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Abstract

Owing to its potential for a high degree of parallelism, optimistic concurrency con-
trol is expected to perform better than two-phase locking when integrated with priority-
driven CPU scheduling in real-time database systems. In this paper, we examine the
overall effects and the impact of the overheads involved in implementing real-time op-
timistic concurrency control. Using a locking mechanism to ensure the correctness of
the implementation, we develop a set of optimistic concurrency control protocols which
possess the properties of deadlock freedom and a high degree of parallelism. Through
experiments, we investigate, in depth, the effect of the locking mechanism on the per-
formance of optimistic concurrency control protocols. We show that due to blocking,
the performance of the protocols is sensitive to priority inversions but not to resource
utilization. Further, in contrast to recent simulation studies, our experimental results
show that with respect to meeting transaction deadlines, the optimistic approach may
not always outperform the two-phase locking scheme which aborts the lower priority
transaction to resolve a conflict. We also show that integrated with a weighted prior-
ity scheduling algorithm, optimistic concurrency control exhibits greater flexibility in
coping with the starvation problem (for longer transactions) than two-phase locking.
Our performance studies indicate that the physical implementation has a significant
impact on the performance of real-time concurrency control protocols and is hence an
important aspect in the study of concurrency control.

Keywords - real-time database systems, real-time transaction processing, deadlines,
concurrency control, performance evaluation, system implementation.
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1 Introduction

Concurrency control is one of the main issues in the studies of real-time database systems.
With a strict consistency requirement as defined by the notion of serializability, most real-
time concurrency control schemes considered in the literature are based on two-phase locking
(2PL) [18,2,9,17]). This is not surprising since 2PL has been well studied in traditional
database systems and is being widely used in commercial databases. But 2PL, on the
other hand, has some inherent problems such as the possibility of deadlocks and long and
unpredictable blocking times. These appear to be serious problems for real-time transaction
processing, since in a real-time environment, transactions need to meet their time constraints
as well as consistency requirements.

Recently, some alternatives of two-phase locking have been proposed and studied
[16,8,6,10,7,13]. Among them is a class of concurrency control schemes based on the well-
know optimistic approach [12]. Ideally, optimistic concurrency control (OCC) has the prop-
erties of non-blocking and deadlock freedom. These properties make the scheme especially
attractive to real-time transaction processing. In real-time database systems, OCC may be
in a better position to be integrated with priority-driven CPU scheduling. Previous perfor-
mance studies [6,7] have shown that under a policy that discards transactions which have
missed their deadlines, OCC outperforms 2PL over a wide range of system utilizations.

The results in [6,7] are based on simulation, where optimistic concurrency control is
carried out at the logical level and detailed implementation issues at the physical level are
ignored. Particularly, a broadcast mechanism is used in the validation phase of the OCC
protocol and no overhead is taken into account for the broadcast operation. In practice,
the implementation of the broadcast and the corresponding overheads may affect the per-
formance of a protocol.

In this study, we examine the overall effects and the impact of the overheads involved
in implementing real-time optimistic concurrency control. Using a locking mechanism to
ensure the correctness of the OCC implementation, we develop a set of optimistic concur-
rency control protocols. The protocols possess the property of deadlock freedom and have
the potential for a high degree of parallelism. Integrated with priority-driven preemptive
scheduling, the blocking time under the proposed protocol is limited and is predictable
compared with 2PL. Our performance studies conducted on a real-time database testbed
show that the blocking effect caused by the locking mechanism adopted in the implementa-
tion scheme has a major impact on the performance of the optimistic concurrency control
protocol. In particular, the protocols are sensitive to priority inversion, but not to resource
utilization. Furthermore, in contrast to the simulation results from [6,7], our experimental
results show that OCC may not always outperform a 2PL protocol which aborts the lower
priority transaction when conflict occurs. The “degraded” performance of the optimistic
approach becomes apparent only because we considered the implementation details and
since ours is a testbed, the overheads of the implementation manifest themselves in the
performance figures. The experimental results indicate that the physical implementation

schemes have a significant impact on the performance of real-time optimistic concurrency
control.



In this work, we also investigate optimistic concurrency control in the context of the
starvation problem. Because of their higher probability to conflict with other transactions,
long transactions are likely to be repeatedly restarted and thus have less chance to meet their
deadline than short transactions. Instead of limiting the number of transaction restarts,
as is often proposed for traditional database systems, we use length and deadline sensitive
priority assignment to address the problem. We show that integrated with the proposed
weighted priority scheduling policy the optimistic concurrency control approach is more
flexible in coping with the starvation problem than the two-phase locking scheme.

This paper is organized as follows. In Section 2, we present our locking-based OCC
protocols and discuss implications of the implementation. In Section 3, we describe the real-
time database testbed that was used for the performance studies. The experimental results
are presented and discussed in detail in Section 4. Finally, we give concluding remarks and
point out future research directions in Section 5.

2 Optimistic Concurrency Control for Real-Time Transac-
tions

In this section, we first discuss the principles underlying optimistic concurrency control
for real-time transactions, particularly regarding its validation. Then we propose a set of
locking-based optimistic concurrent control protocols and discuss their implications in com-
parison with a two-phase locking approach. At the end, we present some conflict resolution
policies used in conjunction with the proposed protocols.

