A Modal Arithmetic for Reasoning About
Multi-Level Systems of Finite State Machines

Victor J. Yodaiken
Computer and Information Science Department
University of Massachusetts

COINS Technical Report 91-17
September 1990

3 T3 ~—3 —1

E

—4 —3 T3 —3 T3

T d

—1 3 3

‘A MODAL ARITHMETIC FOR REASONING ABOUT
MULTI-LEVEL SYSTEMS OF FINITE STATE MACHINES

A Dissertation Presented
by
VICTOR . J. YODAIKEN*

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 1990

Department of Computer and Information Science

1This research was funded in part by the Office of Naval Research under contract N00014-85-K-
0398.

©Copyright by Victor J. Yodaiken 1990
All Rights Reserved

3 3 . K|

! 3 3

. 3 k) . 3 ' B 3 3

g

3

2!) g} ’él : ' §] L él :l

T3 3 T3 T3 T3

—3 3 3

—3 3

ACKNOWLEDGEMENTS

Krithi Ramamritham was an ideal adviser. He suggested that I look at temporal
logics, kept me focused on the problem, and was unfailingly encouraging. Ernie
Manes went above and beyond the call of duty in decoding some particularly obscure
versions of this work. Dave Barrington provided insight into automata theory and
was willing to repeat explanations until they made sense. Jack Stankovik’s apparent
willingness to believe that something practical might eventually emerge from the
project was also very helpful.

Marc Baumslag helped me clarify my thinking and exposition, found the Gecseg
book, and was a good friend through this long process. Subhashish Mazumdar’s witty
conversational style and assistance with the intricacies of modal logic are greatly
appreciated. Badrinath, Ugo Buy, Panos Chrysanthos, Chia Shen, Al Hough, and
Duane Bailey made up for the lack of windows in our office. Renee Kumar saved me
from the bureaucracy more than a few times.

Finally, thanks to Beth Kirkhart for her assistance in life and desert navigation.

To my gra.ndpa.rents, especially K.B. .

3 T3 3 — 3 T3 i 3

3 T3 T3 T3

.

~ 3

3

—3 "3 T3

ABSTRACT

A MODAL ARITHMETIC FOR REASONING ABOUT MULTI-LEVEL
SYSTEMS OF FINITE STATE MACHINES

September 1990

VICTOR YODAIKEN
B.A. COLUMBIA UNIVERSITY

M.S. UNIVERSITY OF SOUTH CAROLINA

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Krithi Ramamritham

This dissertation advances a novel approach to formal specification and verification
of systems-level computation. The approach is based on a purely finite state model
of computation, and makes use of algebraic and syntactic techniques which have
not been previously applied to the problem. The approach makes use of a modal
extension of the primitive recursive functions to specify system behavior, and uses an
algebraic feedback product of automata to provide semantic content for specifications.
The modal functions are shown to provide highly compact and expressive notation for
defining, composing, and verifying the properties of large-scale finite state machines.
The feedback product allows for a very general model of composition, multi-level
dynamic behavior, and concurrency. Techniques are developed for specifying both
detailed operation of algorithms, and abstract system properties such as liveness
and safety. Several significant examples are provided to illustrate application of the

method to complex algorithms and designs.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT i et ie e e e e e e

LIST OF FIGURESt ittt i

LIST OF DEFINITIONS it it
CHAPTER

1. INTRODUCTION e i e e e e e e e e e

1.1 The problem: Mathematical models of system-level computation. . .

1.2 Contributions e

1.3 The modal arithmetic.

14 Outline

1.5 Related literature o

1.5.1 Sources and related formal methods

1.5.2 Comparison with temporallogic

1.6 Summary e e e e e e e e e e e

2. SYNTAX AND SEMANTICSo,

2.1 The modal arithmetic

2.1.1 The initial functions

2.1.2 The composed functions e e e e e e e e e

2.1.3 Applications of after

2.2 Transducers and traces ittt

221 Flat transducers

2.2.2 Product form transducers

2.2.3 Transition precedence.t ittt

2.3 Review of the Primitive Recursive Functions

2.4 A formal definition of the modal p.r. functions.

2.5 Interpretation e

2.6 Summary e e e e e e e e e

3. SPECIFICATION AND VERIFICATION

3.1 Specification Style -.

3.1.1 Modal recursion

3.1.2 Modal grammars: Specifications of systems

313 Anexample. e

3.2 Proofs

3.2.1 Inherited algebra

322 Modal proofs

3.2.3 Path division and path induction

3.2.4 Distributive m.p.r. theorems

3.2.5 Reasoning about components

3.2.6 Reasoning about precedes

3.3 Exact modal grammars

3.3.1 Syntax of exact grammars

vii

S

3 B}

3 73 T3 T3 —4&a —3 T3 —3 T3 —3 —1

T3 3

T3

—3

3.3.2 The exact grammar theorem 48
3.4 Summary e e 51
4. TEMPORAL LOGIC STYLE FUNCTIONALS 53
4.1 The interval functions 54
4.2 Branching time L L Lo 56
4.2.1 The operators of branching time 56
4.2.2 The m.p.r. branching time functionals 57
4.3 Proofs with branching functionals 58
4.3.1 Verification of theanalogy 39
43.2 Proof of the UBaxioms 60
433 Until 62
4.4 Pumping theorems 64
4.4.1 A congruence based on configurations 64
4.4.2 A congruence based on relative transition ordering 65
4.4.3 The intersection of two congruences 68
4.5 SUMMMATY . . « o o v v o e e e e e e e e e e e e e e e e e e 71
5. REAL TIME e 7
5.1 Real time techniques 73
5.2 A real-time priority queue L oo 75
5.2.1 The specification, 76
5.2.2 Implementation 78
523 Thetimer 79
5.2.4 Thequeuemodule 79
5.2.5 Putting it together oL 81
5.2.6 Verification. o, 83
5.3 A fragment of Futurebus+ arbitration 86
5.4 Summary e e e e e e e e e 91
6. A FAULT TOLERANT MESSAGE PROTOCOL 92
6.1 Thealgorithm 95
6.2 SUMINATY o v o i e e e e e e e e e e e e e e e e e 101
7. CONCLUSIONttt it e e 103
7.1 Dissertation Summary 103
7.2 Future Work e 104
7.2.1 Applications of M.p.r. arithmetic 104
7.2.2 Theoretical investigations 106
BIBLIOGRAPHY i e e 108
viil

1.1
2.1
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

LIST OF FIGURES

Multi-level temporal logic style assertions 6
Sequencefunctions L 13
A product form transducer. 14
Informal definition of the modal functionals. 19
Afifoqueve. L 35
Alfoquene. P 36
A modal gr;mmar 36
A clocked storage cell 38
A clocked memory bank 38
A clocked fifoqueue L 39
Goodstein’s rules for primitive recursive arithmetic 41
A Eogqpl:e'pe hlgh kyel spgciﬁca.tion of the real-time queue 78
. The timer speciﬁc_ation. 79
The quevemodule. 80
Specification of the implementation. 81
Pinlogiclevels 87
Signal stability 87
The arbitration bus 87
The interface of a bus device 88
Futurebus+ systemsketch, 89
Competition synchronization on the FutureBus+ 89
Device competition algorithm for Futurebus+ 90

X

3

o4 3

—3 "3 T3 T3 T3 ~3 73 —3 —3 T3 T3

5.12
5.13
6.1

Safety condition for Futurebus-+

Liveness condition for Futurebus+

.....................

....................

Meséages on the broadcast network L.

S

R

LIST OF DEFINITIONS i

2.1 Pastlz,y)« oo e R 18
2.2 Imitial e 18 7’
2.3 Extension of enable and feffect. 19 r‘{
24 Informal versionof © Lo 20

2.5 The flat product form transducers 21 r—!
2.6 A for flat transducers Lo 21
2.7 The class of product form transducers 22 '—I’
2.8 The product state set PSIP) 22 =
2.9 Reflexive, transitive closureof ¢ 23 |
2.10 pfactor and A for product form transducers 23 FI
2.11 The trace language L(P) 23 N
212 Place e e 24 ﬁ
213 RelOrder e e e 24 e
2.14 A congruenceon RelOrder 24
2.15 The congruence classes induced by RelOrder 24 j
2.16 The primitive recursive functions 25 -
2.17 The class of m.p.r. functions 28 "‘1'
2.18 The valueof an m.p.r. function 29 -
2.19 The evaluation functional, p 30 |
3.1 Satisfaction of a term by a transducer. 33 ”’I
3.2 Modal recursion. 35

3.3 The class mpr(precedes). 47 HE

xi

3

T3 T3

3 3 T3 T3 73 T3 T3

38 T3 T3

3

T3

—3 3

3 73

3

3.4
3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
5.1
5.2
5.3

The class mpriprecedes,ing).
Exact grammars. oL
Black-box equivalence.o
The congruence =~
The interval operators sometime, always, and cumu.
The function Upto.
Next state functionals.
Henceforth, and Possibly.
The function Epaths.
Eventually and indefinitely.
The functional until L oo
The function Nontriv.
The configuration congruence ~.
The depth congruence
The depth bound functional D.
The depth bound functional plen.
The path functionals.
The function Tcount.
The function duration.

Timed versions of henceforth and eventually.

xil

58

CHAPTER 1

INTRODUCTION

1.1 The problem: Mathematical models of system-level
computation.

Formal mathematical specification and verification of computer operating systems, de-
_vice architectures, or network protocols is hardly ever attempted in current engineer-
) ing practice. The only exceptions to this rule are systems which have been especially
designed (simplified) to facilitate verification and systems that are so safety-critical as
to justify the extraordinary effort verification appears to require {13, 41]. In order to
confirm the internal design consistency and correct implementation of systems that do
not meet these these criteria, engineers rely on robust design techniques, the intuition
of skilled practitioners, simulation, and testing. Consequently, errors are often found
at an inconveniently late stage in the design process, optimization is limited by the
difficulty of discerning which features of the design are truly essential, and intuition
is lost in a maze of implementation details. On the other hand, system-level compu-
tation, which includes operating systems, device and bus architectures, controllers,

and computer networks, seems to be exceptionally resistant to formal analysis.

