amount of background (domain-dependent) information
the feature generation component uses.

One class of feature generation methods may be termed data-driven, in that the methods
begin with instance-level features, and combine them progressively to form more complex
features. They start with the instance-level representation and build upwards, based at
every step on the performance of the existing features. This is the predominant approach in
constructive induction, and most of the systems surveyed above (STAGGER, BACKPROP,
CITRE, FRINGE, DUCE and RINCON) are data-driven.

The main limitation of this data-driven approach is the size of the space that must be
searched. It is assumed that the complexity of the useful features of a domain increases with
the complexity of the domain. Therefore, the space of possible features, some portion of
which a constructive induction method must search, may become prohibitively large as the
complexity of the domain increases. Unfortunately, in none of the work above has the size of
the feature space been measured, nor the effect of the search strategy in guiding the method
through the space; therefore it is difficult to quantify the limitations of these data-driven
systems. '

Data-driven methods are also sensitive to the choice of functions used to construct new
features. Most of the methods surveyed above employ very general constructors, such as and,
or and not. This generality gives the data-driven methods domain independence, since these
constructors are sufficient for generating any binary function of the input features. However,
their generality leads to the large search space problem just mentioned. It is possible to
employ more specific constructors, as LIVE does. This may reduce the search space, but
for a given domain it may not be obvious whether a given set of constructors is sufficient
for deriving useful features. This choice of constructors may be seen as a second-order bias
problem: if the constructors are ill-chosen they may prevent the feature generation compo-
nent from generating useful features, which will prevent the concept formation component
from deriving an acceptable concept from the examples.

The second general class of methods may be termed theory-driven, in that they employ
some theory about their domain to guide feature generation. MIRO and STABB are theory-
driven systems, although their domain theories are very different: STABB assumes a set of
operators specifying legal state transitions, and MIRO assumes a set of rules that deduce
abstractions.

Theory-driven methods can overcome the limitations of data-driven methods. The feature
search space in these systems is considerably smaller: STABB performs no feature-space
search at all, and MIRO searches the abstract space L4, which is assumed to be much
smaller than the set of all descriptors.

The primary limitation of theory-driven methods is that they rely too heavily on deduc-
tion, and they are restricted to creating features that follow deductively from the domain

A Hybrid Theory of Feature Generalion 17

theory. This strong statement should be qualified, however. MIRO does perform induction
over descriptors deduced using a domain theory, but MIRO can only use features that are
logically implied by the domain theory. It cannot combine features, as CITRE does, or alter
existing features, as BACKPROP can. Furthermore, MIRO places strong restrictions on the
domain theories that it can use: they must be representable as a finite acyclic AND/OR
graph, so neither recursive rules nor state-changing operators are allowed. STABB is able
to combine features using its method of least disjunction, but STABB cannot alter features
that have been derived deductively.

There are a number of reasons a system would benefit from being able to perform both
deductive and inductive operations.

o Features are known to exist that are strongly predictive of a concept, but do not
strictly imply it. The X SQUARE feature of OTHELLO, discussed in Appendix A, and
the GUARD feature of checkers [Samuel, 1959] are examples of these. The significance
of these features can be informally justified using the domain theory, but not proven.
Therefore no purely deductive system could derive them. It is also very unlikely that
they could be derived by a purely inductive system that generalized from instance
features using no knowledge of the rules of their respective games.

e Whether created by constraint back-propagation or by feature combination, features
can become arbitrarily complex. It is necessary for a constructive induction system to
be able to simplify and generalize features so as to reduce cost. While some simplifi-
cation and generalization can be done deductively (such as in Prodigy’s compression
phase [Minton, 1988]), eventually cost can only be reduced by sacrificing deductive
soundness. Sacrificing deductive soundness is an inherently inductive operation.

e Simplification of features may be desirable for other reasons, such as gaining additional
generality. MetaLEX [Keller, 1987] demonstrated the benefits of assuming, for the
purpose of simplification, that a condition is always true or false, even when it is not.
Simplifying a feature that is too expensive is an alternative to discarding it.

o A purely deductive method cannot work with an intractable domain theory. By defini-
tion, an intractable domain theory is one in which solution sequences are so long that
conditions cannot be propagated along their length, because the complexity of the
resulting conditions become prohibitive. Any feature generation method using goal
regression with an intractable domain theory must be able to regress goals through
operator sequences that are shorter than full solution paths. In doing so, the method
is compromising the truth-preserving nature of deduction.

In summary, most of the approaches taken to constructing new features have been data-
driven, and have not taken advantage of domain information. Therefore, the approaches
are mostly limited to domains in which the instance-level features are already appropriate
for the concept learning. MIRO and STABB both make better use of domain knowledge,
but they have shortcomings as general models of constructive induction because they rely

18 A Hybrid Theory of Feature Generation

heavily (almost exclusively) upon deduction. In contrast, the approach presented in the next
section combines aspects of both analytical and empirical learning.

A Hybrid Theory of Feature Generation 19

3 A Theory of Constructive Induction

The purpose of this research is to propose a theory of constructive induction that com-
bines theory-driven and data-driven approaches to feature generation. The next section will
present the model on which the theory is based.

3.1 The Model

The model comprises a set of general assumptions and a set of specific components that are
assumed to exist within an induction system.

3.1.1 General assumptions

Most of the current work in constructive induction assumes that the features are being used
for concept learning, but makes no assumption about the purpose or context of the concept
learning. The following assumptions specify the model of the learning context in which the
theory will hold. These should be considered general assumptions that both constrain the
problem and specify the information available to be exploited.

e Al: The purpose of concept learning is to improve some problem-solving process.

e A2: The purpose of the problem-solving process is to find a solution to the goal; or
if the solution quality can be measured, the highest quality solution possible.

Two assumptions are made about how the problem solver searches for solutions, and how
the concept learner improves problem solving:

e A3: The problem solver pursues a goal by performing a search within a state-space.
The problem solver generates a set of successor states and evaluates the set, choosing
the best.

e A4: The problem solver uses the learned concept to determine the best of a set
of states. No assumptions are made about the method that it uses for choosing the
best. The concept learner may evaluate each state independently, or evaluate subsets
of states.

Assumption A4 will be elaborated upon later, when the concept learner is presented.
Two assumptions are made about feature discovery:

e A5: The purpose of feature discovery is to aid the concept learner in evaluating sets
of states; specifically, in distinguishing states that are closer to the goal from those
that are further away.

o AB: The feature discovery component has access to a theory of the domain. The
domain theory is expressed declaratively, and includes:

20 A Hybrid Theory of Feature Generation

— The goal of the performance element.

— The definitions of operators in the domain, including code for computing both
pre- and post-images of conditions with respect to operators.

— Definitions of ancillary functions and predicates used in the goals and opera-
tors. The ancillary functions and predicates are defined down to the operational
(instance-level) predicates.

— Meta-information about the functions and predicates; specifically, which are op-
erational and which are state-dependent.

An operational predicate is one that matches surface (input representa-
tion) features. In a board game, the predicates owns(Player,Square),
neighbor(Squarel, Square2) and blank(Square) would be operational; whereas
won(Player) and legal_move(Player, Square) would not be.