2.1 Principle of Optimistic Concurrency Control

With the original OCC [12], the execution of a transaction consists of three phases: read,
validation, and write. The key component in OCC is the validation phase where a transac-
tion’s destiny is decided. To ensure the serializability criterion, it must be satisfied that if
transaction T; is serialized before transaction T}, then

Condition 1: the writes of T; should not affect the read phase of T;; and

Condition 2: T;’s writes should not overwrite T;’s writes.
Basically, the validation process can be carried out in either of the following two ways?:

¢ Backward validation: validating against committed transactions. When a conflict
is detected, the validating transaction will abort itself.

o Forward validation: validating against active transactions. When a conflict is
detected, either the validating transaction in validation phase or the conflicting trans-
actions in read phase can be aborted. Futhermore, the validating transaction may
defer validation till later on, thus avoiding any unnecessary abort.

!For detailed discussion, the reader is referred to [5].



In real-time database systems, conflicts should be resolved according to the priority as-
sociated with real-time transactions. As a result, either the validating transaction or the
conflicting transaction(s) may be chosen for abort or possible delay. Clearly, to provide flex-
ibility for conflict resolution, a transaction should be validated against active transactions
instead of committed ones, i.e. forward validation is preferable.

Let T; be the validating transaction and T; (¢ = 1,2,...,n, ¢ # j) be the transactions in
their read phase. Let RS(T") and WS(T') denote the read set and write set of transaction T,
respectively. Then, the validation operation can be described by the following procedure.

VALID := true
for T; (: = 1,2, ..., n) do
if WS(T;) n RS(T3) # {}
then VALID := false
if VALID
then execute write phase
else invoke real-time conflict resolution

The condition WS(T;) N RS(T;) # {} guarantees that data read by the T;’s have not been
written by T;. To ensure Condition 2, I/O operations in the write phase must be done
sequentially in validation order.

2.2 Optimistic concurrency control using locking (OCCL)

Validating against active transactions is straightforward at the logical level. For example,
a broadcast mechanism can be used for the validation, where the validating transaction
“notifies” other currently running transactions of data access conflict [6]). In the following,
we describe a physical implementation of a set of validation protocols.

The proposed protocols are based on a locking mechanism [5], thus being named as
OCCL2. In the system, each transaction T; maintains its own read set, RS(T;), and write set,
WS(T;). In addition, a systemwide lock table, LT, is shared by all concurrently executing
transactions. We define two lock modes - read-phase lock (R-lock) and validation-phase lock
(V-lock), where an R-lock for a data item is set in LT by transaction in its read phase while
a V-lock on a data item is set only by a transaction in its validation phase. The two lock
modes are not compatible. Briefly, the validation operation is carried out by checking the
lock compatibility with the lock table.

As we mentioned above, to satisfy the requirement of serializability, two conditions
must hold. Here Condition 1 is ensured by the locking mechanism. We give two protocols
for ensuring Condition 2. Again, we use T; (i = 1,2,....,n) to denote transactions in read

phase and T; as the transaction in validation phase. We bracket a critical section by “<”
a\nd “>”'

21t was called pseudo-lockingin our earlier work [10].



2.2.1 Serial validation-write: OCCL-SVW

A simple way to guarantee Condition 2 is to embed the validation phase and write phase
in one critical section. We call this scheme serial validation-write in the sense that the
validation phase and the write phase are indivisible.

During the read phase, each transaction 7; works on its own local copy and sets an
R-lock in LT for every data object in its RS(T;). During the validation phase, the validating
transaction T; checks its WS(T};) against RS(T;) by setting the V-lock for all data objects
in its WS(T;) in LT. If all the V-locks can be obtained, that means that the write set of
the validating transaction does not intersect with the read set of any other active transac-
tions. At this point, the validating transaction deletes its R-locks in LT and proceeds to its
write phase. A failure to set a V-lock, on the other hand, indicates that Condition 1 has
been violated, since this implies that a data object in WS(T};) also falls in RS(T;) of other
transaction(s). In this case, the real-time conflict resolution policy is invoked to resolve the
conflict (see Section 2.4). We give the protocol via the following pseudo code.

OCCL.SVW:
Read phase:

< for every data object in RS(T;) do
set an R-lock in LT >

Validation and Write Phase:
VALID := true

< for every data object in WS(T;) do
set a V-lock in LT
if an R-lock of that object exists
then VALID := false
release T;’s R-locks in LT
if VALID
then execute write phase
else invoke real-time conflict resolution
release T;’s V-locks in LT >

OCCL.SVW is simple and is easy to implement. It can be applied both to main memory
resident database systems where the write phase is done in main memory and to disk resident
databases. The latter will produce good performance if most of the transactions are queries.

On the other hand, serial validation-write may not be necessary if conflicts occur rarely
between update transactions. Also, since the write phase and the validation phase are
embedded together in a critical section, the critical section can easily become a bottleneck.
This is especially true of disk resident databases. To separate the write phase from the
critical section, we now give another protocol, called parallel validation-write.



2.2.2 Parallel validation-write: OCCL-PVW

In order to separate the write phase from the critical section and at the same time to
guarantee Condition 2, transactions in read phase need to set R-locks based on their write
set as well as their read set. Let Try be the set of transactions which hold an R-lock on the
same data object in LT. We give the protocol for parallel validation-write in the following.