Obstacles to formal analysis. Even relatively simple system-level devices and pro-
grams are associated enormous state sets that would be difficult to describe directly.
Unfortunately, the nature of system-level computation complicates efforts to sub-
divide problems into more manageable parts or to abstract away lower level details.
Because timing and resource constraints are critical for the correct functioning of
many system-level inechanisms, we cannot simply hrush aside these i1ssues as im-
plementation details (c.f. [27]). Because there is no single method for connecting
- concurrent components at the system-level, and because interaction between compo-
nents is not limited to synchronous message exchanges or some other communication
“primitive”, we cannot easily view complex systems as networks of communicating

processes (c.f. [45]). To make these issues more concrete, consider the example of a

-3 3 .3 3 '3

3

R

3

~3 3 —73 T3 T3

3 31 3

~3 —3 T3 3 T3 13

r"——g V""‘-‘gm r~'-—-§ "““g ""g

2

bus architecture and arbitration algorithm. Clearly, the real-time required for signal
Propagation, the order in which modules on the bus assert signals, and the number
of modules on the bus may all be critical to design correctness. Similarly, attempt-
ing to represent this architecture in terms of processes exchanging messages over
synchronous channels would obscure the actual system design and add a layer of

complex indirection to what is already a complex and difficult problem.
1.2 Contributions

The modal primitive recursive (m.p.r.) arithmetic is proposed here as a solution to the
problem of formal analysis of system-level computation. The arithmetic includes both
a novel formal semantics and a novel formal language. The formal semantics is based
on a sophisticated algebraic product of finite automata called the feedback product. We
believe that this product provides a semantic basis for reasoning about concurrent and
composed systems that is richer in structure and more expressive than the standard
methods (c.f. {15, 2]). The formal language is based on a modal (state dependent)
extension of the primitive recursive functions. The functions provide an intuitive and
clear means of describing both the detailed workings of complex algorithms and the
high level abstract properties of systems. Especially for distributed algorithms and
multi-level systems, we believe that the language of m.p.r. functions has significant

advantages over previously proposed computational logics and descriptive languages.
In brief, we claim the following.

o A formal language for defining state machines which:

— Allows for intuitive and highly compact (super-exponential) definitions of
automata, without requiring enumeration of states or loss of detail;

— Is flexible enough to allow for both detailed specification of algorithms and
designs at the transistor and pico-second level, and abstract specification
of high level properties such as liveness, fairness, and safety.

— Facilitates clear expression of multi-level properties, e.g., the expression

within board b within module m within circuit ¢ within gate g Out =1

— Permits specifications of composite systems to be constructed in a simple

and clear manner from specifications of the components.

— Uses an underlying notion of state function which exposes the causality
of state change, and which greatly simplifies reasoning about the dynamic
behavior of functions.

o A sophisticated model of concurrency and composition which:

— Provides a precise, intuitive semantics for encapsulation;
— Makes a clear distinction between non-determinism and composition;

— Requires no assumptions about the communication methods used between

modules, or the type of concurrency present in the system;

— Supports a finitary and constructive notion of fairness and liveness.

e A formal method which is integrated into mathematics, so that the theorems
and proof methods of integer mathematics are immediately available for analysis

of specifications.

1.3 The modal arithmetic.

Implicit specification. During the design or development of a digital system it
seems natural to think about state indirectly. For example, one of the correctness

conditions of a reliable message transfer might be written:
Commit({source, m) = Received(dest, m).

This expression implicitly references the current state of the entire computer network.

Pictorially, the expression might be re-written:
l NetState I Commit(source, m) = Received(dest, m)

The boxed symbol on the left of the expression is a contezt, and represents the current
state of the network. The implication on the right is a formal ezpression, with a
concrete meaning that depends on the context. The technique of separating semantics
(context) from formal expressions is basic to formal logic. The advantage of this
approach is that formal expressions can be made independent of the particular details
of the context. For example, the boolean function Commit(source, m), can be defined
without worrying about how the network is connected, or how many sites are on the
net. If Commit had to be written with the state as a parameter, these details would

have to be made explicit.

Contexts. In m.p.r. arithmetic, a context consists of a pair (P, w) where P is a finite
state transducer (automaton with output) and w is sequence of transition symbols.

We call w a trace of P and let it represent the sequence of events which have driven

R

.2

~-3

3

A1

N

B

14~__3] 147“_—%}

|

3

4

P from its initial configuration. Generally, we restrict our attention to enabled traces
— traces which do not drive the transducer into an undefined state. A context (P,w)
represents the discrete device modeled by P and the current state of that device as

determined by w. Redrawing our pictorial example, we get:

| Net Transducer || Commitisourcc, m) — Received(dest, mi.
w

Contexts of composite systems. Classical finite state transducers represent the
operation of mechanisms (physical devices or programs) with discrete state functions.
Transducers in feedback product form represent discrete systems constructed from
interconnected components. The feedback product' is a technique for constructing
complex transducers from previously defined transducers. In addition to a state set, a
transition function, and an output function, a product form transducer is associated
with a list of transducers (the factor transducers), and a list of feedback functions
which control the activity of the factors. Whenever a product form transducer accepts
an input symbol, the feedback functions induce sequences of input for each factor.
The induced sequence depends on the current global state, the input symbol, and
the feedback — the outputs of the factors. Returning to the example of a computer
network, a transducer representing such a network might contain several transduc-
ers representing individual sites and a transducer representing the communications
medium. A single transfer-out transition of the product transducer might correspond

to parallel receive transitions in one or more of the factors representing sites.

Formal expressions. M.p.r. expressions are constructed from functions belonging
to a modal extension of the primitive recursive (p.r.) functions. The p.r. functions
consist of the initial p.r. functions (zero, plus 1, and projection), plus any functions
that can be constructed from other p.r. functions using substitution (f(x) E g(x)))
and primitive recursion (f(0,x) f 5(x), f(r +1,x) = h(r,x,f(r,x))). Peter [48] has
shown that the class PR of primitive recursive functions includes a great deal of
arithmetic and algebra: from multiplication and exponentiation to finite sets and
sequences. Since finite state machines a definable with p.r. functions, it would be
possible to describe all interesting properties of contexts within the primitive recursive
arithmetic. For example, we could have a boolean function IsEnabled(P,w,u) which

would be true if and only if wu was an enabled trace, i.e., iff u was enabled in the

*The feedback product used here is derived from the general product described by Gecseg [17].

context (P,w!. Our goal, however, is to avoid explicit analysis of contexts in favor
of a more abstract approach. To this end, we make use of a technique of the modal
logics [32], to make contexts implicit. We define a class MPR of modal functions to
include the p.r. functions plus new functions that implicitly reference a context. We
define a map p: MPR — PR which make;s context dependencies explicit. The value of

a m.p.r. expression flx) in the context of (P,w)is defined to be (pf)(P,w, x].

@ f(x) = (pf)IP,w,x)

w

Modal and arithmetic functions. If f is a p.r. function, e.g., fix,y) def x/y],
then f does not depend on the context at all, and (pf)(P,w,x) = f(x). But, MPR
also contains modal functions that do depend on the context. For example, there is
a m.p.r. function enable so that enable(u) is true iff u is an enabled path in the
current context. We define (penable) = IsEnabled. Thus, enable(wu) is true in the
context of (P,w) iff IsEnabled(P,w,u) is true. There are also m.p.r. functions which
refer to future states, to the relative order of previous state transitions, and to the

operation and states of the (possibly concurrent) component sub-systems.

1.4 Outline

In chapter 2 we define a formal semantics and syntax for the m.p.r. functions in such
a way as to provide precise mathematical meaning for an expressive and intuitive
specification language. In chapter 3 we show that every m.p.r. expression specifies
some family of transducers and investigate several styles of specification. We can show
that every m.p.r. function constructed under a relatively simple syntactic restriction
specifies exactly one (minimal) transducer. We show that there is an algorithm for
constructing the specified transducer from the m.p.r. function. We show, further,
that every transducer can be specified in this way. Chapter 3 also develops proof
methods that allow for deduction of properties of transducers and their traces com-
pletely within the framework of the m.p.r functions (without construction of either
transducers or traces).

Chapter 4 derives m.p.r. functionals which are analogous to the modal modifiers
of the branching time logic [5, 16] and the interval temporal logics [42]. We prove
that the m.p.r. analogs are faithful to the originals by proving that the axioms of

the branching time logic are theorems of the m.p.r. arithmetic. We also show that

3 1 T3

3

—3 T3 T3

—3 T3 ~ 3 T3

6

the m.p.r. temporal functionals can be given constructive definitions based on the
pumping lemma of regular languages [29]. This is somewhat surprising because the
temporal logic modifiers are usually defined in terms of unbounded quantification
and given infinitary interpretations [50, 3]. We also demonstrate that the temporal
functionals have a well-defined and intuitive meaning in multi-level settings. Consider
the three assertions in figurel.l. These assertion make use of the temporal functional

© (inevitably) and the m.p.r. functional in (within a component).

