CYCLES IN NETWORKS
Arnold L. Rosenberg

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 91-20

CYCLES IN NETWORKS*

Arnold L. Rosenberg
Computer & Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

February 15, 1991

Abstract

We study the presence of cycles and long paths in graphs that have been pro-
posed as interconnection networks for parallel architectures. The study surveys
and complements known results.

1 Introduction

This paper is devoted to studying embeddings of the simplest possible guest graphs,
the path Py and the cycle Cy, in graphs that have been proposed as interconnection
networks for parallel architectures. In addition to their intrinsic interest, in terms of the
development of algorithms on parallel architectures, these two guest graphs are important
because of the fact that many structurally richer graphs can be constructed from paths
and cycles by various product constructions. A few of the results we present are original;
several appear in the literature and are duly cited; many belong to the folklore of the field.
Indeed this paper is motivated by a desire to find a single repository for this important,
yet scattered material.

Before proceeding further, we define formally the objects of our study.

“This research was supported in part by NSF Grants CCR-88-12567 and CCR-90-13184.

1.1 Background

Notation. A graph G comprises a set N(G) of nodes and a set E(G) of edges, each edge
being an unordered pair of distinct nodes. In just one instance, we study a family of
directed graphs, digraphs for short. For our purposes, a digraph has, in place of edges, a
set of arcs, each of which is an element of N(G) x N(G). (Note that digraphs can have
loops, i.e., arcs of the form (u,u) for v € N(G).)

Let n be a positive and k a nonnegative integer. We denote by Z, the set Z, =
{0,1,...,n — 1}, and by Z* the set of length-k strings (equivalently, the set of k-place
vectors) of elements of Z,.

Paths and Cycles.

The N-node path Py and the N-node cycle Cy both have node-set N(Py) =
N(Cny) = Zn. The edges of Py connect every pair of nodes z and z + 1, for z €
Zy — {N — 1}; the edges of Cy connect every pair of nodes z and = + 1 mod N, for
¢ € Zy. Py and Cy both have N nodes; Py has N — 1 edges; because each node of Cn
has degree 2, the graph has N edges.

The number of edges in a path or cycle is often called its length.

Embeddings. An embedding of the graph G in the graph H comprises two mappings.
The node-assignment a maps N(G) one-to-one into N(H). The edge-routing p assigns to
each edge {u,v} € E(G) a path in H connecting nodes o(u) and a(v).

Among the measures of the quality of a graph embedding, the one that dominates
is the dilation of the embedding, namely, the maximum amount that any edge of G is
“stretched” by the embedding. Formally, the dilation of the embedding (a,p) of the
graph G in the graph H is given by

dilation(e,p) = max _Length(p(u,v))
{uw}eE(G)

Although other cost measures are also of interest [26] in general embeddings, when the
guest graphs are as simple as paths and cycles, the other measures are usually favorable
and can be safely ignored.

1.2 The Focus of Our Study

The main emphasis of our study is on two strong versions of the question of how efficiently
paths and cycles can be embedded in a given N-node host graph G. Say that G contains
the graph H if H is a (partial) subgraph of G, or, equivalently, if H can be embedded in
G with unit dilation.

G is cycle-hamiltonian if it contains the N-node cycle Cn.

G is path-hamiltonian if it contains the N-node path Py.

G is pancyclic if it contains every M-node cycle Cpr, for 3 < M < N.

e G is even-pancyclic if it contains every 2M-node cycle Capr, for 4 <2M < N.

The “path” analogue of pancyclicity is uninteresting, because the N-node path Py con-
tains every (M < N)-node path. In the same vein, all discussion of paths is uninteresting
when a graph is cycle-hamiltonian, because the N-node cycle Cy contains the N-node
path Py. In deference to common usage, the unqualified adjective “hamiltonian” means
“cycle-hamiltonian.”

When G is a digraph, then a stronger version of pancyclicity is possible:

e The N-node digraph G is di-pancyclic if it contains every M-node directed cycle
Cau,for L< MK N.

The specific graphs G in which we seek cycles are chosen with a twofold motivation.
On the one hand, we study the major families of graphs that have been proposed as
interconnection networks for parallel architectures—which is one of the application areas
in which the existence of cycles is important; on the other hand, we study graph families
that allow us to exhibit most of the major ideas that are useful in identifying cycles in
graphs.

It is worth mentioning what we do not try to cover in this study. First, we do not
survey the many results that guarantee the presence of hamiltonian cycles in particular
families of graphs (defined, e.g., by structure or by density), although such results abound
(1], [9], [38], [41], [42]. Similarly, excepting Theorem 2.1, which indicates how “close”
general graphs come to being pancyclic, we do not discuss results concerning small-
dilation embeddings of cycles in graphs, although such results exist [16]). Finally, we do
not discuss the computational difficulty of detecting various classes of cycles in various
classes of host graphs. We do remark, however, that the general problem of deciding the
containment of cycles in graphs is as computationally intractable as the general question
of deciding the embeddability of one arbitrary graph in another. For instance, detecting
either cycle- or path-hamiltonianicity in graphs is NP-complete [20], even for graphs with
restricted structure [17], [40].

2 General Graphs

Rather than embark immediately on our study of what cycles and paths a graph contains,
we begin with two results that place the question of cycles in graphs in perspective.
The first result shows that even when a cycle of length M cannot be embedded in the
(N > M)-node connected graph G with unit dilation, it can be so embedded with dilation
no greater than 3. The second result shows that when the graph G contains a path of
length M, then every cycle of length < M can be embedded in G with dilation no greater
than 2. For obvious reasons, we restrict attention to connected graphs G.

The following theorem has been proved many times in the literature. As far as we

know, its first appearance was in [34]. The algorithmic proof we present originates in
[28].

Theorem 2.1 (Cycle-Embeddings for General Graphs)

(a) For all N and M < N, one can embed the M-node cycle Cpr in any N-node connected
graph G, with dilation < 3.

(b) No smaller dilation works in general.

Proof. There are a variety of inductive proofs for part (a), but the result is proved most
elegantly via the following three-step algorithm that produces an embedding of Cy in
G. To accommodate a cycle of length M < N, one just applies this algorithm to any
connected M-node subgraph of G.

Step 1. Construct, in any way, a rooted, oriented! spanning tree 7 for G [11].
Step 2. Traverse 7 in preorder:

1. Visit the root = of T; say that » has k children, numbered 0,1,...,k — 1.
2. For:=0,1,...,k—1
traverse the tree rooted at child i of 7, in preorder; visit the root ».

During this traversal, each node of 7 that has k children will be encountered exactly
k + 1 times. Assign node 0 of Cy to node r of T, and inductively:

o When the traversal encounters an even-level node v € N(7') for the first time,
assign the smallest-numbered not-yet-assigned node of Cy to v.

e When the traversal encounters an odd-level node v € N(7') for the last time,
assign the smallest-numbered not-yet-assigned node of Cy to v.

1A tree T is oriented if the children of each nonleaf node of T are labelled with distinct numbers.

Step 3. Route edges of Cy via shortest paths within 7.

It remains to assess the dilation of the described embedding, which requires an analysis
of cases. Focus on a node i € N(Cy) that is assigned to a node v € N(T).

Case 1: Node v resides on an even level of T.

1.1: v is a leaf of T .

1.1.1: v is the highest numbered child of its parent w.
In this case, node w is visited for the last time in the traversal just after v is
visited (for the only time). Node i + 1 € N(Cy) is assigned to w, so the edge
{i,7+ 1} € E(Cy) is routed along an edge of 7, hence incurs unit dilation.

1.1.2: v is not the highest numbered child of its parent w.
In this case, assuming that v is the jth child of w, the traversal proceeds by
visiting node w, followed by the (j + 1)th child of w, call it u. Since node u
also resides at an even level of 7, node i + 1 € N(Cy) is assigned to u, so
the edge {¢,1+ 1} € E(Cn) is routed along a length-2 path in 7, hence incurs
dilation 2.

1.2: v is an interior node of T .

1.2.1: The 0th child v of v is a leaf of T .
In this case, u is visited just once in the traversal, so node i + 1 € N(Cy) is
assigned to u, so edge {i,7 + 1} € E(Cy) is routed along an edge of 7, hence
incurs unit dilation.

1.2.2: The 0th child u of v is not a leaf of T .
In this case, u has a child in 7. Since this child resides at an even-numbered
level of 7, node 7 + 1 € N(Cy) is assigned to that child, so edge {7,z + 1} €
E(Cy) is routed along a path of length 2 in 7, hence incurs dilation 2.

Case 2: Node v resides on an odd level of T .

2.1: v has a higher-numbered sibling in T .
In this case, the parent of v has ¢ children, and v is child j < ¢ — 1. After the
traversal encounters v for the last time, say at step ¢ in the traversal, it encounters
the parent of v at step t+1 and, at step £+2, it encounters the next higher-numbered
sibling of v, call it w, for the first time.

