An Investigation of Fault-Based Testing
Using the Relay Model

Margaret C. Thompson
Ph.D. Dissertation

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 91-22
May 1991

AN INVESTIGATION OF FAULT-BASED TESTING
USING THE RELAY MODEL

A Dissertation Presented

by

MARGARET C. THOMPSON

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DoCTOR OF PHILOSOPHY

May 1991

Department of Computer and Information Science

© Copyright by Margaret C. Thompson 1991

All Rights Reserved

AN INVESTIGATION OF FAULT-BASED TESTING
USsING THE RELAY MODEL

A Dissertation Presented
by

MARGARET C. THOMPSON

Approved as to style and content by:

XC/CKMQ

Lori A. Clarke, Co-Chair

LMK b g

Debra .r/lfhchardson, Co-Chair

W. Richar Adno%\

George S. Avritfiin, Member

W. Richards Adrion, Department Chair
Computer and Information Science

ACKNOWLEDGEMENTS

I am indebted to Professor Debra Richardson, co-chair of my committee, for
fast reads, fedex’s and fac’s, but mostly for being teacher, mentor, and friend. I
look forward to our future relationship as colleagues. I am grateful to Professor Lori
Clarke, co-chair of my committee, for her support and loyalty for many years. I am
also grateful to my committee members Professors Rick Adrion and George Avrunin
for reading my dissertation and offering valuable feedback.

I thank my office mates in the Software Development Laboratory for cookie runs,
desk stickers, and generally tolerating my current obsession with having the door
shut. Remember turning your key counter-clockwise locks the door and clockwise
unlocks it.

I thank Renee Kumar for her incredible understanding of University and Grad-
uate School rules and the ways through them, but more importantly for her sense
of humor and thoughtfulness which have often helped me keep perspective on the
world outside the lowrise.

There are many people outside of the University who have supported, encour-
aged and generally tolerated me through this process. It has been a privilege to train
with the teachers and karate ka at Valley Women’s Martial Arts, most especially my
training buddies Laurel Turk, Sally Van Wright, and Rochelle Friedman. I thank
them for providing me with the space to grow personally and for their love and
support.

Crane Willemse has been honest friend who has taught me about acceptance of
self and of others. Laurel Turk has for many years been a caring and supportive

buddy, and for her willingness to challenge me, I am grateful. Marilyn Johnson

v

has shared her family, life, sense of humor and love, all of which enrich my life
immeasurably.

I thank Cheryl Muzio for explaining why there are 31 flavors at Baskin-Robbins
and for pointing out the difference between needing room to struggle and needing
room to fail and providing me with the former.

This dissertation would not have been possible without the unqualified love from
the beans and bears in my life. They made life a little more bearable (beanable?)
and a lot more hairy. Thanks to Purnell, Zang Bear, Angus Magilicutty, Zinfandel
Bear, Zeta Bear, Lucca Bean, Buster Bean, Lillith, Della Dog and most especially

Jazz Boleen. There’s nothing like a cold nose after a long day at the zoo.

ABSTRACT

AN INVESTIGATION OF FAULT-BASED TESTING

UsING THE RELAY MODEL
May 1991
MARGARET C. THOMPSON, B.A., SMITH COLLEGE
M.S., UNIVERSITY OF MASSACHUSETTS
PH.D. UNIVERSITY OF MASSACHUSETTS

Directed by: Professors Debra J. Richardson and Lori A. Clarke

Fault-based testing techniques attempt to select test data that detect certain
types of faults that could exist in a module. This thesis presents a model, called
RELAY, of how a fault causes a failure, where a fault is a syntactic mistake in
the code and a failure is an observable incorrect behavior. A “potential failure”
(intermediate incorrect value) “originates” (is introduced) and “transfers” (moves
through the program) to output where a failure occurs. “Computational transfer”
involves the transfer of a potential failure within a statement. “Data dependence
transfer” involves the transfer of a potential failure from the definition of a variable
to a use of that variable. “Control dependence transfer” involves the transfer of
a potential failure from the incorrect evaluation of a branching statement to a
statement whose execution may be controlled by that branching statement. A
potential failure transfers from a faulty statement to output along “information flow
chains”. RELAY recognizes the possibility that several information flow chains may
be transferred along at the same time and models this with “transfer sets”, which
are sets of chains all of which may be executed at the same time. Identification of
transfer sets and recognition of the role of control dependence transfer are unique

to RELAY.

vi

This thesis presents three applications for the RELAY model.

1. We use the model to construct “failure conditions”, that guarantee detection

of a fault.

2. We use the insight provided by RELAY to evaluate fault-based testing criteria.
Most criteria do not consider transfer of an originated potential failure to
output. For those that do, no guidance for transfer is provided. No approach
considers the complexity of transfer through data dependence and control

dependence.

3. We use the details provided by RELAY to ask questions about the likelihood of
transfer to output for test data that originates a potential failure and about the
likelihood of multiple faults masking each other. We evaluate empirical studies
and propose further empirical studies in both these areas using patterns of

information flow as the basis for such studies.

vil

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTSttt et e, iv
ABSTRACT e vi
LIST OF TABLES e xi
LIST OF FIGURESttt xiii
CHAPTER
1. INTRODUCTION oot e e 1
2. TERMINOLOGYottt it it ettt et e e 7
2.1 Program Representation. 7
2.2 Test Data and Testing Oracles 10
2.3 Information Flow and Dependence Relationships 11
3. THE RELAY MODEL i e 14
3.1 Coincidental Correctness 15
3.2 RELAY Model of Faults and Failures 23
3.3 Use of the RELAY Model to Develop Failure Conditions 38
4. ORIGINAL STATE POTENTIAL FAILURE CONDITION 46
4.1 Ormgmation Conditions 47
4.1.1 Origination of a Variable Reference Fault 49
4.1.2 Origination of a Variable Definition Fault 49
4.1.3 Origination of a Boolean Operator Fault 51
4.1.4 Origination of a Relational Operator Fault 53
4.1.5 Origination of an Arithmetic Operator Fault 56
4.2 Simple Computational Transfer Conditions 58
42.1 Simple Computational Transfer Condition for
Assignment Operator 60
4.2.2 Simple Computational Transfer Conditions for
Boolean Operators 61
4.2.3 Simple Computational Transfer Conditions for
Relational Operators 62

viil

4.2.4 Simple Computational Transfer Conditions for

Arithmetic Operators 66

4.3 Original State Potential Failure Condition 67
5. TRANSFER SET CONDITIONttt ii e ittt et e e 76
5.1 Motivation for Transfer Sets and Transfer Routes 7
5.2 Transfer Sets and Transfer Routes 90
521 Terminology 90
5.2.2 Properties of Transfer Sets and Transfer Routes 93

5.3 Transfer Route, Transfer Set and Failure Conditions 100
5.4 Construction of Computational Transfer Conditions 103
5.4.1 Simple Computational Transfer Condition 104
5.4.2 Complex Computational Transfer Condition 109

5.5 Construction of Transfer Route Conditions 111
5.6 Construction of Transfer Set Conditions 112
5.7 Construction of Failure Conditions and Total Failure Conditions . . 113
5.8 Fault Dependence and Independence of Transfer Set Conditions . . . 116
5.9 Summary of Application of RELAY to Construct Failure Conditions 119
6. ANALYSIS AND DISCUSSION OF RELATED WORKS 120
6.1 Overview of Fault-Based Testing 120
6.1.1 Testing Approachesin General 120
6.1.2 Primary Fault-Based Testing Approaches 124

6.2 Analysis for Revealing an Original State Potential Failure 129
6.2.1 Budd’s Estimate 132
6.2.2 Howden’s Weak Mutation Testing 139
6.2.3 Foster’s Error-Sensitive Test Case Analysis 143
6.2.4 Summaryof Analysis 147

6.3 Analysis for Revealing a Failure 147
6.3.1 Offutt’s Constraint-Based Testing 148
6.3.2 Morell’s Symbolic Faull-Based Testing 152
6.3.3 Summary of Analysis 155

