Comparison of Distributed Concurrency Control Protocols
on a Distributed Database Testbed*

Chia-Shiang Shih and Asit Dan

ECE Department, University of Massachusetts
Ambherst, MA 01003

Walter H. Kohlert

Digital Equipment Corporation
200 Forest Street, MRO1-1/A65
Marlboro, MA 01752-9101

John A. Stankovic and Don Towsley

COINS Department, University of Massachusetts
Ambherst, MA 01003

*This work was supported by the National Science Foundation, grant number SDB-8418216 and by a grant from
Digital Equipment Corporation.

tWalter H. Kohler is manager of High Performance Transaction Processing System group at Digital Equipment
Corporation.

Abstract

In this paper, we compare the performance of several concurrency control protocols by executing
these protocols under various workloads in a common distributed database testbed environment.
We study the effect of implementation overhead on the performance of three classes of distributed
concurrency control protocols: two-phase locking, optimistic approach with backward validation,
and optimistic approach with forward validation. We develop and evaluate several optimizations for
optimistic concurrency control protocols with backward validation. To minimize the non-essential
variations in implementation, we use a common hash table implementation for both the lock table
as well as the validation table. The main emphasis here is to contrast the difference in protocol
overhead based on the number of high level operations required by different protocols while taking
the common low level implementation overhead into consideration. We believe that this is one of

the first comprehensive, experimental study of distributed concurrency control protocols.

In our experimental environment, two-phase locking performed significantly better than the
backward validation optimistic approaches on most of the workloads (except for read-only work-
loads). For query-intensive (read-only) workloads, optimistic protocols with backward validation
can simplify their validation check and outperform both two-phase locking and the optimistic with
forward validation. Two-phase locking also performed better than optimistic with forward valida-
tion (except for the long response time situations). We observed that the locking protocol usually
required less system resources (CPU and Disk I/O) than the optimistic approaches and supported
higher throughput. On some of the workloads, the most important performance degradation fac-
tor for the two-phase locking protocol was a long blocking time on locks whereas it was the high

transaction abort rate for the optimistic protocols, especially for the ones with backward validation.

1 Introduction

During the past decade, numerous studies have been made comparing the throughput of various
concurrency control protocols in both centralized and distributed database systems[1, 4, 6, 7, 9,
10, 15, 17, 18]. All of these works are based on simulation or analytical modeling. In general these
studies either ignore the effect of protocol overhead or assume equal overhead for all protocols. The

primary arguments given for these assumptions are as follows:

e If the resource requirement (CPU, I/O) of executing any transaction is large compared to the

protocol overhead, the variation of protocol overhead introduces very little error.

e It is hard to compare protocol overhead because of implementation details. Any given protocol

can be implemented in several ways.

We report on one of the first comprehensive experimental comparison of various distributed
concurrency control protocols by executing these protocols under various workloads in a common
distributed database testbed environment known as CARAT (Concurrency And Recovery Algo-
rithm Testbed)[12, 16]. We study the effect of implementation overhead on the throughput under
various distributed concurrency control protocols including two-phase locking[5], four variations
of optimistic approaches with backward validation[13], and an optimistic approach with forward
validation[4]. To minimize the non-essential variations in implementation, we use a common im-
plementation of hash table both for the lock table as well as validation table. The main emphasis
here is to contrast the difference in protocol overhead based on the number of high level operations
required by different protocols while taking the common low level implementation overhead into

consideration.

In our experimental environment, two-phase locking performed significantly better (higher
throughput and lower response time) than the backward validation optimistic approaches on most
of the workloads (except read-only workloads). The throughput of two-phase locking is also higher
than that of optimistic protocol with forward validation. However, optimistic protocol with for-
ward validation outperforms two-phase locking protocol for transactions with longer response time
(due to longer transaction size or distributed execution). For query-intensive workloads (read-only
workloads), optimistic protocols with backward validation can simplify their validation check and
outperform both two-phase locking and optimistic protocol with forward validation. Besides sup-
porting higher throughput, we observed that the locking protocol usually required less system
resources (CPU and Disk I/0) than the optimistic approaches. On some of the workloads, the

most important performance degradation factor for the two-phase locking protocol was due to long
blocking time on locks whereas it was due to the high transaction abort rate for the optimistic

protocols, especially for the ones with backward validation.

The details of the CARAT testbed environment will be described in Section 2. Section 3 out-
lines the implementation of six different protocols: two-phase locking, four variations of optimistic
protocols with backward validation, and an optimistic concurrency control protocol with forward
validation. Section 4 describes the performance metrics and the various workloads under which the
experiments are performed. Section 5 compares the performance of these six protocols under the

different workloads. Finally, we summarize the paper in Section 6.

2 Description of the CARAT Testbed

CARAT (Concurrency And Recovery Algorithm Testbed) is a distributed database testbed de-
veloped at the University of Massachusetts to study the performance of various concurrency and
recovery algorithms through direct measurement[12]. It is implemented as a set of cooperating
server processes which communicate via a uniform message passing mechanism. Figure 1 illus-
trates the processes and message structure of CARAT for any two nodes of the system. In each
node there is a TM (Transaction Manager) server process and a pool of DM (Data Manager) server
processes, which are created during system start up. TR (Transaction) processes are created by
users to execute database transactions. To access any data granule, the TR process sends a TDO
(read/write) message to its local TM. TM forwards this message to a DM server process for actual
database access. For any data granule access from a remote site, the local TM forwards the TDO
message to the remote TM which in turn forwards it to one of its local DM servers. The motivation
behind this message passing architecture as well as the details of this architecture can be found in
[12]. The TR process also sends TBEGIN and TEND messages to the TM process to mark the
beginning and the end of a transaction. Depending on the concurrency control protocol, TM and
DM processes take various actions to ensure transaction serializibility. For example, for a locking
based protocol, the DM acquires a lock on behalf of the transaction at each TDO step, and the

TM executes a two phase commit protocol after receiving a TEND message.