OCCL.PVW:

Read phase:

< for every data object in RS(T;) and WS(T;) do
set an R-lock in LT
if a V-lock of that object already exists in LT >
then wait for V-lock release

Validation and Write Phase:
VALID := true

< for every data object in WS(T;) do
set a V-lock in LT
if an R-lock of that object exists and T} is not the only one in Try
then VALID := false
release T;’s R-locks in LT
if not VALID
then invoke real-time conflict resolution >
else execute write phase
< release T;’s V-locks in LT>

In this protocol, a write-write conflict between a transaction in its validation/write phase
and a transaction in its read phase can be detected and the two write operations on the
database are serialized by the locking scheme. Thus Condition 2 is guaranteed.

Compared with OCCL_.SVW, OCCL_PVW provides greater concurrency by separating
the validation phase and the write phase from one critical section. On the other hand,
OCCL.PVW may cause a higher conflict rate, since there exist not only read-write conflicts
but also write-write conflicts now. Which protocol is chosen depends on the type of database
system (memory or disk-resident) and the kind of workload (write/read ratio).

2.3 Some Implications

Since a locking scheme is used in OCCL, it is necessary to compare OCCL with two-phase
locking (2PL) approach in terms of mechanism and implementation.



2.3.1 Locking mechanism

With respect to locking mechanism, OCCL presented here is different from 2PL. Note that
a V-lock is issued at the end of a transaction and the locking period is the duration of
validation phase plus write phase. With 2PL, however, the write lock is issued whenever
the update transaction accesses a data object for update and the locking period may be
as long as the transaction lifetime. Furthermore, the R-lock used here will not block any
concurrent transactions in read phase, while under 2PL any conflict between read/write
locks will block the conflicting transactions.

In addition, OCCL is deadlock-free, even though R-lock and V-lock are used. This is
guaranteed by letting the validating transaction set V-locks in the critical section. Since a
transaction that has been granted all of its V-locks will not request any lock after leaving
its critical section, it is not possible for it to wait for any other (lock-holding) transactions.
Thus, a wait-for cycle cannot be formed.

Because both OCCL and 2PL use locks, priority inversion may occur.® With 2PL,
priority inversion can be avoided by forcing the high priority transaction to abort the low
priority transaction so that a higher priority transaction is never blocked. The problem
is more complicated in OCCL than 2PL. Priority inversion may occur in two places with
OCCL. One is in the validation phase, where V-lock setting fails. This problem is addressed
by various conflict resolution policies (see Section 2.4). Priority inversion may also happen
in the read phase when a transaction attempts to set an R-lock for the data object to be
accessed. In this case, it is preferable to let the higher priority transaction in the read
phase wait for the low priority transaction. This is because the low priority transaction is
already in its validation stage or perhaps even in its write phase. Aborting a transaction
near completion may cost more, on average, than blocking a higher priority transaction for
a limited period of time. To shorten the blocking period, a priority inheritance scheduling
scheme can be applied during the validation phase and write phase [11]. For instance, the
CPU scheduler may raise the process priority of the validating transaction to the highest
among the concurrent transactions, thus reducing the time for validation processing. In
addition, we may use transaction priority to manage access to the critical section. When
more than one transaction is waiting for the critical section, then the one with the highest
priority will get access first. Therefore, the worst case blocking time for the higher priority
transaction is limited to the delay involved in transaction validation (under OCCL_PVW).

2.3.2 Starvation problem

Another problem that 2PL and OCCL may encounter is starvation. In this context, starva-
tion occurs when transactions are restarted again and again until they miss their deadline.
Long transactions have a higher probability of being starved because of their higher proba-
bility of access conflict. This results in a lower deadline guarantee ratio for long transactions
than for short transactions. In traditional database systems, OCCL may result in more se-
vere starvation because of its high degree of parallelism. Many solutions to the starvation

3 Priority inversion [16] refers to the situation where a high priority transaction is blocked by a low priority
transaction due to access conflict.



problem have been proposed (e.g., [14,15,19]). These schemes basically rely on limiting the
number of transaction restarts. Given the timing constraints in real-time database systems,
we use CPU scheduling to address the starvation problem. Based on our earlier studies
on transactions with different characteristics [9], here we group transactions into classes by
transaction length and assign a weight to each class. The weighting factor is incorporated
in the CPU scheduling such that long transactions may have higher priority over short
transactions. Using transaction deadline information, the weighted transaction priority is
calculated by

p=(d-t)/w, d>0,t>0, w>1.

where d is the transaction deadline, t is the time when CPU scheduling takes place, and w
is the length weighting factor. The smaller the p value, the higher the transaction priority.
The specific weights used are discussed in Section 3. Note that for transactions with the
same length, this corresponds to the earliest-deadline-first scheduling strategy.

2.3.3 Implementation overhead

In terms of physical implementation, both OCCL and 2PL require a central lock table. For
the sake of comparison, here we list the lock table operations required by the two schemes.

OCCL 1. insert a data object ID with R-lock into the lock table during read phase;

2. search for a data object ID and convert the corresponding R-lock into V-lock (if
the object has been updated) during validation phase;

3. delete a data object ID when an R-lock is released during validation phase or
when a V-lock is released at the end of write phase.
2PL 1. search for a data object ID and check its lock compatibility against the lock mode
of lock holder(s);
2. insert a data object ID with read or write lock into the lock table;
3. delete a data object ID when a lock is release at the end of the transaction.

