Two Kinds of Training Information for
Evaluation Function Learning
Paul E. Utgoff
Jeffrey A. Clouse
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003 U.S.A.
COINS Technical Report 91-11

February 1, 1991

Abstract

The paper identifies two fundamentally different kinds of training information for learning
search control in terms of an evaluation function. Each kind of training information suggests
its own set of methods for learning an evaluation function. The main result is the conclusion
that one can and should integrate the methods and learn from both kinds of information.

Contents
1 Introduction

2 Sources of Training Information
3 State Preference Methods

4 Illustration of a TD and an SP Method
41 The TaskDomain
4.2 A Temporal Difference Method
4.3 A State Preference Method
4.4 Discussion

.....................................

5 Integrating TD and SP Methods
5.1 Relationship of TD and SP Methods
5.2 An Integrated Method

......................

..............................

6 Conclusion

B W W

v O

Kinds of Training Information 1

1 Introduction

This paper identifies two fundamentally different kinds of training information for learn-
ing search control knowledge in terms of an evaluation function. The main point is that one
can and should seek to learn from both kinds of information, rather than be concerned with
which one is better than the other. Both kinds of information are often available, and there
1s no point in ignoring one of them.

The discussion focuses on the problem of learning an evaluation function for the purpose
of making control decisions during search. An evaluation function maps each state to a
number, thereby defining a surface that can be used to guide search. If the number represents
a reward, then one can search for a sequence of control decisions (operator applications) that
will lead to the highest foreseeable payoff. Analogously, if the number represents a cost or
penalty, then one searches for a minimizing sequence.

2 Sources of Training Information

There are two fundamental sources of training information for learning an evaluation
function. The first is the payoff achieved by executing a sequence of control decisions from
a particular starting point. Sutton (1988) has illustrated via his temporal difference (TD)
methods that one can learn to predict future value from a state by repeatedly correcting
an evaluation function to reduce the error between the local evaluation of a state and the
backed-up value that is determined by lookahead search. This is similar to an idea of Samuel

(1963), but Sutton has broadened it considerably and related it to several other lLines of
thought.

The second source of training information is identification of the control decision made
by an expert, given a particular state. In the literature, such an instance of an expert choice
istypically called a book move (Samuel, 1967), but it need not have been recorded in a book.
Instead, one can simply watch an expert in action, or ask an expert what to do in a particular
situation, and thereby obtain the control decision that the expert would make. Whenever
an expert’s choice is available, one would like to be able to learn from it. Such a choice is
the result of the expert’s prior learning, and therefore should be quite informative. Indeed,

learning to make the same choices as an expert would be a sensible approach to building an
expert system.

3 State Preference Methods

When making a control decision based on the value of each successor state, the exact
value of a state is irrelevant with respect to making the choice. Only the relationship of two
values is needed for the purpose of identifying the one with the higher value. The ob Jective
is to identify the most preferred state and then move to it. We refer to a method that selects
a successor state by identifying a most preferred state as a state preference (SP) method.
Many of the standard search algorithms that employ an evaluation function for the purpose
of selecting a most preferred succesor state are examples of state preference methods. Such
algorithms include hill-climbing and best-first search. ‘

Given that a control decision does not depend on the particular values returned by an
evaluation function, one does not need to learn an exact value for each state. One needs

Kinds of Training Information

B C D

Figure 1. One Ply of Search.

only to learn a function in which the relative values for the states are correct. Whenever
one infers, or is informed correctly, that state a is preferrable to state b, one has obtained
information regarding the slope for part of a correct evaluation function. Any surface that has
the correct sign for the slope between every pair of points is a perfect evaluation function. An
infinite number of such evaluation functions exist, under the ordinary assumption that state
preference is transitive. One would expect the task of finding any one of these evaluation
functions to be easier than the task of finding some particular evaluation function.

Because one wants to learn to select a most preferred state from a set of possible suc-
cessors, one should be able to learn from examples of such choices (Utgoff & Saxena, 1987,
Utgoff & Heitman, 1988). By formally stating the problem of selecting a preferred state, and
expanding the definitions, a procedure emerges for converting examples of state preference
to constraints on an evaluation function. One can then search for an evaluation function
that satisfies the constraints, using standard methods.