For the purpose of performance measurement, transactions are created automatically by the
TD (Test Driver) process according to a specified workload. The DC (Data Collector) process is

responsible for collecting performance statistics. The SPY process in each node can monitor and

Global Coordinator
and Observer

Workload

Driver

Transaction
Workload " *(TR "

Catalog

Catalog

Target
System

Local
Database

Figure 1: CARAT processes and message structure

display the system status while the transactions are executing and it is used primarily for debugging

purposes.

The physical environment for the experiments includes a non-replicated database that is parti-
tioned and distributed among five nodes where each node consists of a microVAX II and two RD53

disks — one database disk and one log disk. The nodes are connected by a local area DECnet.

3 Description of the Protocols

We have implemented three classes of protocols: two-phase locking (2PL), and optimistic with
backward validation (OCC-BV) and optimistic with forward validation (OCC-FV). For the opti-
mistic with backward validation, we have implemented four versions, differing only in how they
perform their validation. To minimize the non-essential differences in the implementation of the
different classes of protocols, we have tried to use standard data structures, such as a hash table
for the implementation of both the lock table as well as the validation table. Other than the im-
plementation of the protocols themselves, the remainder of the database system modules such as
the Transaction manager, the Transaction process, the Buffer manager etc. are the same in all
versions of the protocols. In the remainder of this section, we briefly describe all of these protocols.
We note that these protocols rely only on the information about the read-sets and write-sets of a
transaction. Optimization based on semantic information, such as the database and transaction

structure, is not covered in this paper.

3.1 Two-Phase Locking with Distributed Deadlock Detection

Two-phase locking[5] protocols consist of two phases: a growing phase where locks are acquired,
followed by a shrinking phase where locks are released. The protocol is implemented in the Lock
Manager module at each node!, that uses a hashing technique to manage lock tables containing
Lock-Grant queues and Resource-Wait queues. The Buffer manager module that manages the
private copy of each transaction issues a read or write lock request before reading a page into the
buffer. A lock request is queued for a resource if the requested lock mode is not compatible with
the locks held by other transactions or with other queued lock requests for the resource. All locks

are held until a transaction is committed or rolled back.

The lock manager uses a hash table for the following operations on a data granule:

!The lock manager at each site is responsible for its local data items. Recall that the database is not replicated.

1. search and check its lock compatibility against the lock mode of other transactions which are

currently holding or waiting for the lock of this data granule in the hash table;
2. insert it into the hash table if a lock is granted;

3. delete it from the hash table whenever the lock is released.

Both local deadlocks and global deadlocks are resolved by detection. Local deadlocks are de-
tected by searching cycles in the Transaction-Wait-For-Graph that is encoded in a two dimensional
array. Distributed deadlock detection is currently implemented with probe algorithm developed
by Chandy and Misra[3, 2] based on probes. A complete description of the distributed deadlock
detection implementation in CARAT can be found in [11] and [12].

3.2 Optimistic Protocol with Backward Validation

Optimistic protocols using backward validation were first proposed by Kung and Robinson[13].
Here, transactions are executed in three phases, read, validation, and write. During the read
phase, a transaction reads from the database and any updates are done on local copies of the data.
At the end of the transaction, the transaction enters a validation phase to check to see if there is a
serialization conflict with any other transaction. If the validation test is not passed, the transaction
is aborted (and restarted). Otherwise, it enters the write phase to make the transaction updates

permanent to the database. For read-only transactions, the write phase is not required.

Figure 2-(i) shows the three-phase structure of a subtransaction T} (the part of transaction T}
executed at site k). For distributed transactions, validation is done using the following two-phase

commit protocol:

1. In the first phase, local validation is carried out on behalf of the subtransactions of a transac-
tion at each participating node independently and in parallel. At each node local validation is
done within a node-wide critical section, but no system-wide global critical section is needed.
If the subtransaction T} is successfully validated locally, the write-sets and/or read-sets of
validated transactions are kept in a hash table to be used for the validation of other concurrent

transactions.

2. In the second phase, if any of the subtransactions fail to validate then the transaction is
aborted (and restarted). Otherwise, the transaction T} is globally validated and if T} is an

update subtransaction, it enters its write phase.

Locally validated
semi-committed state

Read phase Validation phase Write phase

(i) Structure of a subtransaction Tjg

Concurrent subtransaction T;;(Class 1)
1

Validating subtransaction Ty,
1 1 1

(ii) Condition 1

T;x(Class 2)
I T I I
Read phase ik

Write-set of T;p N Read-set of Ty = ¢

(iii) Condition 2

Read phase T;x(Class 3) Locally validated

Write-set of T;; N (Read-set of T, U Write-set of Tj5)= ¢
AND
(a) Read-set of T;; N Write-set of Tjr = ¢
OR
(b) The validating subtransaction T} waits for the global out-
come of all class 3 subtransactions T, before its local val-
idation is completed

(iv) Condition 3

Figure 2: Local Validation Conditions for Distributed OCC

From the point of view of a validating subtransaction, T}, all other subtransactions T}, which
executed at the same node and finished their read phase earlier, can be categorized into three
classes. The three classes and their local validation conditions for a validating subtransaction Tj

are:

1. Class 1 consists of all the subtransactions Tj; which have completed their write phase before
the validating subtransaction T} starts its read phase (Figure 2-(ii)). No conflict checking

against this class of subtransactions is needed to assure the validation of T}y.