It is clear that the physical operations on the lock table are the same for the two
protocols. Despite the similarity, there are some differences between OCCL and 2PL. For
example, 2PL needs to detect potential deadlock before a lock request is queued while
OCCL does not. The implementation overhead of the two concurrency control protocols
has been examined through experiments and the results are presented in Section 4.

2.4 Conflict Resolution

With OCCL presented above, an algorithm is needed to resolve the access conflicts during
the validation phase. This conflict resolution should consider transaction priority based on



transaction deadlines and length as discussed above. In other words, the resolution policy
should aim at improving the performance of real-time transactions in terms of meeting
transaction deadlines. Here are some basic resolution policies:

1. Commit: CMT
Always let the validating transaction commit and abort all the conflicting transactions.
This strategy guarantees that as long as a transaction reaches its validation phase, it
will always finish. The advantage of this strategy is that the resources (CPU,1/0, etc.)
consumed by a finishing (validating) transaction are never wasted. Applying CPU
scheduling, we expect that transactions with higher priority have a higher probability
of reaching the validation phase and in turn have a higher probability of committing.

2. Priority abort: PA
Abort the validating transaction only if its priorily is less than that of all the conflicting
transactions. This strategy takes transaction priority into account, but still favors
the validating transaction, aiming at reducing the resources wasted due to aborted
transactions.

3. Priority wait: PW

If the priority of the validating transaction is not the highest among the conflicting
transactions, wait for the conflicting transactions with higher priority to complete. In
some cases, the strategy of aborting conflicting transactions appears too conservative,
causing unnecessary transaction abort. Consider the situation where the validating
transaction conflicts with transactions which have only read operations. If the vali-
dating transaction has a lower priority compared with other conflicting ones, instead
of being aborted, it may be deferred. In other words, this transaction is “preempted”
from its validation phase and is placed in a waiting queue to wait until all of the
conflicting transactions with higher priority finish their validation. One variation of
the priority wait strategy is WAIT-50 proposed in [7], where a validating transaction
will wait if at least 50% of the conflicting transactions have a higher priority over
the validating transaction. The protocol aims at balancing the wait factor and the
priority cognizance.

There can be other variations of the conflict resolution strategy. Since in this study we
emphasize the fundamental analysis of OCC performance with respect to its implementa-
tion, we only examine the three simple conflict resolution policies discussed above.

3 Test Environment

The proposed locking-based optimistic concurrency control protocol, together with several
real-time conflict resolution schemes, have been implemented and evaluated on our real-
time database testbed RT-CARAT [9]. In this section, we briefly introduce the testbed
organization and describe the system and workload parameter settings.



3.1 Testbed organization

Currently, RT-CARAT is a centralized, secondary storage real-time database testbed built
on top of the VAX/VMS operating system. It contains all of the major functional com-
ponents of a transaction processing system, such as transaction management, data man-
agement, log management, and communication management. The testbed is implemented
as a set of cooperating server processes which communicate via efficient message passing
mechanisms. A pool of transaction processes (TR’s) simulate the users of the real-time
database. Accordingly, there is a pool of data managers (DM’s) which service transaction
requests from the user processes (the TR’s). There is one transaction manager, called the
TM server, acting as the inter-process communication agent between TR and DM pro-
cesses. The communications between TR, TM and DM processes are carried out through
mailboxes, a facility provided by VAX/VMS. To be more efficient, TM and DM processes
also share some information, such as transaction deadline and priority, through a common
memory space, called the global section in VAX/VMS.

Using the underlying VAX/VMS operating system real-time priorities, the priority-
driven preemptive scheduling is done by a CPU scheduler embedded in the TM. Upon the
arrival of a new transaction, the scheduler assigns a priority to the transaction according
to the CPU scheduling policy. The scheduling operation is done by mapping the assigned
transaction priority to the real-time priority of the DM process which carries out the trans-
action execution. At this point, an executing DM will be preempted if it is not the highest
priority DM process at the moment, otherwise it will continue to run until it completes
or until it needs to wait for an I/O. Concurrency control is part of the DM process. It
incorporates the CPU scheduler of the TM process in its real-time conflict resolution.

RT-CARAT is a system that contains a fixed number of users that submit transaction
requests one after another, with a certain think time (7) in-between. This model captures
many applications in the real world, although certainly not all applications (e.g., an open
system model is more appropriate for a process control system). For example, in an airline
reservation system, there is a fixed number of computer terminals. The airline clerk at each
terminal may check a flight, reserve a seat, or cancel a reservation for customers. After
submitting a request to the system, the clerk waits for a result. He may submit another
request after getting a response from the previous one.

A transaction is characterized by its length and deadline. The length is specified by
T(z,y), where z is the number of steps that a transaction needs to execute, and y is the
number of records accessed in each step. Transaction deadline is randomly generated from
a uniform distribution within a deadline window, [d_base, o x d.base], where d_base is the
window baseline and « is a variable determining the upper bound of the deadline window.
For each workload in the experiments, d_base is specified first by the formula:

d.-base = avg-rsp — stnd_dvi

where avg.rsp is the average response time of the read-only transactions with the same
length when executed in a non real-time database environment, and stnd_dvi is the standard
deviation of the response time.



Table 1: System Parameters

| Parameter | Settings |
Disks diskl: database; disk2: log.
MPL (multi-programming level) | 10, 8, 6, 4
DB (database size) MPL %100 blocks (6 records/block)

A transaction terminates upon completion or a termination abort. The latter refers
to the situation where a transaction has missed its deadline and it is thus aborted by the
system. A transaction aborted due to deadlock or data access conflict will be restarted as
long as it has not passed its deadline. Hence a transaction may make multiple runs before it
eventually terminates. Note that a restarted transaction will access the same set of records
as it did in its first run.