2.1.1: w, the next higher-numbered sibling of v, is a leaf of T .
In this case, step ¢ + 2 is also the last time that the traversal encounters w, so
node i + 1 € N(Cy) is assigned to w; hence, edge {¢,7+ 1} € E(Cy) is routed
along a path of length 2 in 7, incurring dilation 2.

2.1.2: w, the next higher-numbered sibling of v, is not a leaf of T .
In this case, the traversal visits the child of w, for the first time, at step ¢ + 3.
Since this child resides at an even level of 7, node ¢ + 1 € N(Cy) is assigned
to that child; hence, edge {i,7 + 1} € E(Cy) is routed along a path of length
3 in 7, incurring dilation 3.

2.2: v has no higher-numbered sibling in T .
In this case, after the traversal encounters v for the last time, say at step ¢, it
encounters the parent of v at step £ + 1 and, at step ¢ + 2, it encounters the parent
u of v’s parent, if u exists.

2.2.1: The parent u of v’s parent does not exist.
In this case, the parent of v is the root node . Since v has no higher-numbered
sibling in 7, the traversal is complete. Hence, the node of Cyy that is assigned
to v is node N — 1, so that edge {0, N — 1} € E(Cy) is routed along an edge
of 7, incurring unit dilation.

2.2.2: The parent of v has a higher-numbered sibling in T .
In this case, at step ¢ + 3, the traversal encounters the next sibling of the
parent of v, call it z, for the first time. Since z resides on an even-numbered
level of 7, node i + 1 € N(Cy) is assigned to z; hence, edge {i,i+1} € E(Cy)
is routed along a path of length 3 in 7, incurring dilation 3.

2.2.3: The parent of v has no higher-numbered sibling in T .
In this case, step £ + 2 is the last time that the traversal encounters u, so node
i+ 1 € N(Cy) is assigned to node u; hence, edge {7,2 + 1} € E(Cy) is routed
along a path of length 2 in 7, incurring dilation 2.

These cases exhaust all possibilities. We conclude that the described embedding incurs
dilation < 3, as was claimed.

We establish Part (b) by explicit example. Possibly the simplest graph G that requires
dilation 3 is the 7-node tree consisting of a root node that has three children, each of
which has one child (which is a leaf). Assume, for contradiction, that one can embed
the cycle C7 in G with dilation 2. We show that this assumption forces enough of the
node-assignments of this embedding to preclude the existence of the embedding.

Because of the node-transitivity? of C7, we lose no generality by assuming that node
0 € N(C7) is assigned to the root node r of G.

Fact 2.1 Node 1 € N(C7) is assigned to some leaf of G.

2A graph G is node transitiveif, for every ordered pair of nodes u,v € N(G), there is an automorphism
of G that maps node u to node v. Cycles are transparently node transitive.

Verification. Say, for contradiction, that node 1 is assigned to a child v of the root of
G. Two possibilities arise. If node 2 € N(C-) is assigned to the leaf-child w of v, then
node 3 € N(C7) must be assigned at distance > 3 from node 2. If node 2 € N(C) is
assigned to any node of G other than to w, then the node 5 € N(C7) that is assigned to
w must reside at distance > 3 from nodes j + 1 € N(C7). Either of these contingencies
contradicts the claim that the embedding of C; in G has dilation 2.

Say, then, that node 1 € N(C7) is assigned to the leaf w € N(G).
Fact 2.2 Node 2 € N(C7) is assigned to the parent of leaf w in G.

Verification. Leaf w has one node of G at distance 1, namely, its parent; it has one
node of G at distance 2, namely the root 7. Therefore, if node 2 € N(C-) is not assigned
to the parent of leaf w, it must be assigned at distance > 3 from node 1.

Fact 2.3 Node 3 € N(C7) is assigned to a child of the root of G.

Verification. Node 3 must be assigned within distance 2 of node 2, and only the
remaining children of the root, among all unoccupied nodes of G, satisfy this condition.

We have now painted ourselves into a corner. We must assign node 4 € N(C) either
to the leaf-child of the host node of node 3 € N(C7) or to the one remaining child of
the root of G. If we make the former assignment, then we cannot place node 5 € N(C;)
within distance 2 of node 4. If we make the latter assignment, then we cannot assign
any node of C7 to the leaf-child of the host node of node 3 € N(C7) while honoring the
claimed dilation 2 of the embedding. O

One general situation in which one can improve on the bound of Theorem 2.1 is when
the graph G contains a long path.

Proposition 2.1 (a) If the graph G contains the N-node path Py, then any cycle of
length 3 < M < N can be embedded in G with dilation < 2.

(b) If the graph G contains the N-node cycle Cn, then any cycle of length 3 < M < N
can be embedded in G with dilation < 2.

Proof. The result is immediate from the strong version of quasi-isometry® enjoyed by
paths and cycles; specifically, paths are (spanning) subgraphs of like-length cycles, and
cycles can be embedded in paths with dilation 2, as we now see.

3Graphs ¢ and M are quasi-isomeiric when each can be embedded in the other with dilation O(1).

Proposition 2.2 (Quasi-isometry of Paths and Cycles)
(a) For all N, the N-node cycle Cn contains the N-node path Py .
(b) For all N, Cn can be embedded in Py with dilation 2.

Proof. Part (a) being obvious, we concentrate on part (b).

We note first that cycles of lengths 1 and 2 are degenerate, hence cannot appear in
graphs that lack loops and parallel edges.

The proof of part (b) is given most elegantly via an algorithm for effecting the desired
embedding. To embed the N-node cycle Cy in Py, we take an N-step “walk” along Py,
depositing nodes of Cy as we go. During step ¢ of the “walk,” 0 <2 < N — 1, we visit
node i of Py. When 1 is even, we deposit node i/2 of Cy at node i of Py; when 1 is odd,
we deposit node N — [i/2] of Ciy at node 7 of Py.

To see that this simple embedding has dilation 2, note that odd and even steps of the
“walk” alternate, and that (¢+2)/2 = 4/2+1, whence also N—[(1+2)/2] = N—[:/2] -1.
a

For many familiar families of graphs, one can improve on the general embeddings of
Theorem 2.1 and Proposition 2.1. The remainder of the paper expands on this observa-
tion.

3 Clique-Like Graphs

We start our study with two structurally simple host graph families, the complete graphs
and the complete bipartite graphs.

The N-node complete graph, or, clique Ky has node-set N(Ky) = Zy; its edges
connect every pair of distinct nodes. Because Kx has N nodes, each of degree (N — 1),

it has
N
2

The m x n complete bipartite graph K, , has node-set ({0} x Z,,) U ({1} x Z,); its
edges connect every pair of nodes v € {0} x Z,, and v € {1} x Z,. K;nn has m 4+ n nodes
and mn edges.

edges.

While clique-like graphs are too dense to be considered seriously as a physical inter-
connection network (at least for large numbers of processors), one does try to approximate
their characteristics with physically feasible networks, so it is worthwhile understanding
those characteristics.

Theorem 3.1 (Cycle-Embeddings for Ky)
For all N, the N-node cligue K 1is pancyclic.

Proof. The proof is immediate by the fact that every pair of nodes of Ky are connected
by an edge. To wit, for all integers m < N, thereis a cycle in Ky connecting the following
nodes, in the following order.

0,1,...,m—1,0.

a

Theorem 3.2 (Cycle-Embeddings for K n)

(a) For allm,n, M < min(m,n), the m x n complete bipartite graph K., contains every
2M-node cycle Capr; in particular, K, , is even-pancyclic.

(b) Kmn contains only those cycles described in Part (a).

Proof. Part (a) is immediate by the fact that every pair of nodes {u,v} where u €
{0} x Z,, and v € {1} x Z, are connected by an edge in Kmn. To wit, for all integers
M < min(m,n), there is a cycle in Ky connecting the following nodes, in the following
order.

(0,0),(1,0),(0,1),(1,1),...,(0, M - 1),(1, M —1),(0,0).
Part (b) is established via two observations. First, K » is bipartite, hence contains

no odd-length cycle. Second, every cycle in K, alternates nodes from {0} x Z, with
nodes from {1} x Z,, hence can contain no more than 2min(m,n) nodes. D

4 Meshes and Toroidal Meshes

We continue our study with two families of graphs whose attractiveness as interconnection
networks derive from a combination of their amenability to efficient layout in the plane
and their regular structure that simplifies the development of algorithms; cf. [5], [12].

4.1 Meshes
The 2-dimensional m x n rectangular mesh M,, , is the product graph P,, x P,.
Therefore, M, » has node-set N(Mm) = Zm X Zn; its edges come in two classes. M,

has a row-edge between every pair of nodes

(v, v) and (u, w),

where |v — w| = 1; it has a column-edge between every pair of nodes
(u,) and (w, v)

where |u — w| = 1. My, has mn nodes and 2mn — m — n edges.

We note first that meshes contain paths of all possible lengths.