A state-dependent predicate is one whose truth value can be directly or
indirectly changed by an operator, and thus depends on the state. For
example, owns(Player,Square) and won(Player) are state-dependent, but
neighbor(Squarel, Square2) is not.

The specific components of the model are based on the assumptions above. The compo-
nents are depicted in Figure 2, and are described in the next four subsections.

3.1.2 The performance component

Assumptions A3 and A4 establish that the problem-solver pursues a goal by performing
a state-space search, and that the concept learner aids the problem-solver by determining
which node to expand next. In order to make these choices, the performance component uses
a preference predicate [Utgoff & Saxena, 1987] based on the features. A preference predicate
P is a generalization of an evaluation function, such that p(S;, S,) is true iff state S is better
than S, for the performance system. A preference predicate is used because it can be learned
from state-preference information. That is, it needs only the information that the evaluation
of one state should be greater than another, rather than the exact evaluations of the two
states.

It is assumed that the performance system has access to this qualitative information.
Specifically, it is assumed that at the end of a “performance episode”, the performance
component can extract a solution path. For example, if the performance task is a two-

person game, then the set of moves made by the winner can be used as such a solution
path.

3.1.3 The concept learning component

The concept learning component is the “induction” component of Figure 1 on page 2. It
learns a concept representing the preference predicate used in problem solving. The prefer-
ence predicate could be represented in many different ways: a set of rules, a connectionist

A Hybrid Theory of Feature Generation

Performance
component

Feedback
from
perormance

Y

Concept learner

Preference predicate LTU
Feature Weight

feature7: 1

: .65

featurel4: "50

featurel2 -32

feature9: 17
State -
preference .
decisions i

New
features

Feature
performance
data

Feature
creation
component

Figure 2: The components of the model

22 A Hybrid Theory of Feature Generation

network, or a decision tree. One of the simplest possible concept forms, a linear threshold
unit, was chosen for several reasons. An LTU is very fast both to train and to use. A
hybrid method (such as STAGGER [Schlimmer, 1987]) is undesirable since it may confound
limitations in the algorithm and limitations in the feature set. Since the representational
limitation of an LTU (linearly discriminable sets) is well known, this confusion is avoided.

Additionally, the weights of the LTU are scaled and used as an indication of the dis-
criminability of each feature. In general, it is assumed that the higher the magnitude of
a feature’s weight, the more discriminating that feature is, and therefore the more useful
the feature is to the problem solver. This use of the LTU’s weights is not critical, however,
and other measures could be adopted that would evaluate the discriminability of features
independently of the LTU.

After the performance component completes a problem-solving episode, the correct solu-
tion path is passed to the concept learning system, which then creates preference pairs from
it with which to train the LTU. Preference pairs are tuples (S1,S5;) such that state S is
better for the player than S;. If the best choice in state S, is Sj, then for every alternate
choice resulting in a state S, a preference pair (S, S,) is generated. These pairs are then
used to train the LTU, which is in turn used by the performance component to influence
node selection.

3.1.4 The feature set

A feature is a function from a state to a real number. Every feature is scaled so that its range
is between —1 and +1, for the purpose of comparing weights. Every feature has associated
with it static information such as its definition and the transformations that created it. It is
possible that a feature can be created by more than one sequence of transformations; if this
is the case, the additional sequences are recorded as well.

Each feature also has performance data associated with it, to be used by the feature
discovery system. These data include:

o The range of the feature before scaling.

o The weight of the feature as assigned by the LTU. This weight represents the utility
of the feature in discriminating linearly between positive and negative examples.

o An estimate of the cost of the feature. This could be either the average time cost,

measured empirically, or a zeroeth-order estimate of the amount of computation per-
formed.

® A composite “worth” score, based on the feature’s weight and cost. This will initially
be computed simply as |weight|/cost.

Although features are not discarded, if a feature’s worth drops below a certain threshold,
it is declared inactive and is not used in the performance system’s evaluation function. This
is similar to the strategy used in Samuel’s checker player [Samuel, 1959], with two differences.

A Hybrid Theory of Feature Generation 23

Samuel’s system kept a count of how many times a feature had the lowest value, and would
only deactivate a feature after its count exceeded 32. When Samuel’s system deactivated a
feature, it was dropped into a reserve queue and could eventually make its way to the front
and become active again. Samuel’s approach is more conservative than the simpler one used
here, though a more elaborate approach like Samuel’s may be adopted if necessary.

8.2 A Theory of Feature Discovery

The feature creation component is responsible for creating, evaluating and improving the
feature set, and will be the primary contribution of this thesis.

A body of rules called transformations creates new features from existing features.
The IF portion of the rule determines whether the transformation should be applied, and
the THEN portion actually creates the new feature and adds it to the feature set (and
performs the attendant bookkeeping). The transformations are biased to consider features
of higher before lower worth.

Conceptually, the IF portion of a transformation may be separated into two sets of condi-
tions: necessary conditions, which must be satisfied in order for a new feature to be created;
and recommended or control conditions, which should be satisfied in order for the new feature
to be useful. This distinction is similar to that between LEX’s operator preconditions and
operator heuristics. The recommended conditions represent search control knowledge. The
transformations and their associated control conditions are discussed separately, although
they are integrated in the implementation.

3.2.1 Classes of transformations

The classes of transformations are categorized below. The theory will specify the general
effect of each transformation, but the particular choices will be considered details of the
implementation. In these descriptions, destructive changes are implied (e.g., “dropping the
condition of a feature”) for convenience. However, it should be emphasized that features are
not changed by these transformations; the result of a transformation is a new feature with
the changes made. As in STAGGER, features are modified constructively so that they may
compete with their unmodified constituents.

¢ Goal-to-feature transformations. These produce an initial set of features from the
goal expression, for use in the evaluation function, and so are only used once. The
goal-to-feature transformations will be similar to those used by Callan (1989). For
example, if the performance goal is to achieve the relationship f(s) > g(s), then one
such transformation will produce features measuring f(s) and g(s) independently.

The justification for these transformations is that they create features that provide
information on the degree to which a performance goal has been satisfied in a state.

¢ Definition-expansion transformations. If a feature uses a non-operational predi-
cate, and the domain theory contains a definition for the predicate, then it is possible

24

A Hybrid Theory of Feature Generation

to expand (unfold) the definition into the feature. There are a number of reasons
for doing this. In general, expanding a predicate allows other transformations (e.g.,
condition-dropping and condition-regression transformations) to apply. It may also
enable truth-preserving simplifications described below to apply. For example, if a
feature contains the conditions A A B A C, and the predicate B can be expanded into
- A A D, then the simplifier can reduce the condition to false and eliminate it.

In general, definition-expansion transformations do not change the semantics of fea-
tures. However, one such transformation replaces a call to a recursively-defined predi-
cate with the predicate’s base case. This transformation thus can change the semantics
of a feature by specializing it.

Condition-regression transformations. If a feature is of high worth, its conditions
are matching an aspect of states that are useful for the performance system to distin-
guish. It may also be useful to look for the conditions under which such an aspect will
arise, earlier in the problem-solving process. In other words, if a feature is useful, then
it may also be useful to recognize states one step away from when the feature would
change.

