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Abstract

We describe a system that allows a robot to acquire a model of its environment and to
use this model to navigate. Our system maps the environment as a set of snapshots of the
world taken at target locations. The robot uses an image-based local homing algorithm to
navigate between neighboring target locations. Interesting and novel features of our approach
are an imaging system that acquires a compact, 360° representation of the environment and
an image-based, qualitative homing algorithm that allows the robot to navigate without
explicitly inferring three-dimensional structure from the image. We describe the results of
an experiment in a typical indoor environment and argue that image-based navigation is a
feasible alternative to approaches using three-dimensional models.

This report will appear in the Proceedings of the IEEE Conference on Robotics and Automation,
April 1991. The work described in this report has been supported by the Defense Advanced Re-
search Projects Agency under RADC contract F30602-87-C-0140 and Army ETL contract DACAT76-
89-C-0017.



1. Introduction

Mobile robot navigation has proved to be a complex task, even in a task domain where
the robot is given a detailed three-dimensional model of its environment (Fennema et al [2]).
Providing a robot with such a model is itself a significant, time-consuming task: a survey
of many of the natural and cultural objects in the robot’s environment and their spatial
relationships to each other is required. If done sparsely this might amount to the extraction
of key landmarks that would allow proper navigation relative to the prominent features of
the visible environment. In the limit, this would involve determining contour maps and full
three-dimensional solid models of all prominent objects. In either case, acquiring accurate
geometric information is difficult and expensive.

Because it is difficult to acquire world models for navigation, it becomes an obvious
goal to have a mobile robot explore the environment itself in order to extract information
sufficient for effective navigation (e.g., Davis [1] or Yeap [8]). There are many possible ways
this might be done, but if the goal is navigation — instead of full three-dimensional surface
reconstruction — then the environmental features that are most prominent and visible (i.e.,
landmarks) will provide the key information for locating the robot vehicle and determining
an appropriate path to the goal. Recent efforts involving navigation with landmarks include
Fennema et al [2], Kumar and Hanson (5], and Zheng and Tsuji [9]. ‘

In this paper we develop a navigation strategy built on the technique of image-based local
homing. Homing is a navigation task in which the goal is one of a fixed set of target locations
known to the robot. The robot is capable of finding its way only to these target locations,
but not to any arbitrary place in its environment. In contrast, such tasks as “Go down Elm
St. until you come to a big white house with a poplar tree in front” or “Move three meters
north” are not homing tasks: they require the robot to move to unfamiliar locations.

We use a novel and powerful imaging system to project a full 360° view of the world
into a single image and then condense this view into a compact, one-dimensional location
signature. A location signature retains enough information about the landmarks seen from
its target location to allow homing. In image-based local homing, the differences between
the signature of a robot’s current location and the signature of a target location are used to
compute incremental movements that take the robot closer to the target location. We call
our technique “local” homing because the robot’s current location must be close enough to
the target location that it falls within its “capture region” for homing. If the robot’s current
location is too far from the target location, the homing algorithm will fail because there
will be too much distortion in images of the prominent landmarks common to both location
signatures.



We acquire a model of the world by running the robot along a desired route and having
the system extract location signatures for a sequence of target locations on the route. After
acquiring this model, the robot can navigate the route by successively homing to each of
its target points. Thus we have reduced the problem of navigating a large-scale space to a
problem of navigating a sequence of small-scale spaces.

The remainder of this paper will provide the details of matching landmark features and
computing local homing movements for navigation. We will also summarize the results of
indoor experiments that acquire environmental information in a training phase and then use
this information for successful navigation.

2. Image Processing

We have implemented the homing algorithm on a Denning DRV-1 mobile robot. The
imaging system (Figure 1), which is mounted to the front of the robot’s body, comprises a
spherical mirror mounted above a video camera. The video camera points up at the bottom
of the spherical mirror and sees a 360° “hemispherical” image of the world (e.g., Figure 2).
Since the body of the robot does not rotate, the orientation of the perceptual frame of
reference in these images changes very little as the robot translates through the world. This
imaging technique is similar to the conical mirror and laser striping system of Jarvis and
Byrne [4] and the passive conical-mirror imaging system of Yagi and Kawato [7], but different
from other methods that rotate a horizontal camera to acquire a panoramic view (e.g, Zheng
and Tsuji [9] and Suzuki and Arimoto [6]).