(inserver.s)(inreq-q)(Element(m, c) = OHcadlm,c))
(in server.s)(inreq-q)(Head(m,c) = Olinresp-q)Element(m’, s))
linserver.s) linreq-q)Element(m,c) ‘

A Olin server.sjlinresp-q)Elcment(m/, s)

W o

Figure: 1.1 Multi-level temporal logic style assertions

A m.p.r expression of the form (in C)E refers the the value of the expression E in
the context of the component named C. Thus, formal expression of 1 of figure 1.1
asserts that within the module named scrver.s, the expression l.a (below) must be
satisfied.

l.a. (inreq_q){Element(m,c) = OHead(m,c))

Expression 1.a, in turn, asserts that within the component named req-q, the impli-
cation {Element(m,c) — OHead(m,c) must be true. We let Element(m, c) indicate
the presence of message m from client ¢ in the queue. And we let Head(m,c) indicate
that (m,c) is at the head of the queue. Thus, expression 1 of figure 1.1 states that the
component req-q within the component server.s is a. live queue: it will move every
enqueued element to the head. In other words, server s contains a component called
req-q which possess a property that is often proper for queues. The second asser-
tion of figurel.1 suggests that if a request reaches the head of the request queue in
server.s, then the server will inevitably reach a state where a response to the client is
in its response queue. This is an assertion about the server: the queues alone cahx@ot
ensure this property. The first two assertions raise our hopes about the correctness of
the system in question, but the last assertion dashes these hopes. The last assertion
claims that if the server does have (m,c) in its request queue, there is no implication
that the server will inevitably have a response in its output queue. Appearances to the
contrary, there is no contradiction here. The first two assertions make it clear that the
server algorithm will generate a response. But these assertions do not say anything

about whether or not the server algorithm will be allowed to progress. Progress is a

system property, not a property that the server can assure. The multi-level quality
of these assertions is beyond the expressive range of the temporal logics.

Chapter 5 applies the m.p.r. arithmetic to the problem of systems with real-time
constraints. We develop some simple techniques for measuring time in the transducer
model, and show that we can define m.p.r. analogs of the modal modifiers of real-time
temporal logic [31]. We then look at two examples, a fragment of the Futurebus+
arbiter, and a real-time priority queue. The Futurebus+ example illustrates methods
for dealing with a real-time distributed algorithm. The priority queue section provides
a detailed example of specification refinement: the process of developing a more
detailed specification from an abstract specification, and then proving that the new
specification implements the original.

Chapter 6 is concerned with the example of a fault tolerant broadcast protocol.
Fault tolerance is one of the most important and hard to verify properties at the
system-level. We formalize a quite sophisticated algorithm for fault tolerant message
transfer over an Ethernet style broadcast network. The algorithm 1s taken from the
network literature (9], rather than being synthesized for purposes of illustration.

The final chapter contains a conclusion and describes possible future research,
including prospects for automation of proofs.

The remainder of this chapter situates the m.p.r. arithmetic within the formal

methods literature.

1.5 Related literature

M.p.r. arithmetic is an example of a computational formalism, but derives a great deal
from mathematical sources which have been ignored in the formal methods commu-
nity. These sources include the primitive recursive arithmetic of Goodstein [20], and
the algebraic automata products described by Gecseg [17]. Rather than attempt an
exhaustive comparison between m.p.r. arithmetic and other proposed formal meth-
ods, this section will briefly touch on some related work in mathematics and computer
science, and then will examine the relationship between m.p.r. arithmetic and tem-
poral logic.

1.5.1 Sources and related formal methods

The basic technique for describing past state in the m.p.r arithmetic involves a prece-
dence comparison between the i'" most recent instance of one type of transition, and

the j*" most recent instance of a second type. For example, we say that an item be-

S

-

™

13

|

3

—3 38 73 3 T3 73

—3 T3 T3 73

8

longs to a queue if the most recent enqueue transition is preceded by the most recent
dequeue transition. This “counting backwards” technique is seemingly obvious, but is
absent in the formal methods literature. Precedence companson is, however, closely
related to Rabin’s definite regular languages [51], and threshold counting [4].

The m.p.r. techniques for specifying automata via modal functions are original,
but are related to methods of Buchi and others in formal language theory (49, 34]
and complexity theory (see [4] for a survey). Kripke [32] first showed how graph
structures can be investigated with modal terms and deductions. Clarke and his
colleagues [10, 54], Vardi [60], and Ostroff [46], among others, have used explicitly
defined automata as semantic models for modal logics. That is, given an automaton
M and an assertion Q of some modal logic, these researchers have considered methods
of checking the truth of Q against M. We seek instead to replace explicit definitions
of automata by symbolic definitions, and to reason about the symbolic definitions
algebraically.

The primitive recursive arithmetic was developed by Goodstein [21, 20], and relies
on the initial work of Peter [48] and Skolem [56]. Although the p.r. functions are
well known to computer science, they have been mostly ignored by those working
in computational logic and formal methods. We are not aware of previous modal
formalisms based on p.r. functions, although Smorynski [67] describes an unrelated
modal primitive recursive logic of provability.

While algebraic automata theory enjoyed a brief vogue in the late 1960’s (18, 25],
the major focus of interest was decomposition of state machines into feedback-
free products. In the literature of state machine based computational formalisms
[46, 24, 38, 22], the cartesian product of automata is about as sophisticated as it gets.
Gouda [22] connects automata via unbounded message buffers, thus introducing a
constricted and unrealistic view of how modules interact (unbounded buffers being
rather few and far between in digital engineering). Lynch [38] defines Input/Output-
Automata which are composed in such a way that the alphabet of the combined
automaton is the union of the alphabets of the components, and state transition
a causes all factors which include a in their alphabets to change state in parallel.
Similar composition techniques are also used in CSP [27] and CCS [39]. This alpha-
bet directed composition is very poorly suited to systems which connect components
by means other than synchronous message transfer. And all three of these méth-
ods require elaborate conventions about fair scheduling. Harel’s Statechart method
[24] constitutes a rather more sophisticated attack on specification via composed au-

tomata. Statecharts provide a graphical notation in which related states and states

of concurrent systems can be grouped together to form meta-states. Unfortunately,
Statcharts are based on a broadcast model of communication that is not appropriate

for many of our target systems.

1.5.2 Comparison with temporal logic

M.p.r. arithmetic is to a great degree inspired by the temporal logics [50, 33]. The
basic idea of temporal logic is to add modifiers to a propositional or predicate logic
so that the dimension of time can be given formal expression. A proposition 0OQ
is true if and only if Q must be true “henceforth”. A proposition ©Q is true if
and only if Q must become true “sometime” in the future. The simple and intuitive
nature of these modifiers has made temporal logic seem like a good basis for reasoning
about state change. For example, O(Requesting(id) — OServing(id)) captures a
desirable property of a resource allocator — that every request will eventually be
served. Properties of liveness (something good will happen), safety (nothing bad will
happen) and fairness can be given succinct and natural definitions in temporal logics
(47, 52].

The precise meaning of temporal assertions is usually given in terms of compu-
{ation paths or trees [50]. A computation path is a sequence of states where state
Gi.: is considered to be the state reached one time unit (or one program statement)
after state o;. Computation trees allow for choice, 0 may have several possible succes-
sor states. States are generally snapshots of the contents of store or, more formally,
assignment functions mapping propositions and variables into appropriate domains.
For example, if o i1s a state, then o(x) is the value of variable x in o, and o(Q) = True
iff Q is a true proposition in o. The branching temporal logic [5, 16] is used to reason
about (possibly infinite) trees of states. Suppose that o is the current state. A propo-
sition OQ is true iff ¢/(Q) = True for each child ¢’ of 0 — if Q must become true in
the next state. A proposition OQ is true iff o(Q) = True for every descendent of o
(including o itself). A proposition <Q is true iff there is an integer k so that every
path of length k rooted at ¢ must contain at least one state ¢’ with ¢’1Q) = True.
There is also a binary temporal quantifier until so that Q until Q' is true iff every
path rooted at the current state must either keep Q true or must first make Q' true.

One can sense that temporal logic is not a complete answer to the problem of
formal verification from the large body of literature suggesting extensions to temporal
logic. Ostroff has added clocks and history variables in order to describe real-time
[46]; Kooymans has added real-time subscripts [30, ?]; Wolper has added regular
expressions [61]; Lichtenstien [50] has added past tense quantifiers; Pnueli has added

3 T3

—

3 T3 T3

3

10

history variables [50]; and Moszkowski has added interval quantifiers [42]. While there
is something valuable in each of these extensions, and in others not listed here, each
extension complicates the underlying semantics, and none seems sufficient in itself for
the full range of problems encountered at the system-level.

Examination of efforts to apply temporal logic to complex systems reveal several

basic weakness.

o “Next state” seems incompatible with composition. For example, Clarke et al
[7] are forced to verify circuits at the gate level in order to let “next state”
mean “after one gate delay.” A hierarchical verification, in which sub-circuits
consisting of several gates could be treated as units, is not possible in the “next
state” framework because the “next state” of components might not match the
“next state” of the composite system. Similar concerns prevent use of a more
realistic model in which gate delays are not uniform. Some researchers have
suggested dropping O from the temporal logic in order to avoid precisely this
problem (35, 11]. But this approach requires us to abandon hope of verifying

detailed timing constraints.

e Multi-level reasoning is not supported. Even without O, composition is not
satisfactory. Temporal logic provides a flat view of computation, and the type of
multi-level assertion given in figure 1.1 above is not possible within the temporal

framework.

o Algorithms must be defined outside the logic. The temporal logic provides an
awkward notation for detailed definition of algorithms. Thus, temporal specifi-
cations often make use of programming language notation, and must resort to
arguments about program statement labels (e.g. [10]). In contrast, the m.p.r.
arithmetic uses the same functional language to express both very high level

temporal properties, and very detailed specifications of algorithms.

o Causality is obscured by the semantics. Temporal logic requires extensive ax-
iomatization of the dynamic behavior of functions and variables because it does
not capture the causality of discrete systems. The values of state variables in
actual computational systems change only in response to some event or the pas-
sage of time. In m.p.r. arithmetic we define state sensitive functions so as to
emphasize this causal sensitivty. If f depends on events a and b, then we know
that ¢ will not alter the value of f. This causality is not captured by tempo-

ral logic semantic structures, and consequently, the dynamic behavior of each

11

state variable requires extensive axiomatization or the introduction of history

variables. But history variables defeat the purpose of the logic by making the

context visible.

o Proofs tend to be very tedious. Boute [6] has argued that formal computational
logics are inherently awkward and opaque. He suggests that because formal
logics are outside of the framework of standard mathematics, they provide a
stilted and cryptic basis for deduction. This certainly seems to be the case for
temporal logics. In order to reason about numbers within the temporal logic one
must use a many sorted predicate temporal logic, and import domain azioms
for the variables of integer sort. We are not persuaded that reasoning about

finite state systems requires these methods.

