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Abstract

This article presents an algorithm for inducing multiclass decision trees with multivari-
ate tests at internal decision nodes. Each test is constructed by training a linear machine
and eliminating variables in a controlled manner. Empirical results demonstrate that the
algorithm builds small accurate trees across a variety of tasks.
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1 Introduction

One of the fundamental research problems in machine learning is how to learn from ex-
amples. From a sequence or set of training examples, each labeled with its correct class
name, a machine learns by forming or selecting a generalization of the training examples.
This process, also known as supervised learning, is useful for real classification tasks, e.g.
disease diagnosis, and for problem solving tasks in which control decisions depend on clas-
sification, e.g. rule applicability. The ability to generalize is fundamental to intelligence
because it allows one to reason in accordance with predictions that are often correct. This
article focuses on the problem of inducing a classifier in the form of a decision tree, using a
combination of methods from connectionist and decision tree approaches.

2 The Tree Induction Algorithm

The main objective in building a decision tree is to obtain an accurate classifier for
instances in the domain. A decision tree is an appropriate choice when the underlying
class conditional probabilities are unknown and when the class distributions are multimodal
(Duda & Fossum, 1966). A secondary objective in building a decision tree is to obtain a
decision procedure that is intelligible to a human, so that a person can become better at
classifying instances by emulating the decision procedure. Moreover, in domains in which
the cost of misclassification is high, an intelligible tree allows a person to verify that the
decision procedure is indeed correct.

A tree induction algorithm is useful to the extent that it captures the structure of the
underlying data (Breiman, Friedman, Olshen & Stone, 1984). Assuming that class member-
ship depends on some combination of properties of an instance, one would like the induction
algorithm to identify that combination. Accordingly, the algorithm must be able to repre-
sent such a combination and find it in an acceptable amount of time. One would like an
algorithm that handles multiple classes, considers both numerical and logical combinations
of variables, allows both discrete and continuous variables, and handles instances that are
described imprecisely or labeled incorrectly. The rest of this section describes the LMDT
algorithm, which has been designed to meet these objectives.

2.1 Top Level of the Algorithm

The LMDT algorithm builds a decision tree in the well known top-down manner, as
indicated in Table 1. However, instead of selecting a univariate test for a decision node
based on a heuristic measure, such as information gain (Lewis, 1962), the LMDT algorithm
trains a linear machine, which then serves as a multivariate test for the decision node. A
linear machine (Nilsson, 1965; Duda & Hart, 1973) is a multiclass linear discriminant, which
itself classifies the instance. The class name is the result of the linear machine test, hence
there will be one branch for each possible class at the node. A linear machine decision tree is
a hybrid representation, learned by a combination of two methods, one for learning decision
trees and the other for learning linear discriminant functions.

A linear machine is a set of R linear discriminant functions that are used collectively to
assign an instance to one of the R classes. Let Y be an instance description, also known
as a pattern vector, consisting of a constant threshold value 1 and the numerically encoded
features by which the instance is described. Then each discriminant function g;(Y) has the
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Table 1. Top Level of the LMDT Algorithm.

1. If all the instances are from a single class, then set TREE to be a leaf node with the class
name of the single class, return.

2. Otherwise, set TREE to be a decision node containing a test constructed by training a linear
machine.

3. If the test partitions the instances into two or more subsets, then for each subset build a
subtree recursively, return.

4. Otherwise, set TREE to be a leaf node with the class name of the most frequently occurring
class, return.

form WTY, where W is a vector of adjustable coefficients, also known as weights. A linear
machine infers instance Y to belong to class 4 if and only if (Vi,z # j) g:(Y) > g;(Y). If ~
there is no unique maximum, then the classification is undefined.