3.2 Parameter settings

Table 1 summarizes the system parameter settings. The experiments were conducted on
a VAXstation 3100/M38 with two RZ55 disks, one for the database and the other for the
log. Given the physical machine, in order to examine the degree of resource contention
(CPU and I/0), the system multi-programming level (M PL) is varied from 10 to 4. While
this is a low degree of multiprogramming, compared to what we would find in practice,
the database size in the experiments (1000 - 400 blocks) is also smaller than we would find
in practice. With a proper system scaling, many factors, such as the level of data access
conflict, can model practical situations. Thus, the performance results obtained from the
smaller system can reflect the performance of a larger system. In our experiments, in order
to isolate the effect of resource contention from that of data contention, the database size
is set proportional to M PL.

Table 2 describes the workload parameters and their settings in the experiments. We
consider two workloads; one where all transactions consist of 6 steps, P[z = 6] = 1, and
the other where half have 4 steps and the other half 8 steps, Plz = 4] = P[z = 8] = 1/2.
The latter workload is used particularly for analyzing the starvation problem. The number
of records to be accessed per transaction step, y, is fixed at 4. The deadline window
factor, a, is a timing-related parameter which specifies the deadline distribution of real-
time transactions. The smaller the value of a, the tighter the transaction deadlines and
vice versa. In RT-CARAT, a transaction is either read (where each step is a sequence of
FIND and GET operations) or write (where each step is a sequence of FIND, GET and
MODIFY operations).* The probability that a transaction is a write transaction, P, is
another parameter we are interested in, since it directly affects transaction conflict rate.
The transaction external think time, 7, is set at 0 in the experiments.

‘FIND, GET, MODIFY etc. are the statements of Data Manipulation Language in VAX DBMS. The
corresponding operations are fully implemented on RT-CARAT.
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Table 2: Workload Parameters

| Parameter | Settings |
z (steps per transaction) 4, 6, 8 steps
y (records accessed per trans. step) | 4 records
a (deadline window factor) 2.0-6.0
P, (prob. of write transactions) 0.0-1.0
7 (external think time) 0.0 seconds

4 Experimental Results

In this section, we present experimental results from our performance studies.

Table 3 lists the schemes examined in the experiments. We consider two basic concur-
rency control protocols, 2PL and OCCL, in combination with different conflict resolution
policies.? 2PL_.NRT and OCCL_NRT are two baselines for the purpose of performance com-
parisons. They correspond to 2PL and OCCL schemes in non real-time (NRT) database
systems, where a multi-level feedback queue algorithm is used for CPU scheduling. In case
of access conflict, under 2PL_NRT, the lock-requesting transaction is put into a wait queue;
under OCCL_NRT, the validating transaction always commits. 2PL.WAIT and OCCL.CMT
employ priority-driven, preemptive scheduling. Transaction priority is assigned according
to earlier-deadline-first policy. Still, the two schemes do not take transaction timing con-
straints into account for resolving access conflict. 2PL_PA and OCCL_PW consider trans-
action priority for both CPU scheduling and conflict resolution. Note that here the conflict
resolution scheme PW refers to WAIT-50(7)].

Table 3: Schemes Examined

|  Scheme || Conflict resolution | CPU scheduling |
2PL_NRT wait Multi-level feedback queue
2PL_WAIT wait Earliest deadline first
2PL_PA priority abort Earliest deadline first
OCCL.NRT | commit Multi-level feedback queue
OCCL.CMT | commit Earliest deadline first
OCCL.PW priority wait Earliest deadline first

Besides the above schemes, we also examined the conflict resolution policy PA for
OCCL (i.e., OCCL_PA). The results show that PA performs no better than CMT due to

5The optimistic concurrency control protocol implemented on RT-CARAT is OCCL.PVW. This is be-
cause the testbed is a disk-resident real-time database and cannot afford the long waits (for writing) inherent
in OCCL.SVW. In the rest of the paper, we refer to it as OCCL.
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aborts of the (validating) transaction near its completion. To save space, we do not include
these experimental results here.

The basic metric used for performance evaluation is deadline guarantee ratio, which is
the percentage of transactions that complete by their deadline. We also collect statistics on
transaction abort ratio, blocking time, wasted operations, and CPU and I/0O utilizations so
as to provide insights into the protocol performance.

The data collection in the experiments is based on the method of replication. The
statistical data has 95% confidence intervals whose end points are within 2% of the point
estimate for deadline guarantee ratio. In the following graphs, we only plot the mean values
of the performance measures.

4..1 Experiment 1: Protocol overhead

In our performance studies, we first compare the implementation overhead of the two types
of concurrency control protocols, 2PL and OCCL.

The overhead is measured by the average CPU processing time spent on concurrency
control per page. To capture the overhead under all the execution paths, we vary the write
probability P,,. At this point, other parameter settings are irrelevant. Figure 1 indicates
that the implementation overheads of the two protocols are quite close. This is due to
the fact that even though the two protocols differ at the logical level (two-phase locking
vs. optimistic approach), the underlying physical implementations are very similar. Both
protocols rely on a locking technique for data access control, and they both involve hashing
operation and lock table management. Despite the similarities, 2PL employs deadlock
detection while OCCL does not. However, our previous studies [9] have shown that the
deadlock detection on RT-CARAT does not incur significant overhead. On the other hand,
the implementation of OCCL costs more to maintain read/write sets for each individual
transaction. This may be the reason why OCCL has slightly larger overhead than 2PL.