In sum, we find temporal logic to provide an appealing, but flawed, basis for
reasoning about systems-level computation. The m.p.r. arithmetic provides an al-
ternative, constructive semantics for the temporal operators, plus a finer grain of

resolution, multi-level semantics, and a more causal perspective.

1.6 Summary

The problem of formal analysis of system-level computation motivates this work. To
address this problem we introduce a formal method based on finite state machine
theory, modal techniques, and primitive recursive arithmetic. In this chapter we
argue that the rich semantics and appealing mathematical properties of algebraic
automata products provide an expressive and intutive semantic basis. We sketch the
outlines of a language of functions which permits abstract specification of automata
and automata products, and we indicate that there are strong methods available for

verifying properties of these specifications.

3 3

13

3 ... 3

3

3

3

3

3

I

T3

3

—3 ~—3 —31 T3 73

3 73 T3 T3

CHAPTER 2

SYNTAX AND SEMANTICS

The first section of this chapter provides an intuitive introduction to the m.p.r.
arithmetic. The second section defines transducers, transducer products and relative
precedence within traces. The third section reviews the class PR of primitive recursive
functions. The final section introduces the class MPR of m.p.r. functions and a
functional p: MPR — PR which defines the value of m.p.r. functions. Readers not
interested in the mathematical underpinnings of the arithmetic are invited to skip all
but the first section.

Sequence notation. This chapter involves a great deal of sequence manipulation.

Unfortunately, there are no standard names for sequence functions. Thus, we must
explicitly define the notation that will be used here. Let {) denote the empty sequence,
and let (a),...,a,) denote the named sequence of length n. The concatenation of
sequences is denoted by juxtaposition or the symbol ’’, whichever seems clearer in
the context:

(0.1, N Onxb]. cosy bk) = (O.], eeey an) J (b] 3 esey bk)
= (al yeeey Gy bl Yoeeoy bk)-

We let ((a),....,a))i = a; if 0 < i < n and 0 otherwise. Let au abbreviate (a)u
and let ua abbreviate u{a) when it is clear that “a” represents a single element and
“u” represents a sequence. Finally, the language of sequences A" conmsists of () and
ua for all u € A" and a € A. These, and other useful siring functions are listed,
for convenience, in figure 2.1. More formally, strings within the primitive recursive
arithmetic are encoded in natural numbers. In practice the only difference this makes

is that we do not require a type theory: all variables range over natural numbers.

12

13

Concatenation
(0] v eeny an)(b,. cony bk) = (O] yeees @y DYy eeey bk)
(O.|) oeey (1“) . (b|) eeny bL) = ((1| s eeey Ony b|. weey bL)
Left Appending
def
au = {(a)u
Right Appending
def
ua = u(a)
Length
length({()) o, length{wa) 4 length(w)
Last element of a sequence
. def . def
tail({)) = 0,taillaw) = a
First element of a sequence
head(()) = 0 head{wa) df o
Left truncation
ltrunc(()) df (), ltrunciwa) 4w
Right truncation

rtrunc(()) o (), rtrunc(aw) w

Indexing®
(1 £ 0, () E 0, (aw)y F 0, (awinz & (Wi
Pumpmg
u)° def (), (w)i! def). (u)t
Preﬁx

prefix(().1) ¥ (), prefix(aw, 0) = () prefix{aw,i+1) (a)preftx(w i)
Prefix membership

v<u(3i < length{u))prefix(u,i) =v

Figure: 2.1 Sequence functions

°In defiance of Dijskstra, we index sequences starting at 1 instead of 0.

2.1 The modal arithmetic

The m.p.r. functions are obtained by adding seven new :nitial functions and two
new function composition rules to the class of primitive recursive functions. The
initial functions fall into two groups. The first group contains constant functions
that describe system constants such as the alphabet. The second group consists

of state dependent initial functions which depend on whether or not a transition is

—_—

S R

3

3

—3

3 T3

14

enabled in the current state, and on the ways in which components of a composite
system are interconnected. More sophisticated functions are built from these using
the composition rules of the primitive recursive functions, and also using the new
rules which allow for definition of functions that will be evaluated in future contexts,
and in the contexts of factors.

In general the process of evaluating an m.p.r. function fix) in a context (P,w) can
be pictured as follows.

P

w

fix)

The large box to the left of f(x) depicts the context, containing the product form
transducer P, and its trace w. The smaller boxes inside P depict the factor trans-
ducers Py, ..., P, their associated feedback functions ¢,,..., ¢, and traces w,,...,w,. A
transducer is called flat if it contains no factors.

Figure 2.2 provides a more detailed picture of a product form transducer.

Feedback

Input

)

Output

P1—P5 are factors, T is a transition function, and F1—F5 are feedback functions.

Figure: 2.2 A product form transducer.

15

The state of a product form transducer is composed from the “top-level” state
and the states of the factors, which may also be in product form. The “top-level”
state represents that part of the state which is new to the product transducer —
not derived directly from the states of the factors. For example, the top-level state
of a transducer representing a circuit may track the propagation delays of signals
traveling between the devices represented by the factors. The product state set of
a flat transducer is the same as its top-level state set. But the product state set
of a transducer with factors is the cartesian product of the top-level state, and the
product state sets of the factors. Thus, a product state of a product transducer is a
tuple (s,sy,....s;). In order to model encapsulation, the product form transducer is
not permitted to use the raw state of the factors when it generates output, changes
state, or generates input for the factors. Instead, the product transducer is restricted
to using the outputs of the factors and the top-level state. We call a tuple (s, 01, ..., 0,)
a configuration when s is a top-level state and each o; is an output symbol from P..
Every product state (s, s, ..., s,) corresponds to exactly one configuration (s, 01,.... 0.1,
where each o; is the output generated by factor P; in state s;. Thus, there are at most
as many possible configurations as there are product states. In general, there will be
fewer configurations than product states.

The values of m.p.r. functions in a context (P,w) will depend on the structure
of P, on the relative order of transitions within w, on the configuration reached by
following w from the initial state, and on the states of the factors. We let A(P,w)
denote the configuration to which w drives P; we let A(P,w) be undefined if either:
w drives causes an undefined state transition of the top level transition function, or
the factor traces induced by w cause one of the factors to enter an undefined state.
We let L(P) be the language of enabled traces w — the traces w so that A{P,w) is
defined. Thus, L£(P) is the set of possible behaviors for P. '

2.1.1 The initial functions

The initial constant functions There are three m.p.r. functions which give us the
basic constants of the context. The function Alphabet returns a set containing all the
transition symbols of P. By convention, we will generally omit the empty parenthesis

() for functions with no arguments — writing Alphabet in place of Alphabet().

[P]| Alphabet] = the alphabet of P

w

13

3

3

A

3

3

3

~3 —3 ~—3 —3 —3 —3 T3 3

16

The function Components returns a set containing names for each factor of P. Thus,

evaluation of Components requires us to “open up” P and look at its structure.

(-
P

L w

Components

It

{1....,7}

J
The value of the function Pump_number = the size (cardinality) of the product
state set.

@ Pump_number is the size of the product state set of P
w 3

In practice, the actual value of Pump_number is not of interest, but the function
Pump.number is useful as a symbolic representation of the value. For example, an
output function Out(x) can have a range of at most Pump_number values, because
the value of Out(x) depends only on the configuration.

The initial state functions and trace languages. There are four basic m.p.r.

functions which can test properties of the current state: Out, enable, f-efiect, and
precedes.

¢ Each transducer will be associated with an output function which generates an
output, depending solely on the current configuration. Generally the output
will be a tuple of values. For example, the output of a bus interface will be a
tuple consisting of outputs to each bus wire. Thus, Out(x) is the x™* element of
the current output tuple.

@ Out(x) = the x'" element of the current output
w

o The function f_effect(a,c) defines the path which will be induced for factor
c if an a transition is traversed from the current configuration. The value
of f_efiect reflects the value of the feedback functions. When f_effect{a,c) =
u, the feedback function ¢. will generate the sequence u for factor ¢ if the

product transducer accepts an a. For example, in a circuit which monitors k

17

serial lines and has k factors representing flip flops, a transition sense.(xo, ...xx-1)
might induce each flip flop FF; to latch x; — f.eifect(sense.(x,, v Xt) FR) =
(latch.x;). Note that f_effect(a,c) is a sequence over the alphabet of the factor
transducer named c, thus the alphabets of the factors can be completely distinct
from the alphabet of the product transducer. When f.effect(a,c) = (), factor ¢

will not change state due to a.

|
i-effect(a.c)| = the feedback induced in
¢, P, the current configuration

L w

The boolean function enable(a) =1 iff an a transition is enabled in the current
configuration — iff a can be appended to w to obtain a new trace which does
not drive P into an undefined configuration. Note that if f-effect(a,c) drives

factor ¢ into an undefined state, then a cannot be enabled.

