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Abstract

Next generation, critical, hard real-time systems will require greater flexibility, depend-
ability, and predictability than is commonly found in today’s systems. These future systems
include the space station, integrated vision/robotics/Al systems, collections of humans/robots
coordinating to achieve common objectives (usually in hazardous environments such as un-
dersea exploration or chemical plants), and various command and control applications. The
Spring Kernel is an experimental and research oriented kernel designed to form the basis of a
flexible, hard real-time operating system for such complex applications. Our research approach
challenges several basic assumptions upon which most current real-time operating systems are
built and subsequently advocates a new paradigm based on the notion of application level pre-
dictability supported by a kernel which is both predictable and contains a method for on-line
dynamic guarantee of deadlines. The purpose of this paper is to provide an overview of the
major ideas of this new paradigm and show how the Kernel incorporates these ideas. The
Spring Kernel is being implemented in stages on a network of 68020 and 68030 based mul-

tiprocessors called SpringNet. Experiences with a preliminary version of the Kernel are also
presented.
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1 Introduction

Real-time computing is that type of computing where the correctness of thé system depends
not only on the logical result of the computation, but also on the time at which the results
~ are produced. Real-time computing systems play a vital role in our society and the spectrum
of their complexity varies widely from the very simple to the very complex. Current real-time
computing systems are used in applications such as the control of laboratory experiments, the
control of engines in automobiles, command and control systems, nuclear power plants, process
control plants, flight control systems, space shuttle and aircraft avionics, and robotics. Next gen-
eration systems will include the autonomous land rover, teams of robots operating in hazardous
environments such as chemical plants and undersea exploration, systems found in intelligent man-
ufacturing, and the space station. These next generation real-time systems will be large, complex,
distributed, adaptive, contain many types of timing constraints, operate in non-deterministic en-
vironments, and evolve over a long system lifetime. Many advances are required to address these
next generation systems in a scientific manner. For example, one of the most difficult aspects will

be in demonstrating that these systems meet their performance requ.irerhents including satisfying

specific deadline and periodicity constraints [11].

In this paper we focus on a new real-time operating system kernel, called the Spring Ker-
nel, and show how it provides some of the basic support required for next generation real-time
systems, especially with respect to meeting timing constraints of the application. In developing
this new operating system our research approach challenges several basic assumptions upon which
most current real-time operating systems are built, and subsequently advocates a new approach
motivated by a need to build predictable, yet flexible real-time systems. Some current real-time
kernels are themselves predictable, but do not provide any direct support for application level
predictability. The Spring kernel contains features to address this issue. The purpose of this
paper is to provide an overview of the major ideas of this new approach and to show I_mw the

Kernel implements these ideas. We stress that the Spring kernel is not meant to be applicable to




all types of real-time systems, but rather, we hope to show that it is suitable for large, complex,

real-time systems.

In Section 2 we briefly identify current real-time operating system paradigms and say why we
_ feel they are wrong for the class of applications we are addressing, i.e., complex, next generation,
real-time systems. In order to place the discussion of our ideas in perspective, we present a high
level overview of the Spring Kernel in Section 3. Section 4 presents our real-time operating system
paradigm discussing the details of how the Spring Kernel supports this paradigm. Some pertinent
details concerning the implementation and empirical evaluation of the Kernel are provided in

Section 5. Concluding remarks are made in Section 6.
2 Current Real-Time Operating Systems

Most current real-time operating systems (e.g., (7, 1, 3]) contain the same basic paradigms found
in timesharing operating systems. These kernels are simply stripped down and optimized versions
of timesharing operating systems. For example, while they stress fast mechanisms such as a fast
context switch and the ability to respond to external interrupts quickly, they retain the main

abstractions of timesharing operating systems including:

e viewing the execution of a task as a random process where a task could be blocked at

arbitrary points during its execution for an indefinite length of time,

— While tiﬁs view is necessary in a general purpose timesharing environment, in critical
real-time environments each task in the system is well defined and can be analyzed a
priori. Further, the manner in which tasks cooperate via communication and contend
over shared resources must be carefully controlled so as to bound blocking times. In the
random process model, the arbitrary blocking that occurs causes tremendous difficulty

in predicting that timing constraints will be met.



o assuming that little is known about the tasks a priori so that little (or no) semantic infor-

mation about tasks is utilized at run time,

— This assumption is false for real-time systems. In real-time systems, the system soft-
ware should be able to make use of important semantic information about the applica-
tion tasks, rather than ignoring it. The specific information that can be obtained and

are, in fact, required for critical real-time systems, is listed in Section 3.3.
¢ attempting to maximize throughput or minimize average response time!.

— These metrics are not the primary metrics for real-time systems, e.g., a system could
have a good average response time and miss every deadline, resulting is a useless
system. The metrics must specifically address the timing constraints, e.g., maximizing

the percentage of tasks that make their deadline and/or guaranteeing that all critical
tasks always make their deadline.

In addition, very often, today’s real-time kernels use a basic priority scheduling mechanism.
This mechanism provides ;10 direct support for meeting timing constraiﬁts. For example, current
technology burdens the designer with the unenviable task of mapping the requirements of tasks,
such as their time constraints and importance, into task priorities in such a manner that all tasks
will meet their deadlines. Thus, when using current paradigms together with priority scheduling
it is difficult to predict how tasks, dynamically invoked, interact with other active tasks, where
blocking over resources will occur, and what the subsequent effect of this interaction and blocking
is on the timing constraints of all the tasks. Basically, currently used kernels are inadequate
for three main reasons: (1) timing constraints are not considered explicitly, (2) predictable task
executions are difficult to ensure, and (3) tasks with complex characteristics, e.g., tasks having
precedence constraints and resource requirements, are not explicitly handled. In the next section

we further discuss these three important issues in the context of the Spring Kernel which attempts

!For a more detailed discussion of the problems with today's real-time kernels see [10].



to provide direct support for such issues. See [12, 8] for other research efforts are which also

challenging the current paradigms.
3 The Spring Kernel - A High Level Overview

In order to concentrate on the new ideas, rather than simply describing the primitives in our
Kernel, we will present the major abstractions (paradigms) supported by the Kernel. Before we
do this, however, we first set the stage for the presentation of these new ideas by stating the
general requirements of real-time systems (Section 3.1), describing the environments of applica-
bility (Section 3.2), and outlining the structure of the hardware and operating system (Section
3.3). In Section 4, we then concentrate on the major new ideas, showing how the Kernel supports
these ideas and how they, in turn, provide basic support for building predictable next generation

real-time systems.