Knowing that the two logically different protocols have similar overhead with respect
to their physical implementations, we now analyze how the implementation schemes affect
the performance of the two protocols.

4.1 Experiment 2: Data contention

In this experiment, we examine the protocol performance under different data contention

levels by varying the write probability, Pw. We fix the multi-programming level at 8 with
z=6and a =5.

Figure 2 shows the transaction deadline guarantee ratio for six schemes. As one would
expect, the deadline guarantee ratio drops as data contention increases. The performance of
two baselines, 2PL_.NRT and OCCL_NRT, is consistent with the results from previous stud-
ies (e.g., [4,1]), i.e., non real-time two-phase locking outperforms non real-time optimistic
approach under data and resource contention. Here an interesting observation is that com-
bined with priority-driven preemptive scheduling, the optimistic approach (OCCL.CMT)

12



performs better than two-phase locking (2PL-WAIT). Furthermore, as we incorporate trans-
action priority into conflict resolution for the two types of protocols, 2PL_PA further in-
creases the deadline guarantee ratio, with respect to 2PL_.WAIT, by as much as 17% for P,
= 0.6, while OCCL.PW performs only slightly better than OCCL_.CMT.

The performance of these schemes may be affected by several factors, such as transac-
tion blocking time, priority inversion and abort ratio. Based on the implementation details,
we explain the results shown in Figure 2 in the following.

A transaction can be blocked due to access conflict. Under OCCL, this happens in
the transaction read phase where an R-lock requesting transaction has to wait for the
transaction holding the V-lock. In addition, under OCCL.PW, a validating transaction
may be blocked when it conflicts with higher priority transactions in read phase. Under
2PL, blocking can occur at any point along the course of its execution whenever there is
a read-write or write-write conflict. Figure 3 depicts the average transaction waiting time
(in seconds) for each blocking instance. Overall, the waiting time under OCCL scheme is
shorter than under 2PL. This is because even though both schemes rely on locking, OCCL
shrinks the locking period (V-lock holding time) to the final stage of transaction execution,
thus reducing the waiting time. Furthermore, as we discussed in Section 2.3.1, applying
priority-driven CPU scheduling to OCCL further reduces the waiting time as much as 40%
(comparing OCCL.NRT with OCCL_.CMT and OCCL_PW). Compared with OCCL.CMT,
the waiting time under OCCL_PW is increased by about 10%, from 0.59 to 0.65 (seconds),
for P, = 0.2. On the other hand, when P, is high, the two schemes perform the same.
This is a direct result of the implementation which avoids cyclic V-lock conflicts between
two write transactions.

Figure 4 shows the total waiting time for each transaction run. The trend here is similar
to what we observed in Figure 3.

As discussed in Section 2.3.1, priority tnversion, a special case of transaction blocking,
may occur under both 2PL and OCCL. Figure 5 plots the average number of priority
inversions encountered per transaction run. In 2PL.PA, a high priority transaction will
not wait for a low priority transaction when a conflict occurs. Hence 2PL_PA performs the
best in terms of avoiding the problem of priority inversion. Note that the priority inversion
under 2PL_PA is slightly greater than 0. This is because on RT-CARAT, the high priority
transaction is forced to wait for a lower priority transaction if the low priority transaction
has already completed its write operations on the database and is about to release its locks.
Under OCCL, since a blocked higher priority transaction in read phase has to wait for a
V-lock holder to complete its validation phase and write phase, the probability for priority
inversion to occur is higher than 2PL_PA, especially when Pw is large. Again, combined with
priority-driven CPU scheduling, OCCL.CMT and OCCL.PW perform much better than
OCCL-NRT. Under OCCL_PW, a transaction in read phase has less chance to be blocked
since the validating transaction might be in the validation-wait state. Thus, the probability
of priority inversion under OCCL.PW is slightly lower than that under OCCL_.CMT.

Transaction abort rate is another major factor that affects the protocol performance.
Figure 6 illustrates the average transaction abort ratio (i.e., the percentage of transactions
aborted due to deadlock or access conflict). Clearly, the wait-oriented schemes, 2PL_NRT
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and 2PL_WAIT, result in a much lower abort ratio than the abort-oriented schemes - 2PL_PA
and OCCL. With a high degree of parallelism and the shorter blocking time (see Figures
3 and 4), all the OCCL schemes have a lower abort ratio than 2PL.PA when the data
contention is low, but a higher abort ratio when the data contention becomes high. The
saturation behavior under 2PL is due to its increased blocking effect when the data con-
tention becomes high. Among the three OCCL schemes, OCCL_PW has the lowest abort
ratio (12% lower than OCCL.CMT for P, = 0.2), since it incorporates a wait mechanism
in the validation phase.