Figure 2 shows the world as the robot sees it. The annulus of tick marks in Figure 2
contains the robot’s horizon line. The horizon line is projected into the hemispherical image
as a circle. As the robot moves horizontally across the ground plane, landmarks that project
to points inside this horizon circle can potentially move to any location inside the circle;
landmarks that project to points outside the horizon circle can potentially move to any
location outside the circle. Landmarks that project to points on the horizon circle, however,
remain on this circle as the robot moves. By sampling the image on the horizon line, we take
advantage of a projective invariance that allows us to reduce the complexity of the landmark
matching problem from two dimensions to one dimension.

The robot extracts a one-dimensional, circular location signature by sampling the hemi-
spherical image along the horizon circle at angular intervals Af; in our experiments, we
sampled at 1° intervals. Each sample is a radial average of the image near the horizon
circle; in our experiments, we average over 5 radial pixels. We can formally express the re-
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Figure 1: Robot with imaging system.

lation between the one-dimensional location signature V and the two-dimensional image [ as

2
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where V; is the #*" intensity value of a one-dimensional location signature V, I(4,r) is the
intensity of the hemispherical image at polar coordinates (6,7), Af is the angular sampling
interval, Ar is the radial sampling interval and =, is the radius of the horizon circle. Thus
we compress a 512 by 512-byte image into a 360-byte location signature. This efficient
representation of images is of major importance in the simple yet effective development of
the homing algorithm presented in later sections. Figure 3 shows a graph of a typical location
signature.

Let us now examine how prominent world features, i.e., landmarks, are selected from
the location signature. We call these features characteristic points. Characteristic points of
signatures are found in three steps. On the first step the location signature gets segmented
into regions of monotonically increasing or decreasing intensity. On the second step the
point of maximum instantaneous intensity change (i.e., zero-crossing) in each segment is



Figure 2: Hemispherical view of corridor. The superimposed circle
of tick marks shows the portion of the image sampled to

create a location signature. The horizon circle of robot lies
within this annulus.



found. Such a point is accepted as a potential characteristic point if it represents a large
enough instantaneous intensity change or if the total intensity change across its segment is
large enough. On the third step these potential characteristic points are ranked, and the top
fifteen are selected as those image features that represent the most prominent landmarks.
The rank of a potential characteristic point 4 is given by S;A;, where A; is the total intensity
change across its segment and S; is its sparseness. The sparseness of a characteristic point
is the distance between the potential characteristic points on its immediate right and left.

3. Matching Location Signatures

The goal of the matching step is to find a set of correspondences between the character-
istic points in the signature V of the current location and the points in the signature V7
of the target location. Since our correlation function computes the difference between two
signatures, the best set of correspondences is the one that minimizes the sum of a set of
correlation values p;;. In matching a point i in V against a point j in V7, we are actually
matching the values in windows centered around those points. Matching is performed with
a normalized correlation function that uses the mean g of the intensity in a window and
an approximation ¢ to the standard deviation of the intensity in a window to normalize
the matching. The normalization compensates for illumination changes that might occur
between the time a location signature is acquired and the time it is used as a target. We
assume that the difference between a target signature V7 for a location and a current signa-
ture V for the same location can be expressed as some affine transformation of the brightness
profile, i.e.,

VT = s(V - k)

for some constant bias k and scale factor s. In other words, the current signature for a
location can be transformed into the target signature for the same location by removing
some constant bias and then multiplying every intensity value by some scale factor.

We find it more convenient to express the affine transform as
sT(VT — kT) = s(V — k).

This is equivalent to the previous expression for an affine transform, except that two scale
factors, sT and s, and two biases, kT and k, must be determined. We estimate the constant
biases to be the average intensity in a window and the scale factors to be reciprocals of the



mean absolute standard deviation (which uses the L, norm instead of the L, norm). That
1s,

where V., is the image intensity of the current location signature at index i + £ (i.e., in
the window centered at index 7 in V), £ is an index into a fixed-size window, and wy is a
harmonic weighting function, defined as w; = 1/|2 + £|, that gives more weight to the center
of the window than to the edges. In our system, the window into the location signature is
13 pixels wide. Note that this transformation compensates only for variations in brightness;
it does not compensate for spherical distortions induced in the images of landmarks as the

robot moves.
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Figure 3: A typical location signature.