3.1 Requirements

We believe that next gemeration, critical, real-time systems should be based on the following

considerations:

o Tasks are part of a single application with a system-wide objective. The types of tasks that
occur in a real-time application are known a priori and hence can be analyzed to determine

their characteristics. This information should be utilized at run time.

o The value imparted to the system by tasks should be maximized. While value can be defined
in many ways, here we consider that the value of a task that completes before its deadline
is its full value (depends on what the task does) and some diminished value (e.g., a negative

value or zero) if it does not make its deadline.

¢ Predictability should be ensured so that the timing properties of both individual tasks and

the system can be assessed.



e Flexibility should be ensured so that system modifications and on-line dynamics are more

easily accommodated.

3.2 The Environment and Definitions

Real-time systems interact heavily with the environment. We assume that the environment
is dynamic, large, complex, and evolving. In a system interacting with such an environment
there exist many types of tasks. Our approach categorizes the types of tasks found in real-time
applications depending on their interaction with and impact on the environment. This gives rise
to two main criteria on the basis of which to classify tasks: importance and timing requirements.
Basically, the importance of a task signifies the value imparted to the system when the task
satisfies its timing constraint. Our Kernel then treats the different classes of tasks differently

thereby reducing the overall complexity.

Based on importance and timing requirements we define three types of tasks: critical tasks,
essential tasks, and non-essential tasks. Tasks’ timing requirements may range over a wide spec-
trum including hard deadlines, soft deadlines, and periodic execution requirements, while other
tasks may have no explicit timing requirements. Critical tasks are those tasks which must make
their deadline, otherwise a catastrophic result might occur (missing their deadlines will contribute
a minus infinity value to the system). It must be shown a priori that these tasks will always meet
their deadlines subject to some specified number of failures. Resources will be reserved for such
tasks. That is, a worst case analysis must be done for these tasks to guarantee tha_t their dead-
lines are met. Note that the number of truly critical tasks (even in very large systems) will be
small in comparison to the total number of tasks in the system. Essential tasks are tasks that are
necessary to the operation of the system, have specific timing constraints, and will degrade the
performance of the system if their timing constraints are not met. However, essential tasks will

not cause a catastrophe if they are not finished on time. There are a large number of such tasks

and the importance of these essential tasks may differ. It is necessary to treat such tasks in a



dynamic manner as it is impossible to reserve enough resources for all contingencies with respect
to these tasks. Our approach applies an on-line, dynamic guarantee algorithm (see Appendix) to
this collection of tasks. Non-essential tasks may have deadlines or not, and they execute when
they do not impact critical or essential tasks. Many background tasks, long range planning tasks,

" and maintenance functions fall into this category.

Tasks which are handled by the Spring kernel may have characteristics that are complicated in
many other ways as well. For example, a task may be preemptable or not, periodic or aperiodic,
have a variety of timing constraints, precedence constraints, communication constraints, and fault

tolerance constraints. Due to space limitations we will not specifically address these issues in this

paper.

Another timing issue relates to the closeness of the deadline. Some tasks may have extremely
tight deadlines. These tasks usually occur in the data acquisition front ends of the real-time
system. Given the overheads of the dynamic guarantees of the Spring Kernel, such front-end
tasks must be treated differently, e.g., they might execute using a very low overhead technique
such as cyclic scheduling, -or rate monotonic priority scheduling. Current real-time kernels can
be appropriate for these front-ends because overall timing properties can be guaranteed given the
small number and static nature of tasks in the front-ends. In partitioning in this manner, the
timing properties of each front-end subsystem can be well quantified. Front-end tasks may invoke

higher level tasks with deadlines. These tasks are handled by the Spring Kernel.

3.3 A SpringNet Node

SpringNet (Figure 1) is a physically distributed system composed of a network of multiprocessors
each running the Spring Kernel. Each multiprocessor contains one (or more) application proces-

sors, one (or more) system processors, and an I/O subsystem (front-ends). Application processors



execute previously guaranteed and relatively high level application tasks. System processors? of-
fload the scheduling algorithm and other OS overhead from the application tasks both for speed,
and so that extérnal interrupts and OS overhead do not cause uncertainty in e:':ecut-
ing guaranteed tasks. The I/O subsystem is partitioned from the Spring Kernel and it handles

" non-critical I/0, slow I/O devices, and fast sensors3.

Not surprisingly, the main components of the Kernel can be grouped into task management
and scheduling, memory management, and intertask communication. While this sounds similar to
many other kernels, as we shall see in Section 4, the abstractions supported are quite different. One
of the significant aspects is that system primitives have bounded worst case execution times, and
some primitives execute as iterative algorithms where the number of iterations it will perform for
a particular call depends on its bounded execution time and on other state information including
available time. Before we discuss the new ideas in detail (the subject of Section 4), we provide a
brief overview of the main components of the Kernel in order to provide a better perspective for

understanding the new ideas. Due to space limitations we do not discuss intertask communication.

Task Management and Sc:heduling: Tasks arise when real-timé programs - specified in
the form of communicating processes - are decomposed by the compiler into schedulable entities,
namely tasks, with precedence relationships, resource requirements, fault tolerance requirements,
importance levels, and timing constraints. The fask management primitives support executable
and guaranteeable entities called tasks and task groups. A task consists of reentrant code, lo-
cal data, global data, a stack, a task descriptor and a task control block. Each task acquires
resources before it begins and releases the resources upon its completion. This is reasonable in
our system since the compiler takes resource needs into account when creating relatively small,
but predictable, tasks from the larger but functional processes written by the programmer. This

approach then enables the scheduling algorithm to avoid unpredictable blocking over a resource

2Ultimately, system processors could be specifically designed to offer hardware support to our system activities
such as guaranteeing tasks. .

3The Spring Kernel is being developed for multiprocessor based real-time systems, but can be tailored" for uni-
processors. In this case, even though system tasks are scheduled to execute on the same processor as application
tasks, the time for both are explicitly scheduled.
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since all required resources for a task are assigned at the start of its planned execution. Mul-

tiple instances of a task may be invoked. In this case the (reentrant) code and task descriptor

are shared. A task group is a collection of simple tasks that have precedence constraints .a.mong

themselves, but have a single group deadline. For task groups, it is assumed that when the task

" group is invoked, all tasks in the group can be sized (this means that the worst case computation

time and resource requirements of each task can be determined at invocation time). More flexible

types of task groups are currently being investigated.