Feature regression transformations produce new features by back-propagating (regress-
ing) the conditions of an existing binary feature through the domain operator(s). For
example, given a feature that recognizes a catastrophic event, a regression transfor-
mation can produce a feature that is activated when the performance system is one
step away from the catastrophe. Regressing the conditions of a feature allows the
performance system effectively to extend its lookahead for high-worth features.

Condition-dropping transformations. These transformations can apply to both
conjunctions and disjunctions. Dropping & condition of a conjunction generalizes it;
dropping a condition from a disjunction specializes it. Generalizing a feature increases
its applicability while decreasing its cost; specializing a feature can increase its dis-
criminability by excluding negative instances. For example, assume a feature contains
the condition =(A A B A C). One condition-dropping transformation might look for a
negation in such a condition and remove one of the conjuncts, producing —~(B A C).

It is important to note that no condition-adding transformations are included. This
is justified because features are created (by goal-to-feature and condition-regression
transformations) using exact conditions from the domain theory. It is not necessary to
add conditions back in after they have been removed.

Feature-combining transformations. These consist of transformations for con-
joining and disjoining features. Such transformations are common in the data-driven
systems reviewed in Section 2. An example of when this is useful is the C OR X SQUARE
feature of OTHELLO. C and X squares are two different kinds of squares in OTHELLO.
Although they are not mentioned as part of the game, they are both strategically
significant for the same reason, although they may be discovered independently. A

A Hybrid Theory of Feature Generation 25

disjunction creating transformation may propose to join two features discovered inde-
pendently but through similar means.

After a new feature is created by a transformation, the feature is given to a simplifier that
tries to apply standard truth-preserving simplifications to it. For example, the simplifier will
remove multiple occurrences of the same condition, and will transform AA-A to false. The
simplifier also performs elementary partial evaluation; for example, if a feature contains an
expression like A = B, and A and B are both constants, then the evaluation is done by the
simplifier and the result is used in place of the original expression. When the simplifier is
finished, the resulting feature is added to the feature set.

These transformations combine aspects of both analytical and empirical learning, and
this is a primary difference between this theory and previous work. The goal-from-feature,
definition-expansion and condition-regression transformations use the domain theory in gen-
erating new features, and so are able to perform analytical transformations of the existing
features. In addition, the condition-regression transformations can apply to any feature,
not just those derived from the goal, and so are more general than those used in STABB
and MIRO. The condition-dropping and feature-combining transformations perform induc-
tive, data-driven alterations to features that are common in previous contructive induction
approaches.

3.2.2 Issues with the choice of transformations

The theory will specify the general action and effect of each transformation, but the particular
choices will be considered details of the system. Nevertheless, the general classes leave much
latitude in the design of these transformations, and the first main research issue is:

What is a good, parsimonious set of general feature discovery operators?

A related issue is that of the appropriate grainsize of the transformations. For example,
one could imagine the following condition-removing transformations:

¢ Delete any single condition.
o Delete a state-dependent condition.

o Create partitions of the feature’s conditions based on their relations, then remove
conditions randomly until only one condition remains within each partition.

There is a tradeoff between generality and tractability in the choice of grainsize. The
smaller the grainsize, the more general the transformations, and the greater the number
of features that can be created. However, the more general the transformations are, the
more of them there are that are applicable throughout the derivation, and the longer each
derivation becomes. Thus, increasing the generality increases both the depth and branching
factor of the search tree, and the need to control such transformations becomes a critical
issue, discussed in the next section.

26 A Hybrid Theory of Feature Generation

However, designing more specific transformations leads to the danger of ending up with
transformations appropriate only for a single domain (or worse, transformations that can
only discover the features that the system was designed to discover).

3.2.3 Issues with the control strategy

The discussion of the transformations concentrated on what the transformations do, but
little mention was made of when or why each transformation is invoked. This leads to the
second main research issue:

What is a good, general strategy for controlling the system?

It should be emphasized that there are actually two control issues: how to control the
components of the entire system, and how to control the transformations within the feature
generation component.

System control. It is assumed that the entire system is cyclic, performing the following
steps in order:

1. Solve a problem using the LTU (trained on the current set of features) to direct search.
When done, extract training instances from the search tree and add them to the global
set of examples.

2. Train the LTU on the global set of examples. This establishes weights for the features.

3. If the LTU accuracy is less than 100%, invoke the feature discovery component to
suggest new features. Add resulting features to the feature set.

This simple control strategy for the entire system suffices for the current implementation,
and nothing more complicated should be needed.

Transformation control. The control strategy for the transformations is linked to the
choice of transformations. If the transformations are general, they will be applicable at many
points, causing a large branching factor in the feature search space. This places the burden
on the control rules, which must be judicious in applying the transformations. On the other
hand, if transformations are more specific, control is less of a problem, but the generality of
the system is reduced. ‘

The current feature generation control strategy is very simple, and may be expressed as
follows:

o Features are ordered by worth. When the feature generation component is invoked,
transformations are applied to the highest-worth feature, then the second highest-
worth features, etc. All transformations that apply are fired. The feature generation
component stops when n new features have been generated. n is a system parameter.

A Hybrid Theory of Feature Generation 27

o After new features have been generated, the n lowest-worth old features are deactivated.
An inactive feature is not used by the LTU, and is not considered in feature generation.
Pruning occurs afier generation so that all active features are considered in feature
generation.

o A transformation will not generate a new feature if that feature would be identical
up to variables to an existing (either active or inactive) feature. This rule prevents
features from being generated more than once.

A good control strategy for the transformations is one of the main issues of this research,
and the policy above should be seen as a base onto which more control rules can be added.
Experiments with the initial implementation indicate that search control should be improved:
with the n parameter set to infinity, every feature generation step creates about 15 or 20
new features, and many of these turn out to be redundant or useless. Approximately 250
features are generated in the course of deriving the features in Section 3.3. It should be noted
that generating this many features does not make the current strategy infeasible — given
24 hours of CPU time, all of these features could be generated and tested — but a more
sophisticated control strategy should be developed, if only to increase the ratio of “good” to
“bad” features.

This generate-and-compete control strategy has been used in other Al systems, the ear-
liest of which was probably Selfridge’s (1959) Pandemonium system. Selfridge also talked
about the “worth” of demons in Pandemonium, but this measure did not take into account
the cost of their computations. Lenat’s (1983) AM system for mathematical discovery main-
tained two separate rating systems. Each concept had an tnierestingness value, which was
an integer assigned by a set of heuristics. Items on AM’s agenda, which proposed new op-
erations to be performed, competed with each other according to a worth measure. The
worth of an agenda item was a complex function of the concept and operation involved,
as well as the reasons for performing the operation. The agenda items competed directly
with one another on the agenda, and they were strongly influenced by the concepts involved;
new agenda items would be suggested based upon the worth of existing concepts. Holland’s
(1986) classifier system ranked classifiers by their sirength, with the weakest classifiers in
the population being replaced by new offspring. The strength of a classifier is calculated by
Holland’s bucket-brigade algorithm, and is based upon the participation of the classifier in
the generation of solutions.

