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Abstract

The ability to generalize from examples depends on the algorithm employed for
learning and the instance representation that describes the examples to the learning
algorithm. This paper describes ACR, an algorithm to compare instance representa-
tions. Given a learning algorithm, a set of examples, and alternative instance represen-
tations for the examples, ACR identifies the instance representation that will enable
the learning algorithm to produce the most accurate hypothesis. It works by esti-
mating the minimum number of bits with which the learning algorithm can express
the examples using the different representations. Experiments with two learning algo-
rithms, including a well-known algorithm to build decision trees, show that ACR can
correctly identify the best representation for a variety of tasks, including handwriting
recognition.



1 Introduction

The ability to generalize from examples is central to the study of machine
learning. Generalization depends on the algorithm employed for learning and
the instance representation that describes the examples to the learning algo-
rithm. Many efforts have been devoted to the design of learning algorithms,
for instance Quinlan (1986), Rumelhart et. al. (1986), Utgoff (1988). However,
the effect of the instance representation on generalization is poorly understood.
This paper addresses the representation evaluation problem, which is:

Given: (a) A set of examples and alternative instance representations for the
examples, (b) an algorithm for learning from examples.

Determine: The instance representation that enables the learning algorithm
to produce a hypothesis that makes the most accurate predictions.

Section 3 describes an Algorithm to Compare Representations, called ACR,
that solves this problem for a class of learning algorithms and tasks.

For example, consider the problem of learning to recognize handwritten
characters. In the pizel representation, Casey & Nagy (1984) embed the char-
acters in a grid and represent them by the listing the grid squares through
which the pen passes. In the fourier representation, Arakawa et. al. (1978)
track the pen position, and represent a character by the first few Fourier
coefficients of the resulting sequence. Tappert et. al. (1990) list other repre-
sentations. This diversity of representations used by different people indicates
that the best instance representation is not always obvious. Section 4 reports
ACR’s ranking of the above representations for ID3, a well-known algorithm to
construct decision trees (Quinlan, 1986), along with results of representation
comparison for other problems.

A solution to the representation evaluation problem has the following appli-
cations. First, in automatic rule extraction from examples, only the hypothesis
from the best instance representation need be used for classifying the future
instances. The hypotheses produced from other representations can be re-
jected safely, alleviating the danger of making predictions with less accurate
hypotheses. Second, while learning incrementally from a large database of
labeled examples, one can begin learning in all the representations and stop
learning in representations that are identified as worse than others. Third,
constructive induction algorithms modify the given instance representation, or

1



create new instance representations. They need some method to determine
whether their actions have produced representations that result in more ac-
curate hypotheses. An algorithm to rank instance representations can form a
test component of a constructive induction algorithm that searches the space
of representations in a generate-and-test manner.

ACR is based on the observation that modeling and data compression are
duals of each other. A good model for the data enables short encodings to be
reserved for the more likely data items. Dually, the models that permit the
data to be compressed the most, capture best the underlying data generating
machinery. Hence, ACR measures for each available instance representation,
the ability of the learning algorithm to compress the examples. The represen-
tation that enables the examples to be compressed the most is considered to
be the best. Section 2 gives formal and informal Justifications for this view
that generalization can be achieved by data compression.

The main characteristics of ACR are:

1. Representations are ranked based on the highest predictive accuracy a
learning algorithm can achieve with the given set of examples. The
ranking is not based on a single sample from the examples, which may
be unrepresentative, or may be otherwise unsuitable because the learning
algorithm underfits or overfits the sample.

2. ACR uses all the available examples to rank the representations. The
examples are not divided into train and test sets; as would be required if
one were to rank representations by estimating the error rate of the hy-
potheses produced with the different representations on an independent
test set. This becomes important when only a small or moderate num-
ber of examples are available. In these situations, to get accurate error
rate estimates one normally has to use resampling techniques, which are
computationally more expensive than ACR.

3. Bad representations are identified quickly. The effort required to dif-
ferentiate two good representations depends on how much better one
representation is than the other.