Theorem 4.1 (Path- and Cycle-Embeddings for My, »)

For allm and n:

(a) The m X n mesh Mumn is path-hamiltonian.

(b) Mupmn contains no odd-length cycle; in particular, when mn is odd, Mmn is not
hamiltonian.

(¢) Mumn is even-pancyclic; in particular, when mn is even, Mp, is hamiltonian.

Proof. (a) The path-hamiltonianicity of M, is proved most easily by “snaking” the
path P, through M., », say, row by row. More formally, the embedding specifies a path
in Mpmn that starts at node (0,0) and proceeds as follows. For all i € Z),/5), the path

e proceeds along row 2i from node (2i,0) to node (2i,n — 1)

o terminates there if m — 1 = 2¢; otherwise, it follows the edge from node (2i,n — 1)
to node (2¢ + 1,n — 1)

e proceeds along row 2i + 1 from node (2i + 1,n — 1) to node (2i + 1,0).

This path always exists; by our description, it specifies an embedding of Pnn in My 5,
with unit dilation.

(b) For all m and n, M, is bipartite, hence contains no odd-length cycle. One coloring
that effects a bipartition of M,, , assigns node (u,v) € N(Mpm,) a “color” which is the
parity of u + v, i.e., the quantity » + v mod 2. Since a hamiltonian cycle in M, , would
contain the same number of nodes as M, ,, namely mn, M,, , cannot be hamiltonian
when mn is odd.

(c) The embeddings that establish the even-pancyclicity of M, », proceed by iteratively
contracting a specific maximum-length cycle that M, , contains. When mn is even, this
longest cycle has mn nodes, so that Mp » is hamiltonian; when mn is odd, this longest
cycle has mn — 1 nodes. Our construction of the desired maximum-length cycle builds
upon the embedding of the mn-node path in My, 5, in Part (a). Constructing this cycle
is our first goal.

10

Assume first that mn is even. Say, with no loss of generality, that m is even; otherwise,
switch the roles of m and n. Isolate the m x (n — 1) submesh M of M, obtained by
removing column 0. Embed the m(n — 1)-node path P,,(,_1) with unit dilation in M,
using the embedding of Part (a). This embedding assigns node 0 of Pp(n-1) to node (0,1)
of My q, and it assigns node m(n — 1) — 1 of Ppy(n_1) to node (m —1,1) of My n. We
complete the desired cycle by connecting the two ends of the embedded copy of Pp(n-1)
via the path in M, , that proceeds from node (0,1) to node (0, 0), thence along column
0 to node (m — 1,0), and finally goes to node (m — 1,1). The cycle so constructed is a
hamiltonian cycle in My, 5.

When mn is odd, we isolate the (m — 2) X (n — 1) submesh M of M,, , obtained by
removing column 0 and rows m — 2 and m — 1. Embed the (m — 2)(n — 1)-node path
P(m-2)(n-1) With unit dilation in M, using the embedding of Part (a). This embedding
assigns node 0 of Ppy(n_1) to node (0,1) of My, 5, and it assigns node (m —2)(n —1) —1
of Pm(n-1) to node (m —3,n — 1) of My, .. We complete the desired cycle by connecting
the two ends of the embedded copy of P(m_2)n-1) via the path in My, , that proceeds
from node (0,1) to node (0,0), thence along column 0 to node (m — 1,0), thence by a
“sawtooth” path to node (m — 1,7 — 3), and finally by a length-4 “dogleg” path to node
(m — 3,n — 1). Each “tooth” in the “sawtooth” path is a length-4 path of the form

(m—1,2) «—> (m—-1,2i4+1) «—> (m—-2,2t+1) — (Mm—2,2{+2) «— (m—1,2: + 2);

the entire “sawtooth” path comprises (n — 3)/2 teeth. The length-4 “dogleg” path is
specified by

(m-1,n-3)e— (m—-1,n-2) — (Mm-2,n-2) «— (Mm-2,n—1) «— (m-3,n-1).
The cycle so constructed misses only node (m — 1,n — 1) of M,, ».

Once having constructed the specified maximum-length cycle in M,, ,,, we construct
cycles of all other even lengths by iterating the following contraction operations, in a
judiciously but simply chosen order. The first contraction operation replaces a length-3
path of the form

(k) e— (k64 1) e—= (k+1,£+1) «— (k+ 1,0

by the edge
(k,8) «— (k+1,0).

The second contraction operation replaces a length-3 path of the form
(k) — (k+1,8) — (k+1,£+1) «— (k, £+ 1)

by the edge
(k,€) — (k,£+1).

The details will follow readily after trying a few examples. O

11

4.2 Toroidal Meshes

The 2-dimensional m x n toroidal mesh ./T/'l,,.,n is the product graph C,, x C,.. There-

fore, ./Vlmm has node-set N(./\‘Zm_,,) = Zm X Zn; its edges come in two classes. .7\-/1,,,,,. has
a row-edge between every pair of nodes

(u, v) and (v, v + 1 mod n);
it has a column-edge between every pair of nodes
(%, v) and (v + 1 mod m, v).

Because M, » has mn nodes, each of degree 4, it has 2mn edges.

The conditions under which the toroidal mesh /\A/'Im,n contains a cycle is even more
complicated than for the “flat” mesh M, ,.

Theorem 4.2 (Cycle-Embeddings for M,)

For allm and n:

(a) The m x n toroidal mesh ﬂm,n 28 hamiltonian.

(b) Mumn is even-pancyclic.

(€) Mumn contains no odd-length cycle of length < min(m,n).

(d) When bothm and n are even, then Mum, contains no odd-length cycle.

Proof. (a) When mn is even, the hamiltonianicity of M, , follows from Theorem 4.1(c),
because M, is a spanning subgraph of M, .

When mn is odd, the result follows by combining the ideas behind the embeddings of
Theorems 4.1(c) and 4.1(a). We begin by removing column 0 of M,,,, and embedding
the m(n — 1)-node path Po(n_1) With unit dilation in the resulting submesh of M,
using the embedding of Theorem 4.1(a) (as we did in Theorem 4.1(c)). Because mn is
odd, this embedding assigns node 0 of Pp,(,_1) to node (0,1) of M, », and it assigns
node m(n — 1) — 1 of Pry(n_1) to node (m — 1,n — 1) of Momn. We now “connect” the
endpoints of path P,,(n_1) together, turning the embedding into an embedding of C,.,,
in ﬂm,n, in three steps: First, we extend the path along the edge in J—\v/lmm from node
(m — 1,n — 1) to node (m — 1,0); next, we extend the path along column 0 of M mms
from node (m — 1,0) to node (0,0); finally, we close the path (thereby forming a cycle),
using the edge connecting nodes (0,0) and (0,1). We have thus described an embedding
of Cpun il M n, with unit dilation.

12

(b) The even-pancyclicity of M, follows from Theorem 4.1(c), because My, is a
spanning subgraph of M,, .

(c) Any embedding of a “short” cycle in .7\71,,,,,, in fact embeds the cycle in a subgraph of
jT/lm',, which is a mesh. By Theorem 4.1(b), this subgraph contains no odd-length cycle.

(d) When both m and n are even, My, , is bipartite, hence contains no odd-length cycle.
A two-coloring of M, that witnesses its bipartiteness is obtained by 2-coloring each
of its rows, each of which is an even-length cycle, with the colors 1 and 2, switching the
roles of the colors according to the parity of the row number. Since each column of ./\A/'lmln
is also an even-length cycle, this procedure yields a valid 2-coloring of .7\71,,,,,,. O

5 Hypercubes

The next family in our study produces some of the most versatile interconnection net-
works, both in terms of their ability to emulate a large variety of other networks (8], [10],

[18], [29] and in terms of their ability to support efficient interprocessor communication
[14], [19], [30], [35).

The n-dimensional (boolean) hypercube Q, is the n-fold product graph X, x K, x
-+ X K =ger K3. Therefore, Q, has node-set N(Q,) = Z} which comprises all length-n
strings over the alphabet Z,; Q, has an edge between every pair of nodes z@By and zyy
that differ in precisely one bit-position, i.e., ¢ € Z¥ is some length-k string, y € Zp~*1is
some length-(n — k — 1) string, and both 8 and vy # B are in Z, (so, are bits, or, length-1
strings). Because @, has 2" nodes, each of degree n, it has n2"~! edges.

Our proof of part (a) of the following theorem derives from [18].

Theorem 5.1 (Cycle-Embeddings for Q,)

For all n:

(a) The n-dimensional hypercube Q, is even-pancyclic; in particular, Q,, is hamiltonian.
(b) Qn contains no odd-length cycle.

Proof. (a) A length-m n-dimensional Gray code is a cyclically ordered sequence of m
distinct length-n binary words, having the property that words adjacent in the sequence
differ in precisely one bit-position. In the obvious way, such a Gray code can be viewed
as (specifying) an m-node cycle in the Q.