Tasks are characterized by:

C (a worst case execution time - may be a formula that depends on various input data

and/or state information pertaining to a specific task invocation)

D (Deadline) or period or other real-time constraint

preemptive or non-preemptive property

maxjmum number and type of resources needed (this includes memory segments, ports, etc.)
type: critical, essential, or non--essential

importance level for essential and non-essential tasks

incremental task or not (an incremental task computes an initial answer quickly and then

continues to refine the answer for the rest of its requested computation time)

location of task copies indicating the various nodes in the distributed system and on which

processor of each node the task resides,
precedence graph (describes the reduired precedence among tasks in a task grdup)

communication graph (list of tasks with which a task communicates), and type of commu-

nication (asynchronous or synchronous).



All the above information concerning a task is maintained in the task descriptor (TD). We
have plans for adding information concerning a task’s fault tolerance requirements to the TD.
Much of the abcve information is also maintained in the task control block (TCB) with the
difference being that the information in the task control block is specific to a particular instance
" of the task. For example, a task descriptor might indicate that the worst case execution time
f;)r TASK A is 5z milliseconds where z is the number of input data items at the time the task is
invoked. At invocation time a short procedure is executed to compute the actual worst case time
for this module and this value is then inserted into the TCB. The guarantee is then performed
for this specific task instance. All the other fields dealing with time, computation, resources or

importance are handled in a similar way.

Scheduling is an integral part of the Kernel and the abstraction provided is one of a currently
guaranteed task set. It is the single most distinguishing feature of the. Kernel. Since much of
Section 4 is devoted to discussing the merits of our scheduling approach, here we simply identify

the scheduling components.

Our scheduling approe;.ch separates policy from mechanism and is corhposed of 4 levels. At the
lowest level multiple dispatchers exist; one type of dispatcher running on each of the application
processors, and another type executing on the system processor. The application dispatchers
simply remove the next (ready) task from a system task table (STT) that contains previously
guaranteed tasks arranged in the proper order for each application processor. The dispaicher
on the system processor provides for the periodic execution of systems ta.sks, and asynchronous
invocation when it can determine that allowing these extra invocations will not affect guaranteed
tasks, or the minimum guaranteed periodic rate of other system tasks. Asynchronous invocation °

of system tasks are ordered by importance, e.g., the local scheduler is of higher importance than

the meta level controller (see below).

The three higher level scheduling modules are executed on the system processor. The second

level is a local scheduler. The local scheduler on a node is responsible for dynamically guaranteeing

10



that, given the current guaranteed task set, a new task or task group can be scheduled locally
so as to meet its deadline. The local scheduler orders the tasks in the STT to reflect the order
of their execution. The logic involved in this algorithm is a major innovation of our work and
details can be found in the Appendix*. When the Kernel is fully operational, the local scheduler

will not only schedule essential tasks, but also schedule non-essential tasks in idle time slots.

The third scheduling level is the distributed scheduler which attempts to find a node for
executing any task or components of a task group that have to execute on different nodes [5],
because they cannot be locally guaranteed. The fourth level is a Meta Level Controller (MLC)
which has the responsibility of adapting various parameters or switching scheduling algorithms
by noticing significant changes in the environment. These capabilities of the MLC support some
of the adaptability and flexibility needs of next generation real-time systems. The distributed
scheduling component and the MLC are not discussed any further in this paper since they are

not part of the Spring Kernel itself and are still being refined.

When a task is activated, any dynamic information about its resource requirements or timing
constraints is computed and written into the TCB; the guarantee routine then determines if it
will be able to make its deadline. Note that the execution of the guarantee algorithm ensures
that the task will obtain the necessary segments such as the ports and data segments, and at its

scheduled start time. Again, at activation time essential tasks always identify their maximum

resource requirements.

Memory Management: Memory management primitives create various well defined re-
source segments such as code, stacks, task control blocks (TCB), task descriptors (TD), local
data, global data, ports, virtual disks, and non segmented memory. Memory management tech-
niques must not introduce erratic delays into the execution time of a task. Since page faults
and page replacements in demand paging schemes create large and unpredictable delays, these

memory management techniques (as currently implemented) are not suitable for real-time ap-

*A complete evaluation of the algorithm for many synthetic workloads can be found in [6].
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plications with a need to guarantee timing constraints. Tasks require a maximum number of
memory segments of each type, but at activation time a task may request fewer segments. All of
the required segmients are allocated when the task starts execution and are completely memory
resident. The allocation is part of the integrated scheduling and allocation scheme we use. If
" a task is programmed to dynamically request segments, then the worst case time for this task
must include time to invoke the bounded Kernel primitives to acquire these resources which have

already been a.llocaf.ed by the local scheduling algorithm.

4 The New Paradigm

In light of the complexities of real-time systems, the key to next generation real-time operating
systems will be finding the .correct approach to make the systems predictable, yet flexible in such
a way as to be able to assess the performance of the system with respect to requirements, espe-
cially timing requirements. In particular, the Spring Kernel stresses the real-time and flexibility
requirements, and also contains several features to support fault tolerance®. The new paradigm

is the sum total of the following ideas:

e resource segmentation/partitioning,

¢ functional partitioning,

o selective preallocation,

¢ a priori guarantee for critical tasks,

¢ an on-line guarantee for essential tasks,

¢ integrated CPU scheduling and resource allocation,

e use of the scheduler in a planning mode,

*Due to space limitations fault tolerance is not discussed in any depth in this paper.
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® the separation of importance and timing constraints, e.g., deadlines,

¢ end-to-end scheduling, and

e the utilization of significant information about tasks at run time including timing, task im-

portance, fault tolerance requirements, and the ability to dynamically alter this information.

We now indicate how the Spring Kernel incorporates the above ideas, thereby supporting

predictability and flexibility.

Resource Segmentation: All resources in the system are partitioned into well defined
entities. As mentioned, the Kernel supports the resource abstractions of tasks and task groups,
and various resource segments such as code, stacks, TCBs, TDs, local data, global data, ports,
virtual disks, and non segmented memory. It is important to note that tasks and task groups
are time and resource segmented and bounded meaning that they are composed of well defined
segments and that both the worst case execution times and the worst case resource requirements
for these tasks are known. Kernel primitives are also time and resource segmented and bounded.
Resource segmentation provides the scheduling algorithm with a clear picture of all the individual
resources that must be allocated and scheduled. This contributes to the microscopic predictability,
i.e., each task upon being activated is bounded in time and resource requirements. Microscopic

predictability is a necessary, but not a sufficient condition for overall system predictability.