2. Class 2 consists of all the subtransactions T;; which have completed their write phase during
the read phase of the validating subtransaction T} (Figure 2-(iii)). T} is locally validated if

it does not conflict with any of this class of subtransactions Tz,
Write-set of T, N Read-set of T, = ¢.

3. Class 3 consists of all the subtransactions T;; which have terminated their read phase during
the read phase of the validating subtransaction T}z, but have not yet terminated their exe-
cutions (Figure 2-(iv)). T is locally validated if it does not conflict with any of this class of

subtransactions Tz,

Write-set of T;, N (Read-set of Tj; U Write-set of Tjx)= ¢.

We now examine closely the problem of global serialization. Conflict between two concurrently
validating transactions, 7; and T; may not be detected if they are validated in a different order at
two different nodes. For example, let transaction T; read z at node 1 and write ¥ at node 2, and
transaction 7; write z at node 1 and read y at node 2. Using the above rules for class 3, both T;
and T; may validate locally at both node 1 and 2, if T3; is validated before T;; at node 1 and T},

is validated before T;s at node 2. To avoid this anomaly, two different approaches can be taken:

(a) Ensure for all class 3 subtransactions Tjz, Read-set of Tj, N Write-set of Tj; = ¢; or

(b) Require the validating subtransaction T}, to wait for the global outcome of all class 3 sub-

transactions T;; before completing its local validation.

Note that the latter strategy allows less concurrency but avoids the high overhead incurred by

conflict checking.

By detecting a concurrent transaction of class 2 or 3 during validation, we may either check

conflict against those transactions or we may simply abort the validating one. The implementation

of conflict checking, therefore, may involve one or more of these conditions. As indicated in Figure 2,
each condition allows different levels of concurrency, and a more complicated conflict checking
mechanism can result in a higher levels of concurrency. Consequently, there is a trade-off between
the complexity of implementation and the level of concurrency allowed by the implementation. No
conflict checking against class 2 and 3 corresponds to restricting transaction to execute serially.
This is an option that we dismissed. Hence, conflict against class 2 subtransactions are checked in
all variations of our implementations. Depending on the strategy of conflict checking against class

3 subtransactions various protocols emerge:

OCC-N: No conflict is checked against class 3 subtransactions.

OCC-A: Conflict is checked against class 3 using strategy (a).

OCC-B: Conflict is checked against class 3 using strategy (b).

OCC-AB: Conflict is checked against class 3 first using strategy (a). If a conflict is detected, it

waits for the global outcome using strategy (b).

The OCC validator for each of these four variations of optimistic protocols, uses a hash table

to check conflict by using following operations on a data granule:

1. search and check its serialization compatibility against other transactions which are currently

registered with this data granule in the hash table;

2. insert it into the hash table if no conflicts are detected;

3. delete it from the hash table whenever it is no longer needed.

Under a low update rate situation, the performance of all the above variations of the protocols
are further improved through a quick check on the combined number of entries in the hash table
by subtransactions in locally validated state or in the write-phase. If there are no entries in the

hash table, the validating subtransaction skips conflict checking, irrespective of the protocol used.

More detailed descriptions of these implementations can be found in [16].

3.3 Optimistic Concurrency Control with Forward Validation

Under the forward validation approach, a transaction also consists of three phases, namely, read,

validation and write. During the read phase the transaction enters its read-set in the common

hash table so that it can be immediately notified by other transactions about any of their updates
conflicting with the read-set of this transaction. Upon receiving such notification, the transaction
in its read phase is aborted and restarted. Once the transaction reaches its validation phase, it
notifies all the other transactions in their read phase about any of its updates conflicting with
their read-set. As the validation is done independently and in parallel at each of the participating
nodes, a two phase commit is used to ensure the same serialization order at all nodes. Note, a
locally validated subtransaction will notify other locally conflicting subtransactions in their read
phase to be aborted. Also, the locally validated subtransaction may be aborted due to global
validation failure. To avoid, any unnecessary abort, upon receiving any conflict notification the
read subtransactions are actually suspended (to avoid any further wasted computation). Later,
depending on the outcome of the notifier’s global validation, the suspended transaction is either
aborted or awakened. A time-out mechanism is used to avoid the vary rare case of deadlock where

two transactions conflict at two nodes and start their validation at those nodes in reverse order.

The hash table operations required by this protocol are very similar to that of two-phase locking;:

1. insert the weak lock into the hash table during read-phase;
2. search and notify all weak-lock holders about any conflict during validation phase;

3. delete it from the hash table whenever the lock is released.

3.4 Distributed Recovery

In this section we turn to the question of how to process transactions in a reliable manner. Specifi-
cally this issue involves building a recovery system which will make a database system behave as if
it contains all of the effects of committed transactions and none of the effects of uncommitted ones.
The basic technique for implementing durable transactions in presence of failures is the use of logs.
A log contains information for undoing or redoing all operations performed by transactions. The
two-phase commit protocol[8, 14], the simplest and most popular one of its kind, is adopted in the

CARAT implementations.

The journalling (log) mechanisms currently implemented in CARAT are based on the log write-
ahead protocol. Two journalling mechanisms are implemented: before-image journalling and after-
image journalling. The TM and DM servers at each node share a single log file, which contains

before-images or after-images of data objects and two-phase commit log records. In a commercial

system, journalling is processed at either a page or a record level; in CARAT, however, only page

level journalling is implemented.

The before-images of the data pages are force-written to the disk by the DM server before the
data pages are modified in the buffers. The after-images of the data pages are force-written to the
disk before the DM server returns a PREPARED message to the TM server, i.e., during the first
phase of the two-phase commit execution. We tested two locking protocols, one with before-image
and a second with after-image journalling. For all optimistic concurrency control protocols, only
the after-image journalling mechanism is implemented. Note that, according to the optimistic
approach, all the modified data pages are maintained in the private memory and are flushed out
to the database only when the COMMIT messages are received by the DM servers. Hence, the

after-image journalling mechanism is preferred in the optimistic approach.