In general, to train a linear machine, one adjusts the weight vectors W of the discriminant
functions g in response to any instance that the linear machine would misclassify. This is
done by increasing the weights of W, where 1 is the class to which the instance belongs, and
decreasing the weights of W, where j is the class to which the linear machine erroneously
classifies the instance. The specific error correction rule for the LMDT algorithm is described
below in Section 2.3. If the instances are linearly separable by a linear machine, then the
above training procedure, with a suitable error correction rule as described below, will find
a solution machine in a finite number of steps (Duda & Hart, 1973).

A multivariate test, here represented as a linear machine, makes it possible to represent
decision boundaries that are not orthogonal to the axes (Breiman, Friedman, Olshen &
Stone, 1984; Utgoff & Brodley, 1990). Such a capability is essential if one wants to capture
and represent a concept that is best described in terms of a function of two or more variables.
For example, one would want to express the concept of “an overweight person” in terms of
a relationship between height and weight.

A linear machine partitions the instances into convex regions of the hyperspace, providing
a multiway split, as illustrated in Figure 1. In contrast, a single linear discriminant can only
represent a binary split. In the figure, one can see that no binary split separates one class
from all the others. Multiple binary splits could be employed, as in a decision tree, but the
splits would be inaccurate and the structure of the underlying data would be obscured.

’

2.2 Encoding the Instances

In order to construct a linear machine test, each instance must be represented as a
vector Y consisting of a constant threshold value of 1, and numerically encoded features
that describe the instance. The instances need to be encoded numerically, and the LMDT
algorithm does this automatically at each node for all variables. All encoding information
is retained in the tree for the purpose of classifying instances. To classify an instance, one
encodes it according to the local encoding information retained in the decision node, and
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Figure 1. A Multiway Partition via a Linear Machine.

follows the branch indicated by the linear machine. This process is repeated until a leaf node
is reached, indicating the class to which the instance is assumed to belong.

When encoding a nonnumeric input variable, one needs to be careful not to impose an
order on the values of the input variable. For a two-valued variable, one of the values is
encoded as 1 and the other as —1. For a many-valued variable, each variable-value pair is
encoded as a propositional variable, which is TRUE if and only if the variable has taken on the
particular value in the instance (Hampson & Volper, 1986). The value of each propositional
variable is then encoded as 1 or —1 as before. This encoding scheme makes it possible to
describe instances by any mix of variable types, numeric or symbolic. There is an additional
advantage to this encoding scheme; mapping many-valued variables to two-valued variables
has been observed to produce trees with higher classification accuracy (Cheng, Fayyad, Irani
& Qian, 1988; Mooney, Shavlik, Towell & Gove, 1989).

The encoded variables are also normalized automatically at each node as part of the
encoding process. The scaling is accomplished for each encoded variable by mapping it to
the mean of the observed values plus one standard deviation to 1 and the mean minus one
standard deviation to —1. This is done so that weight adjustments are equally important
during adjustment of a W; and so that it is meaningful to gauge the relative importance
of the encoded variables by the magnitudes of the corresponding weights. The ability to

assess relative importance of the variables is essential for the variable elimination mechanism
described below in Section 2.4.

A final consideration in encoding the input variables is how to fill in missing values during
training or classification. The approach adopted here for handling a missing value is to map
it to 0, which corresponds to the sample mean of the corresponding encoded variables. By
using the sample means for the encoded variables, one is estimating the expected location
of the instance in the encoded Euclidean n-space.

2.3 Training a Thermal Linear Machine

This section describes how a linear machine is trained, leaving the discussion of how to
eliminate variables for the following section. If the training instances are linearly separa-
ble, then one can train on the instances repeatedly until the linear machine partitions the
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Figure 2. Nonseparable Instance Space.

instances into separate convex regions. For each instance, the weight vectors of the linear
machine are adjusted only if the instance would be misclassified by the linear machine. One
well known method is the absolute error correction rule (Duda & Fossum, 1966), which
adjusts W;, where i is the class to which the instance actually belongs, and W;, where j
is the class to which the linear machine incorrectly assign the instance. The correction is
accomplished by

Wi — W,‘ -I- CY

Wj — Wj —-cY

with ¢ computed to be a sufficient amount of correction to cause the linear machine to
become correct for the misclassified instance.