Functional Partitioning: Functional partitioning manifests itsélf in two different ways on
a Spring node. First, each SpringNet node is structured to handle four types of processing: pro-
cessing of data acquired from the environment on the I/O front-ends; processing of higher level
application tasks on the application processors; processing of system functions on the system
processors, and processing of communication to and from other nodes. This type of partitioning
allows us to tailor each subsystem to the functions it is intended for. For example, this allows
different solutions for different levels of granularity of timing constraints. Also, this partition-

ing shields the guaranteed tasks running on the application processors from external interrupts.
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The shielding from external interrupts is extremely important and together with our guarantee
algorithm allows us to construct a more macroscopic view of predictable performance since the
collection of tasks currently guaranteed to execute by their deadline are not subject to unknown,
environment-driven interrupts. Second, we partition the application processors so that critical
tasks are separated from essential and non-essential tasks. This shields the critical tasks from

non-critical tasks.

Selective Preallocation: Resources needed for critical tasks and tasks on I/O front-ends
are preallocated. Further, the Spring Kernel contains task management primitives that utilize the
notion of preallocation where possible to improve speed and to eliminate unpredictable delays. For
example, an essential task is memory resident on one or more processors (this is done for improved
flexibility during dynamic scheduling), or are made memory resident before they can be invoked.
In addition, a system initialization program loads code, and sets up stacks, TCBs, TDs, local data,
global data, ports, virtual disks and non segmented memory using the Kernel primitives. Multiple
instances of a task or task group may be created at initialization time and multiple free TCBs,
TDs, ports and virtual disks may also be created at initialization time. Subsequently, dynamic
operation of the system only needs to free and allocate (the first item on a list) these segments
rather than creating them. While facilities also exist for dynamically creating new segments of
any type, such facilities should not be used under hard real-time constraints. Using this approach,
the system can be fast and predictable, yet still be flexible enough to accommodate major changes

in non hard real-time mode.

A Priori Guarantee for Critical Tasks: The notion of guaranteeing timing constraints
is central to our approach. However, because we are dealing with large, complex systems in -
non-deterministic environments, the guarantee is separated into two main parts: an a prior:
guarantee for critical tasks and an on-line guarantee for essential tasks. All critical tasks are
guaranteed a priori and resources are reserved for them either in dedicated processors, or as a

dedicated collection of resource slices on the application processors (this is part of the selective

14



preallocation policy used in Spring). Resources are provided under specified failure assumptions.
For example, if ¢ Byzantine processor failures should be accommodated, resources are provided

for 2t + 1 replicates of a task.

Typically, a real-time system undergoes mode changes during its execution. The set of critical
tasks may change from mode to mode. Hence, when executing in a particular mode critical tasks
pertaining to that mode should be guaranteed for the entire duration of that mode. While a
priori dedicating resources to critical tasks is, of course, not flexible, due to the importance of
these tasks, we have no other choice! On the positive side, typically, the ratio of critical tasks to

essential tasks is very small.

On-line Guarantee for Essential Tasks: Due to the large numbers of essential tasks and
to the extremely large number of their possible invocation orders, preallocation of resources to
essential tasks is not possible due to cost, nor desirable due to its inflexibility. Hence, this class of
tasks is guaranteed on-line via the algorithm presented the Appendix. This allows for many task
invocation scenarios to be handled dynamically v(partia.lly supporting the flexibility requirement).
However, the notion of o-n-line guarantee has a very specific meaning. as described in the first
itemized point below. The basic notion and properties of guarantee for essential tasks have the

following characteristics {6]:

e it allows the unique abstraction that at any point in time the operating system knows exactly
which tasks have been guaranteed to make their deadlines®, what, where and when spare
resources exist or will exist, a complete schedule for the guaranteed tasks, and which tasks
are running under non-guaranteed assumptions. However, because of the non-deterministic
environment the capabilities of the system may change over time, the on-line guarantee for
essential tasks is an instantaneous guarantee that refers to the current state. Consequently,

at any point in time we have the macroscopic view that all critical tasks will make their

®In contrast, current real-time scheduling algorithms, such as earliest deadline, have no global knowledge of the
task set nor of the system’s ability to meet deadlines; they only know which task to run next.
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deadlines and we know ezactly which essential tasks will make their deadlines given the

current load?,

e conflicts ov-er resources are avoided thereby eliminating the random nature of waiting for
resources found in timesharing operating systems (this same feature also tends to minimize
context switches since tasks are not being context switched to wait for resources). Basically,
resource conflicts are solved by scheduling tasks at different times if they contend for a given

resource,

e there is a separation of dispatching and guarantee allowing these system functions to run
in parallel; the dispatcher is always working with a set of tasks which Have been previously
guaranteed to make their deadlines and the guarantee routine operates on the current set

of guaranteed tasks plus any newly invoked tasks,

e provides early notification; by performing the guarantee calculation when a task arrives
there may be time to reallocate the task to another host of the system via the distributed
scheduling module of the scheduling approach; early notiﬁca.tion also has fault tolerance
implications in that it is now possible to run alternative error handling tasks early, before a

deadline is missed,

o within this approach there is the notion of still “possibly” meeting the deadline even if the
task is not guaranteed, that is, if a task is not guaranteed it coulci receive idle cycles at
this node, and, in parallel, there can be an attempt to get the task guaranteed on another
host of the system subject to location dependent constraints, or based on the fault tolerance

semantics of the task, various alternatives could be invoked,

e the guarantee routine supports the co-existence of real-time and non real-time tasks, and

note that this is non-trivial when non real-time tasks might use some of the same resources

as real-time tasks,

"It is also possible to develop an overall quantitative, but probabilistic assessment of the performance of essential

tasks. For example, given expected normal and overload workloads, we can compute the average percentage of
essential tasks that are guaranteed, i.e., make their deadlines.
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e the guarantee can be subject to computation time requirements, deadline or periodic time
constraints, resource requirements where resources are segmented, importance levels for
tasks, precedence constraints, and I/O requirements depending on the specific guarantee

algorithm being used in a given system, and

¢ even though a task is guaranteed with respect to its worst case time and resource require-

ments, it is possible to reclaim the unused time and resources should the task finish early

[9].