To safely record transaction state against system failures, the Coordinator TM server for a
distributed transaction force-writes a “commit” or “abort” log record to the system log at the end
of the first phase of the two-phase commit when the fate of the transaction is determined. The
TM server also force-writes a “prepared” log record to the system log when a DM server reaches
the prepared state. A “prepared” log record contains the coordinator node number that is used to

resolve the transaction at system recovery time.

4 Experimental Setup

In this section, we first describe the workloads under which various sets of experiments were carried
out. We then describe the various performance metrics measured, as well as the criterion used to

evaluate the statistical significance of our results.

4.1 Transaction Types and Workloads

The transaction workload consists of a fixed number of concurrent users, each user running a
particular type of transaction, during the entire run of the experiment. A transaction type is

described by the following attributes

Local vs. Distributed Transactions — Local transactions perform no remote requests, while
the data requested by distributed transactions are spread over multiple nodes. Distributed
transactions are characterized by the number of participating nodes and how the requested

data are distributed among them. In our experiments the data requests from each distributed

10

transaction were uniformly distributed (i.e., interleaved local and remote requests) among the

involved nodes.

Read-only vs. Write Transactions — Read-only transactions perform no update operations.

All requests made by write transactions are updates.

An workload is designated by two attributes according to the mix of various transaction types
with different location and update attributes. The location attribute of the workload can be all
local (L), all distributed (D), or mixed (M) environment with both local and distributed users.
Similarly, its update attribute could be all read (R), all write (W), or both (B) read and write
users. Based on the mix of various transaction types in the system, the following set of workloads

were chosen for our experiments:
LR8 — 8 Local Read-only users per site.

LB8 — 8 Local users per site: 4 read users and 4 write users.

MB8 — 8 users per site: 2 local read users, 2 local write users, 2 distributed read users, and 2

distributed write users. Each distributed user accesses 1 remote node.
LWn — n Local write users per site.

DxWn — n Distributed Write users per site with each distributed transaction accessing z number

of remote nodes.

Our database was partitioned so that each node consisted of 18,000 records stored in 3,000
pages (6 records per page) with 512 bytes per page. The data records accessed by a transaction in
the experiments were chosen to be randomly and uniformly distributed across the whole database.
The transaction size, specified as #TDO (no. of transaction DO steps) requests per transaction,
was varied between 4, 8, 10, 12, 16, and 20. Here each request accesses four database records. The
user think time between the end of a transaction and the beginning of the subsequent transaction

is set to zero in all the experiments described here.

4.2 Performance Metrics

To compare the performance of different protocols, we use three different transaction performance

metrics (throughput, response time, and abort ratio) and two system resource utilization metrics

11

(CPU utilization and Disk I/O rate). The system utilization metrics can reveal performance bottle-
necks caused by system resources. To further understand the behaviour of specific protocols, data
relevant only to that protocol was also collected. For instance, locking statistics were collected to

help understand locking behavior.

1. Record throughput was measured in records accessed by successful transactions per second.
This metric was chosen to normalize the effects of transaction sizes. We calculate the record
throughput (records accessed per second) by multiplying the transaction throughput by the

total number of data records accessed by a transaction, i.e., 4-#TDO.

2. Transaction response time was measured by the user (TR) process which initiated it. It
is the time elapsed since the first TBEGIN message is sent to the TM until the last message
TENDK is received from TM of a transaction by the user process. The mean response
time was then calculated by averaging the transaction response times of those committed

transactions.

3. Transaction abort ratio is the probability that a transaction is aborted due to deadlock

or unsuccessful validation.

4. CPU utilization is the percentage of the time CPU is busy in processing CARAT transac-

tions (operating system overhead such as process scheduling is excluded).

5. Disk I/O rate is measured as the number of I/O per second in processing CARAT transac-

tion data.

Note that, Disk I/O includes only database I/O in our measurement. Two major Disk I/0O
operations are involved in processing CARAT transactions: (i) Disk I/O for database accesses (DB
I/0) and (ii) Disk I/O for journalling (log I/O). In order to isolate the impact of the concurrency
control protocol from the recovery scheme we made an assumption that the journalling overhead
was relatively insignificant since logging was performed on a separate fast disk at each node. In
other experiments (not reported here), we used a separate disk to log I/0, and we found that while
the transaction response time increases slightly due to physical delay of log I/0, the qualitative
performance of various protocols in comparison with each other remains the same. Without any
loss of generality, we report only the results of those experiments in which the physical access to log
disk was turned off. Because there was little difference in the performance of 2PL /AT and 2PL/BI,
we also report solely on the performance of 2PL/AI and the five OCC/AI implementations. In
the remainder of the paper, we refer to each of the protocols solely by the associated concurrency

control protocol, e.g. 2PL instead of 2PL /AL

12

4.3 Measurement

A CARAT test consists of three phases: start up phase, the steady state phase, and the termination
phase. Measurements are taken over the entire test. Consequently, it was necessary to choose the
run length such that the testbed behavior during the start up and termination phases have little
effect on measurement results. For several of the workloads, we ran the test for 10-60 minutes and
observed that the results stabilized at 30 minutes. Hence, all measurements are reported for test
lengths of 30 minutes. In addition, we duplicated several tests 3-5 times in order to determine the

accuracy of our measurements. We found that there was little difference from one run to another.

Five nodes were involved in our experiments, and assigned the same workload. Very similar
performance data was obtained on each node due to the homogeneity among these nodes. Since
the minor differences among nodes are negligible for our purposes, only the mean values of the
data over all nodes are analyzed and displayed in the figures in the following sections. The system

utilization (CPU, I/0) data was collected by SPM?2.