Sources of information available. In developing a more sophisticated control strategy,

several sources of information can be exploited. Theoretically, any of the other components
could provide information:

¢ In'most constructive induction systems the concept learner provides feedback in the
form of the concept itself. The model used by this proposal specifies that the concept
learner exploits the weight of a feature in estimating its worth. CITRE and FRINGE
both use the form of the learned concept to guide feature creation, but this makes their
approaches applicable only to decision trees. |

28 ‘ A Hybrid Theory of Feature Generation

e The performance element is typically not used to provide feedback because most
constructive induction systems do not assume the presence of one. However, it may
be possible to use performance information in selecting features and transformations.
For example, the concept of fork exists in many board games, and may be defined as
a search node at which all child nodes have significantly lower evaluations than the
parent node. Such search space information, along with specific feature values, could
be used to create a feature to detect the fork.

o The instances themselves are used by STABB to direct its back-propagation, and so
may be useful in goal-regression transformations. Unfortunately, the model does not
use STABB’s well-defined indication of concept failure (version space collapse) which
enables STABB to concentrate on a single example, so it may be difficult to exploit
the instances in this manner.

3.2.4 Issues with evaluating features

As mentioned earlier, the features are kept in a set ordered by their worth, the worth being
some composite measure of cost and benefit. Since this worth determines which features
are used in the concept, as well as which will serve as the basis for new features, the third
research issue is:

How should the usefulness of features be evaluated?
There are three subdivisions of this question.

1. How should feature benefit be measured? There must be some policy for determining
the contribution of an individual feature to the accuracy of a concept. If features are
evaluated independently, as in STAGGER and CITRE, then problems arise because
combinations of the features may be strongly predictive of a concept while the indi-
vidual features are poor predictors. On the other hand, if the concept learner is an
LTU, multi-colinearity becomes an issue: if several features are co-linear, the assigned
weights would be less than if any of the features were used individually.

2. How should feature cost be measured? Every feature incurs some cost in its applica-
tion; but although most constructive induction systems measure the discriminability of
their features in some way, none measures cost. A first approach is simply to measure
empirically the amount of time a feature takes to evaluate, averaged over many states.
This method should probably suffice, but a more sophisticated analytical technique
can be adopted if necessary.

3. How should cost and benefit be combined into worth? There is a tradeoff between
efficiency and discriminability that must be recognized. Very useful features exist that
can perform complex calculations (and essentially look ahead one or more moves), but
the computation that implicitly performs this lookahead is very expensive and in many

A Hybrid Theory of Feature Generation 29

cases is not worth the discriminability gained [Berliner, 1984]. One the other hand,
there are some features, such as those in the OTHELLO board game that are concerned
with X and C squares, that are based on lookahead but are both efficient and strongly
predictive of move quality. As a first approach, the simple ratio of benefit/cost will
be used.

3.3 An Example Derivation

This section demonstrates the derivation of several features useful in the game of OTHELLO.
OTHELLO is a two-person game played on an 8 X 8 board. The rules of OTHELLO and
some of the related concepts are explained in detail in Appendix A. OTHELLO was chosen
as a domain for a number of reasons. It has fairly simple rules, but the strategy required
to play it well can be surprisingly complex. There are several computer programs that
can play OTHELLO well and whose details have been published [Rosenbloom, 1982; Lee &
Mahajan, 1988]. In addition, Donald Mitchell has written a Master’s thesis [Mitchell, 1984]
containing information on virtually all known OTHELLO features. The thesis contains not
only feature definitions, but the correlation of each feature with winning for novices and
experts in beginning, middle and late game play. Having such a catalog of features is a
great advantage in investigating their discovery; furthermore, new discovered features can
be evaluated by comparing their correlations with those given in Mitchell’s thesis.

In this derivation, little information about the control strategy — why a particular step
was taken — will be given. The derivation should be viewed as an illustration of the transfor-
mations and the feature representation, rather than as support for the theory. Section 3.3.4
is a short discussion of the implementation.

3.3.1 Some Prolog background

In order to explain the following feature derivation, a few details about Prolog and the

feature representation must be explained. Variables begin with upper-case letters, literals

are in lower-case, and a set of terms separated by commas is a conjunction of the terms.

The notation conditions will be used to indicate some conjunction of conditions, and vars

to indicate a list of variables. In Prolog rules, the left- and right-hand sides are separated

by a “left arrow”, written as “: —”. Lists are enclosed in square brackets, e.g. [a,, c].
Each feature is of the form: '

Feature,(Value) : —count(vars, conditions, Value)

Notice that the board is not an argument to a feature; there is always an implicit “current
board” to which a feature applies. The value computed by feature; is bound to Value.
Count is a predicate that collects the set of all values of vars that satisfy conditions and
binds Value to the size of the resulting set?. This is best explained by example:

#Those familiar with Prolog will recognize the close similarity of count to setof, upon which it is based.

30 A Hybrid Theory of Feature Generation

count([X], conditions, Value)
is equivalent to the mathematical expression:
Value = |{X | conditions}|

and
count([X,Y, Z)], conditions, Value)

is equivalent to:
Value = |{(X,Y, Z) | conditions}|

That is, all unique tuples of (X, Y, Z) are counted.
The variable list vars can also be empty, and this form is used in a binary feature:

count([], conditions, Value)

so Value will be bound to 1 if conditions can be satisfied at all, else 0.

This feature representation is similar to that of Michalski’s (1983) counting arguments
rules. It is more expressive than a set of conditions alone because it allows a feature to
calculate not just whether the conditions are satisfied, but the number of ways in which the
conditions can be satisfied. With an empty vars list, a feature is binary; adding variables
that occur in conditions into vars has the effect of refining it.

3.3.2 The derivation of MOVES

Initially, the system has a complete domain theory of OTHELLO, sufficient for a human to
play the game. The domain theory is coded in Prolog, and contains information about the
rules of the game (encoded as the MOVE operator, along with its preimages), the topology
of the board (using SQUARE and NEIGHBOR predicates) and a given board’s configura-
tion (using OWNS and BLANK). Meta-knowledge is assumed about the operationality and
state-dependence of the predicates in the domain theory. The definitions of WIN, LOSE,
END_OF_GAME and other supporting predicates are available. There are two players, x
and o, corresponding to black and white, the goal is to win the game for player x.

The first step is to apply its goal transformations to the WIN definition to create the
initial set of features. Although any predicate can be trivially converted into a binary feature,
such features provide little information that can be used to direct search. Since the WIN
predicate is a conjunction, it is broken apart and heuristics are reapplied to the conjuncts.

From the original goal specification, two significant features can be created: one that
counts the number of discs owned by x (from the WIN definition), and one that counts the

number of moves available for x (from the END_OF_GAME definition). The definition of
the latter is:

A Hybrid Theory of Feature Generation 31

feature7(Value) :-
count([Square], legal_move(Square,x), Value).

Square is the square of the move, so this form counts the number of distinct moves for
player x. This is the definition of the MOVES feature [Mitchell, 1984, page 47]. This feature,
apart from being useful in its own right, forms the basis for a number of other useful mobility
features.

8.3.3 The derivation of other mobility features
Since legal.move is defined by the domain theory, it can be expanded, yielding feature8:

feature8(Value) :-
count([Square,Bracket],
(square(Square),
bs(Square,Bracket,x)),
Value).