A length-m n-dimensional Gray code can be specified by a length-m transition se-
quence of integers from the set Z,: the ith element of the sequence specifies the bit-
position that is flipped to obtain the (z + 1)th word of the code from the ith word. A

13

simple family of transition sequences derive from the following recursive construction.
S]_ = 0
Sk+1 = Sk, k, Sk

We denote by S{*) the ith element of S, (counting, as usual, from 0). For any integer
k < 271 one uses S, to construct a length-2k n-dimensional Gray code o, 21, . .., Tak-1,
as follows.

1. Select any length-n binary string as word zo of the code.
2. For 0 < i < k — 1, generate word z;,, by flipping bit-position S{*) of z;.
3. Generate word z, by flipping bit-position n of zj_;.

4. For 0 <i < k — 1, generate word z44;4; by flipping bit-position S{) of z;.

It follows automatically that word z, is obtained by flipping bit-position n of word z_;.
Let us denote by S,[2k] the sequence of bit-positions flipped in this procedure:

s ifie{0,1,...,k—2}
S.[2k)])={ n ifie{k—1,2k—-1}
SG-k) ifie {kk+1,...,2k—2}

One sees that the defined transition sequences generate all even-length cycles in Q,

via a number of easily verified facts, whose verifications we just hint at.

First, we note a consequence of the fact that every two occurrences of an integer A in
S, are separated by an occurrence of some integer > h + 1.

Fact 5.1 Every contiguous subsequence of S, contains at least one element an odd num-
ber of times.

Using Fact 5.1 on prefixes of S,, one verifies that transition sequences do in fact
generate Gray codes.

Fact 5.2 The just-described procedure generates a length-2k n-dimensional Gray code.

Part (a) of the theorem follows directly from Fact 5.2.

(b) For all n, Q, is bipartite, hence contains no odd-length cycle. A valid 2-coloring
of Q,, results from labeling each node of Q, with the parity of the number of 1s in its
string-name. O

14

6 Butterflies and Cube-Connected Cycles

This section studies the cycle structure of two of the benchmark bounded-degree “ap-
proximations” of the hypercube (7], [24], [25], [32].

The order-n butterfly graph B, and the order-n cube-connected cycles graph
CCC,. both have node-set N(B,) = N(CCC,) = Z. x Z3. For each node, (£, w) €
N(B,) = N(CCC,), we call £ € Z, the level of the node and w € Z7 the position-within-
level string (PWL string, for short) of the node. Each node, (£, w) € N(B,) = N(CCC,)
is connected in both graphs via a straight-edge to node (£ 4+ 1 mod n, w). Additionally,
each edge (£, zBy) € N(B,) = N(CCC,), where z € Z{, y € Z; -1 and B € 2, is
connected in B, via a cross-edge to node? (£ + 1 mod n, zfBy) and is connected in CCC,,
via a level-edge to node(£, zBy). Both B, and CCC,, have n2" nodes; in B, each node has
degree 4, so B,, has n2"*! edges; in CCC,, each node has degree 3, so CCC,, has n(2"+2"7")
edges.

We study butterfly and cube-connected cycles graphs in the same section because
the undirected order-n CCC CCC, and the undirected order-n butterfly graph B, are
quasi-isometric; in fact, CCC, is a (spanning) subgraph of B,, and one can embed By in
CCC,., with dilation 2. The strong quasi-isometry exposed in part (a) of the following
Proposition originates in [15].

Proposition 6.1 (Quasi-isometry of B, and CCC,)

(a) For all n, the undirected order-n butterfly graph B, contains the undirected order-n
cube-connected cycles graph CCC,,.

(b) For all n, one can embed B, in CCC,,, with dilation 2.

Proof. (a) Consider the following assignment of nodes of CCC,, to nodes of B,. If the
PWL string ¢ € Z3 of node v = (¢, z) of CCC, contains an even number of 1s, then
assign node v to node v of By,; if the PWL contains an odd number of 1s, then assign node
v to node (£ + 1, z) of B,. We now verify that this assignment witnesses the claimed
subgraph relation.

Inter-level Adjacencies. Every straight-edge of CCC,, maps onto a straight-edge of B,.
This is true because each node v of CCC,, is assigned to the “column” of B, that is defined
by the same PWL string as v’s; either all nodes of CCC,, assigned to that “column” of
B, remain in the same level they had in CCC,, or they all shift one level. In either case,
inter-level adjacencies are preserved.

Bijectiveness of Assignment. As a corollary of the preservation of inter-level adja-
cencies, our assignment of nodes is both one-to-one and onto.

iForB€ Z,,f=1-5.

15

Intra-level Adjacencies. Each level-edge of CCC,, connects a node u whose PWL string
has an even number of 1s with a node v whose PWL string has an odd number of 1s. The
same is true for each cross-edge of B,, but these latter edges also shift one level. To be
more specific, let z,z' € Z} be length-n binary strings that differ in bit-position £ € Zy.
On the one hand, there is an edge in CCC, connecting nodes (£,z) and (£,2z'); on the
other hand, there is an edge in B, connecting nodes (£,z) and (£ + 1 mod =,z'), as well
as an edge connecting nodes (£, z') and (£+1 mod n,). Since one of z and z' must have
an even number of 1s while the other has an odd number of 1s, one of these cross-edges
of B,, must be the induced image, under our node-assignment, of the level-edge of CCCh..

Our node-assignment is thus both one-to-one and onto, and each edge of CCCs, is
mapped by the assignment to an edge of B,. This completes the proof of Part (a).

(b) For Part (b), we employ the identity node-assignment. Ignoring straight-edges,
which are common to B,, and CCC,, hence can be routed using the identity routing, we
route edge ((£,z), (£+ 1 mod n,z’)) of B, along the following length-2 path in CCCh:

(£,z) & (£,2') & (£+ 1 mod n,2').
O

Proposition 6.1 demonstrates that the presence of any cycle in CCC, betokens the
presence of a like-length cycle in B,, and, contrapositively, the absence of any cycle in
B, precludes the presence of a like-length cycle in CCC,. We turn finally to the cycle
structure of the two graphs.

Theorem 6.1 (Cycle-Embeddings for B, and CCC.,)
For all n:

(a) The order-n cube-connected cycles graph CCC,, contains the m-node cycle Cr, for the
following values of m:

em=n
em=n2—(n—-2)cfor2<k<n and 0 < ¢ < 2k.
In particular, CCC, is hamiltonian.
(b) The order-n butterfly graph B, contains the m-node cycle C,, for the following values

of m:

o Mm=n"n

em=n2_—(n-2)cforl<k<nand0<c<2k

16

In particular, B, is hamiltonian.

(¢) Neither B,, nor CCC, contains an odd-length cycle of length < n; in particular, neither
graph is pancyclic.

(d) Ifn is even, neither B, nor CCC, contains an odd-length cycle.

Proof. (a) We begin our proof by concentrating on the case ¢ = 0 in the expression
for the length m of the contained cycle. Hence, we wish to establish the containment in

CCC,, of cycles of lengths n2* for all k € Z,,; — {1}.

We adapt the proof from [37] that establishes the hamiltonianicity of CCC,., by estab-
lishing the hamiltonianicity of every graph in the following family of subgraphs of CCC,..
For k € Zp,1, the graph CCC,*) is the maximal connected component containing node
0 of the induced subgraph of CCC,, on the set of nodes

Vi =def Zn X {mOn_k P T e Z;}

Note that CCC,(* is obtained from CCC, by deleting all level-edges of CCC,, at levels
k,k+1,...,n — 1 and then deleting all nodes and edges that are no longer accessible
from node 0; in particular, CCC,(% is (isomorphic to) the n-node cycle C,,, and CCC,(™ is
identical to CCC,,. We let CCC,® inherit a level structure in the natural way from CCC,,.

We establish the hamiltonianicity of every graph CCC,.*) by induction on k, with two
base cases. The base case CCC,(®) will yield the desired result for all even values of k; the
base case CCCn(® will yield the desired result for all odd values of k. This unexpected
need for two base cases arises from the fact that our induction is extended by successively
incrementing k& by 2, as we see now.

Lemma 6.1 Forallk € Z,_; — {1}, if CCC,*) is hamiltonian, then so also is CCC,*+?).

Proof. Assume for induction that we are given a hamiltonian cycle C in CCC,*). Let
the nodes of CCC,(*) be numbered with the integers Z,,+ in an order consistent with
the cyclic order of C. We extend the induction by traversing the hamiltonian cycle in
CCC,*) repeatedly. As an aid in describing the multiple traversals, we say that a traversal
proceeds up the cycle when it proceeds along the cycle in the order 3,7+ 1,57+ 2,... and
that the traversal proceeds down the cycle when it proceeds along the cycle in the order
j,7—1,7—2,..., all addition being modulo n2*.