If the instances are not linearly separable, then the error corrections will not cease, and
the classification accuracy of the linear machine will be unpredictable. One needs an error
correction rule that gives stable behavior even when the instances are not linearly separable.
Recently, Frean (1990) has developed the notion of a “thermal perceptron”, which addresses
this problem, and is realized by a particular error correction rule. We have applied this idea
to a linear machine, though we have implemented it somewhat differently so that we can
embed it within the tree induction algorithm.

Frean observed that there are two kinds of errors that are problematic. First, as shown
in the upper left portion of Figure 2, if an instance is far from the decision boundary, and
would be misclassified, then the decision boundary would need a large adjustment in order
to remove the error. On the assumption that the boundary is converging to a good location,
relatively large adjustments are probably counterproductive. One should pay less attention
to large errors than to small errors, and one can accomplish this by

1 W; - W;)TY
C= IR where k = ( ]2YTY) .
The expression for k is the absolute error correction needed to adjust the weight vectors
so that a misclassified instance becomes correctly classified by the linear machine (Duda
& Fossum, 1966). Although this will discount misclassified instances that are far from a
decision boundary, it does not solve the problem completely. To achieve stability, Frean
calls for paying decreasing attention to large errors, which we achieve by using ¢ =
annealing (reducing) 8 during training.

F%’ and



Linear Machine Decision Trees 5

Table 2. Training a Thermal Linear Machine.
1. Initialize 8 to 2.
2. If $ < 0.001 or P(LM is correct on all instances at the node) > 0.99 then return.

3. Otherwise, select a training instance Y at random. If it would be misclassified by the linear
machine and k < 8, then

(a) Compute correction ¢, and update W; and W .

(b) If the magnitude of the linear machine decreased on this adjustment, but increased

on the previous adjustment, then set 8 to aff — b. Default values are a = 0.995 and
b = 0.0005.

4. Go to step 2.

The second kind of problematic error occurs when a misclassified instance lies very close
to the decision boundary, as shown to the lower right of the decision boundary in the figure.
As k approaches 0, ¢ approaches 1 regardless of 83, so one also needs to anneal the amount
of correction ¢ that one will make regardless of k. We accomplish this by multiplying ¢ by 8

because it is already annealing, giving ¢ = 79%

Table 2 shows the algorithm for training a thermal linear machine. Note that 3 is reduced
only when the magnitude of the linear machine decreased for the current weight adjustment,
but increased during the previous adjustment. We define the magnitude of a linear machine
to be the sum of the magnitudes of its constituent weight vectors. This criterion for when
to reduce B is motivated by the fact that the magnitude of the linear machine increases
rapidly during the early training, stabilizing when the decision boundary is much nearer to
its final location (Duda & Hart, 1973). The algorithm does not anneal 8 when the magnitude

of the linear machine is decreasing repeatedly, which can happen after a variable has been
eliminated.

2.4 Variable Elimination

In the interest of producing an accurate and understandable tree that does not evaluate
unnecessary variables, one wants to eliminate variables that do not contribute to classifica-
tion accuracy at a node. Table 3 shows the algorithm for simultaneously training a linear
machine and eliminating variables from the machine. When the decision boundaries are
found by thermal training, the algorithm eliminates the variable that contributes least to
discriminating the set of instances at that node, and then resumes training the linear ma-
chine thermally, with S reinitialized. This eliminate-train cycle repeats until it appears that
further variable elimination will only decrease classification accuracy at the node.

During the process of eliminating variables, the most accurate linear machine with the
minimum number of variables is saved, and when variable elimination ceases, the test for the
decision node is the saved linear machine. There are three cases in which an LM based on
fewer variables is preferred. The first is when the accuracy of an LM based on fewer variables
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Table 3. Training a Linear Machine with Variable Elimination.