7. DISCUSSION OF RELATED EMPIRICAL STUDIES 156
7.1 Information Flow Transfer 156
7.1.1 Related Empirical Studies. 157

7.1.2 Proposal for Further Studies 159

ix

7.2 Multiple Fault Interaction and the Coupling Effect 161

7.2.1 Related Empirical Studies. 165

7.2.2 Proposal of Further Studies 170

8. CONCLUSION . . . o ittt it et it e ettt et e et e et e e 172
8.1 Major Contributions 172

82 Future Directions 176
REFERENCES . .. itiit it ittt e ittt ettt e et e it et e e 179

Table

LisT oF TABLES

Page
3.1 Test Data Set For Coincidental Correctness Example 1 18
3.2 Test Data Set for Coincidental Correctness Example 2. 21
3.3 Information Flow Chains for Coincidental Correctness Example 2 34
4.1 Ongination Condition Set for Variable Reference Fault 49
4.2 Variable Definition Evaluation 51
4.3 Origination Condition Set for Variable Definition Fault 51
4.4 Boolean Operator Evaluation 53
4.5 Origination Condition Sets for Boolean Operator Fault 53
4.6 Relational Operator Evaluation 54
4.7 Origination Conditions for Individual Relational Operator Faults . . . 55
4.8 Origination Condition Sets for Relational Operator Fault 55
4.9 Origination Conditions for Individual Arithmetic Operator Faults 57
4.10 Origination Condition Set for Arithmeti;: Operator Fault 58
4.11 Simple Computational Transfer Condition for Assignment Operator . 61
4.12 Boolean Expression Evaluation 62
4.13 Simple Computational Transfer Conditions for Boolean Operators . . 62
4.14 Simple Computational Transfer Conditions for Relational Operators . 64
4.15 Sufficient Simple Computational Transfer Conditions
for Relational Operators 65
4.16 Simple Computational Transfer Conditions for Arithmetic Operators 68
4.17 Sample Test Data For Figure 4.1 74

5.1
5.2
5.3
54
6.1
6.2
6.3
7.1
7.2

7.3

Test Data Set For Example Module A 82

Test Data Set For Example Module B. 83
Test Data Set For Example Module C. 86
Test Data Set For Example ModuleD 89
Sample Test Data Selected by Estimate for (A< B)orZ 137
Sample Test Data Selected by Estimate for (X andY)orZ 138
Analysis Summaryo 148
Test Data Set for Fault at Node 2 164
Test Data Set for Fault at Node 3 oo vo o e oo 164
Test Data Set for Faults at Nodes 2and 3 165

xii

Figure
3.1
3.2
3.3
3.4
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2
7.1
7.2
7.3

LisT oF FIGURES

Page
Coincidental Correctness Example 1. 17
Coincidental Correctness Example 2. 21
Data Dependence Example 28
Control Dependence Example 30
Module Fragment for Original State Potential Failure Condition . . . 69
Example Module A, 80
Example Module B 83
Example Module C 85
Example Module D 88
Module with Infinite Number of Chains 96
Module with Infinite Number of Paths for Transfer Set 99
Module Fragment with Nested Conditional 105
Module Fragment with Def-Use Information 107
Multiple Assignments Along Alternate Branch 108
Subsets of Input Domain, 150
Control Dependence Only 154
Schematic of Fault-Based Testing 162
Example Module with Two Faults 163
Schematic of Mutation Testing 166

CHAPTER 1

INTRODUCTION

A goal of testing a program is the detection of defects in the code. In general,
exhaustive testing, in which a program is executed for all possible inputs of the
program, is not possible. Thus, some subset of the input domain, or test data set,
must be selected. A test data selection criterion is a set of rules that guides the
tester in how to select a test data set. When a program produces incorrect output
for some test case in the test data set, we know the program contains at least one
mistake in the code. When a program produces correct output for all test cases
in the test data set, we hope we have selected the test data so as to gain some
confidence in the reliability of the program.

One group of test data selection criteria, known as fault-based testing, attempt
to select test data that would detect a set of common faults that could be present in
the code. To do this, these criteria attempt to cause a failure on execution of at least
one test case in the test data set. By “fault” we mean a syntactic mistake in the code,
and by “failure” we mean an observable incorrect behavior, most commonly incorrect
output. This thesis investigates the fault detection capabilities of fault-based testing.

The major contributions of this thesis are:

o Description of a rigorous and complete model, called RELAY, that details how
a fault causes a failure. This model assumes, as do fault-based testing criteria
in general, that the faulty module closely resembles a correct version of the

module and that multiple faults do not mask out each other;

e Application of the model to construct failure conditions that guarantee fault

detection for hypothesized faults;

2

e Analysis of fault detection capabilities of fault-based testing criteria using the

failure conditions;
o Examination of empirical studies using insight provided by RELAY.

A great deal of research has been performed in the area of fault-based testing.
Much of this research is in the area of mutation testing [DLS79]. In mutation
testing, faults are seeded one at a time into the source code to produce a “mutant”
program. Test data is then evaluated as to whether original and mutant programs
produce different output on at least one test case. The adequacy of a test data
set is measured based on whether all non-equivalent mutants are distinguished. In
the Portable Mutation Testing Suite [Bud83), several levels of mutation testing are
included from weak to strong, depending on the extent of the effect of the fault on
the module execution, e.g., mutated expression, mutated statement, entire module.
The term “weak mutation testing” was introduced by Howden [How82] and is now
part of his larger testing theory known as fault-based functional testing. Woodward
and Halewood [WHS88] introduce the idea of firm mutation testing as an intermediate
step between weak and strong mutation testing.

Another area of fault based testing research has focused on the introduction of
an incorrect program state by a fault. Howden’s weak mutation testing [How82],
Foster’s ESTCA [Fos80, Fos83, Fos84, Fos85], Budd’s Estimate from the Portable
Mutation Testing Suite [Bud81, Bud83], Hamlet’s testing with the aid of a com-
piler [Ham77|, and Offutt’s Constraint-Based Testing [Off88] all consider ways a
statement could be faulty and attempt to select test data that distinguish between
the (hypothetically) faulty statement and the (hypothetically) correct statement.
Such test data would introduce an incorrect state at the faulty statement during
execution if the module contained the hypothesized fault. Zeil’s perturbation test-

ing [Zei83, ZeiB4) takes a similar approach to evaluating a test data set. This

3

approach examines ways in which statements in a program could be perturbed or
modified and not introduce an incorrect state by the current set of test data.

Finally, there are several researchers that have considered the need for an in-
correct state introduced by a fault to move through execution to effect output.
In [Mor88], Morell provides a taxonomy that categorizes fault-based testing criteria
according to the extent of the criteria — whether the criteria introduces an incorrect
state at the statement containing the fault (local) or causes a failure (global). In
his fault-based testing theory [Mor84], Morell defines a model whereby an incorrect
state is created at the location of the fault and is propagated to output. In his
dynamic symbolic fault-based testing [Mor84, Mor88| based on this theory, Morell
determines what faults would be undetected by a test data set by comparing the
symbolic computation for a path through a module and the symbolic computation
for a path through the same module seeded with a symbolic fault at some location.

Thus, it is clear that fault-based testing is considered an important area of both
past and current research. None of this work, however, provides a rigorous and
detailed model of how a fault becomes a failure for some test case. The model
presented in this thesis details this process and is motivated by an investigation of
coincidental correctness, which occurs when a fault does not cause a failure on some
test case even though the faulty code is executed. The phenomenon of coincidental
correctness is very common. If it were not, then a test data set that executes all
statements in a module at least once would be adequate to detect most faults.

The RELAY model extends and refines Morell’s theory by more precisely defining
the notion of where a potential failure (an incorrect intermediate value) is introduced
and by identifying the ways a potential failure may move or “transfer” through a
module. In particular, RELAY identifies three types of transfer: computational
transfer, data dependence transfer, and control dependence transfer. A potential

failure moves from a faulty statement to output along information flow chains, where

4

an information flow chain is a sequence of statements such that each statement in
the chain is either control dependent or data dependent on the previous statement in
the chain. At each statement in the chain, computational transfer, data dependence
transfer or control dependence transfer may be involved. RELAY recognizes the
possibility that several information flow chains may be transferred along at the
same time and models this with “transfer sets”, which are sets of chains all of which
may be executed at the same time. Identification of transfer sets and recognition of
the role of control dependence transfer are unique to RELAY.

The basic approach of fault based testing is to hypothesize about the existence
of a fault in a module and then attempt to select test data that would cause a
failure to result if the hypothesized fault were indeed a fault. If we can do this, then
correct execution on such test data suggests that the program does not contain that
fault. The problem is to determine conditions that would have to be satisfied by
test data to guarantee fault detection, where “guarantee” means that if the module
contains a particular hypothesized fault and we execute the module on test data
satisfying such conditions then a failure will result. We also know that if we execute
the module on test data that satisfies conditions that guarantee detection and a
failure does not result, the hypothesized fault is not a fault. This latter statement
is simply the contrapositive of the former statement.