Assume that a state z is described by a conjunction of d numerical features, represented as
a d-dimensional vector F(z). Also assume that the evaluation function H(z) is represented
as WTF(z), where W is a column vector of weights, and W7 is the transpose of W.
Then one would compare the value of a state C to a state B by evaluating the expression
H(C) > H(B). In general, one can define a predicate P(z,y) that is true if and only if
H(z) > H(y), similar to Huberman’s (1968) hand-crafted better and worse predicates. One
can convert each instance of state preference to a constraint on the evaluation function by
expanding its definitions. For example, as shown in Figure 1, if state C is identified as best,
one would infer constraints P(C, B) and P(C, D). Expanding P(C, B), for example, leads
to:

P(C, B)

H(C) > H(B)
WTF(C) > WTF(B)
WT(F(C) - F(B)) >0

By expanding all instances of state preference in this way, one obtains a systcm of linear
inequalities, which is a standard form of learning task for a variety of pattern recognition
methods, including perceptron learning (Duda & Hart, 1973) and other more recent con-
nectionist learning methods. Note that these instances of state preference are expressed as
d-dimensional vectors, meaning that learning from pairs of states is no more complex than

Kinds of Training Information 3

learning from single states. This is in contrast to Tesauro (1989), where both states are given
as input to a network learner.

It is worth noting that Samuel’s (1967) method for learning from book moves is an SP
method. When learning from book moves, Samuel computed a correlation coefficient as a
function of the number of times L (H) that the feature value in a nonpreferred move was
lower (higher) than the feature value of the preferred move. The correlation coefficient for
each feature was f;—g, and was used directly as the weight in his evaluation function. The
divisor L+ H is constant for all features, serving as a normalizing scalar, and can be ignored.
Thus the total L — H is a crude measure of how important the feature is in identifying a state

preferred by an expert. Tesauro (1988) also uses a relative scoring of positions for training.

4 Illustration of a TD and an SP Method

This section illustrates a TD method and an SP method applied individually to the same
problem. The purpose is to ground the discussion of the previous sections, and to get some
indication of which source of training information leads to faster learning. However, the
comparison is not a contest because we are not advocating picking one. Each method learns
from a different kind of training information, so it should be no surprise that one learns more
quickly than the other. Instead, in Section 5, we observe that one can and should learn from
all the training information, regardless of its source.

4.1 The Task Domain

Although we are experimenting with TD and SP methods in larger domains, discussed
in the final section, we have selected the smaller Towers of Hanoi domain for pedagogical
purposes. The main reason for this choice is that the domain is characterized by a small
state space, which can be controlled by varying the number of disks. The small domain
makes it possible to implement a simple expert, which is needed as a means of providing
state preference information for the SP method.

The semantics of this problem makes it more natural to think of the value of a state as a
measure of remaining cost. Thus, the goal state would have the lowest cost. The problem-
solving program will be looking for a state with a low cost, and one state will be preferred
to another if its cost is lower. Expanding P(z,y) & H(z) < H (¥) leads to a conmstraint of
the form

WT(F(z) - F(y)) < 0.
4.2 A Temporal Difference Method

The temporal difference method uses a hill climbing search strategy for problem solving.
At each step, the algorithm generates the successors of the current state and evaluates them.
The value backed-up to the current state is the value of the lowest cost successor plus 1.
This backed-up value is the desired value of the current state, and the learning mechanism
adjusts the weights W so that the evaluation for the parent state is equal to the backed-up
value. Because the value of the goal state is defined to be 0, the evaluation function is trained
to predict the distance remaining from the state to the goal. After the training occurs, the
problem solver moves to the chosen state. A training episode consists of picking a start state,
and proceeding in this manner until the goal state is reached. The error correction rule is

Kinds of Training Information

Table 1. Number of Training Instances Needed.
Method | 3 disks 4 disks 5 disks 6 disks
TD 129 13,203 66,044 >415,282
SP 32 256 512 6,144

similar to the well known absolute error correction rule (Nilsson, 1965; Duda & Fossum,
1966), but the error is corrected exactly. One solves

(W + cF(z))TF(z) = .ba,cll‘(ed-up value

for ¢ and then adjusts W by
W — W + cF(z)

so that WTF(z) has the intended value.
4.3 A State Preference Method

The state preference method uses a best-first search strategy. Before the training begins,
the optimal solution path from the chosen start state to the goal state is identified via a
brute-force search. This step is included solely for the purpose of obtaining state preference
training information, which would ordinarily come from an expert. At each step, the state
preference method consults the expert for the correct node to select from the frontier and
expand. From this choice, the algorithm infers that the selected state is to be preferred
to each of the nonselected states. From each such pair of states, the SP method infers a
constraint on the weight vector W expressed as a linear inequality, as described above. If
the constraint is not satisfied, then the weight vector W is adjusted. The correction rule 1s
a form of the absolute error correction rule. One solves

(W + (F(z) - F(y)))"(F(z) - F(y)) = 1
for ¢ and then adjusts W by
W — W + ¢(F(z) - F(y)).