5 Performance Comparison

The following five sets of experiments were performed.

Experiment 1 — Protocol overhead: This experiment was carried out for the LR8 workloads
to compare the overhead of all protocols without data contention. In this experiment, we

varied the size of transactions (TDO steps).

Experiment 2 — Data contention: L.B8 workload was chosen for this experiment to study
the effect of data contention on the performances of all protocols, by varying the size of

transactions (TDO steps).

Experiment 3 — Distributed execution: MB8 workload was chosen to study the overhead of
distributed execution on the performance of all protocols together with varying the size of

transactions (TDO steps).

Experiment 4 — Multi-programming level: The effect of the multi-programming level was

studied for three kind of workloads: LWn, D1Wn, and DnW2.

2DEC’s VAX Software Performance Monitor package is capable of collecting the overall system performance data,
e.g. CPU utilization and disk I/O rate, in a specified period.

13

Experiment 5 — Query or update intensive workloads: The mix of read and write users
was varied to study the effects on the performance of the different protocols. their relative

numbers.

5.1 Experiment 1 — Protocol Overhead

It is clear from Figures 3-6 that the protocols divide into three groups according to their perfor-
mance: (i) 2PL and OCC-FV, (ii) OCC-AB and OCC-A, and (iii) OCC-B and OCC-N. Protocols
within each group are similar in their implementation details. The protocols in group (i) are based
on locking techniques whereas, the protocols in group (ii) and (iii) are based on the validation
techniques. The group (iii) showed an overall significantly better performance in terms of record
throughput (Figure 3) and response time (Figure 6). Also, group (iii) showed the lowest CPU uti-
lization (Figure 4) and the highest Disk I/O rate (Figure 5). On the other hand, the performance
of the group (ii) and (iii) protocols are relatively similar to each other regardless of their difference
in the high level implementation techniques (locking vs. validation). These observations lead to

the following points:

1. The low level implementation techniques are the same for all six protocols. The performance
differences under the no data contention read-only workload, therefore, can be attributed to

the number of high level hash operations required for each transaction.

2. Under local-only workloads, the implementation of strategy (b) or its absence in the OCC
validator does not affect the performance of OCC-BV protocols (see Section 3.2) as this is
required only for the global serialization of distributed transactions. Hence, it is expected

that {OCC-AB, OCC-A} will behave similarly as will {OCC-B, OCC-N}.

3. Strategy (a) implemented in the OCC validator requires that the read-set of a transaction
be registered into the hash table for later transactions to check against. For local read-only
transactions, each data granule which has been accessed during the read-phase should go
through all three OCC validator hash operations described in Section 3.2. The OCC protocols
without strategy (a) (OCC-B and OCC-N), therefore, performed much better than the ones
with strategy (a) (OCC-AB and OCC-A).

4. The locking based protocols (group (i)) require that all three hash operations as described
in Sections 3.1 and 3.3 be used for each data granule accessed by a transaction. Since these
hash operations are similar to those implemented in the OCC validators, the performance of

group (i) and (ii), are found to be similar.

14

5.2 Experiment 2 — Data Contention

As can be observed from Figure 7, 2PL performed better than all the OCC protocols for all trans-
action sizes. The poor performance of the latter protocols was mainly due to the high transaction
abort ratios. The abort ratios of OCC-BV protocols are much higher (by at least 20% greater)
than that of 2PL (see Figure 8). The percentage of the aborted transactions increases for all the
protocols as the transaction size is increased. As shown in Figure 8, the abort ratios for OCC
protocols were very sensitive to data contention. Between 10%-40% of transactions were aborted
even for the shortest transaction workload (4 TDO steps per transaction). However, the abort
ratio is less sensitive to the increase in transaction size. In the case of 2PL, there is very little
abort due to deadlock for TDO steps less than 8, and it then increases sharply with the increase in
transaction size. The CPU and disk utilizations were comparable for protocols. As the throughput
was very much determined by the high abort ratio, the special implementation optimizations used

with OCC-BV protocols provided no real benefit under this workload.

Figure 9 and Figure 10 present the CPU utilization and the Disk I/O rate. We observed that
both the CPU utilization and the Disk I/O rate for 2PL decrease slightly as the transaction size
increases. This can be explained by the fact that the lock blocking time increased as the transactions
became large. This is also consistent with the lowered record throughput shown in Figure 7. On
the other hand, for OCC protocols, the CPU utilization remained relatively constant and the Disk
I/0 rate increased as the #TDOs became large. This occurs even though the record throughput
decreases as a function of # TDOQO’s and is consistent with the wasted computation due to the high

abort ratios.

5.3 Experiment 3 — Distributed Execution

The preceding discussion only deals with workloads in which no distributed transactions were
involved. To investigate the performance characteristics in a distributed environment the MB8
workload is used which includes both local and distributed transactions. Both 2PL and OCC-FV
performed better than OCC-BV protocols (Figure 12). This is becuse OCC-BV protocols suffered
from high abort rate (Figure 13) and because various implementation optimizations made little
difference in the performance of the protocols. We also observed that OCC-FV provides slightly
higher throughput than 2PL for workloads containing long transactions (#TDO = 16, 20). Two
plausible factors are: (i) the distributed commit protocol overhead and (ii) the distributed dead-

lock detection overhead. These overheads elongate the mean transaction response time (compare

15

Table 1: Mean Lock Blocking Time and Probability of
Deadlock:
MBT: Mean Lock Blocking Time (in seconds)
Pdl: Probability of Deadlock (per transaction)

LB8 MBS

#TDO | MBT Pdl MBT Pdl
4 1.870 0.0014 | 2.267 0.0017
8 3.911 0.0427 | 5.568 0.0410
12 5.358 0.2055 | 10.3256 0.2121
16 6.266 0.4078 | 11.566 0.4694
20 6.663 0.5791 | 11.842 0.6495

Figure 11 and Figure 16) and hence, the mean lock blocking time (see Table 1). This increases
the number of blocked transactions as well as the number of aborted transactions due to increased
probability of deadlock (see Table 1). The throughput of OCC-FV is less affected due to the above
two factors and hence, OCC-FV even slightly outperformed 2PL for longer transactions.