Implicit in the formula for pruning CCC,, to produce CCC,*¥ is the fact that one can
construct CCC,*+?) by taking four copies of CCC,¥), call them Copies 00, 10, 01, and
11, and interconnecting them so as to obtain a copy of CCC,.**2) The interconnection
begins with a renaming of the PWL strings of the nodes of CCC,™)| as indicated in the
following table.

17

In CCC,™*) || In Copy 00 I In Copy 10 | In Copy 01 | In Copy 11
20 F | z0nF | 2100~ %7 | g010"F 2 | z110%*?

Now interconnect the four copies by adding to them the level-k and level-(k + 1) edges
of CCC,, in just the way that makes the resulting graph isomorphic to CCC,*+?).

One can now trace out a hamiltonian cycle in CCC,.(**?), as follows. We refer freely
to the four copies of ccc,.®) that comprise cce, (k+2)

1.

Start at node (k, (-):) in Copy 00 of CCC,*), and proceed up its hamiltonian cycle
until node (k + 1, 0).

. Cross from node (k + 1, 0) in Copy 00 to node (k + 1, 0010) in Copy 01.

Starting at node (k+1, 0010) in Copy 01, proceed down its hamiltonian cycle until
node (k, 0010).

. Cross from node (k, 0010) to node (k, 0110) in Copy 11.

Starting at node (k, 0110) in Copy 11, proceed up its hamiltonian cycle until node
(k +1, 0110).

Cross from node (k + 1, 0110) to node (k + 1, 6106) in Copy 10.

Starting at node (k+1, 0100) in Copy 10, proceed down its hamiltonian cycle until
node (k, 0100).

Cross from node (k, 0100) to node (k, 0) in Copy 00.

We claim that the above procedure does, indeed, specify a walk within CCC,*+? j.e.,
that every prescribed step of the walk crosses just one edge of the graph. The one facet of
this claim that is not completely evident resides in our procedure’s implicit exploitation
of the following fact.

Fact 8.1 For all k, every pair of nodes, (£, z) and (£ + 1, z), where £ € Z, — Z) and
z € Z3, appear consecutively in the hamiltonian cycle for CCC,*) that our procedure
produces.

Fact 6.1 assures us that the pairs of nodes, (£, z) and (£ + 1, z), can be used to
interconnect cycles in copies of CCC,(¥ in the way mandated by our procedure. One
verifies the Fact by noting that at the point when our procedure produces a hamiltonian

18

cycle for CCC,™), the nodes of interest are bivalent, hence must appear consecutively in
the cycle.

The proof of the Lemma is now complete: the walk specified by our procedure in-
terconnects the hamiltonian cycles in the four copies of CCC,.(*) in a way that yields a
hamiltonian cycle in CCC,,*+?). O-Lemma 6.1

The proof of part (a) is completed by establishing the base cases of the induction.
Lemma 6.2 Both CCC,.(% and CCC,® are hamiltonian.

Proof. A cycle in CCC,(). Because CCC,(? is (isomorphic to) the n-node cycle C,, its

hamiltonianicity is immediate. Let us concentrate, therefore, on finding a hamiltonian
cycle in CCC,.®).

A cycle in CCC,®). We produce a hamiltonian cycle in CCC,® from copies of the
hamiltonian cycle in CCC,® in much the same way that we produced a hamiltonian
cycle in CCC,,***? from copies of a hamiltonian cycle in CCC,*) in Lemma 6.1, except
that we need eight copies of the “seed” cycle here, as opposed to the four copies that
sufficed there.

Let us take eight copies of the hamiltonian cycle in CCC,(®, call them Copies 000,
001, ..., 111. Note that the nodes of the cycle comprise the set {(£,0) : £ € Z,}.
Relabel the PWL strings in all copies of the cycle so that the nodes of Copy afy of the
cycle (@, 8,4 € Z,) comprise the set {(¢,2370) : £ € Z,}. Under this node-labeling, the
node-set of CCC,(is just the union of the node-sets of the eight cycles, and the edges
of CCC,® are the union of the edges of the cycles, plus the intra-level edges on levels
0, 1, 2 of CCC,. Using the same notion of traversing a cycle by proceeding up the cycle

or down the cycle as we used in Lemma 6.1, we can now specify a hamiltonian cycle in
CCC,,(s), as follows.

1. Start at node (1, 0000) and proceed down the cycle, until node (2, 0000).
2. Cross from node (2, 0000) to node (2, 0010) in Copy 001.

Proceed from node (2, 0010) in Copy 001 up the cycle, until node (1, 0010).

- W

Cross from node (1, 0010) to node (1, 0110) in Copy 011.

o

Proceed from node (1, 0110) in Copy 011 up the cycle, until node (0, 0110).
6. Cross from node (0, 0110) to node (0, 1110) in Copy 111.

7. Proceed from node (0, 1110) in Copy 111 down the cycle, until node (1, 1110).

19

8. Cross from node (1, 1110) to node (1, 1010) in Copy 101.

9. Proceed from node (1, 1010) in Copy 101 down the cycle, until node (2, 1010).
10. Cross from node (2, 1010) to node (2, 1000) in Copy 100.
11. Proceed from node (2, 1000) in Copy 100 up the cycle, until node (1, 1000).
12. Cross from node (1, 1006) to node (1, 1106) in Copy 110.
13. Proceed from node (1, 1100) in Copy 110 up the cycle, until node (0, 1100).
14. Cross from node (0, 1100) to node (0, 0100) in Copy 010.
15. Proceed from node (0, 0100) in Copy 010 down the cycle, until node (1, 0100).
16. Cross from node (1, 0100) to node (1, 0000) in Copy 000.

The described walk constitutes a hamiltonian cycle in CCC,®). The existence of this
cycle establishes the base case of the induction. O-Lemma. 6.2

Now we extend our result to the entire claimed set of contained cycles, by allowing
the constant ¢ to assume nonzero values. Note that whenever the walks that define
the cycles of lengths n2* encounter a cycle of CCC,, defined by a given PWL string
z, call the cycle C(z), they enter C(z) at some node (£, z) and leave it from node
(&, z) e {(£+1, z), (£—-1, =)}, after having traversed all (n — 1) edges of C(z) other
than the one that connects these two nodes. If we alter the walk so that it enters C(z)
at node (£, z) and leaves it from node (', =) one step later, i.e., by traversing just the
one edge of C(z) that connects these two nodes, then the length of the entire traversed
cycle is decreased by precisely n — 2. Pruning the walk in this way for ¢ PWL strings
yields the generalized result.

(b) As in Part (a), we focus first on the case ¢ = 0.

The fact that B, contains the n2*-node cycle for k € Zn4; ~ {1} follows from Part
(a) coupled with an invocation of Proposition 6.1. We capture the case k = 1, thereby
completing the proof of Part (b) for the case ¢ = 0, by an explicit construction. Using
the same notions of proceeding up and down cycles of straight-edges as in Part (a), we
describe a length-2n cycle in B, via the following walk in the graph.

1. Start at node (1, 6), and proceed up the cycle of nodes having PWL string 0 until
node (0, 0).

2. Cross from node (0, 0) to node (1, 10).

20

3. Proceed from node (1, 10), and proceed up the cycle of nodes having PWL string
10 until node (0, 10).

4. Cross from node (0, 10) to node (1, 0).

The described walk constitutes a length-2n cycle in B,.

We now extend the result to the complete range of claimed cycle lengths, by admitting
nonzero values of the constant ¢, by using just one edge of an encountered PWL-cycle,
as described in the proof of Part (a).

The special case of this result that establishes the hamiltonianicity of B, is strength-
ened in [1], where it is shown that B,, when viewed as a digraph, contains a directed
hamiltonian cycle.

(c) Any such short cycle would, in fact, be embedded in a leveled—hence, bipartite—
subgraph B of B, comprising some n — 1 levels of B,.. Since B is bipartite, it contains no
odd-length cycle as a subgraph.

(d) When 7 is even, By is bipartite. A valid 2-coloring of B, results from labeling each
node of B,, with the parity of its level. O

7 X-Trees

We turn now to a family of graphs that can be viewed as a compromise between the loga-
rithmic diameter, yet excessively sparse structure, of trees, and the rich interconnections
with efficient layout, yet large diameter, of meshes [13], [22].

The height-k complete binary tree 7, has node-set

h
N(Th) = U Z;J
i=0

the set of binary strings of length at most k; it has an edge between every pair of nodes
z and z0, where = € U=} Z§ is some binary string of length < h, and 8 € Z, (so is a bit,
or, length-1 string). One conventionally partitions the nodes of T into levels by length;
the root of T4, is the unique node of length 0; the leaves of T}, are the 2% nodes of length
h. Thus, Th has 2"+! — 1 nodes and (as with all trees) one fewer edge than nodes.
The height-h X-tree X} is obtained from the height-h complete binary tree Tj by
adding edges that create a path along each level of 74, with the nodes occurring n
lezicographic order.

Despite their obvious tree-like structure, X-trees also enjoy a rich cycle structure.