The disadvantage of ACR is that in order to prove its correctness we need
to make certain assumptions about the learning algorithms and the learning
tasks. These assumptions are described below as they arise. However, in



practice we have found ACR to be quite effective in ranking representations.
It has been applied to rank instance representations of ten tasks for ID3,
and eight tasks for the Percepiron Tree learning algorithm, which constructs
decision trees that can have perceptrons at the leaves (Utgoff, 1988). In all
the cases to which it has been applied, ACR has correctly ranked the instance
representations whenever there is an appreciable difference in the accuracy of
the hypotheses produced with the different representations.

2 Data Compression for Modeling

Informally, the data compression view can be justified by considering learn-
ing to be a process of information extraction. If one imposes an ordering on
the elements of the domain of a function, then the information required to
learn the function is the string that lists the value of the function on each
of the domain elements. Call this string the output string of the function.
The amount of information required for learning is the number of bits that it
takes to specify the output string (Abu-Mostafa, 1986). If the output string
is compressible, then it can be specified with fewer bits. By measuring the
effectiveness of the learning algorithm in compressing the output strings that
result from different instance representations, one can identify the instance rep-
resentation that minimizes the amount of information needed by the learning
algorithm to learn the corresponding function. Maciejowski (1979), Watanabe
(1985), and Rendell (1986) have also pointed out the relationship between data
compression and generalization.

Formally, Blumer et. al.’s (1987) Occam’s razor result from learnability
theory shows that in order to produce with high likelihood a hypothesis that
is a good approximation of the function being learned, it suffices to find a
hypothesis that can be expressed with much fewer bits than the number of
bits required to enumerate the examples. Therefore, learning algorithms that
generalize by producing compact hypothesis consistent with a set of examples
are more likely to generalize better with instance representation that increase
their ability to compress the examples. Rissanen’s (1978,1989) minimum de-
scription length principle justifies the data compression view when one is not
learning functions but modeling probabilistic phenomena. The application of
algorithmic information theory to inductive inference justifies the data com-

pression view when any Turing machine can be considered as a hypothesis (Li
& Vitanyi, 1989).



3 An Algorithm to Compare representations

The key idea of ACR is to determine for each instance representation,
the minimum number of bits required to specify a consistent hypothesis for
the examples. By the Occam’s Razor result, the instance representation that
permits a consistent hypothesis to be specified with the fewest bits will result
in a hypothesis that makes the most accurate hypothesis. Call the number of
bits required to specify an object is called its codelength.

To estimate the minimum codelength required to specify a consistent hy-
pothesis, ACR observes the growth in the codelength as random samples of
increasing size are drawn from the available examples and presented to the
learning algorithm. From a particular sample, the given learning algorithm
produces a hypothesis that is correct on some examples and incorrect on oth-
ers. To make this hypothesis consistent, one imposes an arbitrary order on the
examples and records a 0 for all examples for which the hypothesis is correct
and an 1 otherwise, along with the appropriate correction. The list marking
the position of errors is called the error vector. For instance, suppose the tar-
get function is the logical AND of z1 and z2, and the hypothesis is z1. For
a lexicographic ordering of the examples (01 < 10), the error vector is [0, 0,
1, 0. If by drawing a different sample the hypothesis changes to 22, the error
vector becomes [0, 1, 0, 0]. The presence of error at a particular position in
the error vector is indicated by a random variable whose value depends on the
hypothesis. For a given ordering of the examples, the hypothesis produced
by the learning algorithm augmented with the location and the value of the
corrections is a consistent hypothesis. The codelength required to specify this
hypothesis is the sum of the codelength of the original hypothesis and the
codelength required to specify the corrections. The description of the proce-
dure for ordering the examples is a fixed overhead, which can be ignored in
the comparisons. This procedure is identical to Rissanen’s (1989) and Wallace
& Freeman’s (1989) two part encoding.

As more examples are presented, the learning algorithm may produce a hy-
pothesis that is correct on a larger number of examples. Fewer errors decreases
the codelength of the errors. However, it may increase the codelength needed
to specify the hypothesis. One can be sure that the minimum value of code-
length has already been observed if it can be established that the codelength
cannot decrease further. This can happen in two ways:

1. There are no regularities in the examples that can be utilized by any
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learning algorithm to reduce the total codelength.