5.4 Experiment 4 — Effects of Multi-Programming Level

In this experiment, the workloads consisted of update users only and the transaction size was fixed to
8 TDO steps per transaction. We used three different approaches to increase the multi-programming
level. In the first case, we increased the number of local write users from 1 to 12 (LWn workloads).
In the second case, the number of distributed users was varied from 1 to 4, where each distributed
transaction accessed only one other remote site (D1Wn workloads). In the last case, we kept
the number of users per site unchanged (2), but varied the number of remote sites accessed by a

transaction from 1 to 4 (DnW2 workloads).

Figures 17-21 show the performance for local write users. As can be observed from the figures,
2PL has an overall better performance than any of the OCC protocols. As the number of users
increased, both the abort ratio and response time increased proportionally for 2PL. The abort ratios
were fairly low, less than 13% for all the workloads, whereas the mean response time increased
linearly from 3 seconds for single user workload up to 20 seconds for the twelve users workload.
Due to the I/O device being a bottleneck, the throughput, the CPU utilization, and the Disk I/0O

rate became constant when the number of users increased beyond four.

For all OCC protocols, the abort ratio increased with the number of users, but the rate of

increase leveled off for large numbers of users. This result follows the theoretical predictions of [4].

16

The abort probability depends on the database update rate. The abort ratio becomes less sensitive
to high multi-programming level since the throughput does not increase with multi-programming
level. The OCC-N protocol suffered the highest abort ratio and it was high even for two users. The
abort ratio for OCC-FV protocol is less than that of OCC-BV protocols. Both CPU utilizations
and Disk I/O rates reached a maximum rate for a higher number of users, except for the OCC-B

protocol due to the blocking effect caused by the wait-timeout mechanism.

The second set of workloads raises the multi-programming level by increasing the number of dis-
tributed update users (Figures 22 and 23). As can be observed in the figures, the highest throughput
was exhibited by the 2PL, followed by the OCC-FV, and then by the OCC-BV protocols.

For the third set of workloads, both the number of users and the transaction size were fixed, only
the number of remote sites per transaction were increased (Figures 24 and 25). The throughput
decreased by a small factor with the increase in number of remote nodes per transaction, due to

the increased overhead of distributed execution.

5.5 Experiment 5 — Query or Update Intensive Workloads

Many database systems are query intensive (read only transaction) and are characterized by a very
small update rate. During the execution of a transaction, if no database update is made by other
transactions, no entries are made in the hash table. A transaction can avoid checking conflict under
OCC-BV protocol by detecting such a special case. (Details of some other special optimizations
implemented by maintaining various counters for low update rate can be found in [16].) This
experiment was designed to compare the performance under a various mix of read and write (query
and update) transactions. The number of users was fixed at 8, and the mix of R/W users was
varied as 8/0, 7/1,...,1/7,0/8. As can be seen from the Figure 26, the throughputs of OCC-B and
OCC-N were higher than for all other protocols in the absence of any update transaction (R/W mix:
8/0). The validation overhead was required by the above two protocols, in the presence of even a
small database update rate (R/W mix: 7/1), and the protocols subsequently lost their advantages
over the others. This may be an artifact of our experiment design, because we maintained a fixed
mix of query/update users. One can envision an alternative scenario: on the average there is one
read and seven write transactions, but there may be a long period of time when all transactions
are read-only. In such a scenario, OCC-B and OCC-N can be expected to perform well, because
of simplified conflict checking. The performance under such time-varying workloads will be the

subject of our future study.

17

6 Summary

Although the complexity of a distributed database system makes experimental comparisons of con-
currency control protocols difficult, we have succeeded in experimentally comparing three classes
of concurrency control protocols, two-phase locking and the optimistic approaches with forward
and backward validation. For the optimistic concurrency control protocol with backward valida-
tion we have developed, implemented, and evaluated several optimizations. Except for very small
update rate, none of these optimizations proved as effective as two-phase locking or optimistic with
forward validation protocols. We believe that this is the first comprehensive experimental study
of distributed concurrency control protocols. In order to minimize the non-essential variations in
implementation, we have used a common implementation of a hash table for both the lock table
as well as the validation table. The main emphasis here is to contrast the difference in protocol
overhead based on the number of high level operations required by different protocols while taking
the common low level implementation overhead into consideration. From the measured values of
basic performance metrics (throughput, response time, abort ratio, CPU and I/O utilization,etc.),
we presented qualitative explanations for the observed performance characteristics of various con-

currency control protocols.

2PL performed better than the OCC protocols in terms of transaction throughput under most
of the workloads in our experimental environment. The lock blocking effect was identified as an
important performance degradation factor for the 2PL protocol. Both the CPU and disk became
less utilized as the lock blocking rate or mean lock blocking time increased. Under a very high
conflict situation, the abort rate due to deadlocks also increased very sharply. Optimistic proto-
cols, on the other hand, suffer from wasting computational resources due to high transaction abort
rate. The experiments were CPU bound for OCC protocols under most of the workloads since the
CPU utilizations were almost saturated (around 90% utilized). The various implementations of
the optimistic protocols with backward validation resulted from the trade-offs between the com-
plexity of the mechanism required and the levels of the concurrency provided. Under low data
contention situations, less complex implementations (OCC-N and OCC-B) outperformed the more
complex ones (OCC-A and OCC-AB) in terms of higher record throughput and lower response
time. However, when data contention was high, these performance differences were diminished.
For a query-intensive system, where database update rate is low, the performance of optimistic
protocols can be dramatically improved, by special implementation optimizations (maintaining the

count of hash entries etc.).