21

Theorem 7.1 For all h, the height-h X-tree X} is pancyclic.

Proof. The proof proceeds by induction on the height of the X-tree. We need a two-
element base for the induction in order to capture both odd and even heights, because
the induction is extended by increasing the height A by 2. The structure of the cycles we
form demands a property stronger than pancyclicity, which we call Property X.

The X-tree X has Property X if, for all 3 < k < 2#+! — 1 it contains a length-k cycle
that passes through two adjacent nodes on level h.

We shall prove that every X-tree has Property X. We begin with the base cases for
our induction.

Lemma 7.1 The height-1 X-tree X, and the height-2 X-tree X'a have Property X.
Proof. The results being trivial for X';, which is a 3-cycle, we concentrate on X'5.

3-cycle. X; contains the 3-cycle
001000

4-cycle. X, contains the 4-cycle
010100010

5-cycle. X, contains the 5-cycle

02101001000

6-cycle. X, contains the 6-cycle

021011010201 000

7-cycle. X, contains the (hamiltonian) 7-cycle

Aeo1o1110201 <0002

O-Lemma 7.1

We now assume that the X-tree X' of height h enjoys Property X and infer that the
X-tree Xp,2 must share this Property.

22

Lemma 7.2 Ifthe height-h X-tree X}, has Property X, then so also does the height-(h+2)
X-tree Xpy2.

Proof. We focus first on cycles of lengths 3 < £ < 2#+2 4 2h+1 and show that we can
form such cycles in X4, using just the two highest-numbered levels of X,5, namely,
the 2"*+1-node level A + 1 and the 2**2-node level h + 2.

Pick any integer 1 < k < 2h+1,

e To form a cycle of length 3k in Xp4s,

1. follow the rightward length-k path along level h + 1 of X', starting at the
leftmost node 0"*1, and proceeding thence to node 0*1, 0"-'10, and so on,
until one reaches the kth node, call it z,

2. proceed from node z to node z1 in level & + 2,

3. proceed leftward along level h + 2, from node z1, to node z0, and so on, until
one reaches the leftmost node 07+2

4. proceed from node 0"+? to node 0"+

e To form a cycle of length 3k — 1 in X442, amend the length-3k cycle just described,
by proceeding from node z on level A+ 1 to node z0 on level A + 2, bypassing node
zl.

e To form a cycle of length 3k — 2 in X4, amend the length-(3k — 1) cycle just
described, by proceeding from node 07+11 on level A + 2 to node 0*+!, bypassing
node 0"+2,

Using this recipe, one finds cycles of all lengths 3 < £ < 2h+2 4 2h+1 in Xy ,.

In order to form the cycle of length 2h+2 4 2h+! 4+ 1 in X),,, we take the cycle of
length 2h+2 4 2h+1 and amend it by interposing the path from node 0%*! on level h + 1
to node 0 on level A to node 0*1 on level A + 1 between nodes 0#*! and 01, in stage 1
of the cycle.

In order to form the cycle of length 2#*2 4 2k+1 4+ 2 in X),,, we take the cycle of
length 2h+2 4 2#+1 4+ 1 and amend it by interposing the path from node 170 on level h + 1
to node 1* on level A to node 17+! on level h + 1 between nodes 170 and 1**!, in stage 1
of the cycle.

We form cycles of all remaining lengths 2542 + 2h+1 4+ 3 < £ < 2843 — 1 in A4y,
by invoking the inductive hypothesis that X's enjoys Property X and noting that the
induced subgraph of X, on levels 0,1,...,k is isomorphic to X.

23

In order to form a cycle of length 25+2 + 2h+1 4 cin Xp,,, 3 < ¢ < 201 — 1, we take
the cycle of length 2°+2 4 2h+1 that involves only levels A + 1 and h + 2 of X},,, we take
a cycle of length ¢ within levels 0,1,...,h of X, that involves two adjacent nodes on
level h—call these nodes ¢ and y from left to right, and we join these two cycles into a
single cycle by adding the edges {z,z1} and {y,y0} and deleting the edges {z,y} and
{=1,y0}.

We have now formed cycles in X, of all lengths 3 < £ < 2*+3 — 1, and every cycle
involves at least two adjacent nodes on level b + 2 of X'y.5. This extends the induction
and completes the proof. O-Lemma 7.2

The proof is complete. O

8 De Bruijn Graphs

The next family of graphs we study epitomize the “shuffle-oriented” graphs. These graphs
are known to be able to emulate the much larger butterfly graph and its “butterfly-
oriented” relatives efficiently on a large class of computations [3], [39]; hence, these
graphs have been widely proposed as interconnection networks for parallel architectures

(6], [31], (33], [36].

The order-n de Bruijn graph D,, is usually presented as a directed graph. The digraph
D,, has node-set N(D,) = ZF; its arcs lead every node Bz, where z € Z3 and 8 € 2,
to nodes z and z3. Because D, has 2" nodes, each of indegree and outdegree 2, it has
2"*1 arcs.

De Bruijn graphs enjoy the strongest cycle structure of any of the sparse graphs we
consider here in that their pancyclicity persists even when they are viewed as directed
graphs. The following theorem originates in [43]; the proof we present derives from [21],
wherein the result is generalized to de Bruijn graphs of arbitrary base.

Theorem 8.1 (Cycle-Embeddings for D,,)
For all n, the order-n de Bruin digraph D, is di-pancyclic.

Proof. We remark that the result remains true for de Bruijn digraphs of arbitrary bases
[21). We restrict attention here to the base 2 case, because this case exposes all of the
ideas essential to prove the stronger result, in a clerically simpler setting.

We proceed by induction on the order n of D,.

The result being easily verified for de Bruijn digraphs of small order (say, orders 1
and 2), let us assume for induction that the result holds for the order-n de Bruijn digraph

D,.

24

In order to extend the result to the order-(n + 1) de Bruijn digraph Dn1, we argue
separately about the presence of small cycles, i.e., those of length < 2", and of large
cycles, i.e., those of length between 2" + 1 and 1,

Case 1: Small Cycles.

The presence of all small cycles as subgraphs of D,41 is an easy consequence of the
intimate connection between de Bruijn graphs of successive orders.

Lemma 8.1 For all n, the order-(n+ 1) de Bruijn digraph Dnyy is the line-graph of the
order-n de Bruijn digraph D,.

Proof. Associate node Bzy € N(Dpy1), where 8,7 € Z; and z € Z3~!, with the arc
(,B:B, z’)’) € E(Dﬂ)
Note first that each arc of Dy, has the form

(8ye, yed)

for some 8, ¢, ¢ € Z, and some y € Z3~'. By our association of nodes of Dp11 with arcs
of D, this arc of Dyny; does indeed correspond to two successive arcs of D,, namely, one
that is incident into node ye € N(D,), followed by one that is incident out of node ye.

Note next that, given any two successive arcs of Dy, say
(poz, o2T)
and
(ozr, 27E),

where p, 0,7, € Z, and z € Z372, there is, indeed, an arc of Dpy; of the form

(pozT, oz7€).

The desired correspondence is verified. O-Lemma 8.1

Since the line-graph of a k-node cycle is again a k-node cycle, the assumed pancyclicity
of D, joins with Lemma 8.1 to verify that D,y; contains all small cycles as subgraphs.

Case 2: Large Cycles.

Let us focus on the integer m = 2™ + k, where 0 < k < 2", and let us verify that D,y
contains a cycle having m nodes.

25

By Case 1 and our inductive hypothesis, Dny1 contains a cycle having M = 2" —m =
2" — k nodes, hence M arcs. By Lemma 8.1, this cyclein Dy, implies that D, contains a
connected eulerian® subgraph having M arcs. We claim that D, also contains a connected
eulerian subgraph having m arcs. By Lemma 8.1, the existence of this latter subgraph
would establish the existence of a cycle in D,y having m = 2" + k nodes. Hence, the
following lemma suffices to complete the proof of the Theorem.

Lemma 8.2 If D, contains a connected eulerian subgraph G having p arcs (0 < p <
2"+1), then it also contains such a subgraph having 2**! — p arcs.

Proof. Let D, contain a p-arc connected eulerian subgraph G. Since D, is eulerian,
and since each node of G has equal indegree and outdegree (in G as well as in D), if
we remove from D,, the p arcs of G, then we are left with a (not necessarily connected)
eulerian subgraph H of D, that has the desired number of arcs. Let F;,F%,,...,F;
denote all those maximal connected components of H that are nontrivial in that they
contain more than one node each (hence, contain at least one arc each); each F; is, of
course, connected and eulerian.

If » = 1, then H is the sought connected eulerian subgraph of D,, so we are done.
Assume, therefore, that 7 > 1.