This thesis investigates what conditions. would be necessary and sufficient to
guarantee detection of a fault and uses those conditions to evaluate the fault detec-
tion capabilities of several fault-based testing criteria. Using the RELAY model of
how a known fault may result in a failure, we develop “failure conditions” that would
guarantee fault detection for a particular hypothesized fault. Failure conditions are
constructed that guarantee that a fault introduces an incorrect state at the statement
containing the fault and that the incorrect state transfers along some transfer set

to output. To develop conditions that guarantee fault detection, we must consider

5

how and where multiple incorrect references may “interact” to mask out the effects
of the fault at a statement. To determine this, transfer sets identify at each node
the references that reflect incorrect information.

The failure condition may be used to analyze the fault detection capabilities
of fault-based testing criteria. Analysis of fault-based testing criteria using the
RELAY model points out several weaknesses of these criteria. Most criteria do not
consider transfer of an originated potential failure to output. The few that do, do
not provide guidance as to how to achieve transfer, and no criteria fully considers
the complexity of transfer through data dependence and control dependence. While
the RELAY model does not provide the solution to the problems of testing, it does
provide insight into the weaknesses of fault-based testing in general.

The RELAY model provides an analytical look at fault-based testing. Such an
analysis indicates that the goal of guaranteeing fault detection is, in general, not
realistic and suggests the need for empirical study of the problem. This thesis eval-
uates and analyzes several empirical studies reported in the literature and suggests
areas for further study. This evaluation concentrates on two issues in particular.
The first investigates how often transfer of an originated state potential failure to
output occurs when data is not specifically selected to satisfy transfer conditions.
The second investigates how often multiple faults in a module “interact” to mask
out each other. With the detailed model of how a fault becomes a failure provided
by RELAY, we are able to ask in-depth questions about the nature of transfer in real
programs. We recommend further studies using structures of information flow as a
basis for empirically investigating transfer.

This thesis is organized as follows.

Chapter 2 describes the terminology and notation. The terminology we use is
common in the testing literature and is provided here to clarify our interpretation

and use of the terms.

6

Chapter 3 defines the concepts of origination, transfer, transfer sets and trans-
fer routes and presents the RELAY model of faults and failures that incorporates
these components. In addition, this chapter overviews the construction of failure
conditions using this model. The construction of the failure condition is divided
into two parts. First, we develop the original state potential failure condition,
which guarantees introduction of a potential failure at the statement containing the
hypothesized fault. Second, we develop the transfer set condition, which guarantees
transfer of the potential failure to output along a transfer set.

Chapter 4 presents formal definitions for the original state potential failure con-
dition and demonstrates development of the original state potential failure condition
for six classes of faults.

Chapter 5 motivates, describes and develops the transfer set condition.

Chapter 6 presents a survey of related works. The first section of the chapter
provides an overview comparing RELAY to other testing research. The second
section provides a detailed analysis of the ability of several fault-based testing
criteria to introduce an incorrect state at the statement containing the hypothesized
fault. The third section discusses how several fault-based testing criteria perform
on transferring to output and points out how RELAY differs from these criteria.

Chapter 7 surveys several empirical studies from the literature related to RELAY
and suggests additional studies. 34 Chapter 8 summarizes the major contributions

of this thesis and discusses future research directions.

CHAPTER 2

TERMINOLOGY

In this chapter, we present some general terminology and notation needed to
present our work. The terms presented here are from the general literature and are

not specific to the RELAY model.

2.1 Program Representation

We consider the analysis of a module, where a module is a procedure or function
with a single entry point. A module M implements some function Fys, which maps
elements in a domain Xy to elements in a range Zpar, Far : Xpr — Zpr. Thus, for
any z € Xp, execution of M produces a vector 2 = M(z) € Zp. An input to a
module is a vector £ whose elements are values in a designated order for the values of
input parameters, imported global variables, and objects of input statements. The
elements of an output vector z are values of output parameters, exported global
variables, and objects of output statements.

A module can be represented by a directed graph that describes the possible flow
of control through the module. A control flow graph G of a module M is a directed
graph, which may be represented by a pair (N, E), where N is a (finite) set of nodes
and E C N x N is the set of edges. N contains two special nodes which are added to
the graph to facilitate analysis and have no effect on evaluation of the module: 7,440,
the start node, and 7 finai, the final node. Associated with 7,4, is the importation
of parameter and global variable values from the external environment or calling

module. Associated with nfin, is the exportation of parameter and global values

8

to the external environment or calling module. Each other node in N represents a
simple statement or the predicate of a conditional statement in M . For each pair
of distinct nodes m and n in N where control may pass directly from the statement
represented by m to that represented by n there is an edge (m,n) in E. There is
also an edge in E from n 4. to the entry point of M and an edge from an exit point
to T ginai. Associated with each edge, (m,n), is a branch predicate, bp(m,n), which
is the condition that must hold to allow control to pass directly from node m to
node n. If a node has a single successor node, then the branch predicate associated

with the edge leaving the node is simply true.
A control flow graph defines the paths within a module. A subpath in a con-

trol flow graph Gpr = (N, E) is a finite, possibly empty, sequence of nodes p =
(m1,m2,...,npp) ! such that for all 7, 1 < i < |p|, (ns,ni11) € E. A subpath formed
by the concatenation of two subpaths p; and p; is denoted p; - ps. An initial subpath
p is a subpath whose first node is the start node, ngq.. A path P is an initial

subpath whose last node is the final node, nina 2 .

A node with more than a single successor node is called a branching node. A
loop in a control flow graph Gy, is a subgraph of G corresponding to a looping
construct in module M. An entry node of a loop L is a node n in L such that there
is an edge (m,n) in Gar where m is not in L. An exit node for a loop L is a node
n outside L such that there is an edge (m,n) in G, where m is in L. We assume
that all loops have single entry and single exit nodes. An iteration of a loop L is
a subpath within L that begins with the entry node of L, does not return to that
node, and ends with a predecessor of either the entry node or the exit node of L.

Each node in a control flow graph may be represented as an abstract syntax

tree, where the leaf nodes represent data objects and the internal nodes represent

!We denote the length of (the number of elements in) a sequence s by |s|

*Where the distinction between a subpath and a path is important, we will use an upper case
letter (P) to signify a path and a lower case letter (p) for a subpath (or initial subpath)

9

computational operators. This computation tree describes the statement’s hier-
archical structure. A subexpression of the statement represented by a node is a
subtree of the node’s abstract syntax tree. To denote the source code or syntactic
subexpression of a node, upper case, e.g., EXP, is used. Lower case, e.g., ezp,
denotes the evaluated expression. If EX P is part of a node that is within a loop, it
may be necessary to disambiguate the visit of EXP. The notation exzp; denotes the
value of expression EX P during the i** iteration of the loop that includes the node
containing EXP 2 . The expression for any n-ary operator op may be represented
as op(operand, , operand,, ..., operand,). This notation is used when n is unknown.
For convenience, when n is known, an expression is written in its in-order form e.g.,
operand, op operand,.

An initial subpath p may be executed on some input z; this execution is denoted
p(z). Associated with such execution is a state Sp(;) that contains the values of all
variables after execution of p(z) and the value of the branch predicate for the edge
selected on evaluation of the last node in p. This value is stored in a dummy
variable called BP. A state is also defined for entry to and exit from a module
M. S.,0(z) is the state on entry to the module and contains a defined value for
all input parameters and imported global variables and is undefined for all other
variables; Sp() is the state on exit from the module after evaluation of P on z and
contains values of all variables at the end of execution of P, including the values
for all output parameters and exported global variables. Some variables, including
BP, may be undefined in any state, including exit from the module. This condition

is noted in the state and causes no problem.

3For nested loop, this notation would be expanded to indicate the specific iteration of each loop
in which the expression is nested.

10

2.2 Test Data and Testing Oracles

A test datum t for a module M with control flow graph Gy = (N,E) is a
sequence of values input along some initial subpath — that is, £ = [t4,...,t,]. Note
that a test datum is distinct from an input vector in that an input vector includes
input values for all required inputs for some path in G, whereas a test datum may
be incomplete or invalid and not execute a path in Gpr. For any node n in Gy, the
set DOMAIN(n) is the set of test data ¢ for which n may be executed. The test data
domain Dy for a module M is the domain of inputs from which test data can be
selected. Note that Dps is not merely the domain of M since invalid input values
are not in Xps. A test data set Tas for a module M with control flow graph Gy is

a finite subset of the test data domain Djy.

To reveal incorrect output by testing, there is usually some test oracle that
specifies correct execution of the module [Wey82, How78b]. A test oracle might be
a functional representation, formal specification, a correct version of the module,
or simply a tester who knows the module’s correct output. In any case, an ora-
cle O(Xo, Zo) is a relation, O = {(z,2)} C Xo x Zo, where Xo and Zo are the
domain and range, respectively, of the oracle. Note that an oracle is a relation; thus
for any input, an oracle may specify more than one acceptable output. This allows
for non-determinism and, in particular, for an oracle to specify a “don’t care” case
- an input z for which any output is acceptable — by containing the pairs (z, z) for
all z.