1. Encode each instance numerically.

2. Initialize bestaccuracy to 0, and the weights W for each of the R discriminants of the linear
machine to 0.

3. Train the linear machine thermally, as described in Table 2
4. Set accuracy to the classification accuracy of the linear machine on the training instances.

-5. If accuracy > bestaccuracy or number-of-instances < 2xnumber-of-variables then set bestac-
curacy to accuracy.

6. If accuracy > bestaccuracy or the accuracy is not significantly worse than that of the best
linear machine saved, then save copy of linear machine.

7. If accuracy > be.étaccuracy—b' and the linear machine is based on two or more encoded vari-
ables, then eliminate a least discriminating variable, go to step 3.

8. Final linear machine is the one saved by step 6, return.

is higher than the best accuracy observed thus far. The second is when the accuracy of the
LM drops when a variable is eliminated. A t-test with o = .01, is used to measure whether
the difference in the mean classification accuracies of the two LMs is significant or due to
chance. The third case occurs when there are too few instances for the number of variables
(Duda & Hart, 1973). The é§ parameter is included for the sake of efficiency, and its default
valueis 0.10. The algorithm can stop trying to eliminate variables if the chance of finding an
LM based on fewer variables with higher accuracy is remote. Note that when the accuracy
of an LM increases when a variable is eliminated, it is not clear how much of the increase
should be attributed to additional training time.

We measure the contribution of a variable to the ability to discriminate as the dispersion
of the weights for each of the classes. There are two desirable characteristics of a weight with
a large dispersion. First, a weight with a large magnitude causes the corresponding variable
to have a large effect on the value of the discrimination function and hence discriminability.
Second, a variable whose weights are spaced far apart makes different contributions to the
value of the discrimination function of each class. Therefore, one would like to eliminate
the variable whose weights have small magnitudes and are evenly spaced. To this end, our
dispersion measure computes, for each variable, the average squared distance between the
weights of each pair of classes. The variable with the smallest dispersion is eliminated.
This basis for comparing the discriminating ability of the variables depends on the variables
having been normalized, as discussed above in Section 2.2.

2.5 Discriminability of a Linear Machine

It happens that some unusual distributions of instances lead to a linear machine that
places all the instances in just one region, e.g. an instance from one class located near the
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Figure 3. The “L” Problem.

center of a cloud of instances from another class. The LMDT algorithm does not attempt to
partition such distributions, on the assumption that such poorly located instances are indica-
tive of noise or poor representation. The algorithm simply replaces the nondiscriminating
decision node with a leaf node indicating the most frequently occurring class, as per step 4
of Table 1. We have tried several methods for forcing the algorithm to find a discriminating
linear machine, but without any apparent benefit in classification performance. One such

method is to select one instance from each class at random, and train a linear machine to
discriminate just those instances.

3 Illustrations

This section illustrates that the LMDT algorithm is capable of uncovering the underlying
structure of the data, and that it finds good tests for decision nodes. The algorithm finds
small trees across a variety of classification tasks.

3.1 Uncovering Structure

In order to see that the algorithm can uncover underlying structure, consider the “L”
problem shown in Figure 3. One would want an algorithm to be able to find one segment of
the decision boundary at the root node, and the other at the root of a subtree. The LMDT
algorithm does exactly that, due to thermal training of the linear machine at each node.
As the linear machine at the root begins to move toward one of the segments, misclassified
instances from the other segment have decreasing effect, allowing the linear machine to find
one of the segments without being misled by the distant points. It may be that such an
artificial boundary is unlikely in practice, but it is essential that an algorithm be able to find
segments of the decision boundary wherever they occur.