18

The implementation of the optimistic protocol with forward validation is similar to that of 2PL
(use of lock table) and hence, to its performance under many workloads. Under the workloads,
where optimistic protocols with backward validation suffered high abort ratio, OCC-FV performed
much better than OCC-BV protocols. Under workloads, where 2PL lost its advantage due to
long lock holding times (due to longer transaction size or distributed execution), OCC-FV slightly
outperformed 2PL as its throughput degraded at a lower rate.

19

References

[1]

[10]

[11]

R. Agrawal, M. J. Carey, and M. Livny, “Concurrency Control Performance Modeling: Alterna-
tives and Implications,” ACM Transactions on Database Systems, Vol. 12, No. 4, pp. 609-654,
December 1987.

K. M. Chandy, J. Misra, and L. M. Hass, “Distributed Deadlock Detection,” ACM Transac-
tions on Computer Systems, Vol. 1, No. 2, pp. 144-156, May 1983.

K. M. Chandy and J. Misra, “A Distributed Algorithm for Detecting Resource Deadlocks
in Distributed Systems,” In Proc. 1st ACM SIGACT-SIGOPS Symp. on the Principles of
Distributed Computing, pp. 157-164, Ottawa, August 1982.

A.Dan, W. H. Kohler, and D. Towsley, “Modeling the Effects of Data and Resource Contention
on the Performance of Optimistic Concurrency Control Protocols,” In Fourth International
Conference on Data Engineering, pp. 418-425, February 1988.

K. P. Eswaren, J. N. Gray, R. A. Lorie, and 1. L. Traiger, “The Notions of Consistency
and Predicate Locks in a Database System,” Commaunications of the ACM, Vol. 19, No. 11,
November 1976.

B. I. Galler and L. Bos, “A Model of Transaction Blocking in Databases,” Performance FEval-
uation, Vol. 3, pp. 95122, 1983.

J. Gray, P. Homan, R. Obermack, and H. Korth, A Straw Man Analysis of Probability of
Waiting and Deadlock, Research Report RJ 3066, IBM Reserach Laboratory, San Jose, CA,
February 1981.

J. N. Gray, “Notes on Database Operating Systems,” In R. Bayer, R. M. Graham, and G. Seeg-
muller, editors, Operating Systems: An Advanced Course, pp. 393-481, Springer—Verlag,
Berlin, 1978.

N. Griffeth and J. A. Miller, “Performance Modeling of Database Recovery Protocols,” IEFE
Transactions on Software Engineering, Vol. SE-11, No. 6, pp. 564-572, June 1985.

K. B. Irani and H. Lin, “Queuecing Network Models for Concurrent Transaction Processing
in a Database System,” In Proc. of ACM SIGMOD Int’l Conf. on Management of Data,
pp- 134-142, Boston, MA, May 1979.

B. P. Jenq, Performance Measurement, Modelling, and Evaluation of Integrated Concurrency
Control and Recovery Algorithms in Distributed Database Systems, PhD thesis, University of
Massachusetts, Amherst, February 1986.

W. Kohler and B. P. Jenq, “CARAT: A Testbed for the Performance Evaluation of Distributed
Database Systyems,” In Proc. of the Fall Joint Computer Conference, pp. 1169-1178, IEEE
Computer Society and ACM, Dallas, Texas, November 1986.

H. T. Kung and J. T. Robinson, “On Optimistic Methods for Concurrency Control,” ACM
Transactions on Database Systems, Vol. 6, No. 2, pp. 213-226, June 1981.

B. G. Lindsay et al., Notes on Distributed Databases, Research Report RJ 2571, IBM Reserach
Laboratory, San Jose, July 1979.

20

[15] D. Potier and P. Leblanc, “Analysis of Locking Policies in Database Management Systems,”
Communications of the ACM, Vol. 23, No. 10, pp. 584-593, October 1980.

[16] C. Shih, Performance Measurement and Evaluation of Concurrency Control Algorithms in a
Distributed Database Testbed System, Master’s thesis, University of Massachusetts, Amherst,
February 1989.

[17] A. W. Shum and P. G. Spirakis, “Performance Analysis of Concurrency Control Methods
in Database Systems,” In F. J. Kylstra, editor, Performance 81, pp. 1-19, North-Holland,
Amsterdam, 1981.

[18] A. Thomasian, “An Iterative Solution to the Queueing Network Model of a DBMS with Dy-
namic Locking,” In Proc. of 13th Conf. Computer Measurement Groups, pp. 252-261, San
Diego, CA, December 1982.