The standard oracle just defined is in terms of input and output. We may also be
interested in a module’s behavior on partial execution. This intermediate behavior
can be represented with an oracle that includes information about intermediate
values, including that for BP, that should be computed by the module — we call
this a state oracle since it defines the acceptable state(s) for a module’s partial

executions. A state oracle Os is a relation Os = {((t, p), Sp(t))}, that relates a test

11

datum and an initial subpath (¢,p) to one or more states Sy() that are acceptable
after execution of p on t. As with the standard input-output oracle, a state oracle
is a relation, again to allow for the specification of more than one correct state
for a particular test datum and initial subpath pair. A state oracle may derive
its intermediate information from some correct module, an axiomatic specification,

run-time traces, or monitoring of assertions [How78b].
2.3 Information Flow and Dependence Relationships

RELAY uses information derived from program dependences. Program depen-
dences are syntactic relationships between nodes. Program dependences capture
potential flow of information between nodes and include both control flow and data
flow information. The definitions presented here are informal. For a more formal
and graph theoretic definition and discussion of dependence see [Pod89].

Information may “flow” from the definition of a variable at one node to a use
of that definition at another. Let z be a variable in a module M. A definition of =
is associated with each node n in Gy that represenfs a statement that can assign a
value to z; this definition is denoted def(z,n). A use of z is associated with each
node n in Gy that represents a statement that can access the value of «; this use is
denoted use(z,n).

A def-use graph is a control flow graph annotated at each node with information
about the definition and use of variables. Associated with each node n is the set
define(n), which is the set of all variables to which a value may be assigned by
the statement represented by the node, and the set used(n), which is the set of all
variables whose value is referenced by the statement represented by the node. In
this thesis, to simplify our definitions and discussion we assume at each node there

is at most a single variable in define(n).

12

The RELAY model is concerned not only with the definitions and uses of vari-
ables, but also with subpaths from nodes where a definition occurs to nodes where
that definition is used. A definition-clear subpath with respect to a variable z is a
subpath p such that for all nodes n in p, ¢ define(n) * . A definition def(z,n)
reaches a use use(z,m) if and only if there is a subpath (n) - p - (m) such that p is
definition-clear with respect to z. A node n; is (directly) data dependent on a node
n; if and only if there is a variable V assigned a value at n; that is used at n;, and
def(V,n;) reaches use(V,n;). Since this is the only data dependence relationship
we use, we will refer to it as data dependence, where the direct is implicit.

Information may also flow through the control of execution of one node by
another. The immediate forward dominator of a (branching) node b is the node
where all subpaths leaving b first come together. A node n; is (indirectly strongly)
control dependent on n; if there exists a subpath from n; to n; that does not include
the immediate forward dominator of n;. Intuitively, this relationship characterizes
the nodes that constitute the “body” of a structured branching node. Since this
is the only control dependence relationship we use, we will refer to it as control
dependence, where the indirect and strong are implicit.

An information flow chain is a sequence of nodes such that each node in the chain
is either control dependent or data dependent on the previous node in the chain.
More formally, given a control flow graph Gy = (N, E), an information flow chain
A in the control flow graph is a sequence of tuples (u(A);, d(A)1,n(A)1), ..., (u(A)a),
d(A)a),n(A)\4)), where |A| is the number of tuples in the chain and Vi, 1 <4 < |A],
n(A): € N, d(A); € define(n(A);)U{'BP’, ‘out’}, and u(A); € used(n(A);)U{ ‘BP’},
such that Vk,1 < k < |A|, n(A)z is either control dependent or data dependent on
n(A)k-1-

“For languages where a variable may be “undefined” at a node, X must not be undefined at
any node n in p.

13

For branching nodes, where no variable is assigned a value, the symbol ‘BP’ is
used in a tuple in place of the defined variable. For example, at a branching node
n that represents the statement if X < 5, we would have the tuple (X, BP,n). For
a tuple that represents a link of control dependence, the symbol BP is used in the
tuple in place of the used variable. For example, at a node n that represents the
statement X := A x B and that is control dependent on some other node, we would
have the tuple (BP, X,n). For output nodes where a value may be communicated to
the external environment, the symbol ‘out’ is used in a tuple in place of the defined
variable. For example, at a node n that represents the statement output X + 6, we
would have the tuple (X, out,n).

An information flow chain is executed by some path or set of paths. Execution
of an information flow chain requires execution of the sequence of nodes and for
any two consecutive tuples (V;,V,,?),(V,, V,j) in the chain where node j is data
dependent on node 7, execution of a subpath i-(p)-j where p is def-clear with respect
to V. The path condition of an information flow chain A, Path-Condition(A), is the
necessary and sufficient condition to execute the chain. Path-Condition(A) defines
the set of paths in the module that execute chain A, which is called the (set of)
covering subpaths and is denoted Paths(A). The set of nodes in an information flow
chain is Nodes(A). A node i is syntactically dependent on some node j if there
exists an information flow chain that starts at node ¢ and ends at node j.

With these terms defined, we are now in a position to present our model.

" CHAPTER 3

THE RELAY MODEL

This chapter presents the RELAY model of faults and failures. RELAY is a
detailed model of how a known fault causes a failure to occur on execution for some
test datum. Given a fault in a module, as a minimal requirement to cause a failure,
a test datum must execute the fault. Execution of the fault alone, however, is not
necessarily sufficient to cause a failure. An incorrect module may produce correct
output on some input even when that input executes the fault. The module appears
correct, but just by coincidence of the test data selected. As previously noted,
this phenomenon is known as coincidental correctness. While the phenomenon of
coincidental correctness has been noted by many researchers, there has not been a
detailed exploration of how and where it may occur. Such an explanation provides
valuable insight into the steps involved in a fault causing a failure. In the first
section of this chapter, we present several examples that demonstrate the different
ways that coincidental correctness may occur.

The RELAY model of faults and failures is motivated by our investigation of
coincidental correctness. Recall from the introduction that a fault is a syntactic
defect in some code, a failure is an observable incorrect behavior, most' commonly
incorrect output, and a potential failure is an intermediate erroneous result (which
may potentially lead to failure). For a fault to cause a failure on execution of
some test datum, a potential failure must be introduced or “originate” at the faulty
expression and move through or “transfer” through computations that occur in the
course of execution of the module. Transfer to failure occurs along sets of information

flow chains that may be executed together, called “transfer sets”. Transfer along

15

transfer sets includes data dependence transfer and control dependence transfer.
The second section of this chapter presents this RELAY model of faults and failures.

One application of the RELAY model is the construction of failure conditions
that guarantee fault detection for a fault that could exist in the code. Section 3
outlines the process of developing failure conditions. This process is expanded in
Chapter 4 and Chapter 5.

It is important to note here two assumptions of the model, both of which are
made by all fault-based testing criteria.

The first assumption is that the module being tested is “almost correct”. This
assumption is similar to the competent programmer hypothesis [ABD*79, BDLS78],
which says that the module being tested differs from the correct module by some
small set of faults. The faults we consider in this application are restricted to those
that do not change the program schema.

A second assumption is that there is either a single fault in the module or that
multiple faults do not mask each other. Two faults mask each other if test data that
would have detected the faults (cause a failure) if they occurred alone in the module,
fails to detect the faults (cause a failure) for the module containing both faults. The
implication of this assumption is that we may consider faults one at a time. Multiple
fault interaction and its relationship to the concept of coupling [DLS79] are discussed

in Chapter 7.

3.1 Coincidental Correctness

Coincidental correctness occurs when the existence of a fault is masked by some
computation(s) during the execution of the module on some test datum. This
masking out of the fault may happen in the subexpression containing the fault

or in different ways at subsequent points during execution.

16

To demonstrate the different ways coincidental correctness may occur, we con-
sider several test cases for the module shown in Figure 3.1. Suppose that the module

in Figure 3.1 contains a fault at node 2 and that node 2 should be
A:=Cx(B+1).

That is, the second reference to ‘C’ should be a reference to the constant 1. This
correct node, labeled 2', is shown in the figure next to the faulty node. Table 3.1
lists six test data along with partial execution traces. For each test datum, there
are two lines in the table. The first line for a test datum records the variable values
on execution of the module with the faulty reference, while the second line records
the values for the correct module. The column headed by ref refers to the value of
the reference - either c or 1. For each column, the node where the value is assigned
is shown in parentheses.