Adjusting the weights so that the weighted difference is —1 corresponds to wanting the
selected state to evaluate to one less than a nonselected state. One could pick any negative
value in order to become correct for the inequality. After the training is complete, the
successors of the chosen state are placed on the frontier, and one training step is complete.
The algorithm repeats this process until the goal state is reached.

4.4 Discussion

The TD method and the SP method were each trained repeatedly until each was able to
solve problems optimally. The cost of training is measured as the total number of adjustments
to the weight vector W. Table 1 shows that the state preference method is much cheaper
than the temporal difference method. This is in accord with the intuition that one can learn

Kinds of Training Information 5

Table 2. Features for the 3-Disk Problem.
Feature
Is Disk 3 on Peg 37
Is Disk 2 at its desired location?
Is Disk 1 at its desired location?
Is Disk 2 on Disk 37
Is Disk 1 on Disk 37
Is Disk 1 on Disk 27
Is Disk 2 on Peg 3?7
Is Disk 1 on Peg 37
Is Disk 3 clear?
Is Peg 3 empty?
Distance from class mean

Threshold

more quickly from state preference information than temporal difference information. As
mentioned above, given that the methods make use of distinctly different sources of training
information, there is no need to pick one method instead of the other. One would like to
pick them both, and this is discussed below in Section 5. For the 6-disk problem, the TD
method terminated prior completion due to a floating point error. supplied). '

The features for describing a state are a function of the number of disks. For the 3-disk
problem, there are 27 possible puzzle states and 11 features. Table 2 shows the features for
the 3-disk problem. All of these features are binary-valued, except for distance-from-class-
mean. In general, the number of states and features for the n-disk problem is O(3") and
O(n?) respectively. The constant for the number of features is 0.5. As the number of disks
increases, the number of states outpaces the number of features.

5 Integrating TD and SP Methods

This section discusses the relationship between TD and SP methods, and shows that
both kinds of methods can work together in learning one evaluation function.

5.1 Relationship of TD and SP Methods

TD methods learn to predict future values, whereas SP methods learn to identify preferred
states. For TD methods, training information is propagating vertically up the search tree.
For SP methods, the training information is propagating horizontally among siblings. A TD
method is unsupervised because backed-up values are inferrable from search and evaluation;
no external teacher is needed in order to assign a value to a state. An SP method is supervised

because a teacher or other external expert is needed in order to identify which state from a
set of successors is most preferred.

Semantically, the two kinds of methods are compatible because the evaluation function is
of the same form, and serves the same purpose of allowing identification of a best state. One
can adjust the weights W so that the value of a state is predictive of its eventual payoff, and

Kinds of Training Information

Table 3. Number of Training Instances Needed.
Method | 3 disks 4 disks 5 disks 6 disks

TD 129 13,203 66,044 >415,282
TDSP 34 622 34,400 84,348
SP 32 256 512 6,144

one can also adjust W so that the relative values among the states become correct. Thus, in
terms of the semantics of the learning, one can simply apply both kinds of error correction to
the same evaluation function without fear that they are incongruous. However, a practical
problem that can arise is that the expert might be fallible, putting the two sources of training
information in conflict to some degree. This issue is discussed below.

5.2 An Integrated Method

In the same way that TD and SP are each a class of methods, there are many combinations
of methods that would produce an integrated TDSP method. We present one such method
here.

Given that TD is an unsupervised method, we assume that a learning program will train
on such information whenever it is available. In particular, whenever a node is expanded,
one can train the evaluation function on the difference between the local evaluation of the
parent, and the backed-up value of the child with the best value. In the context of problem
solving, the TD rule for computing correction c is '

(W + cF(z))TF(z) = backed-up value + §.

The § is a positive constant, e.g. 1, so that a more expensive state will have a higher value
than a less expensive state.

The SP method relies on an expert, which can be a human or a search procedure. We
assume that a learning system will want to query the expert as little as possible, or that the
expert will only respond to a portion of the queries it receives. As an extreme, one could
avoid querying the expert altogether, and learn only from the TD information. However,
expert preferences provide strong training information and should be used when available.
In the TDSP method described here, one queries the expert whenever a node is expanded
and the TD error is above 0.1, where the error is %ﬂ' The effect is that the expert
exerts great influence early in the training, but is progressively ignored as the evaluation
function becomes more accurate. The SP rule for computing correction c is (W + ¢(F(z) —
F()))T(F(z) — F(y)) = —6. The rule is applied only if the weighted vector difference is
greater than —6.