@ enablela) ={ 1 if wa E:C(P);

0 otherwise.
w

Given a trace w = (a,,....a,) we say that g represents an event that preceded
q; iff i< j. The most recent” event represented in w is given by a,, the

“second most recent’ is glven by Q- b , and the ‘jtn most recent event” is given
by an_(i-1. It 1s convement to have an 1mag1nary event ao to represent events
which have not yet occurred, i.e., the k*" most recent event for k > n. We can

“

also consider the “i*" most recent b event” for some b in the alphabet to be
that a; so that a; = b and there are exactly i events ay = b with k > j. Again,
we will find it convenient to let a, stand for the k'™ most recent b if there are
less than k b’s in the sequence. The boolean function precedes(a,i.b,i), 1s
true iff the i*" most recent a transition recorded in the current trace preceded
the i*" most recent b transition recorded in the current trace. For example,
in a site on a computer network, we might test to see if a message has been
sent more recently than its acknowledgment has been received, by evaluating
precedes(rcccive.acky, 1, send.m,1). In a real-time circuit, we might test to
see if at least k time units have passed since the logic level was most recently

raised by evaluating precedes{raise, 1,tick.k). In order to evaluate precedes

3

i .3 .3 _3

.3

3

3 T3 3 3

18

on a trace, we can define Place(w, a,i) to be 0 if there are fewer than i a’s in
w, or if a = 0, and let Place(a,i) =i such that (w); = a and Yoeliwl = a)' =
i, otherwise. By convention 0 denotes the null transition which leaves state
unchanged, and we find it convenient to just ignore the 0’s in the trace. Thus,

precedes(a,i,b,j) will be true of w iff Place(w, a,1) < Place(w, b, j).

L 1 if Placelw,a.i) < Place(w.b,i);
E’] precedesia,i,b,i}} = .
0 otherwise.

w

We can easily build quite sophisticated state predicates from precedence com-
parisons, but the comparisons have a particularly simple algebraic interpreta-
tion. The integers i and j in a comparison between the i'" most recent a and the
*" most recent b are called the precedence indexes of the comparison. When-
ever the precedence indexes of a state expression are bounded by k, only the
k most recent transitions of each type can effect state. Thus, the language of

sequences which satisfy a particular precedence constraint must be regular.

We now define two important functions from precedes. The boolean function
Past(a,i) = 1 iff there are at least i a’s in the current trace. The boolean

function Initial = 1 iff the current trace is ().

Definition 2.1: Past(x,y)

past(x‘y) d=_e_f precedeS(O. 1) x-y)

Definition 2.2: Initial
Initial &f ~(3a € Alphabet)Past(a, 1)

2.1.2 The composed functions

We can build quite sophisticated state functions from the seven m.p.r. initial func-
tions, the p.r. functions, substitution (f(x) = h(glx)), and primitive recursion. We
also have two modal function modifiers (functionals) which allow us to define functions
that are to be evaluated either in a future state, or in the context of a sub-system
(factor). For every m.p.r. function f(x) we have a function (u,x) % (afteru)f(x),
and a function (¢, x) 4¢f (in ¢)f(x). For any sequence of state transitions u, the value

of (after u)f(x) is the value of f(x) in the future state reached by following u from the

19

current state. For any component name c, the value of (inc)f(x) is the value of f(x]

in the context of the factor named c.

[P]| (afteru)fx)| = [P]| fix)

w wu

Informal definition of after.

P
tinc)f(x)| = f(x)

w

Informal definition of in.

Figure: 2.3 Informal definition of the modal functionals.

2.1.3 Applications of after

Although after may appear to be a very primitive operation, it can be the basis of
quite sophisticated concepts of liveness, timeliness, eventuality, and safety. We can
first use after to exiend cnable and f.eficct to sequences, so that we can find out if

a sequence u is enabled, and the effect of a sequence u on a component.

Definition 2.3: Extension of enable and f.effect .

enable”({)) def 4
enable (ua) def enable {u) * (afteru) enablela)
fefiect™((), c) = ()

f_effect™{au,c) def f_effect(a,c)- {afteru) f_eifect (u.c)

In the sequel we will often abuse notation, writing enable(u) for enable’(u), and
relying on the type of the argument to disambiguate. We will use a similar convention
for f.eifect and f.cifect”. It will also be convenient to write (after a)f in place of
{after(a))f when this can be done without confusion.

We can now, informally, test to see if a function is henceforth true.

3 -3 __3

3

3 3

_3

3

3 ~—3 T3 73 /3 T3 T3 773

Definition 2.4: Informal version of O

Of(X) > 0 & (Vu){enable{u) — (afteru)f(x) > 0).

Thus, DOf(x)is true, iff f(x) is true in all reachable configurations (including the current
configuration).
We can also say that sometime in the future f(x) can take on a value k, and then

remain equal to k indefinitely as follows.

enable{v: u-..u -z)
N’

. n times
N o’

n times

In chapter 4 we show how to define these and other interesting path properties, using
the pumping properties of regular languages and Pump.number to get rid of the

unbounded quantification.

2.2 Transducers and traces

Product form transducers are classical transducers presented as a product of trans-
ducers. Each of the factors represent a component sub-system and there is additional
structure representing the coordination of these sub-systems. Since the factors are
also product form transducers, we can consider product form transducers as trees
with leaves being transducers representing systems that are atomic (systems with no
components).

We define product form transducers inductively. First we define the class P, of
flat product form transducers — those with no factors. The elements of this class are
essentially standard Moore machines [40, 29]. The class Pi., of transducers consists
of those transducers containing at least one factor belonging to Py, and no factors of
belonging to P; for j > 1. The class P is the union over all P;.

2.2.1 Flat transducers

It is convenient to consider all alphabets to consist of the integers {1,...,k} for some

k, and to consistently reserve 0 for the null transition that leaves state unchanged.

21

Definition 2.5: The flat product form transducers
The class P, of flat product form transducers is the smallest sét containing
all tuples of the form:

P=(A,S,start,O,A,d)

A ={1,...n} is a finite transition alphabet,
O ={1,...k} is a finite output alphabet,

S ={1,...h} is a finite state set,

start € S 1s a distinguished start state,
A:S — O is an output function,

6:S x A — S is a transition function, with 8(s,0) = s.

We can define a function A: Py x A — S so that A(P,w) is the state to which w
drives P from the initial state. Thus, given a transducer P, and a trace w, we can

derive the current state of P — A(P,w).

Definition 2.6: A for flat transducers

AP, () ¥ initial
AP, wa) & 5(A(P, W), a)

2.2.2 Product form transducers

A general product form automaton P is also defined as a tuple including a state set,
input and output alphabets, and transition and output functions. But, each of these
product form transducers also contains a tuple of factor product form transducers
F = (Py,...,P;), and a tuple of feedback functions. Factors are connected by making
the input to each factor depend on the input to the product form automaton, the
state of the product form automaton, and the outputs of all of the factors. When a
product form automaton accepts a single input symbol, each factor is provided with
a sequence of 0 or more input symbols, representing the parallel activity of all the
components. For example, suppose we have a product form automaton representing a
network of computers, and containing factor transducers representing each individual
site. A single state transition representing a message transfer might induce receive
state transitions for some of the factors, a secnd transition for one factor, and no
transitions for factors representing sites not involved in the transfer.

Notation. When we define a product form automaton, we need a convenient
notation to distinguish elements of the product, such as alphabet and state set, from

the elements of its factors. Thus, we write 6 to refer to the transition function of P,

3

3 3 73 T3 T3

3

22

and write 6.1 to refer to the transition function of the i'" factor of P. Similarly, if O
is the output alphabet of a transducer, then O.i is the output alphabet of factor P;.

Definition 2.7: The class of product form transducers

The class P of product form iransducers is the infinite union of the classes
P; for i > 0. BEach class P,., of product form transducers is the smallest set
containing all tuples of the form:

P=(A,0,S,start,A,8.F @)

A = {1,..m} is a finite transition alphabet,
0 = {1,...k} is a finite output alphabet,

S ={1,...h} is a finite state set,

start € P.S is a distinguished start state,

F =(Py,...P;) is a tuple of product form transducers, so that | = max{l’:
(31)P; € Py}

A:Sx0.1...x0r=0,
5:5x0.1...x0.rx A — S s a transition function, with 8(s, o,,...,0,,0) = s.

@ = (dy,...d,) is a tuple of feedback functions: ¢;:Sx 0.1..x O.r x A —
fA.i), with &(s,0y,...,0,,0) = ().

Note that the transition and output functions can only use the output of the
factors, and do not see the internal state of factors.

The product state set of a flat transducer P, is the state set of P. If P is not flat,
then the product state set of P, denoted PS({P} is given as follows:

Definition 2.8: The product state set PS(P)

PS(P) &5 x T Ps(P.).

i=1

A configuration is a tuple ¢ = (s,01,...,0,) € S x 0.1... x O.r. The start configuration
is the tuple consisting of start and the the outputs of each factor in its own start
configuration. Since the start configuration of a flat transducer is start, the recursion
must terminate. Let st = (start,A.1(st.1),...,A.r(st.r)) denote the start configuration.

After an a transition, we will get a new configuration ¢’ = (8(c,a),0’.1,...0"r)
where each o'.i is of the configuration which P; reaches by following &;(c,a) from its
own current configuration.

Intuitively, we intend that when a product form automaton accepts a transition
a, each factor will traverse transition sequence ¢i(c,a). We formalize the concept of
current configuration by defining two functions. The first is a map A so that A(P,w)is
the configuration of P after it has accepted the path w as input. The second is ¢7, the

reflexive transitive closure of ¢;. We define A inductively on the classes comprising

23

P. For P in P,, we have already defined A(P,w). For P in P,., we need to also use the
configurations of the factors. We assume that A.i is defined for each of the factors.

Let ¢ be a configuration. Then we can define ¢; as follows.

Definition 2.9: Reflexive, transitive closure of ¢

o7le, () E ()
drle,aw) E dile, a)d(8(c, a) A 1(A.11a)), .. Ar(Ara)), w))

The empty sequence () induces an empty sequence for the factors. Each
a transition in configuration ¢ will take the transducer to a new configuration
(8{c,a),A.1{A.1(a)), .. A.r(Ar(a)),w)). Thus, the sequence induced by aw in config-
uration c is obtained by concatenating the sequence induced by a to the sequence
induced by w in the configuration resulting from a. The function pfactor(w,1i) gives

the sequence induced for i by w from the start configuration.