In the context of transaction abort, we also measure the transaction abort length, i.e.,
the number of steps that have been processed when a transaction is aborted. To reduce
the wasted system resources, the abort length should be as short as possible. Figure 7
shows the abort length for the six schemes. Since 2PL_PA may detect access conflict and
immediately apply priority abort at any point along the course of its execution, it results
in the shortest abort length. 2PL_NRT and 2PL.WAIT allow aborts only when a deadlock
is detected. This “pessimistic” wait strategy leads to longer abort lengths. For OCCL,
because of its high degree of parallelism, a transaction may proceed until it is aborted by a
validating transaction, thus resulting in the abort length longer than for 2PL_PA. Integrated
with CPU scheduling, OCCL.CMT and OCCL_PW make the higher priority transaction
proceed faster than other lower ones, which means that the abort length of the transactions
in read phase becomes shorter than that under OCCL_NRT.

Figure 8 depicts the wasted operations per transaction ezecution, i.e., the number of
steps wasted for each submitted transaction. This measurement reflects the combined effect
of both transaction abort ratio and abort length.

With respect to resource consumption, CPU and I/0 utilizations are plotted in Figure
9 and Figure 10, respectively. As one expects, the wait-oriented schemes, 2PL.NRT and
2PL_WAIT, consume less resources than the abort-oriented schemes - 2PL_PA and OCCL.
Due to a high degree of parallelism and the shorter blocking time, QCCL results in higher
CPU and I/O utilizations than 2PL.PA.

Having examined the protocol performance in detail, we come to the following points
with respect to the performance results demonstrated in Figure 2.

o CPU scheduling algorithm that takes transaction deadlines into account plays an
important role in improving the performance of concurrency control protocols, par-

ticularly for OCCL which provides a high degree of parallelism and short blocking
period.

o The three schemes, 2PL.PA, OCCL.CMT and OCCL_PW, with the least priority
inversions, perform the best. The difference between the three schemes depends on
the amount of wasted operations. 2PL.PA performs the best when data contention is
high, since it results in the least wasted operations.

o The wait strategy employed by OCCL.PW has no significant impact on improving
OCCL performance. It is the effect of increased waiting time that overshadows the
performance gain due to reducing wasted operations. In addition, the implementation
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scheme for avoiding cyclic V-lock conflicts prevents the wait strategy from taking part
in conflict resolution when the probability of write-write conflict is high.

Our results show that 2PL_PA, OCCL.CMT and OCCL_PW are superior to the other
protocols. Moreover, the further experiments with various workload settings show that there
is no significant performance difference between OCCL.CMT and OCCL-PW. To simplify

the presentation and to save space, we only demonstrate and compare the performance of
2PL_PA and OCCL_CMT in the following sections.

4.2 Experiment 3: Deadline distribution

Deadline distribution may also affect protocol performance. Extending Experiment 2, we
vary the tightness of transaction deadlines while fixing the write probability Pw.

We first examine the possible effect of the deadline distribution on performance when
low data contention is low, Pw = 0.2. Figure 11 plots the deadline guarantee ratio versus
deadline window factor a. As we have observed in Figure 3, when the deadline is loose
(a = 5), 2PL_PA and OCCL_.CMT show similar performance, since transactions complete
by their deadline most of the time. Now as a decreases, OCCL.CMT becomes superior to
2PL_PA. This can be explained as follows: When data contention is low, the two protocols
have nearly the same probability of priority inversion (see Figure 5) and the same amount of
wasted operations (see Figure 8). Under such a condition, the protocol with shorter blocking
time (see Figure 4) wins.

Next we vary the deadline window factor a under high data contention with Pw = 0.8.
Figure 12 shows the deadline guarantee ratio for 2PL_.PA and OCCL_CMT, respectively.
In contrast to the results shown in Figure 11, here 2PL_PA outperforms OCCL_.CMT when
the deadlines are relatively loose. This is mainly due to the fact that both the wasted
operations and the probability of priority inversion under OCCL_CMT increase as data
contention becomes high. Even though 2PL_PA has a longer blocking time, it works better
as long as the transaction deadlines are long enough.

4.3 Experiment 4: I/O resource contention

All of the experiments presented above are carried out in a system with I/0 resource .
contention, where the I/O utilization under 2PL_PA and OCCL.CMT was always above
93% with average queue length > 4 (see Figure 10). In this set of experiments, we examine
the protocol performance in a system where there is no severe resource contention. To do so,
we reduce M PL from 8 to 4. Note that the database size is also reduced correspondingly,

from 800 to 400 (blocks), so that the level of data contention for M PL = 4 is comparable
with that for MPL = 8.

We first exercise the two concurrency control schemes under low data contention. Fig-
ure 13 illustrates the deadline guarantee ratio versus deadline window factor a with Pw
= 0.2. Under such workloads, the I/O utilization drops below 83%. Comparing Figure 13
with Figure 11, we observe again that the two protocols perform basically the same. We
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have also observed (not shown here) that the two protocols perform the same with respect
to priority inversion and wasted operations, but 2PL_PA results in longer waiting time than
OCCL_.CMT on locking. This is the main reason why reducing resource utilization does not
affect the protocol performance.

The possible effect of resource contention is then examined under high data contention.
Figure 14 shows the deadline guarantee ratio for Pw = 0.8. Comparing it with Figure 12, we
see the similarity again, despite the drop of I/O utilization from 95% for M PL = 8 to 80%
for MPL = 4 (under OCCL_.CMT). Under high data contention, the high abort ratio and
the long abort length of OCCL_.CMT lead to a larger number of wasted operations, about
25% higher than 2PL_PA. Furthermore, the chance of priority inversion for OCCL_.CMT
becomes high (0.16), as compared to 2PL_PA (0.04). These two factors, particularly the
priority inversion, degrade the OCCL.CMT performance.