Table 3 shows the number of instances that the TDSP method required to learn various-
sized Tower of Hanoi tasks. To facilitate comparison, the results from the TD-only and
SP-only methods are repeated. As expected, learning is faster for TDSP than plain TD.
Table 4 shows how far the number of queries to the expert declined during training, but
does not show that the number of queries drops rapidly. The table shows the number of
queries made while training on the first problem, and the last problem, but not for any of

Kinds of Training Information 7

Table 4. Number of Queries to Expert.

3 disks 4 disks 5 disks 6 disks
Queries First Problem 7 50 138 359
Queries Final Problem 7 17 17 21
Total Problems 1 4 269 242

the intermediate problems. In the 3-disk case, learning was complete after the first problem,
so it is both first and last.

The TDSP method described here increasingly ignores the expert as the evaluation func-
tion is learned. This is a desirable characteristic in terms of gaining autonomy, but it is also
desirable if the expert is imperfect, e.g. human. One can learn rapidly from the expert, and
then let TD training correct any flaws that may have crept in from believing the expert. We
are in the process of experimenting with various kinds and degrees of imperfection in the
expert. Too much error would overwhelm the TD contribution to learning, and we would
like to be able to detect this situation.

6 Conclusion

We have identified two different kinds of training information for learning evaluation
functions, and described their relationship. For state preference, we have shown that one
can convert instances of state preference to constraints on an evaluation function, and that
one can learn an evaluation function from such information alone. We have pointed out that
one should be able to learn from all sources of training information, and not be diverted by
arguments that one should be favored over another. We have observed that it is semantically
correct to apply a TD method and an SP method simultaneously to the learning of one
evaluation function. Finally, we presented a specific method that integrates both approaches,
and demonstrated that the two can indeed work together.

Although we have chosen a simple problem for illustration, the issues that motivated this
work arose while studying the effectiveness of TD and SP methods in the game of Othello.
The program was able to learn from either source of information, but it was unclear whether
or how one could learn simultaneously from both sources. We are in the process of finishing
the integration of the methods in Othello, and are in the early stages of experimenting with
an integerated approach in learning to control air traffic.

Acknowledgments

This material is based upon work supported by the National Aeronautics and Space
Administration under Grant No. NCC 2-658, and by the Office of Naval Research through
a University Research Initiative Program, under contract number N00014-86-K-0764. We
thank Rich Sutton for a useful discussion, and Sharad Saxena, Jamie Callan, Tom Fawcett,
Carla Brodley, and Margie Connell for helpful comments.

Kinds of Training Information 8

References

Duda, R. O., & Fossum, H. (1966). Pattern classification by iteratively determined linear and
piecewise linear discriminant functions. IEEE Transactions on Electronic Computers,

EC-15, 220-232.

Duda, R. O., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. New York:
Wiley & Sons.

Huberman, B. J. (1968). A Program to Play Chess End Games. Doctoral dissertation, De-
partment of Computer Sciences, Stanford University.

Nilsson, N. J. (1965). Learning Machines. New York: McGraw-Hill.

Samuel, A. (1963). Some studies in machine learning using the game of checkers. In E. A.
Feigenbaum, & J. Feldman (Eds.), Computers and Thought. New York: McGraw-Hill.

Samuel, A. (1967). Some studies in machine learning using the game of checkers II: Recent
progress. IBM Journal of Research and Development, 11, 601-617.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3, 9-44.

Tesauro, G., & Sejnowski, T. J. (1988). A parallel network that learns to play backgammon:
Recent results. Proceedings of the AAAI Symposium on Computer Game Playing (pp.
41-45). Palo Alto, CA.

Tesauro, G. (1989). Connectionist learning of expert preferences by comparison training.
In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems. Morgan
Kaufmann. -

Utgoff, P. E., & Saxena, S. (1987). Learning a preference predicate. Proceedings of the Fourth
International Workshop on Machine Learning (pp. 115-121). Irvine, CA: Morgan Kauf-
mann.

Utgoff, P. E., & Heitman, P. S. (1988). Learning and generalizing move selection preferences.
' Proceedings of the AAAI Symposium on Computer Game Playing (pp. 36-40). Palo Alto,
CA.