Integrated CPU Scheduling and Resource Allocation: Current real-time scheduling
algorithms schedule the CPU independently of other resources. For example, consider a typical
real-time scheduling algorithm, earliest deadline first. Scheduling a task which has the earliest
deadline does no good if it subsequently blocks because a resource it requires is unavailable. Our
approach integrates CPU scheduling and resource allocation so that this blocking never occurs.
Scheduling is an integral part of the Kernel and the abstraction provided is one of a currently

guaranteed task set.

Because hard real-time scheduling in a multiprocessor with resource constraints is NP-hard,
we use a heuristic approach. Scheduling a set of tasks to find a feasible schedule is actually a
search problem. The structure of the search space is a search tree. An intermediate vertex of the
search tree is a partial schedule, and a leaf, a terminal vertex, is a complete schedule. It should
be obvious that not all leaves, each a complete schedule, correspond. to feasible schedules. The
heuristic schedﬁling algorithms we use try to determine a full feasible schedule for a set of tasks
in the following way. It starts at the root of the search tree which is an empty schedule and tries
to extend the schedule (with one more task) by moving to one of the vertices at the next level in
the search tree until a full feasible schedule is derived. To this end, we use a heuristic function,
H, which synthesizes various characteristics of tasks affecting real-time scheduling decisions to
actively direct the scheduling to a plausible path. The heuristic function, H, (in a straightforward

approach) is applied to each of the tasks that remain to be scheduled at each level of search. The
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task with the smallest value of function H is selected to extend the current schedule. A more

efficient scheme we use allows application of the H function to only k tasks at each level. See

Appendix.

The heuristic that we employ combines a task’s deadline (or other timing constraint), and its
resource requirements into a relatively simple weighted formula that quantifies the needs of each
task. An innovation in our work is the way we quantify the resource requirements. Briefly stated,
we quantify resource requirements by computing an Earliest Start Time, i.e., the earliest time
by which all the resources required by a task will be available given the current partial schedule.
The earliest start time incorporates both resource requirements and worst case computation time
considerations. Other considerations such as precedence constraints are handled by additional

logic in the algorithm and not directly in the H function.

One very important aspect of this work, different from previous work, is that we not only
specifically consider resource requirements, but we also model resource use in two modes: exclusive
mode and shared mode. We have shown that by modeling two access modes, more task sets are

schedulable than if only exclusive mode were used.

By integrating CPU scheduling and resource allocation at run time, we are able to understand
(at each point in time), the current resource contention and completely control it so that task
performance with respect to deadlines is predictable, rather than letting resource contention occur

in a random pattern resulting in an unpredictable system.

Use of Scheduler in Planning Mode: Another important feature of our scheduling ap-
proach is how and when we use the scheduler, i.e., we use it in a planning mode when a new
essential task is invoked®. When a new task is invoked, the scheduler attempts to plan a schedule
for it and some number of other tasks so that all tasks can make their deadlines. This enables

our system to understand the total load of the system and to make intelligent decisions when a

® Again, this scheme is not used for critical tasks nor for front-end tasks.
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guarantee cannot be made (making the system more flexible), e.g., see the next point below. This
is at odds with other real-time scheduling algorithms which, as mentioned ea.rligr, have a myopic
view of the set of tasks. That is, these algorithms only know which task to run nezt and have no
understanding of the total load or current capabilities of the system. This planning is done on
the system processor in parallel with the previously guaranteed tasks so it must account for those
tasks which may be completed before it itself completes. A number of interesting race conditions

had to be solved to make this work [4].

Separation of Importance and Deadline: A major advantage of our approach is that
we can separate deadlines from importance. This is necessary since importance and deadline are
orthogonal task characteristics. Again, all critical tasks are of the utmost importance and are
a priort guaranteed. Essential tasks are not critical, but each is assigned a level of importance
which may vary as system conditions change. To maximize the value of executed tasks, all critical
tasks should make their deadlines and as many essential tasks as possible should also make their
deadlines. Ideally, if any essential tasks cannot make their deadlines, then those tasks which do
not execute should be the least important ones. In the first phase of the guarantee algorithm,
scheduling is done ignoring importance. If all tasks are guaranteed then the importance value
plays no part®. On the other hand, when a newly invoked essential task is not guaranteed, then
the guarantee routine will remove the least important tasks from the system task table if those
preemptions contribute to the subsequent guarantee of the new task. Either the tasks eliminated
due to low importance, or the original task, are then subject to a fault semantics related to
that task, e.g., we might attempt to guarantee an error handling version of the task or perform
distributed scheduling. Various algorithms for this combination of deadlines and importance have
been developed and analyzed [2]. It is important to point out that our approach is much more
flexible at handling the combination of timing and importance than a static priority scheduling

mechanism typically found in real-time systems. For example, using static priority scheduling

*We are currently investigation an alternative strategy where the schedule produced by the guarantee routine is
biased so that the more important tasks are towards the front of the schedule. In this case future task arrivals will
find that more important tasks have already completed.
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a designer may have a task with a short deadline and low importance, and another task with a
long deadline and high importance. For average loads it is usually acceptable to assign the short
deadline task the higher priority, and under these loads all tasks probably make their deadlines.
However, if there is overload, it will be the high importance task which ends up missing its

deadline. This condition would not occur with our scheme.

End-to-End Scheduling: Most application level functions (such as stop the robot before
it hits the wall) which must be accomplished under a timing constraint are actually composed
of a set of smaller dispatchable tasks. Previous real-time kernels do not provide support for a
collection of tasks with a single deadline. The Spring Kernel supports tasks and task groups and
is currently developing support for dependent task groups. A task group is a collection of simple
tasks that have precedence constraints among themselves, but have a single deadline. Each task
acquires resources before it begins and can release the resources upon its completion. For task
groups, it is assumed that when the task group is invoked the worst case computation time and
resource requirements of each task can be determined. A dependent task group is the same as
a task group except that-computation time and resource requirements of only those tasks with
no precedence constraints are known at invocation time. Needs of the remaining tasks of the
dependent group can only be known when all preceding tasks are completed. The dependent task
group requires some special handling with respect to guarantees which we have not done at this
time. Precedence constraints are used to model end-to-end timing constraints both for a single

node and across nodes and the scheduling heuristic we use can account for precedence constraints.