Looking first at test datum 1, we see that ¢ = 1. For this test datum, no potential
failure is introduced. Coincidental correctness occurs here in the subexpression
containing the fault, and no failure can result for this test datum. This is indeed
the case when we examine the last column in the table. For both the faulty module
(line 1) and the correct module (line 2), execution on test datum 1 yields identical
results for output.

Consider now the second test datum. For this test datum, ¢ # 1, and a potential
failure is introduced for this fault on this test datum. The potential failure then
transfers through the addition since (b + ¢ # b+ 1), but is masked out by the
multiplication by C, which has the value zero. For this test datum, coincidental

correctness happens again within the faulty node, and thus no failure is produced.

For the third test datum, a potential failure is introduced for this fault, and
it transfers through all the computations at the faulty node. After execution of
node 2, A has an incorrect value. This is seen in the column labeled a, where for

the third test datum, evaluation with the faulty reference yields the value 3 and for

17

6 Y.=(X**2)+C

1 inputB,C
2 A:=C*B+C) 2! A:=C*(B+1)
3 D:=(A*B)+C
4 X:=B*C
5 D<(X-5)
! T
l .
7 Y:=(2*X)+C
8 outputY

Figure 3.1. Coincidental Correctness Example 1

18

Table 3.1. Test Data Set For Coincidental Correctness Example 1

module | td. |ref | a | d | 2 |d<z-5 Y output
blcfle/1{(2[B)|(4)] (5) [(6/7)] (8)
1] faulty [1] 1 1 213 |1 F 2 2 |
correct [1|1 1]2[3]1 F 2 2 |
2| faulty 1[0 O [O0]O0]O F 0 0 |
correct || 1 | O 1 0 0 0 F 0 0 ||
(3] faulty [O[3} 3]9 [3]0 F 3 3
" correct || 03 1 3 3 0 F 3 3
4 faulty 23] 31533 6 F 39 39
correct || 2|3 " 1 9 (21| 6 F 39 39
5| faulty {|-2|-1|| -1 | 3 |-7T| 2 T 3
correct || -2 -1 1 1]1-31 2 F 3 3
6| faulty || 1 (-3} -3 [6 | 3 [-3 F 6 6
correct || 1 [-3ff 1 | -6 -9 | -3 T -9 -9

the correct reference the value 1. If we continue to node 3 where A is referenced, we
see however, that the incorrect value for A is masked out by multiplication by B.
After node 3, D has the same value for both the correct and the incorrect node. A is
the only variable that holds an incorrect value at this point and is not referenced at
any subsequent nodes. Thus, on this test datum, a potential failure occurs at some
intermediate points but is subsequently masked out in the execution of the module,
and no failure is revealed for this fault on this test datum.

Execution on the fourth test datum introduces a potential failure and assigns
an incorrect value to A. At node 3, where this incorrect value is referenced, the
potential failure is not masked out by the computation and an incorrect value is
assigned to D. This incorrect value is referenced at node 5; however, the condition
D < X — 5 evaluates the same for both the incorrect and the correct values of D.
As a result, the same branch is selected in the incorrect and the correct module.
Since there is no subsequent use of either variable that holds an incorrect value, A

or D, no failure can be revealed on this test datum for this fault.

19

The fifth test datum starts the same as the fourth test datum, with the in-
troduction of a potential failure at node 2 that transfers through computations at
node 3. For this test datum, the potential failure also transfers through evaluation
of the conditional, which evaluates differently for the correct (F) and the incorrect
(T) modules. Looking at the values computed for Y for this test datum along the
two branches, however, we see that the same value (3) is computed for Y at node 7
and at node 6. Thus the fault is also masked out for this test datum.

Looking finally at the sixth test datum, a potential failure is introduced, and it
transfers through nodes 2 and 3 and through node 5, where an incorrect branch is
selected. Furthermore, for this test datum, Y is assigned a value by the incorrectly
executing branch (node 6) that is distinct from the value that would have been as-
signed by the correctly selected branch (node 7); thus, the potential failure transfers
at node 6. At node 8, a failure is revealed as reflected by different values output for
Y. For this test datum, the potential failure introduced at node 2 is not masked out
by any computations in the course of execution, and coincidental correctness does
not occur.

As just seen in the example, a potential failure transfers when a computation
references a variable that has an incorrect value and the resulting value is incorrect,
or a potential failure transfers when an incorrect node is selected, which results
in incorrect computations being evaluated, and an incorrect value is assigned to a
variable at that node.

In all the sample test data for this example, there is at most a single variable that
has an incorrect value referenced at a node or at most one incorrect computation
that references no incorrectly valued variables. For this test data, the ways that
coincidental correctness occurs are fairly obvious. Coincidental correctness can also
occur in more subtle and complicated ways. For example, it is possible for two or

more variables that reflect a potential failure to be referenced at the same node

20

and ‘interact’ in such a way as to mask the potential failure. It is also possible for
an incorrect node to be selected, and for that node to reference incorrect values.
The incorrectly selected node referencing incorrect variable values may assign the
same value(s) as the correctly selected node would with the correct variable values,

causing the effects of the fault to be masked out.

These more complicated ways a fault may be masked out on a test datum are
illustrated with the example shown in Figure 3.2. Suppose that the module shown

in Figure 3.2 is incorrect, and suppose that node 2 should be:
X:=AxB.

Accompanying test data is shown in Table 3.2. This table is slightly different from
the previous table. As before, this table includes partial traces for the module with
the correct and the incorrect node. In addition, we have included a column for both
the computation at node 5 (z * a) and a column for the computation at node 6
(z 4+ b). The entry in line 1 in the column labeled z * a is in parentheses to indicate
this would have been the value computed if this computation at node 5 had been
performed. For example, for the first test datum, in the module with the faulty
reference, node 6 is selected. The entry in line 2 in the column labeled z + b is
in parenthesis to indicated that this would have been the value computed if this
computation at node 6 had been performed. For this test datum in the module with

the correct reference, node 5 is selected.

For the first test datum in Table 3.2, a potential failure is introduced at node 2,
where X is assigned the value 3 in the faulty module and assigned the value 2 in the
correct module. The potential failure transfers through the computations at node 3,
assigning an incorrect value to D. At node 4, an incorrect branch is selected; in the
incorrect module, the true branch is selected, and in the correct module, the false
branch is selected. At node 6, the incorrect computation is performed (X+B instead

of X*A), and the value computed is distinct from that computed along the other

21

1 input AB,C
Y
2 X:=A+B 2! X:=A*B

!
3 D:=X*C

F ! T

e |

5 Y:=X*A 6 Y.=X+B

i

7 Z:=(X-D)*Y

v

8 output Z

Figure 3.2. Coincidental Correctness Example 2

Table 3.2. Test Data Set for Coincidental Correctness Example 2

module t.d. z | d|d>a|lz*xa|z+b| y z | output "
alblc[(2[{(3)] (4 | (5) | (6) |(5/6)] (7) | (8)
faulty |[2|1] 1 3 | 3 T (6) 4 4 4 4
correct |21 |1 2 | 2 F 4 (3) 4 4 4
faulty f112[-3|| 3 | -9 F 6 (4) 6 162 | 162
correct | 112]-3}| 2 | -6 F 4 (3) 4 48 48

22

branch — (x+b=4 and x*a=6); however, the incorrect computation references an
incorrect value for X. For this test datum, a potential failure is not reflected in the
value assigned to Y because the incorrect node (node 6) computes the same value
(4) with the incorrect value of X as the correct node (node 5) would compute with
the correct value of X. Y then is assigned the same value in both the correct and
the incorrect module. At node 7, two variables reflect potential failures — X and
D. At this node, coincidental correctness occurs, however, when X and D ‘interact’
and the same value is assigned to Z in both the correct and incorrect modules. No
failure is revealed for this fault on this test datum.

For test datum 2, we see that a potential failure originates in X at node 2 and
transfers to D at node 3. The potential failure in D fails to transfer at node 4 as
D > A evaluates to false for both the correct and the incorrect module. There
are, however, other uses of variables that hold potential failures. At node 5, the
potential failure in X transfers to Y, and at node 7 the potential failures in D, X,
and Y transfer to Z. For this test datum, coincidental correctness does not occur,
and a failure results, even though the potential failure has been masked by some
computations.

As seen in the example, coincidental correctness can occur for some test data
while not for others. It is also possible that a module contains a discrepancy that
produces correct results for all test data that execute the discrepancy. In the first
example module discussed, this would be the case if the domain of C were restricted
to the values 0 and 1. When this happens, the ‘faulty’ module and the ‘correct’
module are equivalent and the discrepancy is not a fault.

This investigation of how a fault may not cause a failure provides the basis of a
model of how a fault does cause a failure on execution of some test datum. Such a

model of faults and failures is presented in the next section.