We match the characteristic points in the current signature V' against the image points
(not necessarily characteristic points) in the target signature V7. The ideal form of our
matching function would

ag
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where p; ; is the match value at current location signature index z and target location signa-
ture index j. We have refined this ideal matching function in several ways.

First, we have changed the shape of the matching function by multiplying it by the ratio
%ﬁ-’:—ﬁ. The constants kx;pn and ki, are chosen to give better dynamic range of matching
values. The effect of this refinement is to de-emphasize large differences between the target

and current images when the average intensity in the target image is large.



Next, we remove any (unintentional) rotation 1 of the robot’s body that may have
occurred since the time the target signature was acquired. We call this rotation the deviation.
The algorithm assumes that this deviation will be small. In practice, it is estimated to be
less than 3°.

The initial estimate 1., of the deviation is computed by

_ X $iSipij,, sin’(6:)

 ZiSiPijy,,, sin’(6;)

where S; is the sparseness of the i** characteristic point, ¢; is its offset, §; is its the angular
bearing, and p; j,.,, is the best match value found for the i** characteristic point. Offset ¢; is
computed by 87 — 6; + 1,,,, where 67 is the bearing of the landmark in the target signature
and 1,, is the most recent estimate of the deviation (initially 0). The initial estimate of
the target direction w® is also made (using the algorithm described in the following section).
Once these initial estimates are found, the set of deviations in the range [)° — ky,¥° 4 ky]
and the set of directions in the range [w® — k,,w® + k,] are searched for a deviation and a

direction that minimizes Y, p; ;,..,- The parameters ky, and k, are empirically determined.
In our system k, is a constant 56° but k, may become as large as 180°.
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For each new value of deviation 1.,¢ and direction w,;, the robot tries matching the ik
characteristic point in the current signature view V to each point in the interval between
Yeat + 0; — Ffront 8In(6; — wepe) aNd Yeur + 0; + kpack 8in(0; — weye) in model signature view V7,
where 0; — we, is the bearing of i*® characteristic point relative to the current estimate Wegt Of
the direction towards home. The choice of kf.on: and kpgcr helps determine how far towards
its front and its back (where its front is in the estimated direction of home, w) that the robot
searches for matches to characteristic points. In our system kgpone = 0° and kyqer = 8°.

The actual matching function, reshaped and with the deviation removed, is given by

knigh o
Pij = Zl: mwd(wu —p) - U—T(Vﬂz_u, — "),

where the mean and reciprocal of the standard deviation in the target window are now given

by
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The values p and % remain the same as before.
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4. Computing a Movement

The difference between the bearing of a characteristic point in the signature for the robot’s
current location and bearing of the point it matches in the target signature is the offset ¢
of the characteristic point. The offsets for the characteristic points allow the algorithm to
compute an incremental local homing movement. Suppose the robot is at some current
position C and its goal is target position T, as shown in Figure 4. What would the robot
see if it were to move directly towards target location T? The spherical mirror induces
very simple image displacements of landmarks that project onto the horizon line. Every
characteristic point on the invariant horizon circle slides along the horizon circle away from
the robot’s direction of motion in the direction shown by the curved arrows in Figure 4.
Thus the robot should move in a direction that will cause the characteristic points to slide
to the bearing they have at the target location.

Let us consider landmark £x in Figure 5. The offset between A in the current location
signature and its matching point £% in the target location signature is ¢x. If the robot were
at the target location, this offset would be 0. Our strategy is to move the robot in in a way
that most quickly decreases this offset — a direction wx perpendicular to the bearing Ox
of characteristic point X in the current location signature (Figure 5). By similar reasoning,
the fastest way to reduce the offsets ¢y and ¢z of characteristic points £y and £z is to move
in directions wy and wgz, respectively. Figure 5 shows how the homing vectors wy and wgz
(shown as thin dotted lines) add to the homing vector wx (shown as a thick solid line) to
form the final homing vector we,:. (shown as a thick dotted line). The final direction vector
West., @ sum of individual homing vectors, points in the approximate direction of the target
location T; the true direction towards T is wactuar (shown as a thick dotted line).