2. The given learning algorithm cannot further utilize any remaining reg-
ularities. Consequently, the total codelength increases for hypotheses
constructed with a larger number of examples.

The next two subsections describe tests to detect these conditions. Given these
tests, the algorithm to compare two representations R1 and R2 is:

1. In a run, draw random samples of increasing size from the examples
available in each instance representation and present them to the given
learning algorithm. For each sample, determine the codelength of the
resulting consistent hypothesis. Conduct the two tests mentioned above
and terminate the run if it is established that the codelength cannot
decrease any more.

2. Conduct multiple runs to ensure that representations are not ranked
based on unrepresentative samples. Conduct runs until it is established
with a desired confidence that one representation is better than another.

Specifically, a run returns the pair (v1,v2), which is (1,—1) if Rl is better,
(=1,1) if R2 is better and (1,1) otherwise. If in repeated runs the decision
about the better representation changes then vl — v2 is equally likely to be
1, =1 or 0. A large number of positive or negative values indicates that one
representation is better than another. After each run, a sign test determines
whether there is a significantly greater proportion of positive values or neg-
ative values seen so far (Gibbons, 1971). The hypothesis of equal likelihood
is rejected if there is a large number of values of one type, and the probabil-
ity of observing so many values of one type by chance is small, 0.01 in our
experiments. More than two representations are ranked by ranking all pairs.

In effect, ACR solves a number of small learning problems in order to
estimate the minimum codelength. The cost of a run is the sum of the time
taken by the learning algorithm to construct a hypothesis from the sample,
time required classify the N examples, and O(NlogN) steps to perform the
two tests mentioned above. This is a saving because, firstly one does not have
to build a hypothesis for all sample sizes in order to determine the one that
produces the most accurate model. Secondly, one does not have to resort to
expensive resampling methods to get a reliable estimate of the accuracy of the
hypotheses produced for a sample size (Weiss & Kulikowski, 1991).
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3.1 A test to determine that the codelength will not decrease

Intuitively, the idea of this test is that if there is no structure present
in the examples, then by taking more examples to form the hypotheses, one
cannot reduce the total codelength further. Any decrease in the codelength
of the error vector will be accompanied by at least an equal increase in the
codelength required to describe the hypothesis.

To detect that the codelength will not decrease further, we make three as-
sumptions. First, the learning algorithm always produces a hypothesis consis-
tent with the examples presented to it, and in general, a hypothesis consistent
with a set E of examples cannot be described with fewer bits than the number
of bits required to specify a hypothesis formed from a subset of E. Second,
the learning task is such that small additions to a set of examples produce
hypotheses that are “close” to the original hypothesis: in the sense that if the
size of the new hypothesis is increased by r bits then one can produce the
new hypothesis by specifying r bits of corrections to the original hypothesis.
Third, the random variables marking the errors in the error vector are nor-
mally distributed, and that the joint distribution of these random variables is
the same throughout the error vector.

We need the above assumptions to prove ACR’s correctness. It may be
difficult to ascertain that these assumptions hold for the specific learning algo-
rithm and task at hand. However, in practice, we have found the test described
below to be very effective in determining that the total codelength will not
decrease below a certain value. The empirical success of this test can be seen
as either indicating that above assumptions are satisfied for the cases studied
here; or, as indicating that this test is a good heuristic for establishing that
the total codelength will not decrease further.

The test is based on Shannon’s (1948) noiseless coding theorem for any
coding method that permits multiple items to be encoded by concatenating
codes for individual items. By this theorem, if the errors are statistically
independent, then, on average, the codelength of the error vector cannot be

less than the product of its length and its entropy. Call this the ideal codelength
of the errors.

Suppose after observing a set of examples E the errors become independent;
then by adding more examples to E the total codelength cannot be decreased
below the sum of the codelength required to describe the hypothesis formed
from E and the ideal codelength of the error vector. Otherwise, by describing
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changes to the hypothesis formed from E and the new error vector, one can
recover the old error vector from fewer bits than its ideal codelength. This
follows from the first and second assumptions above. Thus, the minimum total
codelength observed until the errors become independent is a lower bound on
the total codelength that can be obtained using any hypothesis formed from
a set of examples containing E.