23

3.2 RELAY Model of Faults and Failures

This section presents the RELAY model of how a known fault is manifested as a
failure. Recall that a failure occurs when execution of a module on some test datum
causes an observable incorrect behavior, most commonly an incorrect output ! .

More precisely, we may define a failure as follows:

Definition: Given a module M with Gy = (N, E) and an oracle O(Xo,
Zo), let € Xp. A failure occurs on execution of M(X) when (z, M(z))

¢ O(Xo,Zo). The node where a failure occurs is termed a failure node.

A failure is caused by one or more faults in a module. A fault may be considered
in terms of a transformation applied to some expression in the source code. Asso-
ciated with a module M containing a fault at some node, there is a hypothetical,
correct module M’ that is identical to M except at the single node containing the

fault.

Definition: Given a module M and a hypothetical correct module M’, a
fault f is a transformation applied to some expression EXP in M such
that f(EXP') = EXP, where EXP' is the corresponding expression in
M', and execution of EX P causes a failure to occur on execution of some

test datum.

As previously noted, the faults considered in this thesis are only those transfor-
mations that may be applied to or within a single node and that do not affect the
program schema of the module (although the model is applicable on a larger scale).
Thus, the control flow graph for a faulty module M is identical to the hypothetical

correct module M’ except in the annotation of the node containing the fault.

! We will often refer generally to output, meaning any observable incorrect behavior.

24

For a fault in a module M to cause a failure on execution of some test datum
t, execution of the fault must introduce a potential failure that is not masked out
during the course of execution of M to output. When examining the steps involved
in the transfer of a potential failure, we will be interested in two types of incorrect
intermediate computations — state potential failures and subexpression potential
failures.

Sometimes we are interested in an incorrect state after evaluation of a node.

Definition: Given a module M with a state oracle Og, a state potential

failure occurs after execution of initial subpath p on test datum ¢ when

((t,P), Sp(e))¢ Os.

That is, a state potential failure occurs after execution of p on ¢ when at least one

variable in the state (including the dummy variable BP) has an incorrect value.

Definition: A potential failure variable is a variable in the state that

has an incorrect value after execution of p on ¢.

While we do not define an oracle that tells us about the correct and incorrect
evaluation of subexpressions, we will at times be interested in specifically referring

to the incorrect evaluation of a subexpression of a node.

Definition: A subexpression potential failure is reflected in an ex-
pression EXP in M when ezp # exp’ on some test datum ¢, where EX P’
is the corresponding subexpression in M’. When EXP is part of a node
that is within a loop, the visit of EXP is disambiguated by subscripting

it with the iteration count of the loop, e.g., exp; # ezp..

With these terms defined, we may now consider the introduction and transfer
of potential failures. Consider first the introduction of a subexpression potential

failure by a fault. Some transformations affect pieces of code that considered

25

alone cannot be evaluated. In the RELAY model, we consider introduction of
a subexpression potential failure in the smallest subexpression that contains the
transformed code. For example, an incorrect arithmetic operator is a transformation
that substitutes one arithmetic operator for another. This transformation involves
an operator token, which alone cannot be evaluated. In this case, the smallest
subexpression containing the transformed piece of code is the expression containing
just the operator involved and its operands. Other transformations such as incorrect
variable reference, which substitutes a type-compatible variable for another, affect
code that can be evaluated just by itself. For these types of transformations, the
smallest subexpression containing the transformed code is just the involved code.

Introduction of a subexpression potential failure is called origination.

Definition: Given a module M with Gy = (N, E) and a hypothetical,
correct module M’ with Gpr = (N', E'), let n € N contain a fault f such
that n’ € N’ is the corresponding node in M'. Let SEX P be the smallest
subexpression of n containing f such that f(SEXP') = SEXP, where
SEXP' is the correct subexpression of n'. Let t € DOMAIN(n). Exe-
cution of M on ¢ originates a subexpression potential failure in SEX P
for f if and only if sexp # sexp’. A node where a subexpression potential

failure originates is call an originating node.
Consider the node shown below.
A:=C*(B+0C)

One fault that could exist in the node is an incorrect reference. As in one of the
previous examples, suppose the second reference to C should be a reference to the
constant 1. Then, in this example, the smallest subexpression that contains the fault
is just ‘C’, and a subexpression potential failure originates when this subexpression

is executed on a test datum such that c # 1.

26

Once a subexpression potential failure originates, it must transfer through all
computations at the faulty node to cause a state potential failure, and from there,
a state potential failure must transfer throughout execution of the module to some
output. The RELAY model identifies three types of transfer: computational trans-
fer, data dependence transfer, and control dependence transfer. Each of these is
discussed below and in more detail in later chapters.

Within a node, a subexpression potential failure may be used as part of a larger
subexpression of the node. To affect evaluation of the entire node, the subexpression
potential failure must transfer through all operators in the node that have the
subexpression potential failure nested in an operand. Transfer through computations

within a node is called computational transfer.

Definition: Given a module M with Gy = (N, E) and a hypothetical,
correct module M’ let n € N = op(...EXP...),n' = op(... EXP'...) be the
corresponding node in N’ 2 | and exp # ezp’. The subexpression potential

failure in EXP computationally transfers to the parent expression

op(...EXP...) if and only if op(...exp...) # op(...exp’...).
Consider again the node
A:=Cx*(B+0C).

As before, suppose the reference to ‘C’ has evaluated incorrectly, originating a
subexpression potential failure. The subexpression potential failure computationally
transfers through the addition operation and the multiplication operation to affect
evaluation of the entire node when c* (b+ ¢) # c* (b+ ¢').

When a subexpression potential failure in a node computationally transfers at

the node, the entire node evaluates incorrectly. Incorrect evaluation of a node results

?Note that only at the hypothetically faulty node where a subexpression potential failure
originated are EX P and EX P’ syntactically different.

27

in a state potential failure. If the node evaluating incorrectly represents a statement
where a value may be defined for a variable, then at least one variable is assigned
an incorrect value in the state and becomes a potential failure variable. If the node
evaluating incorrectly is a branching node, then an incorrect branch is selected and

the variable BP in the state is assigned an incorrect value.

Definition: The first state potential failure, which occurs when the node
containing the fault evaluates incorrectly, is called the original state

potential failure.

From the original state potential failure, the state potential failure must transfer
to subsequent nodes, unless the node containing the fault is a node where a failure
may be revealed. There are two types of transfer that involve movement of a state
potential failure from node to node. These are data dependence transfer and control
dependence transfer.

Recall from Chapter 2 the definition of (direct) data dependence. If n; is data
dependent on n;, then there is some variable V defined at n; and used at n;, and
there is a def-clear path with respect to V from n; to n;. Data dependence transfer
occurs from a node n; that defines a potential failure variable to a node n; that uses
the potential failure variable when the use of the potential failure variable causes

the referencing node n; to evaluate incorrectly. More formally:

Definition: Data dependence transfer occurs from a definition of V
at node n; to a use of V at node n; when
1. a subpath n; - p - n; is executed, and p is def-clear with respect to V;

2. the subexpression potential failure in V' computationally transfers

through all computations at n;.

28

ni A=...

n; D:=(A*B)+C

Figure 3.3. Data Dependence Example

Consider the small fragment of code shown in Figure 3.3 and assume there is a
path from n; to n; that is def-clear with respect to A. Thus, n; is data dependent on
n;. If A is assigned an incorrect value at n;, then data dependence transfer occurs
from the potential failure variable A at n; to n; when a def-clear path with respect
to A from n; to n; is executed and the subexpression potential failure from the
use of A at n; computationally transfers through the multiplication by B and the
addition to C to the assignment of D. When this happens, D becomes a potential
failure variable, and the state potential failure transfers through n;. Note also that
A remains a potential failure variable, since it has not been redefined.

It is also possible that while there is not a data dependence relationship between
two nodes, one node may affect evaluation of another by controlling when the latter
is executed. One such relationship, as previously defined in Chapter 2, is (indirect,

strong) control dependence.

29

Given a branching node n;, if a state potential failure transfers through the
condition, then an incorrect branch has been selected. If there is some node n; that
is control dependent on n; and defines a value for some variable V, then control
dependence transfer occurs when node n; is incorrectly selected and assigns an

incorrect value to V. More completely, we may define control dependence transfer

as follows:
Definition: Control dependence transfer occurs from n; to n; when

1. n; is control dependent on n;;
2. n; incorrectly selects n;;

3. n; computes a value for V that reaches the forward dominator of n;
and that is distinct from the value for V that would have reached
the forward dominator if the correct branch had been selected in the

correct module.