Definition 2.10: pfactor and A for product form transducers

pfactor(w,i) & ¢; (st,w)

AP, () ¥ (start, start.1, ..., start.r)

A (P, wa) %

(8(AIP,w), a),A. 1A 1P, pfactor(wa, 1)), ...,A.r(A.r(P,, pfactor(wa,1)))

Note that A(P,w) is defined only if A.i(P;, d;(st,w)) is also defined. This means
that any trace of a product form transducer will not drive any of the factors into

undefined states. We can now, formally, define the language of iraces £(P)

Definition 2.11: The trace language £(P)

cp) {w € A" : A(P,w) is defined }

2.2.3 Transition precedence.

In order to evaluate precedcs we need to be able to translate an expression
precedes(a,i,b,i) into an assertion about the current trace. First we define a func-
tion place(w, a.i} which describes the position of (a,1i) in w. Intuitively, place(w, a,i)
ranks the relative order of the i*" most recent (rightmost) a transition in w, with

higher values indicating “more recent”. We find the following conventions useful:

* Recall that the alphabets of state machines are sets {1,...k}, and 0 is reserved

for the null transition which leaves state unchanged. It is convenient, to con-

3

-3

-3 1 3

.3

3

3

3

3 —3 3

r—3 3

—3 3 73

24

sider all null transitions as less recent than any non-null transitions, so we let

place(w,0,i) = 0.

o The rightmost a transition in w is considered to be the 1** most recent a tran-

sition, so placc(w, a, 11 is the greatest j such that (w); =a.

o If there are fewer than i a transitions in w, then placefw,a.i) = 0, the null

transition.

Definition 2.12: Place

The “place” of a pair (a.1) in a trace.

placel((), a.i) ¥ 0

0 ifa=0o0ri=0
length{ub) elseif a=bAi=1
place(u,i—1) elseif a=b
placelu,a,i) otherwise.

placelub, a,i) =

We say that (a,i) precedes (b,i) in w iff place(w, a,i) < place(w,b,j).

Definition 2.13: RelOrder

RelOrder(w,a,i,b,j)d-E-f 1 iff plac?(w.a,t)<place(w,b‘]);
0 otherwise.

It is important to realize that each expression RelOrder(w, a,1,b,j) defines a finite

indexed congruence on A-. Define the congruence as follows.

Definition 2.14: A congruence on RelOrder

u=vmod (a,i,b,j) & (Vx,y)RelOrder(xuz, a,i,b,j) = RelOrder(xvz, a,i, b,j)

Definition 2.15: The congruence classes induced by RelOrder

W) aimi ={u:u=wmod (a,i,b,jl}

Theorem 1: For any fixed {a,i,b,j) the set {[w] 4.1} contains less than Z;‘;’o nk

distinct elements, where n is the cardinality of A.

Proof. Let length(w) > i+j. If w contains any elements that are equal to neither
a or b, those elements can be discarded to obtain a shorter, congruent sequence.
If w contains only a’s and b’s, then there are either more than i a’s or more than j
b’s. If there are more than i a’s we can discard the leftmost a to obtain a shorter,
congruent sequence, and similarly for the b’s. Thus any sequence of length greater

than i+ j must be congruent to a shorter sequence.

25

The Myhill-Nerode theorem [43, 44, 29] states that any language which is defined
as the union of finite indexed congruence relations is regular. Thus theorem 1 implies
that the language L C A* where L = {w: RelOrder(w,a,i,b,i} = 1} is a regular
language. In fact, L is a particularly simple type of regular language, an aperiodic
language. A language is aperiodic iff there is some t so that wa'*'v is in the language

iff wa'v is in the language [49]). This condition, obviously, holds in L.

2.3 Review of the Primitive Recursive Functions

The class of primitive recursive functions were first described by Skolem [56] and
Godel [19]. Peter [48] has shown that a great deal of algebra and number theory is
primitive recursive. Addition, multiplication, iterated summation and product, finite
sets and sequences, factorization, bounded quantification, and the logical connectives
(A, V,- =) are all p.r. This may be surprising because the p.r. functions can be

defined very simply.

Definition 2.16: The primitive recursive functions

The class PR of the primitive recursive functions consists of all the functions
which can be generated after a finite number of steps using the following |
rules®.

1.Zero: (%) < o,

2.Successor: f(x) 4l s+ 1 ,

3.Projection: f(y,%) ¥ %,

“17°7" “"4:Substitution: (%)% h{g:i(X),...0n(X)),

def

-5.Primitive Recursion: (0,%) % g(%), f(r + 1, %) & h(r, %, f(r, %)),

2The rules given here, and the form of the presentation are from [57].

Each equation of the form f(x) T E(%) is called a defining equation. Any function
f can be evaluated on an argument m by simply rewriting the expression repeatedly
according to its defining equations. We will assume in this work that the name of a
function is somehow associated with its defining equations. That is, if we are given
f, we will be able to determine the defining equations of f. If we wanted to be formal
about it, we could let the sequence of defining equations be the name of the function

(c.f. [14]). However, such formality would be excessive here.

3 3

—3 — 3 ~—3a —3 3

TR

—3 T3 —3 T3 13 3 3

26

We can easily define the basic functions of arithmetic as p.r. functions. For

example, we define addition, multiplication, and exponentiation using recursion:

0+y ¥y, (x+1 +y ix+iy+1
0*y=0.[x+ll*y=lx*y)+y

def Ly def
X LN E xox (xY)

Since we are concerned with functions over the non-negative integers, we cannot
use standard subtraction. Instead, we define culoff subtraction, so that x = y = 0if
x < Y.

Predi0) 410, Predix +1=x
x = 0% x,x—y+l ddf Pred(x)*y

We will commonly use p.r. functionals, mappings of the form «:PR" — PR to

abbreviate complex definitions, or to describe classes of similar functions. Summation

and interated product are classical examples of p.r. functionals.

¥ i, %) &,
Y A4, 0) E flk+ 1,%) + YL, fIL,)

i=i=1

I10_, f(3,%) dé‘o,
KV g4, %) 9 Flk+ 1, %)« TTE, F(L,9)

n:=i+‘ déf Hk_l,+”f(1+] x)

In these examples, Y_ and [] are functionals, and (}_ f) and (]] f) are p.r. functions.
Bounded quantification is also defined in terms of p.r. functionals. ‘In the definitions
of the quantifier functionals, we make use of the function sgnix) which reduces any
value to a boolean value. We will generaly consider non-zero values to be true, and 0
to be false. The function sgn will be useful for converting arbitrary values to boolean

values.
sgn(0) & o, sgn(x+1\“é‘1
(Vx < 0)f(x,2) % 1

(Vx <y + 1)f(x,2) & sgnifly, £)) * (Vx < y)fix.2)

(3x < 0f(x,5) & o
(Ix <y + 1)fix,2) A sgn(f(y.i') + sgnl(Ix < y)f(x,Z))
The only glaring omission from the p.r. functions is unbounded universal and

existential quantification. That is, we cannot define a function f(x, y) f (vx)gly). All

27

p.r. functions are total, and this is partly because of the lack of unbounded quantifi-
cation. In fact, evaluation of p.r. functions is computable, although not necessarily
practical. Thus evaluation of m.p.r. functions is also computable if we are given a
transducer and trace. We will not hesitate to use unbounded quantification when de-
scribing the properties of our functions, we just cannot use unbounded quantification
in the function definitions. We have not found this lack to be a serious impediment
to our work — we are using the functions to describe finite state machines, after all.

Readers interested in the development of number theory from the p.r. functions
should consult Peters well-known work, or a more modern, treatment such as that
found in Hinmann [26], Smorynski [57], or Lewis and Papadimitrou [37]. An in-
triguing, although not simple, alternative approach to the p.r. functionals has been
recently developed by Simmons [53].

2.4 A formal definition of the modal p.r. functions.

The class of m.p.r. functions includes a small set of initial functions, and all those
functions definable from the initial functions with a finite number of applications of
an even smaller set of function construction rules. The m.p.r. functions form an
extension to the class of primitive recursive functions. Because the initial primitive
recursive functions are also initial m.p.r. functions, and because both of the primitive
recursive rules for defining new functions are also m.p.r. function definition rules,
everything expressible in primitive recursive arithmetic is also expressible in m.p.r.
arithmetic.

S

U

13

.el

Definition 2.17: The class of m.p.r. functions »

The class MPR of the modal primitive recursive functions consists of all the
functions which can be generated after a finite number of steps using the
following rules.

1.Zero: (%) %o,

2.Successor: fix) def + 1,

3.Projection: fly,%) % %,

4.Substitution: (%)% hig)(%),...g.!%)),

5.Primitive Recursion: f(0,%X) = g(X), f(r + 1,%) e hir, %, f(r, X)),
6.Alphabet: f() ef Alphabet,

% Outf x),

7.0utput function: f(x)
8.Component names: f() = Components,
9.Pumping number: f() % Pump_number,
10.Enabling: f(x) % enable(x),
11.Precedence: f(x,y,x',y') def precedes(x,y, x',y'),
12.Feedback: f(x,y) def f-effect(x,y),
13.Path offset: fiy,%) < (aftery)g(%),

14.Component selection f(y,X) 4 (in ylglx).

Note that every p.r. function is also an m.p.r. functions. The defining equations
for p.r. functions are quite informative: if f is p.r. then we can reduce an expression
f(n) to a unique integer k by a finite number of rewritings using the defining equa-
tions. The defining equations for functions which are m.p.r., but not p.r. are not so
informative. We remedy this situation by developing a map p: MPR — PR, which re-
duces each m.p.r. function to a primitive recursive function that exposes the implicit
dependencies on state machines and traces. We will define the value of an m.p.r.
expression f(n) in the context of P and w, to be (pf){P,w,n). This interpretation is

the subject of the next section.