Dynamic Utilization of Task Information: Information about tasks and task groups
is retained at run time and includes formulas describing worst case execution time, deadlines -
or other timing requirements, importance level, precedence constraints, resource requirements,
fault tolerance requirements, task group information, etc. The Kernel then dynamically utilizes
this information to guarantee timing and other requirements of the system. In other words, our

approach retains significant amounts of semantic information about a task or task group which
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can be utilized at run time. Kernel primitives exist to inquire about this information and to

dynamically alter the information. This enhances the flexibility of the system.
5 Implementation Experience: Version 1 of the Spring Kernel

Many of the salient points of the new hard real-time paradigm have been implemented on a
preliminary version of the Spring Kernel. This preliminary implementation focuses on one Spring
(multiprocessor) node consisting of four Motorola 68020 based MVME136A boards. One board is
a system board which executes the scheduler and other system tasks, and the other three boards
are application boards. Ti1e application dispatchers, one per application board, are responsible
for the dispatching of application tasks. The scheduler and application dispatcher processes are
thus designed to run in parallel. When a task is invoked, the scheduler attempts to dynamically
guarantee that the new task will meet its deadline. As tasks are guaranteed, the scheduler adds
them to a system task table (STT) and links them into dispatcher queues. Since the STT resides
on the system board, a dispatch queue reference performed by a dispatcher accesses the shared

bus.

The MVME136A boards support features which are typical of shared bus multiprocessors -
an asynchronous bus intferface, architectural support for test-and-set like operations, and a local
memory. This memory can either be accessed remotely over the VME bus by another processor,
or locally by the processor which has mapped this local memory. The memory model underlying
the Spring Kernel design is a local memory model. This models multiprocessor systems ‘in which
each processor has local memory for task code and private resources, while at the same time there
are other resources, such as shared data structures, files, and communication ports, which can
be used by tasks residing on different processors. The assignment of tasks to proéessors, done

statically, determines on which processors’ memory the task code is resident.

Additional support for multiprocessing is provided through the use of the MPCSR. {Multi-
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Processor Control/Status Registers). The MPCSR provides the ability to generate interrupts on
a selected board, and/or a simultaneous interrupt to multiple boards. The combination of con-
current execution of the scheduler and dispatchers, and the predictable support of on-line task

arrivals surfaced as a major challenge in the Kernel design of one Spring node [4].

5.1 Scheduler and Dispatchers

Predictability of the underlying real-time OS is necessary to achieve predictability of the applica-
tion tasks. This section describes the design and implementation of two significant components
of the Spring Kernel — the scheduler and the dispatchers. To ensure predictability of application
tasks, both the scheduler cost and the dispatching costs must be bounded. Version 1 of Spring
supports the scheduler found in the Appendix which executes in time O(N') where N is the number
of tasks at the node. However, the scheduler has a fixed worst case execution time per invocation.
This will be discussed further in section 5.1.1. The dispatching cost is bounded by a constant.
Multiple dispatchers operate concurrently with no inter-dispatcher interference. Dispatchers and
the scheduler require concurrent access to the STT. Correctness of this access is maintained via
the use of critical sections, while predictability is ensured by constructing all critical sections‘ to

execute in constant time.

Concurrent execution of dispatchers is achieved by partitioning the STT based on the processor
to which tasks are assigned. Figure 2 illustrates the STT and the dispatch queues. Consider
seven tasks, T; and T, on application processor 1, T3 and T4 on application processor 2, and Tj,
Ts, and T7 on application processor 3. Since a task is scheduled to be executed by exactly one
processor, the multiple dispatcher processes can concurrently access their dispatch queues without °
interference. To facilitate correct and efficient dispatching, the STT is sorted according to the
scheduled start time of each task. This design provides a dispatcher with a constant time access

to its dispatch queue to determine which task to execute next.

Concurrent execution of the scheduler and the muitiple dispatchers is achieved by reserving a
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System Task Table

Figure 2: The System Task Table (STT) and Dispatch Queues.

set of tasks for each dispatcher, where the scheduler is not free to reschedule the tasks reserved for
the dispatchers. Thus each dispatcher has tasks to execute while the scheduler is attempting to
reschedule in order to guarantee a new task. This reservation involves the calculation of a cutoff
line. Once an upper bound of the scheduler’s cost for guaranteeing a task is determined, this cost
is added to the current time to determine the cutoff line. All tasks having a scheduled start time
prior to the cutoff line are reserved for the dispatchers, and thus cannot be rescheduled. Further,
the online guarantee does not alter the current schedule, it instead operates on copies of the task

invocation information. This convention facilitates the return to the original STT if the guarantee

fails.

5.1.1 Periodic Invocation of the Séheduler

Since the system processor is used for some system tasks, to ensure a minimum responsiveness
for those system level activities, the scheduler as well as other tasks are invoked periodically.
In addition, if it is determined that an asynchronous invocation of the scheduler may occur

without violating the minimum responsiveness of all the system tasks, then we permit additional
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invocations of the scheduler immediately upon the arrival of new tasks.

Given that the scheduler has execution time which is O(N), knowing the constant of propor-
tionality and the fixed overheads, we can determine how many tasks can be guaranteed by the
. scheduler during each periodic invocation. Suppose this is Nmaz. We call Nmaz the “cap on
the length of the STT”. Suppose at a given time, the number of tasks already in the STT is S.
Then at most Nmaz — S tasks from the candidate queue can be considered for guarantee at this

time.

It is likely that invoking a task will impose a deadline not only on the invoked task, but also
on the guarantee. In addition, some invokers may desire to know how long to wait to find out
if the invoked task has been guaranteed or not. In the former case, whenever the scheduler is
invoked, it has to check whether the deadline on the guarantee can be met given the discussion
above. In the latter case, knowing the current length of the STT, etc., it is possible to determine

the scheduler’s response time.

5.1.2 Maximizing Concurrency between the Scheduler and Dispatchers

While the scheduler’s execution time is a function of N (capped by N maz), the dispatcher
execution time need not be dependent on N. Because the worst case dispatching costs must
be included in each task’s worst case computation time, an efficient worst case design of the
dispatcher is very important. Version 1 of the Spring Kernel uses dispatchers vﬁth constant worst

case computation times, i.e., the time is not affected by the number of tasks in the system.