If the definition of bs is expanded, feature9 is derived:

feature9(Value) :-
count([Square,Spanbegin,Opp,Spanend,Dir,Bracket],

(square(Square),
blank(Square),
opponent (x,0pp) ,
direction(Dir),
neighbor (Square,Dir,Spanbegin),
span(Spanbegin, Spanend,Dir,Opp) ,
neighbor (Spanend,Dir,Bracket),
owns (x,Bracket)),

Value) .

This set of conditions defines a pattern consisting of a blank square at Square, a span of
opponent’s pieces from Spanbegin to Spanend, then a final bracketing opponent’s piece at
Bracket. The last predicate, owns(x,Bracket), is the bracketing condition. By removing
this condition, the system can generate featurel3:

featurei13(Value) :-
count ([Square,Spanbegin,Opp,Spanend,Dir,Bracket],
e (square(Square),
blank(Square),
opponent (x,0pp) ,
direction(Dir),
neighbor (Square,Dir,Spanbegin),

32 A Hybrid Theory of Feature Generation

span(Spanbegin, Spanend,Dir,Opp),
neighbor (Spanend,Dir,Bracket))
Value).

This feature now counts the number of unbracketed spans emanating from each blank
square. Finally, if we substitute the span call with its “base case”, we get:

featurei4(Value) :-

count([Square,Spanbegin,Opp,Dir,Bracket],
(square(Square),
blank(Square),
opponent (x,0pp),
direction(Dir),
neighbor(Square,Dir,Spanbegin),
owns (Opp, Spanbegin) ,
neighbor (Spanbegin,Dir,Bracket))

Value).

This feature is the basis for three mobility-related features used by Rosenbloom in his
world-championship-level program [Rosenbloom, 1982]. If the count form is restricted to
counting only the blank squares of this pattern — if the variable list of the count form
is [Square] — then the resulting feature is equivalent to ROSENBLOOM EMPTY [Mitchell,
1984, page 49], which counts the number of empty squares that have an opponent’s piece as
a neighbor.

If the count form is restricted instead to the opponent’s pieces (the variable list being
[Spanbegin] in this case), then the resulting feature is ROSENBLOOM FRONTIER [Mitchell,
1984, page 112], which counts the number of pieces for each player that have at least one
empty neighbor.

If instead the distinct pairs of B and C are counted — the variable list being
[Square,Spanbegin] — then the resulting feature is ROSENBLOOM SUM EMPTY [Mitchell,
1984, page 113], which counts the number of empty squares next to each opponent’s piece.

The derivations of these four mobility features, along with a number of stability features,
are depicted in Figure 3.

3.3.4 A note on the implementation

This theory has been implemented in a system called Zenith, which is written in a com-
bination of C and Prolog and runs on a Sun-4 Sparcstation. Its opponent is WYSTAN, an
OTHELLO-playing program written by Jeff Clouse. Zenith contains eight transformations
so far, from each the classes listed above except feature-combination. Zenith can generate
all of the mobility-related features mentioned in Section 3.3, and all of the stability-related

features in Figure 3 except for CORNER SQUARES and its descendents (on the left-hand side
of the figure).

A Hybrid Theory of Feature Generation 33

Domzin theory
Definltion of WIN
Split conjunction
Score Moves
Regress-maintain expand d n
adding new s
Semi-stablility Nurrbor of fippable
spens
Remove
coadislon... emove negation Expand
Seml-stable span Semi-unsisble squere
Countlanks Remove
/ E also ’
Comer Squares
9 Axes Count empty : C"om opponent’s
Regress-achieve W Squares
Comer square Rosenbloom Em| Rosenbloom
caphurahle by Py Frontier
opponent Count ehpty
Squares gear
cach opponent’s
Remove iondm‘on 5
Playernext to
empty comer Rosenbloom
Sum Empty
Sp e
nefghbor
G Next to
Empty Co,
X Nextto
Empty C RN::
Remove %mdizion © Squares
X 8quares

Figure 3: The derivation of some OTHELLO features from the original OTHELLO domain
theory. Names of commonly known features are in boldface; descriptions of operations are

in italics.

34 A Hybrid Theory of Feature Generation

4 Proposed Work

This work on feature discovery should be considered exploratory, in that little work has
been done on the combination of empirical and analytical techniques to support an inductive
process. The investigation of this theory will therefore be empirical, and the result will be
a characterization of the kinds of features that it is able and unable to create. This in turn
will enable an analysis of the abilities and limitations of the approach. Comparing it to
existing constructive induction systems will establish its relative performance, and will make
a compelling argument for the necessity of a hybrid approach.

4.1 Domains

In order to demonstrate generality of the theory, Zenith will be applied to two different
domains. The first will be the game of OTHELLO, already discussed, and the second will be
the task of telecommunications network management (discussed below). The two domains
are different enough to provide convincing evidence for the generality of the approach.

The tests will entail applying the system to the theories of the domain and examining
the features generated and their derivations. Where applicable, existing feature generation
techniques will be applied to the same domains to compare the performance of the features
they may derive, along with the computational effort involved in the derivation.

The second domain, that of telecommunications network management, also has a fairly
concise but intractable domain theory; however, it is much different from OTHELLO. Telecom-
munications networks and their management are discussed in Appendix B. The goal is to
maximize an evaluation function by individual moves, rather than to beat an opponent.
Viewed as a state-space search, a state transition is the application of a control to the
network, a control being a local policy change of the way in which calls are routed.

One example of a control is a destination re-route (DRR), which is placed on a switch
to force it to route all calls, bound for a given destination, via a particular communications
channel. The DRR control takes as arguments the switch to which it is applied, the desti-
nation involved (another switch), and the communications channel. An average network has
about ten switches, each of which is connected to about three others, so a DRR has about
10 x 10 x 3 = 300 legal argument values. If there are four other controls, the branching factor
is about 1500. Solution paths are typically not very long (=~ 6 moves, where one move is the
application of a control). Thus the search space is “branchy and short” rather than “thin
and deep”. An additional difference is that many features in OTHELLO are “pattern-based”,
since moves in OTHELLO are essentially pattern transformations. In contrast, the flow of call
traffic through a network is based primarily on channel capacities and network connectivity.

One of the disadvantages of this second domain is that, while a simulator and several
problem-solving systems do exist for it [Frawley, Fawcett & Bradford, 1988; Silver, Frawley,
Iba, Vittal & Bradford, 1990; Silver, Vittal, Frawley, Iba & Bradford, 1990], the features
~ and important concepts in it are not well known. It will be possible to measure performance
improvement based on discovered features, but there is no comprehensive catalog of existing

A Hybrid Theory of Feature Generation 35

features that can be used for comparison.

4.2 Experiments

Because there are many components to the Zenith architecture, many experiments can be
done to test the sensitivity of the approach to the choice of these components.

¢ The domain. This is probably the most significant variable. The choice of domains
was discussed in Section 4.1.