21

gzoQEw TIEY nwogbnoQwE=m

ZOHHpN~EH=HG YA

X

45 L

40

35 1

30 A

25 A

20 A

15

10 A

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

100

90 A

80 A

70

60 -

50

40

30 A

20 A

10 A

A

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 3: Record Throughput vs. Transaction Size for LR8 Work Load

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

! ! ! ! [

T T T ™

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 4: CPU Utilization vs. Transaction Size for LR8 Work Load

22

gzZzoaEHw TETY wnEH@Qe'

wngzZoQmw

50 A

45

40

35 1

30 A

25 A

20 T

15

10 A

°cPd® e & O

L L L L —

40 %

35

30 A

25 A

20 A

15

10 A

T T T L

4 8 12 16 20
NUMBER OF T-DO STEPS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 5: Disk I/O Rate vs. Transaction Size for LR8 Work Load

°cPd® e & O

! ! ! ! [

T T T T ™

4 8 12 16 20
NUMBER OF T-DO STEPS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 6: Transaction Response Time vs. Transaction Size for LR8 Work Load

23

gzoQEw TIEY nwogbnoQwE=m

Or~Hp @ HTZOwW»

X

45 L

40

35 1

30 A

25 A

20 A

15

10 A

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

90 1
80 -
70 -
60 -
50 -
40 -
30 -
20 -

10 A

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 7: Record Throughput vs. Transaction Size for LB8 Work Load

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

- T T T ™

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 8: Abort Ratio vs. Transaction Size for LB8 Work Load

24

ZOHHPpN~EH=HG PO

X

gzZoQEwn HWEHY wnE@e'd

100

90 A

80 A

70

60

50 A

40

30 A

20 A

10 A

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

L L L L —

50 A

45

40

35 1

30 A

25 A

20 A

15

10 A

T T T L

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 9: CPU Utilization vs. Transaction Size for LB8 Work Load

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cd® e & O

A

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 10: Disk I/O Rate vs. Transaction Size for LB8 Work Load

25

wngzZoQmw

gzoQEw HWEY nogmsoQE™

40 L

35 1

30 A

25 A

20 A

15

10 A

°cPd® e & O

A

4 8 12 16 20
NUMBER OF T-DO STEPS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 11: Transaction Response Time vs. Transaction Size for LB8 Work Load

45 %

40

35

30 A

25 A

20 A

15 A

10 A

°cPd® e & O

4 8 12 16
NUMBER OF T-DO STEPS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 12: Record Throughput vs. Transaction Size for MB8 Work Load

26

Or~Hp @ HTZOwW»

X

ZOHHpN~EH=HG YA

X

90 L

80 A

70

60 -

50 A

40

30 A

20 A

10 A

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

100

90 A

80 A

70

60 -

50

40

30 A

20 A

10 A

A

- T T T T

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 13: Abort Ratio vs. Transaction Size for MB8 Work Load

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

! ! ! ! [

T T T ™

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 14: CPU Utilization vs. Transaction Size for MB8 Work Load

27

gzZzoaEHw TETY wnEH@Qe'

wngzZoQmw

50 A

45

40

35 1

30 A

25 A

20 A

15

10 A

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

L L L L —

40 %

35

30 A

25 A

20 A

15

10 A

T T T L

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 15: Disk I/O Rate vs. Transaction Size for MB8 Work Load

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

! ! ! ! [

T T T T ™

4 8 12 16 20
NUMBER OF T-DO STEPS

Figure 16: Transaction Response Time vs. Transaction Size for MB8 Work Load

28

gzoQEw®n HEY nogmsoQE™

Or~Hp @ HTZOwW»

X

20

—
ot
!

—_
o
I

ot
!

°cd® e & O

! ! ! ! ! ! ! ! ! ! ! ! >

T T T T T T T T T T T T >

1 2 4 6 8
NUMBER OF LW USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 17: Record Throughput vs. LW Users/Site (8 T-DO steps per transaction)

°cPd® e & O

A

NUMBER OF LW USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 18: Abort Ratio vs. LW Users/Site (8 T-DO steps per transaction)

29

ZOHHpN~EH—=HG GUQ

X

gZoaEHw TETY wnEH@e'T

100

90 A

80 A

70

60 -

50 A

40

30 A

20 A

10 A

°cd® e & O

NUMBER OF LW USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 19: CPU Utilization vs. LW Users/Site (8 T-DO steps per transaction)

35 1

30 A

25 A

20 A

15

10 A

°cPd® e & O

A

NUMBER OF LW USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 20: Disk I/O Rate vs. LW Users/Site (8 T-DO steps per transaction)

30

wngzZoQmw

gzoQEw TIEY nwogbnoQwE=m

35

30 A

25 A

20 A

15

10 A

°cPd® e & O

A

NUMBER OF LW USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 21: Transaction Response Time vs. LW Users/Site (8 T-DO steps per trans-

20 4

15

10 A

action)

°cPd® e & O

! ! ! [

T T T ™

D1w1 D1wW2 D1W3 D1w4
NUMBER OF D1W USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 22: Record Throughput vs. D1IW Users/Site (8 T-DO steps per transaction)

31

wngzZoQmw

gzoQEw®n WEY nogmsoQE™

°cPd® e & O

! ! ! [

T T T ™

D1w1 D1wW2 D1W3 D1w4
NUMBER OF D1W USERS

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 23: Transaction Response Time vs. DIW Users/Site (8 T-DO steps per

transaction)

15 1
(]
O
[]
10 + ®
®
[e]

5 =4

D1wW2 D2W2 D3W2
NUMBER OF REMOTE SITES/TRANSACTION

D4W2

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

Figure 24: Record Throughput vs. Remote Sites/Transaction (2 users initiated at

each site with 8 T-DO steps per transaction)

32

wngzZoQmw

gzoQEw®n WEY nogmsoQE™

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cPd® e & O

! ! ! [

T T T ™

D1wW2 D2W2 D3W2 D4W2
NUMBER OF REMOTE SITES/TRANSACTION

Figure 25: Transaction Response Time vs. Remote Sites/Transaction (2 users ini-

tiated at each site with 8 T-DO steps per transaction)

: 2PL

: OCC-FV
: OCC-AB
: OCC-A
: OCC-B

: OCC-N

°cd® e & O

8/0

A

7/1 6/2 5/3 4/4 3/5 2/6 1/T1 0/8
R/W USERS RATIO

Figure 26: Record Throughput vs. R/W Transaction Mixing Ratio (8 local trans-

action users initiated at each site with 4 T-DO steps per transaction)

33