2.5 Interpretation

One of the advantages of basing our language of functions on the p.r. recursive
functions is that we can describe mappings on MPR iteratively. Every m.p.r. function

is either an initial function, or defined from simpler m.p.r. functions by substitution,

29

primitive recursion, transition offset, or component selection. Thus, we can define
p by first defining p : InitialFunctions — PR, and then, supposing that p is defined
on all MPR functions constructed using n or fewer applications of the defining rules,

define (pf) for a function constructed using one of the composing rules.

Definition 2.18: The value of an m.p.r. function
The value of a m.p.r. function f in the context {P,w) of an automaton P and

trace w is defined to be (pf)(P, w,x).

__ 13

-1 3

1

-

3

3 3 3 —3 T3 T3 131

—3 T3

r—~—§ r—‘g

—3 —3 13

30

Definition 2.19: The evaluation functional, p

Let P =((A,0,S,start,A, 5, (P, ...P,), ®)

o0
(p F)(P,w,x) % 0
I fix) % x+1
(0 F)(Pw,x) % x +1

If fly,0) %z,

(p f){P,w,y,X) défi_u
If f()% Alphabet
def
(p 1)(P,w) & A
If f()d-—ffComponents
(o AP, w) ¥ (1.1}

If) def Pump_number

(p f)(P,w,x) ¥ size(S) « [], size(PS(P.i))

I fix) % Outix)
(p)(P,w,x) = (A(A(P, W),
If f(x)% enable(x)

def 1 if W(X) € E(P)
(p f)(P,w,x) = { 0 otherwise.

If f(x) def precedesix,y,x’,y')

(p f)(P,w,x,y,x,y’) def RelOrder(w, x,y, x’, x')

If fix) % feifect(x,y)

(p f)(P,w.x.y,)“é‘{ 0
def

If f(i‘) = h(gl(z)n--n gn(i))

(pf)(P,w,X) = (ph)(P,w, ...[pg;)(P,w,X),...)
If (0,8 Y g(x), f(r +1,%) % h(r, %), {(r,%))

(pf)(P,w,0,%) ¥ (pg)(P, w,R)

(PF)(P,w, T+ 1,%)) ¥ (ph)(P,w,T.%, (pf)(P, w,T,X))

If fly,%) % (aftery)g(x)
(PF)(P,w,y,%) & (pg)(P.w -y, %)
If fly,%) < iiny)g(%)

(PfHP,w,y,X) = 0

O (A(P,w),x) If 0<x< Ty
otherwise.

. def [(pg)(Py,pfactor(P,w,y),X)) if O0<y <
otherwise.

to the p.r. functions.

- Theorem 2: The functional p is an effectively 1-1 map from the m.p.r. functions

Proof. Note that (pf) is obviously a p.r. function when f is an initial m.p.r.

31

function. Proceding by induction we can see that (pf) must be p.r. for all functions
£ € MPR. The function is “effectively” 1-1 because for every p.r. function f, there
is a m.p.r. function, f itself, so that (%) = (pf){P,w,X) = f(X). That it, the map

is 1-1 modulo hiding the extra, meaningless arguments.
Corollary. 1: If f is p.r. then (pf)(P,w,x) = f(x).

Corollary. 2: For arbitrary m.p.r. function f, (3P, w,X)(pf)(P,w,X) > 0 1s semi-
decidable, but not decidable.

Proof: Undecidability follows from the well known undecidability of the p.r.
functions [20] and the inclusion of the p.r. functions in the m.p.r. functions.
Semi-decidability follows from a simple dovetailing argument; the set of possible
argument vectors is enumerable, so we simply test each vector until/if we find a

satisfying case.

Corollary. 3: (pf)(P,w,1i) = g(n)is decidable in time bounded by Ackermann’s
function for arbitrary m.p.r. functions f and g and constants m and n.
Proof: Follows from the well known decidability of closed p.r. terms [20] and

reduction using p.

2.6 Summary

In this chapter we have examined the intuition behind the m.p.r. arithmetic and
shown that the m.p.r. functions have a well-defined syntax and semantic interpre-
tation. The feedback product form transducers are, cléarly, derived from previous
work in algebraic automata theory, but take on a new significance in the context of
formal specification. The m.p.r. functions provide a natural and intuitive language in
which to describe these, very complex, algebraic objects. We can define a functional
p: MPR — PR so that pf is a p.r. function which exposes the context dependencies
implicit in f. Thus, we have an algebra of context dependent integer-valued functions
which reflect the dynamic behavior and structure of discrete systems represented by

product form transducers.

3

CHAPTER 3

SPECIFICATION AND VERIFICATION

One of the advantages of finite automata is that there is a clear and intuitive corre-
spondence between automata and physical systems. Thus, the process of translating
our informal understanding of a system into a formal specification of a state machine
is less error prone than it might be otherwise. M.p.r. functions can be used to specify
transducers in a way which preserves this intuitive correspondence and extends it to
composite and real-time systems. Detailed m.p.r. specifications of quite complex sys-
tems can be made to be very compact and intuitively transparent. Specifications can
be tested for accuracy and correctness using deepening, abstraction, and construction.
We deepen a specification by specifying the mechanics of the system in more detail.
For example, we may deepen a specification of a network by specifying the nature of
the connection, the possible transmission efrors, or the real-time constraints on the
sites. An abstraction of a specification is a correctness property that follows from the
original specification. The key here is to prove that the abstract correctness property
(which captutes some desired system behavior) is guaranteed by the original speci-
fication. Conversely, we might want to prove that a deepened specification implies
the correctness of the original specification. Cénstruction involves proving that a
specification can be satisfied by at least one transducer. That is, given a specification
Spec(x), we ask if there is some P so that Spec(x) > 0 in the context of (P,w), for
each w € L(P) — is there a P so that Spec(x) true under every reachable state of P.
A construction of a specification is a specification which implies the correctness of
the original specification, and which can be shown to be satisfiable by at least one
transducer. If we can find a construction of Spec(x), then we know that, in principle,
we can build a device which implements Spec(x). While there can never be a proof
that an abstract object (a specification) is an accurate representation of a physical
object (a computational device), we can be reasonably confident of a specification
which: corresponds to our intuitive understanding of the system, provably satisfies a

variety of correctness criteria, and is finitely realizable.

32

33

The discussion of the previous paragraph can be made more precise by more
precisely defining what satisfaciion means. We say f(X) is a m.p.r. term iff fis a
m.p.r. function, and X is a list of variables. Every m.p.r. term f(X)is a specification

of the transducers which satisfy f(%).

Definition 3.1: Satisfaction of a term by a transducer.

A transducer P satisfies a term f(X)

(Vw € L(P))(V) [P]| fx)] >0

w

If f(X) is a refinement of g(X) then every transducer which{ satisfies f(X) should also
satisfy g(m). If f{X) is an abstraction of gim), then every transducer which satisfies
g(X) should also satisfy f(X). We say f(X) is feasible, iff there i1s at least one transducer
which satisfies f(X).

Remark on constructions. If a specification Spec(x) describes a system which can-
not be implemented by a finite state transducer, then we consider Spec(x) to be incor-
rect. The m.p.r. arithmetic is intended as a vehicle for studying discrete engineering,
not the mathematical subject of effective computation. At present, all discrete com-
puting devices are finite state, and thus all feasible algorithms and designs can be
implemented by a finite state transducer. It is, of course, possible that someone will
develop an infinite state computing device. M.p.r. arithmetic, in its present form,
will not be the proper framework for describing computation on such a device. But
for systems that will be implemented on digital hardware, finite transducers are a
sufficiently general model. It can be argued that the convention of treating programs
and systems as if they were of unbounded state: e.g, storage cells that can store ar-
bitrary integers, simply discards “implementation details”. Along similar lines, it is
often claimed that finite state methodologies will obscure the essence of an algorithm
or design with useless clutter. The first argument has no merit for systems and archi-
tectural level computing, where bounds on time and resources are central correctness
1ssues. The second argument appears to result from a confusion between notation
and semantics. It is true that specification of systems in terms of regular expressions
or finite state diagrams requires a tedious enumeration of state sets and results in
brittle specifications which are not easily extended. These are notational limitations,
however, and we show in this chapter that these limitations can be overcome.

The first section of this chapter introduces various techniques for treating m.p.r.

functions as elements of a sort of programming language for transducers. Unlike

3

Yy 3 .y 3 1 _3

3

.

3

3 T3

— 3

—3 T3

34

traditional programs, however, these m.p.r. programs do not start with a fixed notion
of control flow. Instead specifications are written to define under what conditions
a transition can become enabled, how future transitions will change current state
properties, and how the outputs of components will correspond to each other and
global state. The second section introduces m.p.r. proof techniques. To show that a
specification S implements a property Q, we show that S — Q is a valkd expression.
That is, if S is true of in the context (P, w), then Q must also be true in the context
of (P,w). Clearly, it would be foolhardy to attempt to prove the validity of S — Q
by inspecting all contexts. Instead we prove an expression is valid by using general
properties of contexts and m.p.r. functions. The final section addresses proofs of
feasibility. Certain types of m.p.r. functions called exact grammars are defined in
such a way so that there is an algorithm for comstructing a transducer from the
grammar. If P is constructed via this algorithm from a grammar G, then G is satisfied
by P — G has non-zero value under (P, w) for every trace w of P. And if G is satisfied by
another transducer P/, then P and P’ will have identical input languages, and identical

outputs on every trace.

3.1 Specification Style

In this section we introduce some techniques for developing specifications at varying
degree of detail. We begin with a type of function definition called modal recursion
which allows description of state change in a very “high-level” manner. We then

switch to a mode detailed, style called a modal grammar.