This final direction w,,, is computed by

atan (Zz —sgn(q&,— - "»beat) sin(90° +6; + 'S[’eat))
Zi ‘"sgn((bi - 'lpest) COS(90° +6; + 'Qbest)

where ¢; is the offset of the ith characteristic point, §; is its bearing, and 1., is the estimated
deviation. We refine this estimate of the homing direction in three ways.

First, consider this subtlety: If we believe that the best way to get from the target location
T to the current location Y is some direction w”, then we must believe that the best way
to get from C to T is the opposite direction, wl — 180°. If the robot were at the target
location T and were trying to go to location O, the roles of VT and V would be switched:
VT would be the “current signature view” and V' would be the “target signature view.” In



Figure 4: Homing problem with three landmarks.

this case the robot would believe that the fastest way to reduce the angle between some now-
current landmark ¢% and its now-target landmark £x would be to move in a direction w}
perpendicular to the bearing 8% of landmark £%. In the same way that it originally computed
the direction from C to T, the robot would use the formula above to compute a final direction
wT from T to C. But this implies that the direction from C to T must be w” — 180°, which
in general is different from w. Which direction, wx or w} —180°, should the robot move? We
simply average these two directions and move in direction (wy + wX — 180°)/2. A homing
movement w that includes the contributions from the distribution of the target landmarks
is given by

atan (Zt -—sgn(¢.- - ¢eat) Sin(¢i/2 + 90° + 0:' + ¢eat))
i —580(Pi — Pear) c08(i/2 + 90° + 0; + Peat)

In a further refinement, we weight a characteristic point z by the term |¢; — ¥|Si/pijsene>
giving a better estimate of w:

Pijyest

¥, - BisbeatdSi cog( /2 + 90° + 6; + est)

b Pijheat

atan

v, —{gicbendSi in (4,72 4 90° + 6; + weu))

As mentioned, we search a range of estimated deviations and homing directions to find
a pair of values for which the current image best matches the target image. We use this
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Figure 5: How a robot uses landmarks to estimate homing direction.

best set of correspondences with the above formula to compute an approximate direction w
towards the target location. We then average this value with the estimated homing direction
we,e that gave rise to this best set of correspondences to get a final homing direction,

Whinal = (W + West)/2

This is the final refinement to the computation of the homing direction.

As well as determining a direction to move, the algorithm must also choose the distance to
move. For each target signature, the robot is moved 0.6 feet on the first incremental homing
step, 0.4 feet on the second incremental homing step and 0.3 feet on subsequent incremental
homing steps. The homing process for a given target location signature stops when the
current direction the robot moves, w(7), differs sufficently from the previous direction it
moved, w(7 — 1). When this happens, it is assumed that the robot has overshot the target
location. In our system the stopping criterion is [w(7) — w(r — 1)| > 40°. Of course, many
other stopping criteria are possible, such as a threshold on the degree-of-match between
current and target location signatures.

5. Demonstration of the Homing Algorithm

We tested the algorithm by taking a sequence of hemispherical images in a hallway. There
were 17 images in all, taken at target locations spaced about 1 foot apart. We placed the
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robot 1 foot from the first target location; its goal was to home to each target location in
sequence. The robot was able to traverse this path successfully and reach the final target
location. We discuss the details of the experiment in Hong et al [3].

6. Summary and Discussion

We have argued that image-based landmark navigation is a feasible alternative to naviga-
tion approaches that maintain three-dimensional models of the world. This paper describes
an approach that divides large-scale navigation tasks into a sequence of small-scale naviga-
tion tasks that are solved by local, image-based homing. Our homing algorithm uses compact
location signatures acquired by a novel 360° imaging system. In addition, landmark infor-
mation is acquired in a natural and straightforward way that does not involve acquiring
three-dimensional information. We have described our image-based homing algorithm and
have demonstrated it on a mobile robot for a typical short-range navigation task.

In future work we will be trying to improve the robustness of the homing algorithm
and to extend its range. Ultimately, image-based local homing might be used to create a
full-blown navigation system that can autonomously acquire a qualitative spatial map of its
environment for robust, goal-oriented navigation.
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