When an application task completes its execution, it must be deleted from the system. The
most natural implementation is to have the local dispatcher delete the finished task from the
system. This is not, however, the best implementation since it increases dispatching costs by
requiring mutual exclusive access to the STT by the dispatchers. In this case, if the scheduler

locks the dispatch queue immediately prior to a dispatcher, the dispatcher will be forced to wait.
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Given that scheduling costs are a function of the number of tasks in the system, the dispatcher

wait times will be affected by the number of tasks in the system. This is unacceptable.

By having the scheduler, instead of the dispatcher, delete tasks from the STT, the worst case
. éomputation time of the dispatcher can be made constant. This involves two dispatch queue
pointers: one modified by the scheduler and another by the dispatchers. When a task completes
execution the dispatcher modifies the head of the appropriate dispatch queue to point to the
next task on the queue. The schedllﬂer‘ ma.mta.ms a separate shadow copy of the dispatch queue
head which is never altered by the dispatcher. When the scheduler is invoked, it first deletes all
tasks which lie between the dispatch queue head and its shadow. Mutual exclusion is reduced
to constant time — only modifications of the dispatch queue head need be done inside a critical

section.
5.2 Experimental Performance Evaluation

This section describes the results of sévera.l experiments on one Spring Kernel (multiprocessor)
node. Each Spring board requires 1 microsecond to read or write local memory, and, on an
unsaturated VME bus, 2 microseconds to access another board’s memory. A number of synthetic
workloads, each consisting of hundreds of tasks, served as input to the system. The workloads used
consist entirely of aperiodic tasks, the intent being to evaluate the cost of the online scheduling
algorithm. Each task required up to seven non-cpu resources. The execution times were measured
with a clock accurate to one half microsecond. These experiments focused on two Kernel costs -

the scheduler cost and the dispatching' cost.

Figure 3 illustrates the cost of the scheduler process on the system processor, as a function
of the number of tasks in-the system. The cost of the scheduler consists of the Sprmg O(N)
guarantee algorithm and the overhead required to update the STT once the guarantee algorithm
has produced a new schedule. Both worst case and average case performance measures are shown.

These costs are for unoptimized code. The fact that the dynamic guarantee costs on a .5 MIP
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Figure 3: Guarantee Costs and Overheads.

machine are of the order of tens of milliseconds implies that the deadlines should be large enough

to permit these overheads.

The cost of the dispatcher was 150 microseconds best case, 170 microseconds average case, and
410 microseconds worst case. These costs include three components, code executed at task start,
task finish, and code executed to pend. Although the reported dispatcher costs do not include
context switch overhead, it does include the cost of reading and writing information into shared
memory (the STT). For example, in order to execute the next task, the dispatcher reads the
scheduled start time, the worst case computation time, and the event number (for bookkeeping
purposes) from the STT. If the scheduled start time has arrived, the task can start execution.
However, if the start time has not arrived, the dispatcher enters a pending loop (polling the system
clock to wait for the scheduled start time to arrive). At task finish time, the head of the dispatch
queue must be updated to point to the next task in the application processor’s dispatch queue.
In addition, per task status information is updated (also stored in the STT) to indicate the state

of a task (ready, executing, completed).

The variance between the worst case and average case dispatcher times can be explained by
variances inherent in the hardware architecture, and the fact that our dispatcher is at this time
implemented as a user level process. As a user process, the dispatcher is subject to non-maskable
interrupts, and must perform polling to determine when to execute a task. We expect a marked

performance improvement in the dispatcher when it is moved into the Kernel proper.
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6 Summary

Most critical, real-time computing systems require that many competing requirements be met
including hard and soft real-time constraints, fault tolerance, protection, and security require-
" ments [11]. In this list of requirements, the real-time requirements have received the least formal
attention. We believe that it is necessary to raise the real-time requirements to a central, focusiﬂg
issue. This includes the need to formally state the metrics and timing requirements (which are
usually dynamic and depend on many factors including the state of the system), and to subse-
quently be able to show that the system indeed meets the timing requirements. Achieving this
goal is non-trivial a;ld will require research breakthroughs in many aspects of system design and
implementation. For example, good design rules and constraints must be used to guide real-time
system developers so that subsequent implementation and analysis can be facilitated. Program-
ming language features must be tailored to these rules and constraints, must limit its features to
enhance predictability, and must provide the ability to specify timing, fault tolerance and other
information for subsequent use at run time. Exeicution time of each primitive of the Kernel must
be bounded and predictabie, and the operating system should provide e#plicit support for all the
requirements including the real-time requirements. The hardware must also adhere to the rules
and constraints and be simple enough so that predictable timing information can be obtained, e.g.,
caching, memory refresh and wait states, pipelining, and some complex instructions all contribute
to timing analysis difficulties. An insidious aspect of critical real-time systems, especially with
respect to the real-time requirements, is that the weakest link in the entire system can undermine
careful design and analysis at other levels. Our research is attempting to address all of these issues
in an integrated fashion. However, in this paper we restricted our comments to the Spring Kernel.
We claimed that current real-time operating systems are using the wrong paradigm, proposed a

new paradigm, and discussed how the Spring Kernel supports this paradigm.

The salient features of the Spring approach are:
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e Given that a majority of tasks in a real-time application are known a priori and hence
can be analyzed to determine their characteristics, our schemes use this information in

preallocation and for on-line guarantee.

o Predictability is achieved by a combination of schemes, including resource segmenta-
tion/partitioning, functional partitioning of application tasks, executing system support

tasks on a separate processor, and the use of integrated scheduling algorithms.

o Flezibility/adapiability is improved by dynamic (decentralized) task scheduling, and the use
of meta-level control. In addition, the interface between various kernel modules is designed

t6 permit (off-line) switching of Kernel algorithms.

o The value of tasks executed is maximized through resource preallocation for critical tasks and
the use of dynamic scheduling algorithms (that take task importance values into account)

for essential and non-essential tasks.

The value of our approach has been fully demonstrated by simulation [2, 5]. Due to space lim-
itations we do not present any of these results here. Implementation of the preliminary version
of the Kernel and testing with artificial workloads has shown the feasibility of the main ideas

underlying our approach.
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8 Appendix - Details of the Spring Scheduling Algorithm

The goal of our scheduliqg algorithm is to dynamically guarantee new task arrivals in the context
of the current load. Specifically, if a set § of tasks has been previously guaranteed and a new task
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T arrives, T is guaranteed if and only if a feasible schedule can be found for tasks in the set S |J
T. Hence, determining whether a feasible schedule exists for a set of tasks, i.e., whether all the
tasks in the set can be scheduled to meet their timing constraints, is the crux of the problem.