Because D, is connected, and all of its arcs reside either in G or in H, there must
be some arc of G of the form (u,v), where v € N(F;) and v € N(F;) for i« # j. The
existence of this arc implies that node u has outdegree < 1 in H, even though it has
outdegree 2 in D,,. Because H is eulerian (so node u has equal indegree and outdegree
in H) and has at least one arc and is connected (so node v cannot be isolated in H),
node u must have outdegree ezactly 1 in H. Therefore, there must be an arc (u, w) in F;
for some node w € N(F;). By similar reasoning (using indegrees instead of outdegrees)
there must be an arc (t,v) in F; for some node ¢ € N(F;). Since arcs (u,v), (v, w), and
(t,v) all reside in Dy, there must exist strings = € Z3"! and B,7,8,€ € Z, such that

t = Pz
u = gz
v = z6
w = €.

It follows that there is an arc (¢,w) in G: this arc exists in D, by definition, and it
cannot reside in either F; or F;, because it connects these two components which are
disconnected in H.

5Digraph G is eulerian if each node v € N(G) has indegree(v) = outdegree(v). Each connected
component of G then admits a directed walk that crosses each arc of the component precisely once.

26

We now transform the subgraph A in the following way. We remove from H the arcs
(v, w) from F; and (¢,v) from F;, and we add in their places the arcs (¢, w) and (u,v).
The digraph H' so produced

¢ has the same number of arcs as does H;

e is eulerian, because we just exchanged one arc into each of nodes v and w for
another and made a similar switch for arcs out of each of nodes ¢ and u;

e is connected, because each of F; and F;, being eulerian, admit directed walks that
cross each arc precisely once, and our exchanged arcs connect these two directed
walks into a composite directed walk through the new component;

o has one fewer maximal connected nontrivial component than does H.

If we now iterate the just-described transformation, each iteration yields an eulerian sub-
graph of D, having the desired number of arcs and having one fewer nontrivial connected
component than its predecessor. After r — 1 iterations, therefore, we achieve the desired
connected eulerian subgraph of D,. O-Lemma 8.2

The m-arc connected eulerian subgraph of D, guaranteed by Lemma 8.2 implies the
existence of an m-node cycle in D,;;. Since k, hence m, was arbitrary, the proof of the
Theorem is complete. O

9 Product-Shuffle Graphs

The final family of graphs we study has never been seriously proposed as an interconnec-
tion network for parallel architectures. However, it has been shown to combine important
structural characteristics of both “butterfly-oriented” and “shuffle-oriented” graphs {27],
while simultaneously enjoying the direct-product structure that has been shown to have
significant algorithmic consequences [2], [4]. For our purposes the importance of the fam-
ily is that it demonstrates how pancyclicity interacts with the direct-product operation.

The m xn product-shuffle graph is the direct product of de Bruijn graphs PSmn =
D, x D,.. Product-shuffie graphs enjoy a version of the pancyclicity of de Bruijn graphs
that is weakened in two respects. First, we establish the pancyclicity only of the undi-
rected version of product-shuffle graphs—note, therefore, that we view D, as an undi-
rected graph in this section; second, we must exclude the case m = n = L. The reader
should note that the property of de Bruijn graphs exposed in Lemma 9.1 plays a crucial
role in our proof of the pancyclicity of product-shuffle graphs; the fact that PSpmn is
a direct product of pancyclic graphs does not guarantee its pancyclicity. The following
theorem originates in [27].

27

Theorem 9.1 For all m,n ezcept for m = n = 1, the product-shuffle graph PSmn is
pancyclic.

Proof. Let us begin by noting that PS; is (essentially) a 4-cycle, whence its exclusion
from the Theorem.

For any choice of m,n other than m = n = 1, and for any integer 1 < ¢ < 2™*",
we show algorithmically that the cycle C. is a subgraph of PSmn. Our algorithm builds
on the fact that Theorem 8.1 provides an algorithm for producing cycles in de Bruijn
graphs.

Assume, with no loss of generality, that m < n (or else, interchange the roles of m
and n in what follows). If the desired cycle-length c satisfies 1 < ¢ < 2", then C. 1s a
subgraph of PSm,n, by Theorem 8.1. Let us restrict attention, therefore, to values of ¢
in the range 2" < ¢ < 2™*" in which case we must have m > 0.

Now, every integer c in the indicated range admits a unique representation in the
form
c=a2"+b

with 0 < @ < 2™ and 0 < b < 2". The overall strategy of our algorithm is to “hook
together” hamiltonian cycles from a of the 2™ copies of D, that comprise PSm,qa, to-
gether with a length-b cycle from one additional copy of D, whenever b> 0. (In fact,
technical difficulties in “hooking up” these cycles will cause us to deviate from this strat-
egy slightly.) To the end of implementing this strategy, we invoke Theorem 8.1 to find a
length-d cycle in D,,, where

d= a ifb=0
" la+1 ifb>0,
and we use this cycle in the natural way to select and order d “consecutive” copies of Dy,
from the 2™ copies that comprise PSmn; call the ordered copies D, DM, ... D41,

We describe the mechanism for “hooking the cycles together” via an analysis of cases.
Case 1: b=0,sod=a anda > 1.

This is the easiest case, since we have only to “hook together” a set Co,Cy,...,Ca_y of
cycles, each C; being a copy within D) of a hamiltonian cycle C of D,. We start by
selecting any two independent edges (z,y) and (u,v) of D,,° that both lie on the cycle
C; since n > 2, we are sure that these edges exist. Next, we let @;,y;,u;,v; (0 <@ < a)
denote the instances of the nodes z,y, u, v, respectively, in copy D of D,,. Assume that

6«Independence” implies that {z,y} N {u,v} = 0.

28

the nodes z,y, u, v lie in (say, for definiteness) clockwise order around the cycle C in Dy,
so that each cycle C; has the form

Yi, ‘Pt') Ui, Vi, Qi; i
where P; and @; are the intermediate paths that define the cycle.
We are now ready to find a length-c cycle in PS,, n.

1. Trace the cycle Cy in D) in clockwise order, from node yo to node o, leaving out
the edge that connects the two nodes.

2. Trace the following path to complete the cycle:

T QLeveoveo@Qreroreo Qgouvg e
Qo1 O Qa1 O Ta1 O 81 Py o tg g o e

ugeo PR ypeoypeoPeouyouyoP oy oy
where

rstmd TBUVLY respectively, if a is even
T80 = v,z,y,u respectively, if a is odd.
The paths P; and @; and the edges (z;,y;) and (u;,v;) come from the copies of D, while
the edges (z:, Zit1), (¥i, ¥i+1), (%i, ®it1), and (vi, viy1) come from the copy of D,, we used
to order the copies of D,.

Case 2: 0<b< 2, sod=a+1and0 <a<2™.

The added challenge in this case arises from the need to append a cycle of length b to
the chain of a hamiltonian cycles created in Case 1. The mechanism we use depends on

the value of b.

2.1: >3
We must alter the procedure of Case 1 in two ways: we must find a copy of a
length-b cycle in copy D(®) of D,., and we must ensure that we can “hook” this new
cycle to the chain of hamiltonian cycles. The first of these tasks is immediate, by
Theorem 8.1; let us call the length-b cycle B. In order to accomplish the second
task, we invoke the strong property of D,, exposed in the following lemma.

Lemma 9.1 For any path ¢ — y & 2z in D, involving three distinct nodes, there s a
hamiltonian cycle of D, that contains either the edge (z,y) or the edge (y, 2).

Proof. The result is true by inspection when n = 2. When n > 2, the result is a
consequence of the following facts about de Bruijn graphs.

29

Fact 9.1 One can construct a hamiltonian cycle in D, from any eulerian cycle in D,,_;.

Fact 9.2 Any 3-node path
T Yoz

in D, results from a 3-edge path
WeXelYoelZ (1)

n Dn—l .

Both Facts 9.1 and 9.2 are consequences of D,’s being the line-graph of D,,_; (Lemma
8.1).

Fact 9.3 Given any length-2 path = in D,, whose removal does not disconnect D, one
can construct an eulerian cycle in D, which contains .

Fact 9.3 follows from the algorithm for constructing an eulerian cycle in an eulerian
graph (cf. [23]), which allows one to choose edges leaving nodes at random among the
as-yet unused edges.

The final Fact we need is a simple structural property of Dp,.

Fact 9.4 The only length-2 paths whose removal disconnect D, are the paths both of
whose edges are incident to either node 0 or node 1.

Since at most two of the edges of path 1 can both be incident to either node 0 or
node 1 in D,_1, it follows from Facts 9.3 and 9.4 that there is an eulerian cycle in D,_,
passing through either the path

WeXeV

or the path
x\.' > }’ — Z

Fact 9.1 assures us that, in the former case, there is a hamiltonian cycle in D,, passing
through edge (z,y), while in the latter case, there is a hamiltonian cycle passing through
edge (v, z). O-Lemma 9.1

By dint of Lemma 9.1 and the fact that b > 3, we can find an edge e of the length-b
cycle B in D'?), that lies on a hamiltonian cycle of D,. Let us choose edge e as the edge

30

(r,8) of Case 1. We then alter the trajectory of the length-c cycle after the initial path
within D(®~1) by replacing the length-1 path

Ta-1 < Sa-1
with the length-(b + 1) path
Tg—1 € Tgq <& S e 8g ¢ Sa-1

where S is the length-(b — 1) path within cycle B that connects nodes r, and s, in Dle)
once edge (74, 84) is removed.