The incorrect value defined at n; must reach the immediate forward dominator to
insure it is not simply redefined and masked out within the selected branch. The
value defined at n; must compute a value for V that is distinct from that which would
have reached the immediate forward dominator in the correct module to insure it
can cause potential failures in subsequent computations in the module.

If n; represents the conditional of an if-then statement, then transfer of the
state potential failure through n; means that the incorrect branch is selected, and
transfer through n; requires that the definition for the variable V' at n; reaches the
immediate forward dominator and be distinct from the definition for V that reaches
the forward dominator in the correct module if the correct branch had been taken.
If n; represents a control statement for a loop, then transfer of the potential failure
through n; means that an incorrect number of iterations is selected and transfer

to n; requires that the definition for the variable V at n; for the last iteration be

30

n; D<X

ny Y:=(2*X)+C ny Yi=(X**2)+C

Figure 3.4. Control Dependence Example

distinct from that which would be computed with the correct number of iterations
and correct variable values.

Consider the simple code fragment shown in Figure 3.4 and suppose the false
branch to incorrectly be selected. (This means that in the hypothetical, correct
module without the fault, wherever the fault may be in the module, execution on
the same test datum would have caused the true branch to be selected). Control
dependence transfer to the assignment of Y at n; occurs when the computation for
Y at n; is not equal to what would be computed along the else branch at n;. In
this example, this occurs when ((2*z)+ ¢) # ((z **2) + ¢), assuming X and C hold
correct values at node n;.

Let us return to the example figure shown in Figure 3.1 and see how the concepts
of origination and transfer apply to execution of the module on the test data set in
Table 3.1. Consider again the fault at node 2 of an incorrect reference to the second

C that should be to the constant 1. The smallest subexpression containing the

31

transformed code that can be evaluated is the affected code itself (e.g., the reference
to C versus the reference to 1), and thus we consider origination within the reference
to ‘C’.

We see that for test datum 1, ¢ = 1, and origination does not occur. Because
no subexpression potential failure is introduced, we know that no failure can be be

revealed for the fault upon execution of the module on this test datum.

For test datum 2, at node 2, ¢ # 1, and a subexpression potential failure

originates; however, it fails to computationally transfer at the node.

For test datum 3, a subexpression potential failure originates and also compu-
tationally transfers through the addition and the multiplication operations at the
faulty node to affect evaluation of the entire node. At this point, there is an original
state potential failure and a potential failure variable A. Node 3 is data dependent
on node 2. For test datum 3, however, data dependence transfer does not occur.
This is true because D := (Bx A)+ C evaluates the same for both the faulty module
and the correct module on this test datum.

For test datum 4, origination and computational transfer occur at node 2. Data
dependence transfer occurs at node 3, where D becomes a potential failure variable.
Node 5 is data dependent on node 3; however, data dependence transfer does not

occur for this test datum at this node.

For test datum 5, origination and computational transfer occur at node 2. Data
dependence transfer occurs at node 3 and at the conditional at node 5. For this
test datum, however, control dependence transfer does not occur. This is seen by
examination of the column labeled Y in Table 3.1, which shows that for both the
faulty and the correct modules, the value 3 is assigned to Y.

Finally for test datum 6, origination and computational transfer occur at node
2, and data dependence transfer occurs through node 3 and then through node 5. At
node 7, control dependence transfer occurs, and an incorrect value for Y is assigned.

A failure is revealed at node 8.

32

Now that we have introduced the ideas of origination, computational transfer,
data dependence transfer and control dependence transfer, let us see how these
components fit together in the process of a fault causing a failure.

For a fault to cause a failure, a subexpression potential failure must originate
and computationally transfer at the faulty node to cause an original state potential
failure, and from this node, the state potential failure must transfer along some
information flow chain(s) to output 3. Transfer along an information flow chain
involves data dependence transfer or control dependence transfer at each link in the
chain. From any originating node to some output node, however, it is possible that
a state potential failure may transfer along several information flow chains. We are
interested in which of these chains may be executed together by the same test data.

A transfer set captures these chains and is a set of informations chains such that

1. all chains start with a definition to the same variable at the same originating

node;

2. all chains end with output of a value for the same variable at the same failure

node;
3. there is a set of paths, each of which executes all the chains in the transfer set;
4. all chains executed by such a set of paths are included in the transfer set.
More formally, we may define a transfer set as follows:

Definition: Given a module M, with Gy = (N, E), a transfer set is a

set of information flow chains in Gur, TS = {4, B, ...}, with

A= (u(A),d(A)s,n(Ah), ..., (w(A)ap, d(A) a1, n(A)a1)

3Recall from Chapter 2 that an information flow chain is a sequence of nodes such that each
node is control dependent or data dependent on the previous node in the chain.

33

B= (u(B),d(B),n(B)1), -, (w(B)s), &(B)is1, n(B)15))

where u(A); is the variable used and d(A); is the variable defined at node
n(A); in the i*h tuple of chain A, |A| represents the number of tuples in

chain A, and the following properties hold:

1. V chains X,Y € TS,
(u(X)1), (X)1, n(X)1) = (w(Y)1), d(Y)1, (Y)1);
2. V chains X,Y € TS,
(w(X)ix1), d(X)ixy, n(X)ix) = (w(Y)iry), (Y)iy, (Y)iy 1);
3. 3 a subpath p = (m.,...,mpp|), such that m; = n(A); and myy =
n(A)ja, and VX € TS p € paths(X);
4. 7 a chain Q¢ TS such that
(a) p € Paths(Q) and
(b) (w(@)1, d(@)1,n(@)1) = (w(A)1, d(A)1,7(A)1) and
(c) (w(@)1e1 d(@)ie1 n(@)ra1) = (w(A)ya), d(A)1a) n(A)14))-

Intuitively then, a transfer set is a collection of information flow chains that can be
executed by the same path(s). The first node in all chains of a transfer set is called
the transfer set’s originating node, while the last node in all chains of a transfer set
is called the transfer set’s failure node.

For the example shown in Figure 3.2, if we are considering a fault at node 2,
there are six information flow chains to output at node 8. These are shown in

Table 3.3 . For these chains, we use the symbol * to indicate a reference to a fault

“Recall that the symbol BP represents the defined variable in tuples for branching nodes where
no variable is defined, e.g., (D, BP,4), that the symbol BP represents the used variable in tuples
that represent a link of control dependence to the previous node, e.g., (BP,Y,5), and that the
symbol out represents the defined variable in tuples where a value is output, e.g., (Z, out, 8).

34

Table 3.3. Information Flow Chains for Coincidental Correctness Example 2

chain
i | (*,X,2)(X,D,3)(D,BP,4)(BP,Y,5)(Y, Z,7)(Z, out,8)
il (*:X12)(X:D13)(D7BP7 4)(BP,Y,6)(Y, Z,7)(Z, out, 8)

il (*, X,2)(X,Y,5)(Y, Z,7)(Z, out, 8)
iv (*,X,2)(X,Y,6)(Y, Z,7)(Z, out,8)
v (*,X,2)(X, D,3)(D, Z,7)(Z, out,8)
vi (*, X,2)(X, Z,7)(Z, out, 8)

in defining the first variable in the chain, e.g., (¥, X,2). For these six information
flow chains there are two transfer sets. One transfer set consists of information
flow chains (i,iii,v,vi), executed by test data that select the false branch. The other
transfer set consists of chains (ii,iv,v,vi), executed by test data that select the true
branch. We see from this example that the transfer sets are not necessarily disjoint.
This property as well as several others is discussed in Chapter 5.

A transfer set defines the set of chains that may be executed together. It is
possible, however, that while a test datum executes all chains in a transfer set, not
all chains are transferred along. This happens when transfer fails at some node or
nodes in the chains. Thus, while all chains are executed, potential failure information
may not be transferring along all chains. A transfer route of a transfer set is a subset

of the nodes in the transfer set where transfer occurs, such that

1. all nodes for at least one information flow chain in the transfer set are in the

transfer route;

2. any node in the transfer route is part of a subchain from the originating node

to that node where all nodes in the subchain are in the transfer route.

Define pred(n,C) to be the immediate predecessor of node 7 in chain C, i.e., for
C = (uw1,dr,n)...(wicy, diy, mimq) (i, diy m3)... (v, di, my), pred(n;,C) = n;_;. More

formally, we may define a transfer route as follows:

35

Definition: Given a transfer set TS = {4, B, ...}, where |T'S| is the
number of chains in the transfer set, let Nodes(T'S) = Ucers Nodes(C).
A transfer route of T'S is TR = {ty,t,...t;} C Nodes(TS) such that
the following properties hold:

1. 3 an information flow chain C € TS, such that Nodes(C) C TR;

2. Vt; € TR 3 C such that pred(t;,C) € TR

A noden € TRis called a transferring node. A node n € {Nodes(TS)-

TR} is called a non-transferring node.