3.1.1 Modal recursion

Primitive recursive definitions of functions involve defining the value of the function
on 0, and then defining the value of the function on x+1 in terms of its values on y < x.
There is an analogous technique which is of great utility in defining modal functions.
This technique involves defining the function value in the initial state, i.e., when the
current trace is {) the empty trace, and then defining the value of the function after
each possible transition in terms of its current value. Recall from section 2.1.1 that
Initial is a boolean function which is true iff the current trace is (), the empty trace.
Thus, if we write Initial — E, we are asserting that E must be true in the initial
state. In definition 2.4 we defined Of to be a boolean function so that Of(x) = 1
iff (Vu)(enable(u) — (afteru)f(x) > 0). Thus, if we write Of(x), we are asserting

that f(x) is non-zero in the current state (where u = ()), and in all reachable future

35

states. We can combine these two types of assertions to describe modal functions

using modal recursion.

Definition 3.2: Modal recursion.

A function f(¥) is modal recursive in g and h iff :

Initial — f(X) = g(X)
O(after a)f(X) = h{a, X, f(X)]

Note that not all modal recursive functions are m.p.r. functions. For example,

! The main use of functions

O(after a)counter(x) = counter(x) + 1 is not m.p.r.
defined using modal recursion is to constrain the behavior of m.p.r functions. That
is, we use modal recursive functions to describe the desired behavior of a m.p.r.
function that we then describe more algorithmically.

Modal recursion is especially useful when we want to define the result of a state
transition, without defining the mechanism. For example, we can define fifo and lifo
queues quite simply, using this technique and the sequence functions defined in figure

2.1. Recall that rtruncix::y) = x and ltruncly:x) = x, while rtrunc(()) = ltrunc({)) =

().

fifo_q: 0 — Sequences
[nitial — fifo-q = ()

(x)fifo-q if a =push.x;
Ofafter a)fifo.q = { rtrunc(fifo-q) if a =pop;
fifo_q otherwise.

Figure: 3.1 A fifo queue

J

Note that the definition of the fifo_q function is much like a standard abstract
data type definition [1]. The key to the definition is that (afterpush.x)fifo.q is
obtained by pre-pending x to the current value of fifo.q. We can easily derive a

lifo_q specification from the fifo.q specification by replacing rtrunc with ltrunc.

*Intuitively, counter should not be an m.p.r. function because finile state machines cannot
implement unbounded counters. For proof, note that for every m.p.r. initial function f, there is a
p.r. function g so that (afteru)flz) < glz). It is easy to show, by induction, that this holds for
all m.p.r. functions. But, there is no such bound on counter.

T3 T3 T3 T3 T3 3% "3 T T4 "I I T3 7

T3

lifo-q : ® — Scquences
Initial — lifo-q = ()

. (x)lifo_q if a = push.x;
O(aiter a)lifo.q = ¢ ltrunc(lifo.q} if a = pop;
lifo-q otherwise.

Figure: 3.2 A lifo queue

3.1.2 Modal grammars: Specifications of systems

For specifications that are more detailed than modal recursive functions, we adopt a
style of function called a modal grammar. A modal grammar is a function defined
as the conjunction of clauses which constrain the alphabet, components, feedback,
output functions, and enabling rules of a transducer. In outline a modal grammar
has the following form:

grammar(x) 4

{
Alphabet = falrhuhct(i‘) “)
A Outputs = fouipuis(X) (2)
/\ Components‘ = fcomvoncnts(i) (3)
AtVi € Outputs) Out(i) = f,epueli, X) (4)
A¥Yc € Components)(in ¢)OSpec,.(X) (5)
A(Ya € Alphabet) enable(a) = finamc(a.X) (6)

}

Figure: 3.3 A modal grammar

Line (1) defines the alphabet of the transducer. Line (2) defines the outputs.
Recall that the output of a transducer is given by a single function Out so that
Out(x) is the x'" element of the output tuple of the transducer. It is often more clear
to define a set of output function names Qutputs = {n,,...,ny} and let n; = Out(i).
Thus, lines (2) and (4) define Out and define the pseudonyms for each element of
the output tuple. Line (3) defines the component names, and line (5) associates each
component with a type — a specification which is satisfied in the component. When
we write (in c)OSpec.(X), we are asserting that every enabled path within component
¢ must reach a state where Spec,(X) is true. The final line, line (6) defines the enabling
rules of the transducer. Clearly if faipnabet! X)sfoutputs{ X)y feamponents(X); fename(¥, and

every Spec, are m.p.r. functions, then grammar(X) must also be an m.p.r. function.

37

There is no guarantee that grammar(X) is satisfied by any transducers at
all. For example, a grammar containing the clause enable{a) = -lenablela))
evaluates to 0 under all contexts. Similarly, a grammar which allows
fenaniel @, X) A =linc) enable(f-efiect(a,c)) for some ¢ € Components is not satisfied
by any transducer. We have defined £L(P) so that w € L£(P) only if the paths induced by
w for each component are in the trace languages of the components. enable(a) is true
in context (P, w) only if pfactor(w::a,c) € L(P.)) — only if (in ¢) enable(i_effect(c, a))
1s true under (P, w) for each factor ¢. This is the reason that we write (inc1DSpec,. /%) in
line (5), instead of the weaker Ofin ¢)Spec, (X). The first assertion states that if wis en-
abled within c, then w must reach a state where Spec,.(X]) is true. The second assertion
states that if w is enabled in the composite system, and thus f_effect(w, c) is enabled
in the component, then (after wilinc)Spec.(X) must be true. Since f_effect(w, c) may
contain more than one element, the first assertion implies the second assertion, but
the reverse implication is not necessarily correct.

When we write specifications, we will depart from the basic outline of a grammar
whenever it seems convenient. Grammars provide a convenient style of certain kinds
of specifications. But the order of the clauses and the exact form of the grammar
is not critical. It 1s also possible to omit some clauses, or to add additional clauses,
or to replace the equalities with weaker clauses. A modal grammar without lines (3)
and (5) specifies a system with no components. A modal grammar with implication
clauses in place o?’equa.].ities allows for non-determinism. For example, figure 3.4 is
a grammar, which uses the implication Condition(x) — Data = x to assert that if
the condition holds, the output is fixed. If the condition is not true, then we make
no claims about the output. This style is especially useful for real-time systems and
circuits, where we know that a condition will be true within at least k ticks, but need

to allow for some uncertainty.

3.1.3 An example.

We can define a specification of a storage cell and then use the cell as a component
of a memory bank and a fifo. To make the specification a little more interesting, we
specify a clocked memory cell.

Notation. We use a dot index notation in preference to subscripting whenever the dot
index notation seems clearer. Thus, we write {load.0, ..., load.(n — 1)} in preference
to, the equivalent {load,,...,load , ;}. This notation is especially useful when we
have multiple indexes, e.g. x.(y;,....y,) or indexes that are functional expressions,
e-g.,:x:1l1).

3

38

cell(limit, latch-time. delay,) %

{
Alphabet = {clk,load.x: 0 < x < limit}
A Outputs = {Data}
A (Vx # x') precedes{load.x’, 0, load.x)
A precedes(load.x, 1,clk,dclay) = Data = x
A enablelclk) =1
A\ enableiload.x) = (Vx)precedes(load.x, 1, clk, latch-time)

Figure: 3.4 A clocked storage cell

We can now specify a memory bank made up of cells. A key feature of a memory

bank is that the output of the bank does not make the contents of all cells available

simultaneously. In order for the user of a bank to see the contents of cell y, the user

must instruct the bank to read.y, and make the contents of cell y visible.

{

bank(ncells, limit, latch-time, delay,) =

def

Components = {mcell.0, ..., mcell.(ncells — 1)}
AY0 € y < ncells)(in mcell.y)Ocell(limit, latch-time, delay)
A Alphabet = {clk,
read.x, load.(x,y): 0 < x < limit, 0 < y < ncells}

N\ f-effect(write.(x,y),y’) ={ goad.x) ft;::e:\zi’se.
N\ i-effect(read.x) = ()
N f-eifecticlk,y) = (clk)
A Outputs = {Data, Ready}
A Ready = (Vy)precedes(read.y, 1, clk, delay + latch-time)

A(Vy, x) precedes(write.(y, x), 1, clk, delay + latch-time)
AReady A (Vy' #y)precedesiread.y’,1,read.y, 1)

— Data =({inmecell.y)Data
A\ enable(clk) =1
A\ enable(read.y) = Ready

Figure: 3.5 A clocked memory bank

—~3 T3 T3

The fifo is built from n+ 1 cells, one acting as a pointer to the head of the queue.
When a new item is pushed onto the stack, the tail queue cell loads the new item, and

39

in parallel, every other queue cell loads the output of its predecessor in the queue. The
push operation also causes the pointer cell to advance by 1 place. A pop operation
causes the pointer cell to point at the predecessor of the head, and leaves the other

cells unchanged.

clocked-fifoltisag, tseicers length, range) =

{

Alphabet = {clk,pop,push.x: x € X} _)
A Components = {ptr, mcell.1, ..., mcell.qlength}
A Outputs = {Ready, Head, Empty, Full}
A(Vi)lin mcell.i)Ocell(limit, t1oag, tectect)
AlinptriOcelliglength + 1, tioaq, tsetect)

A headptr = (inptr)Data

A Head = (in mcell.headptr)Data

A\ Empty = (headptr = 0)

A Full = (headptr = gqlength)

A\ Ready = (precedes(push.x, 1, clk, tioag + tectcet))
A Precedes(l"o'p, 1,clk, tioaa + tselect)
A\ Mdata{i) = {in mcell.i)Data

(clk) if a=clk
. . _) {(load.x) if a =pushxAi=0
Af-effect(a, meelli) = (load.Mdata(i—1)) if a =push.xAi>0
() otherwise.

(load.(inptr)Data) + 1 if a =push.x
N\ f-effect{a,ptr) = ((load.linptr)Data =1 if a.=pop
(ctk) if .a=clk
A enable(push.x) = Ready A(~Full)
A enable(clk) =1
A enable(pop) = Ready A(-Empty)
}

Figure<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>