In practice, the actual algorithm that determines a feasible schedule must consider many issues
including whether tasks are preemptive or not, precedence constraints (which is used to handle
task groups), multiple importance levels for tasks and fault tolerance requirements. In order to
_ focus on the essential features of the algorithm, we present a simple version of the algorithm that
deals with tasks characterized by the following:

o Task arrival time T'y4;
e Task deadline Tp or period Tp

Task worst case computation time T¢;

Task resource requirements {Tr};

Tasks are non-preemptive.

o A Task uses a resource either in shared mode or in exclusive mode and holds a requested
resource as long as it executes.

o Task earliest start time, T,,:, at which the task can begin execution; (T, is calculated
when the task is scheduled and T, accounts for resource contention among tasks. It is a
key ingredient in our scheduling strategy.)

As mentioned in the body of the paper, scheduling a set of tasks to find a feasible schedule
is actually a search problem. The structure of the search space is a search tree. An intermediate
vertex of the search tree isa partial schedule, and a leaf, a terminal vertex, is a complete schedule.
In the worst case finding a feasible schedule requires an exhaustive search. Consequently, we take
a heuristic approach.

The heuristic scheduling algorithms we use try to determine a full feasible schedule for a set of
tasks in the following way. It starts at the root of the search tree which is an empty schedule and
tries to extend the schedule (with one more task) by moving to one of the vertices at the next level
in the search tree until a full feasible schedule is derived. To this end, we use a heuristic function,
H, which synthesizes various characteristics of tasks affecting real-time scheduling decisions to
actively direct the scheduling to a plausible path. The heuristic function, H, is applied to k tasks
that remain to be scheduled at each level of search. The task with the smallest value of function
'H is selected to extend the current schedule.

While extending the partial schedule at each level of search, the algorithm determines if
the current partial schedule is strongly-feasible or not. A partial feasible schedule is said to be
strongly-feasible if all the schedules obtained by extending this current schedule with any one
of the remaining tasks are also feasible. Thus, if a partial feasible schedule is found not to be
strongly-feasible because, say, task T misses its deadline when the current schedule is extended by
T, then it is appropriate to stop the search since none of the future extensions involving task T
will meet its deadline. In this case, a set of tasks can not be scheduled given the current partial
schedule. (In the terminology of branch-and-bound techniques, the search path represented by
the current partial schedule is bound since it will not lead to a feasible complete schedule.)

However, it is possible to backtrack to continue the search even after a non-strongly-feasible
schedule is found. Backtracking is done by discarding the current partial schedule, returning to the
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previous partial schedule, and extending it by a different task. The task chosen is the one with the
second smallest H value. Even though we allow backtracking, the overheads of backtracking can
be restricted either by restricting the maximum number of possible backtracks or by restricting
the total number of evaluations of the H function. We use the latter scheme because we found it
to be more effective.

The algorithm works as follows:

The algorithm starts with an empty partial schedule. Each step of the algorithm involves
(1) determining that the current partial schedule is strongly-feasible, and if so (2) extending the
current partial schedule by one task. In addition to the data structure maintaining the partial
schedule, tasks in the task set S are maintained in the order of increasing deadlines. This is
realized in the following way: When a task arrives at a node, it is inserted, according to its
deadline, into a (sorted) list of tasks that remain to be executed. This insertion takes at most
O(N) time where N is the task set size. Then when attempting to extend the schedule by one
task, three steps must be taken: (1) strong-feasibility is determined with respect to the first (still
remaining to be scheduled) N tasks in the task set, (2) if the partial schedule is found to be
strongly-feasible, then the H function is applied to the first N, tasks in the task set (i.e., the k
remaining tasks with the earliest deadlines), and (3) that task which has the smallest H value is
chosen to extend the current schedule. Given that only N} tasks are considered at each step, the
complexity incurred is O(Nk) since only the first Nj tasks (where Nj < k) are considered each
time. If the value of k is constant (and in practice, k will be small when compared to the task set
size n), the complexity is linearly proportional to =, the size of the task set. While the complexity
is proportional to n, the algorithm is programmed so that it occurs a fixed worst case cost by
limiting the number of H function evaluations permitted in any one invocation of the algorithm.
Also, see [6] for a discussion on how to choose k. .

Before we list possible H functions, we should clarify some terms. Whereas typically aperiodic
tasks are invoked with a deadline for completion and can be started anytime after they are
invoked, the deadline and- start times of periodic tasks can be computed from the period of the
tasks. (There are more efficient ways to deal with periodic tasks, for example, by generating a
separate scheduling template applicable to them, but we will not go into that here.)

Given a partial schedule, for each resource, the earliest time the resource is available can
be determined. This is denoted by EAT. Then the earliest time that a task that is yet to be
scheduled can begin execution is given by

Teot = Maz(T’s start time, EAT}")

where u = s or e if T needs resource R; in shared or exclusive mode, respectively.

_ The heuristic function H can be constructed by simple or integrated heuristics. The following
is a list of potential simple and integrated heuristics that we have tested:

Minimum deadline first (MinD): H(T) = Tp;
¢ Minimum processing time first (Min_C): H(T) = T¢;

Minimum earliest start time first (Min-S): H(T) = Te,¢;

Minimum laxity first (MinL): H(T) = Tp - (Teat+Tc);
MinD + Min.C: H(T) = Tp + W * Tg;
Min D + Min S: H(T) = Tp + W * Tep;
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The first four heuristics are considered simple heuristics because they treat only one dimension
at a time, e.g., only deadlines, or only resource requirements (Te,:). The last two are considered
to be integrated heuristics. W is a weight used to combine two simple heuristics. Min_L and
Mmg need not be combined because the heuristic Min_L contains the information in Min D and

Extensive simulation studies of the algorithm for uniprocessor and multiprocessors show that
. the simple heuristics do not work well and that the integrated heuristic (MinD + Min_S) works
very well and has the best performance among all the above possibilities as well as over many
other heuristics we tested. For example, combinations of three heuristics were shown not to
improve performance over the (Min.D + Min S) heuristic. Consequently, the Spring Kernel uses
the (Min D + Min_S) heuristic.
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