¢ The representation of the domain theory. It is expected that the representation of
the domain theory will have some effect on the efficiency of Zenith’s feature discovery.
The representation may determine how many transformation applications it takes to
derive a feature, the order in which features are derived, and possibly whether a given
feature can be derived at all. In order to investigate the sensitivity of Zenith to domain
theory representation, I plan to apply Zenith to two OTHELLO domain theories: one
written by me and one written by another person, someone who is unfamiliar with
OTHELLO features and the transformations used in Zenith.?

e The choice of concept learning component. It is possible that the features discovered
by Zenith are useful only to linear threshold units. This could be tested by replacing the
LTU with another inductive concept learning method; for example, ID3 with numeric
attribute partitioning [Quinlan, 1986].

o The feature set size. If the feature set is of unbounded size, Zenith will be able to
generate any feature in the transitive closure of its transformation set. Realistically,
Zenith’s feature set must be of some small bounded size. How sensitive is the discovery
process to this size? One would expect that the smaller the size of the feature set,
the more critical the search control becomes, because Zenith can afford fewer “bad”
features. Decreasing the size is also a test of hill-climbing by feature weight: if a high-
worth feature can only be generated from a low-worth one,the low-worth feature must
survive long enough for the generation to occur.

One would hope that Zenith’s approach is robust with respect to feature set size;
otherwise, the quality of the search control is brought into question. In order to test
this, a group of derived features (such as those in Figure 3 will be chosen as a basis.
The feature set size will be varied, and observations made of the number of features
derivable, the length of the derivations of each, and the overall accuracy of the feature
set at each step.

3This approach was taken by Nicholas Flann to provide evidence for the generality of his IOE algorithm
[Flann & Dietterich, 1989).

36 A Hybrid Theory of Feature Generation

4.3 Tentative Schedule

The implementation should take approximately six months. The experiments should take
four months once the implementation is complete. Intermediate writing, of conference pa-
pers, grant proposals, etc., should take two months. The writing of the final dissertation
should take another five months. Thus the total investigation should take approximately a
year and a half.

4.4 Conclusion

It has long been recognized that inductive learning is very sensitive to the representation
used to express the examples. The ability to determine “good” features automatically has
been a goal in machine learning for nearly as long.

There have been many systems that generate new features automatically. Most are data-
driven, and build up complex features from the instance-level representation. The feature
construction is done with domain-independent operators using little or no domain knowledge
in the process. While these approaches have the advantages of being very general and making
few assumptions about the learning task, they are restricted in what they can achieve. Most
of them work only if the instance-level representation is already appropriate for concept
learning. Furthermore, the domains used in such research — tic-tac-toe, parity problems,
n-bit multiplexors — raise doubts as to how well the methods scale up.

The theory presented here integrates theory-driven and data-driven methods for feature
discovery. It is motivated by the desire to increase the power and range of constructive induc-
tion by going beyond the limitations of the two approaches. The successful demonstration
of this theory will affect the machine learning community in several ways.

First, it will constitute a significant advance in constructive induction as one of the few
systems to produce features for a “difficult” domain; that is, a domain with a very large
search space and an intractable domain theory.

Second, it will demonstrate to researchers of the data-driven approach in contructive
induction that domain knowledge is useful for generating features for non-toy domains. It will
also demonstrate to researchers in the analytical approach that generalizing and combining
features is useful for generating features for non-toy domains. It should make the same point
about rules to researchers in explanation-based learning. To the extent that neither kind of
system can generate features for such a domain, it will demonstrate the necessity of a hybrid
approach.

Third, because it will learn successfully in a domain using an intractable theory, it will
constitute a solution to the intractable theory problem, a problem that is being pursued by
researchers in explanation-based learning [Mitchell, Keller & Kedar-Cabelli, 1986; Mostow
& Fawcett, 1987; Tadepalli, 1989).

Fourth, because features are abstractions of states, the system constitutes an automatic
transformation-based abstraction system. All other such systems require a human to control
the application of the transformation. This research, using feedback from an inductive

A Hybrid Theory of Feature Generation 37

concept learner to control the transformations automatically, will constitute an advance in
this field [Mostow & Fawcett, 1987; Ellman, 1988; Mostow & Prieditis, 1989).

An implementation of this theory has been undertaken, and the preliminary results are
very encouraging. Feature generation can be automated in intractable domains. The suc-
cessful completion of this work will make a significant advance in the state of the art of
feature generation, and will bring us much closer to an ideal of automatic concept learning
from examples.

Acknowledgements

This research was supported in part by a grant from GTE Laboratories Incorporated, and
by the Office of Naval Research through a University Research Initiative Program, under
contract N00014-86-K-0764. Quintus Computer Systems Incorporated generously provided
a copy of Quintus Prolog, in which Zenith is implemented.

I wish to thank my advisor, Paul Utgoff, for his numerous comments on the organization
and content of this proposal. Paul originally suggested viewing feature generation as a
discovery process. Discussions with Bernard Silver, Jamie Callan, Andy Barto, Edwina
Rissland and Nick Flann were useful in developing these ideas. Further comments by Jamie
Callan and Sharad Saxena helped to improve the organization of the proposal.

38 A Hybrid Theory of Feature Generation

References

Ash, T. (1989). Dynamic node creation in backpropagation networks (ICS Report 8901). San
Diego, CA: University of California, Institute for Cognitive Science.

Berliner, H. J. (1984). Search vs knowledge: An analysis from the domain of games. In A.
Elithorn, & R. Banerji (Eds.), Artificial and Human Intelligence. New York: Elsevier
Science Publishers.

Callan, J. P. (1989). Knowledge-based feature generation. Proceedings of the Sizth Interna-
tional Workshop on Machine Learning (pp. 441-443). Ithaca, NY: Morgan Kaufmann.

Dietterich, T., & Michalski, R. (1981). Inductive learning of structural description. Artificial
Intelligence, 16, 257-294.

Dietterich, T. G., London, B., Clarkson, K., & Dromey, G. (1982). Learning and induc-
tive inference. In P. R. Cohen, & E. A. Feigenbaum (Eds.), The Handbook of Artificial
Intelligence: Volume III. San Mateo, CA: Morgan Kaufmann.

Dietterich, T., & Michalski, R. (1983). A comparative review of selected methods for learning
from examples. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Drastal, G., Czako, G., & Raatz, S. (1989). Induction in an abstraction space: A form of
constructive induction. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence (pp. 708-712). Detroit, Michigan: Morgan Kaufmann.

Ellman, T. (1988). Approximate Theory Formation: An Explanation-Based Approach. Pro-
ceedings of the Seventh National Conference on Artificial Intelligence (pp. 95-99). Saint
Paul, MN: Morgan Kaufmann.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, 139-172.

Fisher, D. H., & McKusick, K.B. (1989). An empirical comparison of ID3 and back-
propagation. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (pp. 788-793). Detroit, Michigan: Morgan Kaufmann.

Flann, N., & Dietterich, T. (1989). A Study of Explanatlon-Ba.sed Methods for Inductive
Lea.m.mg Machine Learning, 4, 187-226.

Frawley, W., Fawcett, T., & Bradford, K. (1988). NETSIM: An Object-Oriented Simulation
of the Operation and Control of a Circuit-Switched Network (Technical Note TN 88-
506.1). Waltham, MA: GTE Laboratories, Inc., Computer and Information Systems
Laboratory.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, &

A Hybrid Theory of Feature Generation 39

T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Mateo,
CA: Morgan Kaufmann.

Keller, R. M. (1987). Concept learning in context. Proceedings of the Fourth International
Workshop on Machine Learning (pp. 91-102). Irvine, CA: Morgan Kaufmann.