The normality assumption lets the error-vector to be tested for indepen-
dence based on its auto-correlation function, which measures the correlation
between random variables denoting the errors separated by different distances,
or lags. The auto-correlation coefficient at lag k is the correlation between er-
rors separated by a distance of k. The independence test is based on the
fact that for normally distributed, zero mean random variables, zero auto-
correlation for all non-zero lags implies independence. To test for indepen-
dence of finite sequences, Chatfield (1984) recommends looking at the first
few lags, and to consider an auto-correlation coefficient significant if it falls
outside a desired confidence interval around zero. Furthermore, to consider
a sequence of random variables independent if the number of significant co-
efficients is below a threshold determined by the confidence interval. In our
experiments, one fourth of the coefficients are analyzed and the error vector
is considered independent if less than 5% of the coefficients fall outside a 95%
confidence interval around zero.

3.2 A test to determine that the codelength is increasing

It could happen that though there are some regularities in the examples,
either the language used to describe the hypothesis is inadequate to express
them, or the learning algorithm is not able to find a hypothesis that expresses
them. A symptom of this situation is that the total codelength increases as
hypotheses are constructed from samples of larger size. Assume that there
is no “critical” number of examples after which the ability of the learning
algorithm to generalize increases. Now if one establishes that there is a sta-
tistically significant trend that the total codelength increases as hypotheses
are constructed from samples of larger size, then the minimum seen so far is
a lower bound on the total codelength required to express the examples. If
there is a critical sample size, and it is known, then the behavior of the total
codelength should be observed with sample sizes greater than the critical size.

A non-parametric test of the correlation between two variables, called



Kendall’s rank test, is used to determine whether total codelength increases
with sample size (Gibbons, 1971; Kendall, 1962). The idea behind this test is
that if there is no relationship between the number of examples and the code-
length, then as the number of examples increases the codelength is equally
likely to increase or decrease. However, if one observes that codelength in-
creases with sample size, then one can determine the likelihood of getting such
an observation by chance. The hypothesis that codelength does not depend
on sample size is rejected and the hypothesis that it increases with sample size
is accepted, if the probability of getting the observed increase in codelength
with the sample size is below a desired value: 0.01 in our experiments.

4 Experiments

This sections reports the results of applying ACR to rank representations
for ID3 (Quinlan, 1986). The experimental methodology is the following:

1. The available examples are randomly partitioned into two sets. 90%
of the examples form the training set, used for predicting the better
representation. 10% of the examples form the test set, used for validating
the prediction®. Quinlan & Rivest’s (1989) method gives the codelength
of a decision tree and the codelength of an error vector.

2. Random samples of different sizes drawn from the training set and pre-
sented to the learning algorithm. The fraction of the test set cor-
rectly classified by the hypothesis produced by the learning algorithm
is recorded as the accuracy of the hypothesis. ACR’s prediction is con-
sidered correct if the representation predicted to be the best produces
a hypothesis that has higher accuracy than the hypotheses produced by
the other representations.

The following tasks were considered:

The Clumps Problems: This is a class of problems introduced by Denker
et. al. (1987) to illustrate the effect of instance representation on learning.
The task is to learn to recognize various patterns of contiguous blocks of black
pixels, or black clumps, in an one dimensional visual field, which is bordered
by two white pixels. In the pizel representation, the visual field is represented

YThe partitioning of the instances is just for experimental purposes. It is not required
by ACR, which predicts the better representation for any given set of examples,



Problem name ACR'’s prediction
Two-or-more-clumps | Edge better than Pixel
Two-clumps Edge better than Pixel
tic4 Movs better than Locs
ticl Locs better than Movs
Handwriting-1 Pixel better than Cross
Handwriting-2 Fourier better than Pixel

Table 1: Ranking the instance representations for ID3.

by the color of each pixel. The edge representation marks the transition be-
tween a black and a white pixel. The two problems considered here are the
two-or-more-clumps and the two-clumps problem.