3.2 Results for a Variety of Domains

Table 4 show various performance measures for the LMDT algorithm on a variety of tasks.
Pessimistic pruning (Quinlan, 1987) is used to avoid overfitting. Each measure is an average
for five runs. Column “Invars” shows the number of input variables. Column “Vars/LM”
indicates the average number of variables per linear machine, and column “Totvars” lists the
number of unique input variables tested somewhere in the tree.
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Table 4. LMDT on a Variety of Tasks.
Domain R Invars LMs Vars/LM Totvars %Train %Test

DNF 2 5 2 2.5 5 100.00
chess 2 39 7 11.2 37 99.46
LED-10% 10 7 86 4.5 7 79.64 70.20
Soybean 15 35 48 8.3 23 97.59 84.88
Segment 7 17 1 5.8 5.8 98.86 94.25

The DNF task illustrates the ability of LMDT to find multivariate splits and to eliminate
variables in order to capture the underlying structure of the instance space. Pagallo (1989)
used this task to illustrate the ability of FRINGE to find multivariate tests at a node, though
by a much different mechanism from that of LMDT. The concept to be learned is the Boolean
function ab V cde. The tree found by LMDT has two tests and three leaves and is logically
equivalent to that found by FRINGE. The root node has an LM based on variables a and b
and the second node has an LM based on ¢, d and e.

The chess task (Quinlan, 1983) demonstrates that LMDT finds small trees. The tree
found by LMDT contains 7 linear machines, each with an average of 11.2 variables. The
smallest tree produced by an ID3 variant (Utgoff, 1989) contains 62 univariate tests. A linear
machine is more complex than a univariate test, so a strict comparison is unfair.

The LED (Breiman, Friedman, Olshen & Stone, 1984) data set shows LMDT’s perfor-
mance on noisy data sets. The domain consists of seven Boolean attributes and ten classes,
one for each of the decimal digits. The seven attributes are the seven light emitting diodes
of a LED display. Each attribute has a 10% percent probability of having its value inverted.
Breiman et al. have shown that for a noise rate of 10% the optimal Bayes classification rate
is 74%.

The soybean task illustrates LMDT’s faculty to handle multivalued attributes. The
soybean data, first introduced by Michalski (Michalski & Chilausky, 1980), consists of 35
symbolic attributes with 4% of the values missing.

The segmentation task illustrates the ability of LMDT to handle real-valued variables
and shows how variable elimination can reduce the number of variables tested. In the
segmentation domain, the task is to learn to segment an image into one of seven classes.
Each instance is a pixel described by low level image features. LMDT reduced the number
of input variables that ever need to be evaluated from 17 to 5. The values of the variables
in this domain are expensive to generate. Therefore, reducing the number that need to be
evaluated reduces the amount of processing required to obtain a description of a pixel.

4 Discussion

The LMDT algorithm handles multiclass problems, finds multivariate tests, and elimi-
nates variables in a justified manner. Through thermal training of a linear machine at a node,
the algorithm is able to find a good decision boundary without being misled by misclassified
instances. Through automatic encoding of numeric and symbolic variables, the algorithm is
applicable to a wide variety of classification learning tasks.
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Two problems remain that we are in the process of addressing. First, there are several
fast forms of conjugate gradient weight adjustment (Mgller, 1990), and we would like to
incorporate one. These methods are typically one to two orders of magnitude faster than
gradient descent methods. Typically, conjugate gradient weight adjustment methods seck to
minimize mean-squared error, so we would need to substitute a different error function to
be minimized, retaining the ability of the thermal linear machine to uncover the structure
of the data.

Finally, trees with linear machine tests can be difficult to understand because a linear
machine is itself difficult to understand. A linear machine can be converted to a set of
classification rules, which are more palatable. For example, for a three-class linear machine,
one would produce three rules, one for each class. The rule for class 0 would be of the form: if
9o(z) > g1(z) Ago(z) > g2(z) then z belongs to class 0. Standard arithmetic transformations
may allow further simplification of such a rule. Of course, the variable elimination mechanism
aids in simplifying the LM itself, which will lead to simpler rules. In general, multivariate
tests are essential, so we will be seeking methods for making them understandable, rather
than limiting the algorithm to weaker kinds of tests. A method similar to that employed by
MACIE (Gallant, 1988) may be applicable for explaining decisions made by an individual
linear machine.
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