Lee, K. F., & Mahajan, S. (1988). A pattern classification approach to evaluation function
learning. Artificial Intelligence, 36, 1-25.

Lenat, D. (1983). The role of heuristics in learning by discovery: Three case studies. In R.

S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach. San Mateo, CA: Morgan Kaufmann.

Matheus, C. J., & Rendell, L. A. (1989). Constructive induction on decision trees. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence (pp. 645-650).
Detroit, Michigan: Morgan Kaufmann.

Matheus, C. J. (1990). Adding domain knowledge to SBL through feature construction.
Proceedings of the Fighth National Conference on Artificial Intelligence (pp. 803-808).
Boston, MA: Morgan Kaufmann.

Michalski, R. S., & Chilausky, R. L. (1980). Learning by being told and learning from
examples: An experimental comparison of the two methods of knowledge acquisition
in the context of developing an expert system for soybean disease diagnosis. Policy
Analysis and Information Systems, 4, 125-160. (Special issue on knowledge acquisition
and induction)

Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach. San Mateo, CA: Morgan Kaufmann.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning.
Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 564-569).
Saint Paul, MN: Morgan Kaufmann.

Mitchell, D. (1984). Using features to evaluate positions in ezperts’ and novices’ othello games
(Masters thesis). Evanston, IL: Department of Psychology, Northwestern University.

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence (pp.
305-310). Morgan Kaufmann.

Mitchell, T. M. (1978). Version spaces: An approach to concept learning. Doctoral disser-
tation, Department of Electrical Engineering, Stanford University, Palo Alto, CA. (also
Stanford CS report STAN-CS-78-711, HPP-79-2)

Mitchell, T, Keller, R, & Kedar-Cabelli; S. (1986). Explanation-based generalization: A
unifying view. Machine Learning, 1, 47-80.

40 A Hybrid Theory of Feature Generation

Mooney, R., Shavlik, J., Towell, G., & Gove, A. (1989). An experimental comparison of sym-
bolic and connectionist learning algorithms. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 775-780). Detroit, Michigan: Morgan
Kaufmann.

Mostow, J., & Fawcett, T. (1987). Approzimating intractable theories: a problem space model
(Technical Report ML-TR-16). New Brunswick, NJ: Rutgers University.

Mostow, J., & Prieditis, A. E. (1989). Discovering admissible heuristics by abstracting and
optimizing: A transformational approach. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 701-707). Detroit, Michigan: Morgan
Kaufmann.

Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by inverting
resolution. Proceedings of the Fifth International Conference on Machine Learning (pp.
339-352). Ann Arbor, MI: Morgan Kaufman.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Pagallo, G. (1989). Learning DNF by decision trees. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 639-644). Detroit, Michigan: Morgan
Kaufmann.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine
Learning, 71-99.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. Internation Journal of Man-machine Stud-
tes, 27, 221-234.

Rosenbloom, P. (1982). A world-championship-level othello program. Artificial Intelligence,
19, 279-320.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing. Cambridge,
MA: MIT Press. (2 volumes)

Samuel, A. (1959). Some studies in machine learning using the game of Checkers. IBM
Journal of Research and Development, 3, 211-229.

Selfridge, O. G. (1959). Pandemonium: A paradigm for learning. Proceedings of the Sympo-
sium on the Mechanization of Thought Processes (pp. 513-526). Teddington, England:
National Physical Laboratory, H.M. Stationary Office, London. (Also published in Com-
puters and Thought, edited by Feigenbaum and Feldman. New York: McGraw-Hill Book
Company, 1963, pp. 251-268.)

Schlimmer, J. C., & Granger, R. H., Jr. (1986). Incremental learning from noisy data. Ma-
chine Learning, 1, 317-354.

A Hybrid Theory of Feature Generation 41

Schlimmer, J. C. (1986). Concept Acquisition through representational adjustment. Machine
Learning, 1, 81-106.

Schlimmer, J. C. (1987). Incremental adjustment of representations. Proceedings of the
Fourth International Workshop on Machine Learning (pp. 79-90). Irvine, CA: Morgan
Kaufmann.

Shen, Wei-Min, & Simon, Herbert (1989). Rule creation and rule learning through envi-
ronmental exploration. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence (pp. 675-680). Detroit, Michigan: Morgan Kaufmann.

Silver, B., Frawley, W, Iba, G., Vittal, J., & Bradford, K. (1990). ILS: A Framework for
Multi-Paradigmatic Learning. Proceedings of the Seventh International Conference on
Machine Learning (pp. 348-356). Austin, TX: Morgan Kaufmann.

Silver, B., Vittal, J., Frawley, W., Iba, G., & Bradford, K. (1990). ILS: A Framework for
Integrating Multiple Heterogeneous Learning Agents. Proceedings of Second Generation

FEzper Systems, 10th International Workshop on Ezpert Systems and Their Applications
(pp. 301-313).

Tadepalli, P. (1989). Lazy Explanation-Based Learning: A Solution to the Intractable The-
ory Problem. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (pp. 694-700). Detroit, Michigan: Morgan Kaufmann.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Refinement of Approximate Domain The-
ories by Knowledge-Based Neural Networks. Proceedings of the Eighth National Confer-
ence on Artificial Intelligence (pp. 861-866). Boston, MA: Morgan Kaufmann.

Utgoff, P. E., & Mitchell, T. M. (1982). Acquisition of appropriate bias for inductive concept

learning. Proceedings of the Second National Conference on Artificial Intelligence (pp.
414-417). Pittsburgh, PA: Morgan Kaufmann.

Utgoff, P. E. (1986a). Shift of bias for inductive concept learning. In R. S. Michalski, J.
G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach. San Mateo, CA: Morgan Kaufmann.

Utgoff, P. E. (1986b). Machine learning of inductive bias. Hingham, MA: Kluwer. (reviewed
in IEEE Expert, Fall 1986)

Utgoff, P. E., & Saxena, S. (1987). Learning a preference predicate. Proceedings of the Fourth

International Workshop on Machine Learning (pp. 115-121). Irvine, CA: Morgan Kauf-
mann.

Wogulis, J., & Langley, P. (1989). Improved Efficiency by Learning Intermediate Concepts.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp.
657-662). Detroit, Michigan: Morgan Kaufmann.

42 A Hybrid Theory of Feature Generation

A The Game of OTHELLO

ABCDEFGH ABCDEFGH ABCDEFGH

CO~NOON PN =
O~NOONLCWN =

O~ CWN =

@ (b) ()

Figure 4: OTHELLO boards: (a) Initial OTHELLO board (b) Board in mid-game (c) After
Black plays f6 on (b).

OTHELLO* is a two-person game played on an 8 x 8 board. One player is White, one is
Black. There are 64 discs colored black on one side and white on the other. The starting
configuration is shown in Figure 4a. Black always moves first, with players alternating turns.

On a turn, the player can place a disk on any empty square that brackets a span of the
opponent’s discs ending in a disk of the player’s own color. The span can be horizontal,
vertical or diagonal. For example, in Figure 4b, Black could place a black disk on €2, 3, 4,
15, f6 or e6. When a player places a disk at the end of a span, all the discs in the span are
flipped (changed to the player’s color), and the player is said to own them. For example,
if Black takes square f6 in Figure 4b, the board in Figure 4c would result. A player thus
gains disks by either placing them or flipping disks of the other player. It is important to
note that in certain configurations pieces cannot be flipped because no span can be placed
through them; these pieces are said to be stable.