Here we can see that reducing resource utilization does not improve OCCL performance.
Under OCCL, due to the use of locking, the effect of priority inversion is sensitive to the
duration of the write phase. Therefore, it is the I/O speed that needs to be improved.

4.4 Experiment 5: Transaction length

The transactions we have exercised thus far are equal in length (z = 6). We now look at
workloads with a mix of different transaction lengths. To make data analyzable and yet
comparable with previous results, we exercise the workload with two lengths of transactions,
z = 8 (long) and = = 4 (short), with mean value 6 (i.e, P[z = 4] = P[z = 8] = 1/2).

Figure 15 shows the transaction deadline guarantee ratio versus P, for 2PL.PA and
OCCL_.CMT. Examining the average deadline guarantee ratio, we can see that the result is
similar to what we have observed in Figure 2 for ¢ = 6, i.e., 2PL_PA performs better than
OCCL.CMT when data contention is high. However, as we examine the deadline guarantee
ratio of long and short transactions, we see that under data contention, OCCL.CMT outper-
forms 2PL_PA for short transactions while 2PL_PA performs much better than OCCL.CMT
for long transactions. In addition, under both schemes, the deadline guarantee ratio of short
transactions is much higher than that of long transactions. This observation identifies the
starvation problem. Clearly, both of the abort-oriented schemes result in transaction starva-

tion. Due to its high degree of parallelism, OCCL_.CMT leads to the more severe starvation
than 2PL_PA.

We have proposed a weighted priority scheduling policy to cope with the starvation
problem (see Section 2.3.2). Figure 16 shows the effect of such a CPU scheduling scheme
on transaction starvation. Here we associate a weighting factor w to long transactions,
varying from 1.0 to 2.6, while fixing w at 1.0 for short transactions. When w is equal to 1.0,
the scheduling scheme follows the earliest-deadline-first policy. At this point, the average
deadline guarantee ratio coincides with the previous results for z = 6 (see Figure 11). But,
long transactions suffer from the starvation problem. As w increases, under OCCL.CMT,
the deadline guarantee ratio of long transactions increases while the deadline guarantee
ratio of short transactions decreases. Under 2PL_PA, however, the deadline guarantee ratio
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of long and short transactions changes slowly. Note that the average deadline guarantee
ratio under both schemes does not change with w.

The observation from the experiment indicates that OCCL.CMT is a more flexible
scheme in that it can be integrated with an appropriate CPU scheduling policy in order to
resolve transaction starvation. This is due to the fact that the transaction blocking time
under OCCL.CMT is much shorter than that under 2PL_PA (see Figure 3), which gives the
CPU scheduler more freedom to carry out priority scheduling. In addition, the weighted
priority scheduling scheme follows the conservation law, i.e., the increase of the deadline
guarantee ratio for long transactions leads to the decrease of the deadline guarantee ratio for
short transactions, and the average deadline guarantee ratio is kept constant. This brings
up the question of fairness on transaction scheduling. At this point, there is no criterion
for a “fair scheduling”. In practice, the system designer may choose the weighting factors
for different groups of transactions such that their performance requirements can be met.

5 Conclusions

We have investigated real-time optimistic concurrency control at its level of physical imple-
mentation. We have developed a set of locking-based protocols for the optimistic approach.
The protocols, together with several conflict resolution schemes, have been implemented
and evaluated on a real-time database testbed. In contrast to the previous results from
simulation[6,7], the results obtained from the testbed show that the optimistic concurrency
control may not always outperform the two-phase locking which incorporates priority in-
formation in its conflict resolution. In particular, the performance difference between the
two concurrency schemes is sensitive to the amount of data contention, but not to the
amount of I/O resource contention (as measured by resource utilization). The optimistic
scheme performs better than the two-phase locking scheme when data contention is low,
and vice versa when data contention is high. The “degraded” performance of the optimistic
approach (in comparison with the results shown in [6,7]) is due to the blocking effect (which
in turn results in priority inversion as well as high abort rate) caused by the locking mech-
anism adopted in its implementation. The experimental results indicate that with respect
to logical operations, the physical implementation schemes have a significant impact on the
performance of real-time optimistic concurrency control.

In this paper, we have also explored the starvation problem with respect to the dead-
line guarantee ratio for transactions of different length. The performance studies show that
both the abort-oriented two-phase locking and optimistic approaches result in starvation
for long transactions. Integrated with the proposed weighted priority scheduling, the opti-

mistic concurrency control scheme exhibits a greater flexibility in coping with the starvation
problem.

Even though this study reveals some weakness of the optimistic approach with re-
spect to its implementation, we believe that this approach is still a candidate for real-time
concurrency control owing to its high degree of parallelism and its flexibility in handling
conflict resolution and in integration with CPU scheduling. Since the effectiveness of the
approach is closely related to its physical implementation scheme, its performance can be
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further improved by adding certain processing components into the system. For example,
regarding the locking-based scheme developed in this work, if a disk controller can perform
the write operations in transaction validation order and it can also intelligently manage the
order of read and write operations [3], the V-lock holding period can be largely reduced.
The integration of concurrency control with I/O scheduling is an interesting topic for future
work. Another example for improving the performance of the optimistic approach is the
use of a database cache which can accommodate data pages to be accessed by restarted
real-time transactions. The development of such a technique also remains part of future
work.
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