Tic-Tac-Toe problems: These are six sets of boards from the game of Tic-
Tac-Toe. The two problems reported here are ticl, the set of legal boards on
which the player on move can win, and tic{, the set of legal boards on which
the player on move can prevent the opponent from setting up a fork— that is,
prevent a win by the opponent in 2-ply. The location-contents representation
(Locs) enumerates the contents (X, O or blank) of each location of the board,
locations being numbered left to right, top to bottom. In the move-sequence
(Movs) representation, one numbers the moves 1 to 9 and gives the location
of each move, denoting by a ‘?’ moves not yet made.

Handwriting recognition: The examples are a set of numerals handwritten
on a computer several times by different people using a mouse. The pixel rep-
resentation and the fourier representation are as described before. Here, the
fourier representation is the first five fourier coefficients of the sequences of X
and Y coordinates of the pen position. Another representation is a simplifi-
cation of the cross representation, which represents a character by combining
the representation of the different strokes that form the character. Here, one
embeds a stroke in a box, divides the box into predetermined regions, and
represents a stroke by the starting region and number of times it crosses vari-
ous regions (Newman & Sproull, 1979). Our simplification is to consider each
character as a single stroke.

Table 1 shows ACR’s ranking of the representations for the above problems.
Figure 1 shows the accuracy of the decision trees produced by ID3 with the
different representations. The accuracies are averages over multiple runs and
the differences are significant at the 99% level via the t-test. Observe that in
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every case the representation predicted to be better by ACR results in decision
trees that are more accurate in classifying the test set.

These results, along with the results obtained for perceptron trees and for
the other four Tic-Tac-Toe problems (Saxena, 1991), show that ACR ranks
representations correctly whenever there is a significant difference in the ac-
curacies of the hypotheses produced by the different representations. We take
this as empirical support for concluding that ACR is effective in ranking rep-
resentations for the ID3 and the Perceptron Tree learning algorithms.

5 Related Approaches

Very few techniques for representation evaluation are known. The methods
of feature selection from statistical pattern recognition are not directly applica-
ble. These methods try to select features based on how well they discriminate
a given set of examples (Kittler, 1986). However if each representation de-
scribes a function, as is the case here, then any given set of examples can be
perfectly discriminated, by remembering them if needed, and they would be
considered equally good by these criteria.

ACR is closest in spirit to the work of Gao & Li (1989) on handwriting
recognition. They want the best interval for recording the successive positions
of the pen. They report that the best accuracy on a test set is obtained for
the interval that minimizes the sum of the codelength required to store a set
of instances in a database and the codelength for the corrections when these
characters are classified by their matching scheme. Our perspective on their
work is that rather than using description length to choose the best model, by
changing the feature selection interval they change the instance representation.
By taking this view, we have been able to generalize it so that we now have
an algorithm to compare representations for any task and learning algorithm
that satisfies our assumptions. Also in ACR, rather than deciding the better
representation based on a single sample, which could be unrepresentative or
otherwise unsuitable because the learning algorithm under or overfits it, the
sample size is systematically increased to estimate the minimum codelength.

6 Conclusions

The main contribution of this paper is ACR, an algorithm to rank the
available representations of a task based on how well the given algorithm for
learning from examples will generalize with the various representations. Ex-
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periments with ACR on a variety of tasks, including handwriting recognition,
show that it ranks the instance representations correctly whenever there is an
appreciable difference between the accuracy of the hypotheses produced with
the various representations. To prove ACR’s correctness, we need four as-
sumptions about the learning algorithms and the learning tasks. However, its
success in ranking representations for the ID3 and Perceptron Trees algorithms
indicates that it is a useful tool for studying representations.

This paper is a further explication of the data compression view of gen-
eralization. ACR is an application of results from learnability theory. We
believe that the information extraction view of learning will result in a bet-
ter understanding of the problems that arise in learning from examples. In
particular, it can help in addressing the issues that arise in the design and
analysis of good instance representations. Determining why a learning algo-
rithm is unable able to compress the examples can give ideas about improving
the instance representation.
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