The game continues until neither player has a legal move, which usually occurs after all
64 squares have been taken. At this point the player with the most discs wins the game,
and the number of points by which the player has won is simply the difference between the
two piece counts. For analysis, an OTHELLO game is often broken up into three segments:
the early game (from 4 to 16 pieces), the middle game (from 17 to 32 pieces), and the late
game (from 48 pieces to the end) [Mitchell, 1984].

There are approximately 7.5 legal moves from every state®, although this number varies
quite a bit. There are usually. 60 moves in an OTHELLO game, since the game usually does
not end until the board is full. This yields a space of approximately 7.5% =~ 10%° legal boards.

4OTHELLO is CBS Inc.’s registered trademark for its strategy disk game and equipment. Game board
design ©1974 CBS Inc. :
SThis figure was Calculated from Figure 3.5 of [Rosenbloom, 1982).

A Hybrid Theory of Feature Generation 43

Corner squares are inherently stable, since once they are occupied there is no sequence of
moves that will flip the pieces in them. Therefore, gaining control of corner squares is a key
strategy in Othello. There are two sets of distinguished squares adjacent to the corners that
are significant in corner square control. The squares along the edges immediately adjacent to
the corners are called C squares (they are A2, B1, G1, H2, A7, B8, H7 and G8). X squares
(B2, G2, B7 and G7) are diagonally adjacent to the corners. X and C squares are both
considered dangerous to own because they can allow the opponent to move into the corner.
C squares are somewhat less vulnerable than X squares because it is relatively difficult to
move onto an edge. X squares are more vulerable because it is easier to occupy a square on
the diagonal behind an X square, and from there to move into the corner.

44 A Hybrid Theory of Feature Generation

Telecommunications Network Management

Figure 5: The ILS-10 telecommunications network. The circles represent switches, the lines
between them represent trunks, and a number next to a trunk is that trunk’s capacity.

The domain of telecommunications network management concerns the control of traffic in
a circuit-switched network. The goal of network management is to maximize the performance
of the network, according to some metric.

A telecommunications network consists of a set of switches connected by trunk lines.
A simple telecommunictions network, called ILS-10, is shown in Figure 5. The goal of a
telecommunications network is to allow calls between switches, by finding paths from their
origins to their destinations. A call is generated outside the network with a given origin
and destination. The call starts at its originating switch. The switch allocates a trunk line
for the call, based on its destination, and passes the call over the trunk line to the next
switch. This next switch repeats the process: it examines the call’s destination, allocates a
trunk line for the call, then sends the call onward over the line. When the call reaches its
destination, it is said to have completed®; there is now a trunk line path from its origin to its
destination through which communication can occur. For example, in the ILS-10 network

6This terminology may be confusing. A completed call is one that has just begun.

A Hybrid Theory of Feature Generation 45

a call from switch 9 to switch 3 might be routed along the path [9,8,4,3]. The trunk lines
will remain allocated until the call terminates. If at some point in the routing process a
switch cannot route the call, then the call is said to have failed at the switch, and the call is
dropped completely from all trunk lines (ie, no failure recovery is attempted).

The most important part of the process is how each switch decides to route a call; that
is, how each switch decides to which switch the call should next pass. Each switch has a
routing table, which specifies for every destination an ordered list of trunks. When a call
arrives at the switch, the table is consulted, and the first trunk in the list is tried. If the
trunk is full or the connected switch is down, the switch tries the next trunk in the routing
table. When the routing table entries are exhausted, the call fails. It should be noted that
routing tables, along with the topology of the network itself, are designed very carefully so
as to minimize the possibility of cycling.

Several points should be emphasized about the routing process. Each switch decides only
what the next step in a call’s path should be; it does not decide what path the call should
take. Each switch must make this decision based solely on the call’s destination, as no other
information is passed along. For example, a switch cannot determine which other switches
may already have routed the call, so it cannot detect cycles in the routing, nor can it detect
that the call is taking an overly circuitous path to its destination. Also, the lifetime of a call
is never known; once a call has completed, it stays in place, occupying trunk lines, as long
as neither end breaks the connection.

Because trunks have finite capacity, traffic patterns change, and because network compo-
nents sometimes fail, a network may become congested and need to have its routing behavior
changed. Rather than change the routing tables, which are considered fixed, there are con-
trols that can be placed on a switch to alter its routing behavior. Examples of these are:

o The Destination Re-Route (DRR) control, which overrides a routing table and forces
a switch to re-route to another switch all calls that are going to a given destination.
This is useful, for example, when a switch is known to be overloaded with calls; a DRR
can be applied to adjacent switches to route traffic around to other switches.

e The Immediate Re-Route (IRR) control, which forces a switch to re-route all calls that
would be have been routed onto a given trunk. This is useful when e trunk is known
to have decreased capacity because it is damaged or completely inoperative.

e The Cancel-To (CANT) control, which cancels some portion of the traffic that would
be routed onto a given trunk. This is useful when, for example, a trunk is damaged
and traffic that would go through it cannot be routed any other way.

These are typical of the kinds of controls available. Switches typically have ten to twelve
controls; newer switches have fifteen or twenty. Most controls take an extra argument, the
percentage of calls to which the control applies. For example, a CANT of 50% specifies that
only 50% of the calls to which it applies should be cancelled; the remainder will be processed
exactly as if the control did not exist.

46 A Hybrid Theory of Feature Generation

The goal of telecommunications network management is to place controls so as to maxi-
mize some evaluation function of the network’s behavior. Typically the evaluation function
is fairly simple, like the number of completed calls divided by the number of calls attempted.
Existing problem-solving systems first try to diagnose the problem (eg, as being due to
equipment failure or unusually high traffic into a single node) before suggesting plans to
remedy it.

There are a number of simplifying assumptions made by existing systems for telecommu-
nications network management [Silver, Frawley, Iba, Vittal & Bradford, 1990; Silver, Vittal,
Frawley, Iba & Bradford, 1990] in order to make it a tractable domajn:

e It is not always possible or desirable to maximize the evaluation function, since doing

0 may involve imposing and removing controls so quickly that true network perfor-
mance is obscured by the traffic transients created by the controls. More typically,
network controls are imposed only when the network evaluation functions drops below
a threshold for a certain length of time.

® Any network with wildly varying traffic patterns can defy improvement, simply because
of the delay between diagnosing the problem and imposing the controls. Therefore,
it is commonly assumed that traffic patterns will remain “reasonably stable” for the
amount of time it takes to diagnose a problem and impose controls. This assumption
is not always satisfied in real-world networks, but humans also fail when it is violated.

® A network that is overloaded (operating at 95% capacity or more) can experience
unavoidable call failures simply from slight variations in traffic. Therefore, it is assumed
that the network is operating within some comfortable margin of its capacity.

Using these assumptions, existing problem solving systems coupled with machine learning
techniques [Silver, Frawley, Iba, Vittal & Bradford, 1990; Silver, Vittal, Frawley, Iba &

Bradford, 1990] are able to diagnose network problems and improve call completion averages.