2.2: b=2
We proceed exactly as in Case 1, except that we alter the trajectory of the length-
a2" cycle of that Case by replacing the length-1 path

Ta—1 € Sa-1
with the length-3 path
Ta—1 ¢ Tqg € 8q € 8g-1
where 7, s are as in Case 1.

23:b=1
We branch immediately on the value of n.

2.3.1: When n = 2, we proceed exactly as in Case 1, until we have to deal with
copy DV of D,. At that point we replace the length-3 path

Ga—1 < Ta-1 < Sa—1 < la1
from Case 1 with a length-4 path of one of the forms
Ja-1 * 8a-1 ¢ 8a & ta & tay
or
Qa-1 ©* o © Sa < Sa-1 < tay

within copies D) and D@ of D,. One verifies readily that one of these
paths exists.

2.3.2: When n > 2, we alter Case 1 by insisting that at least one of the independent
edges (z,y) and (u,v) not touch either node 0 or node I of D,. (Note that
this is impossible when n = 2.) Say, without loss of generality, that node 0 is
not touched by either edge.

31

Having thus restricted the choice of these edges, we proceed exactly as in
Case 2.b (b = 2), with the following exception. Once having found the cycle
produced in Case 2.b (which has length ¢+ 1), we remove the instance of node
0 of D,, from whichever of P,_; or Q,-; contains an instance of 0. (One of
them must, because of our restriction.) Since every hamiltonian cycle in D,
contains the path

164—>6<——>61,

the elision of node 0 does not cut our cycle: it just shortens it, as desired.

This case analysis completes the proof. O

Acknowledgments. The author thanks Fred Annexstein and Marc Baumslag for point-
ing out certain sources, and Bojana Obreni¢ for a careful reading of the manuscript.

References

[1]

2]

8]

(4]

(5]

[6]

F.S. Annexstein and M. Baumslag (1988): Hamiltonian circuits in Cayley digraphs.
Tech. Rpt. 88-40, Univ. Massachusetts; submitted for publication.

F.S. Annexstein and M. Baumslag (1990): A unified approach to global permu-
tation routing on parallel networks. 2nd ACM Symp. on Parallel Algorithms and
Architectures, 398-406.

F.S. Annexstein, M. Baumslag, A.L. Rosenberg (1990): Group action graphs and
parallel architectures. STAM J. Comput. 19, 544-569.

F.S. Annexstein, M. Baumslag, M.C. Herbordt, B. Obreni¢, A.L. Rosenberg, C.C.
Weems (1990): Achieving multigauge behavior in bit-serial SIMD architectures via
emulation. 9rd IEEE Symp. on Frontiers of Massively Parallel Computation, 186-
195.

M.J. Atallah and S.E. Hambrusch (1986): Solving tree problems on a mesh-
connected processor array. Inform. Computation 69, 168-187.

J.-C. Bermond and C. Peyrat (1989): The de Bruijn and Kautz networks: a com-
petitor for the hypercube? In Hypercube and Distributed Computers (F. Andre and
J.P. Verjus, eds.) North-Holland, Amsterdam, 279-293.

32

[7] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obreni¢, A.L. Rosenberg,
E.J. Schwabe (1991): Optimal emulations by butterfly-like networks. J. ACM, to
appear.

[8] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1991): Efficient embed-
dings of trees in hypercubes. SIAM J. Comput., to appear.

[9] J.A. Bondy and U.S.R. Murty (1976): Graph Theory with Applications. North-
Holland, New York.

[10] M.Y. Chan (1989): Embedding of d-dimensional grids into optimal hypercubes. 1st
ACM Symp. on Parallel Algorithms and Architectures, 52-57.

[11] T. Cormen, C.E. Leiserson, R.L. Rivest (1990): Introduction to Algorithms. MIT
Press, Cambridge, Mass.

[12] W.J. Dally and C.L. Seitz (1986): The torus routing chip. J. Distributed Systems I,
187-196.

[13] A.M. Despain and D.A. Patterson (1978): X-tree - a tree structured multiprocessor
architecture. 5th Symp. on Computer Architecture, 144-151.

[14] V. Faber (1991): Global communication algorithms for hypercubes and other Cayley
coset graphs. SIAM J. Discr. Math., to appear.

[15] R.Feldmann and W. Unger (1990): The cube-connected cycles network is a subgraph
of the butterfly network. Typescript, Univ. Paderborn.

[16] H. Fleischner (1974): The square of every two-connected graph is hamiltonian. J.
Comb. Th. (B) 16, 29-34.

[17] M.R. Garey and D.S. Johnson (1979): Computers and Intractability. W.H. Freeman
and Co., San Francisco.

[18] D.S. Greenberg, L.S. Heath and A.L. Rosenberg (1990): Optimal embeddings of
butterfly-like graphs in the hypercube. Math. Syst. Th. 23, 61-77.

[19] S.L. Johnsson and C.-T. Ho (1989): Optimum broadcasting and personalized com-
munication in hypercubes. IEFE Trans. Comp. 38, 1249-1268.

(20] R.M. Karp (1972): Reducibility among combinatorial problems. In Complezity of
Computer Computations (R.E. Miller and J.W Thatcher, eds.), Plenum Press, N.Y ,
pp. 85-103.

[21] A. Lempel (1971): m-ary closed sequences. J. Comb. Th. (4) 10, 253-258.

33

[22] B. Monien (1991): Simulating binary trees on X-trees. Typescript, Univ. Paderborn.

[23] O. Ore (1962): Theory of Graphs. American Math. Soc. Colloquium Publications,
Vol. XXXVIII. American Mathematical Society, Providence, R. I.

[24] F.P. Preparata and J.E. Vuillemin (1981): The cube-connected cycles: a versatile
network for parallel computation. C. ACM 24, 300-309.

[25] R.D. Rettberg (1986): Shared memory parallel processors: the Butterfly and the
Monarch. 4th MIT Conf. on Advanced Research in VLSI

[26] A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-Theoretic
Concepts in Computer Science: Proceedings of the International Workshop WG80,

Bad Honnef, Germany (H. Noltemeier, ed.) Lecture Notes in Computer Science 100,
Springer-Verlag, NY, 150-176.

[27] A.L. Rosenberg (1991): Product-shuffle networks: toward reconciling shuffles and
butterflies. Discr. Appl. Math., to appear.

[28] A.L. Rosenberg and L. Snyder (1978): Bounds on the costs of data encodings. Math.
Syst. Th. 12, 9-39.

[29] Y. Saad and M.H. Schultz (1988): Topological properties of hypercubes. IEFE
Trans. Comp. 37, 867-872.

[30] Y. Saad and M.H. Schultz (1989): Data communication in hypercubes. J. Parallel
Distr. Comput. 6, 115-135.

[31] M.R. Samatham and D.K. Pradhan (1989): The de Bruijn multiprocessor network:
a versatile parallel processing and sorting network for VLSI. IEEE Trans. Comp.
38, 567-581.

[32) E.J. Schwabe (1989): Normal hypercube algorithms can be simulated on a butterfly
with only constant slowdown. Inform. Proc. Let.

[33] J.T. Schwartz (1980): Ultracomputers. ACM Trans. Prog. Lang. 2, 484-521.

[34] M. Sekanina (1960): On an ordering of the set of vertices of a connected graph. Publ.
Fac. Sci. Univ. Brno, No. 412, 137-142.

[35] C. Stanfill (1987): Communications architecture in the Connection Machine system.

Tech. Rpt. HA87-3, Thinking Machines Corp.

[36) H. Stone (1971): Parallel processing with the perfect shuffle. JEEE Trans. Comp.,
C-20, 153-161.

34

[37] R. Stong (1987): On Hamiltonian cycles in Cayley graphs of wreath products. Discr.
Math. 65, 75-80.

[38] W.T. Trotter, Jr., and P. Erdds (1978): When the cartesian product of directed
cycles is hamiltonian. J. Graph Th. 2, 137-142.

[39) J.D. Ullman (1984): Computational Aspects of VLSI. Computer Science Press,
Rockville, Md.

[40] A. Wigderson (1982): The complexity of the hamiltonian circuit problem for maxi-
mal planar graphs. Princeton Univ. EECS Dept. Report 298.

[41] D. Witte (1982): On Hamiltonian circuits in Cayley diagrams. Discrete Math. 38,
99-108.

[42] D. Witte and D. Gallian (1984): A survey: Hamiltonian cycles in Cayley graphs.
Discrete Math. 51, 293-304.

[43] M. Yoeli (1962): Binary ring sequences. Amer. Math. Monthly 69, 852-855.

35