The set of non-transferring nodes are nodes where transfer does not occur.
Transfer may not occur at a node because transfer has failed along all chains
up to this node and thus the node references no potential failure variables, or
transfer may not occur because while the node references potential failure variables,
computational transfer fails at the node.

A transfer route is associated with a particular transfer set, and hence, also
implicitly defines a set of non-transferring nodes. In addition, a transfer route
associated with a transfer set implicitly defines the set of potential failure variables
at each node. When describing a transfer route we will often explicitly specify some
or all of this information to assist in our discussion.

There may be several transfer routes for a particular transfer set. For a particular
fault at an originating node, execution of a particular test datum, however, executes
at most one transfer route of a transfer set. At transferring nodes in the transfer
route, data dependence transfer and/or control dependence transfer occurs. At
nodes in the transfer route where transfer does not occur, either data dependence
transfer and control dependence transfer fails or has failed at previous points such

that the node references no potential failure variables.

36

Consider again the information flow chains shown in Table 3.3. For the transfer
set consisting of the information flow chains (i,iii,v,vi),there are six different transfer

routes. They are:

1. transfer from X to D at node 3 and transfer from D to BP at node 4 and
transfer from (X and BP) to Y at node 5 and transfer from (X and D and Y)

to Z at node 7 and transfer from Z to output at node 8;

2. transfer from X to D at node 3 and transfer from D to BP at node 4 and do
not transfer from (X and BP) to Y at node 5 and transfer from (X and D)

to Z at node 7 and transfer from Z to output at node 8;

3. transfer from X to D at node 3 and do not transfer from D to BP at node 4
and transfer from X to Y at node 5 and transfer from (X and D and Y) to Z

at node 7 and transfer from Z to output at node 8;

4. transfer from X to D at node 3 and do not transfer from D to BP at node 4
and do not transfer from X to Y at node 5 and transfer from (X and D) to

Z at node 7 and transfer from Z to output at node 8;

5. do not transfer from X to D at node 3 and transfer from X to Y at node 5
and transfer from (X and Y) to Z at node 7 and transfer from Z to output at

node 8

6. do not transfer from X to D at node 3 and do not transfer from X to Y at

node 5 and transfer from X to Z at node 7 and transfer from Z to output at

node 8.

If we return again to the test data shown in Table 3.2 for Figure 3.2, we see that test
datum 2 executes the third of the transfer routes enumerated above. For this test

datum, data dependence transfer occurs at nodes 3,5,7, and 8 and fails at node 4.

37

Interaction occurs at a node when more than one of the variables referenced at
the node is a potential failure variable. While a transfer set defines nodes where
potential interaction occur, a transfer route defines nodes where actual interaction
occurs. For the third transfer route, interaction occurs at node 7 where X, D, and
Y are all potential failure variables. This interaction involves only data dependence
links. Interaction may also occur with control dependence links and data dependence
links in combination. This is the case for the second transfer route, where interaction
occurs at node 5 between BP and X.

In summary, RELAY models the steps involved in a fault causing a failure on

execution of some test datum as follows:

1. Introduction of an original state potential failure at the faulty node, which

involves:

(a) origination of a subexpression potential failure in the smallest expression
containing the faulty code;

(b) computational transfer at the faulty node;

2. Transfer of a state potential failure along a transfer route to output, which

involves:

(a) data dependence transfer and/or control dependence transfer at transfer-

ring nodes;

(b) no transfer at non-transferring nodes.

There are several applications for the RELAY model. One such application is
construction of the condition that guarantees fault detection for some hypothetical
fault. Such an application is outlined in the next section and expanded in subsequent

chapters.

38

3.3 Use of the RELAY Model to Develop Failure Conditions

The RELAY view of faults and failures describes how a particular fault manifests
itself as a failure for a particular test datum. This view is dependent on knowledge
of the faulty and the correct node. To develop a failure condition that guarantees
detection of a fault, we hypothesize about the existence of a fault in some expression
and ask the question “what if this expression should be that?”. We then apply the
RELAY view of how a known fault may cause a failure, to determine how to guarantee
a hypothesized fault causes a failure, if indeed it is a fault. This section outlines our
approach to deriving such conditions. Further details are provided in Chapters 4
and 5.

To derive the condition that guarantees fault detection, we generate the condi-
tion that guarantees origination of a potential failure that transfers until a failure
is detected. This model uses the concepts of origination and transfer to define a
necessary and sufficient condition to guarantee that a failure is revealed. Sufficient
means that if the module is executed on data that satisfies the condition and the
node is faulty, then a failure does occur. Necessary, on the other hand, means that if
a failure does occur, then the module must have been executed on data that satisfies
the condition and the node is faulty.

To begin, we consider an expression in a module being tested and hypothesize the
existence of a fault in that expression. Such a hypothesized fault may be viewed,
like any fault in a module, as a transformation applied to some subexpression.
Associated with a hypothetical fault in a module is an alternate expression that
would be correct if indeed the hypothetical fault were a fault. The module M with

the hypothetically faulty expression replaced by the alternate forms a hypothetically

correct module 5 .

SNote that in previous sections, we have referred to a hypothetical, correct module. There the

39

Definition: Given a module M with Gy = (N, E) and an expression
SEXP in M, a hypothetical fault is a transformation f such that
J(SEXP') = SEXP, where SEXP' is the hypothetically correct
alternate. The module M’ is syntactically identical to M except M’
contains the expression SEXP’, where M contains SEXP. M’ is called
the hypothetically correct module.

We develop the condition to detect a hypothetical fault, if indeed the hypo-
thetical fault is a fault, by guaranteeing an original state potential failure would be
introduced and would then be transferred along some transfer set to output. Turning
first to the introduction of the original state potential failure, we define “origina-
tion conditions”, “computational transfer conditions”, and “original state potential
failure conditions” that are necessary and sufficient to guarantee that origination,
computational transfer or an original state potential failure, respectively, occur.
The definitions provided here are informal; more formal definition are provided in
Chapter 4.

The origination condition guarantees that if the hypothetically faulty node is
executed, then the smallest subexpression containing the hypothetical fault intro-
duces a subexpression potential failure. When the origination condition is infeasible,
then the hypothetically faulty expression is equivalent to the alternate one, and no
fault exists.

To reveal an original state potential failure, a subexpression potential failure
originated at the smallest subexpression containing a hypothetical fault must trans-
fer to effect evaluation of the entire node. A computational transfer condition

guarantees that a subexpression potential failure in an operand transfers to a parent

existence of the module was hypothetical. Here, we refer to a hypothetically correct module where
the correctness of the module is what is hypothetical. As with the hypothetical, correct module,
the hypothetically correct module has an identical program schema to the module being tested.

40

expression. If the computational transfer condition is infeasible, then a subexpres-
sion potential failure cannot transfer to affect evaluation of the parent expression
— thus, op(... EXP...) is equivalent to op(... EXP'...).

To introduce an original state potential failure, in addition to executing the
node, a single test datum must satisfy both the origination condition and the
computational transfer condition at the hypothetically faulty node. The original
state potential failure condition for a hypothetical fault f occurring in SEXP at n
is the conjunction of the origination condition for f in SEX P and the computational
transfer condition for SEXP in n.

To see how these ideas are applied, let us return to the example module shown
in Figure 3.1. Examining node 2, one type of fault that we could hypothesize is an
incorrect reference to the second C. We will hypothesize that perhaps the reference
should be to the constant 1. The hypothetical fault contains just the expression C.
The hypothetically correct alternate is the constant 1. The origination condition
distinguishes between the hypothetically faulty subexpression and the hypothetically
correct alternate. For the hypothetical fault at this location that we are considering,
the origination condition is ¢ # 1.

The originated subexpression potential failure must then computationally trans-
fer through the addition and the multiplication operators. To transfer through
the addition, a test datum must satisfy the condition b + exzp; # b+ exp!, where
EXP, reflects a subexpression potential failure. This condition simplifies to true.
To transfer through the multiplication a test datum must satisfy the condition
Cc * exps # c * expy, where EXP, reflects a subexpression potential failure. This
condition simplifies to ¢ # 0. The computational transfer condition for the entire
node is the conjunction of these two conditions and is simply ¢ # 0. The original
state potential failure condition is the conjunction of the origination condition and

the computational transfer conditions at the node or (¢ # 1) A (c # 0).

41

The original state potential failure condition is defined for a hypothetical fault
independent of where the hypothetically faulty node occurs in the module. The
test data selected, however, must execute the node within the context of the entire
module. Thus, for a hypothetical fault at node n, such test data are restricted to
DOMAIN(n). If the conditions are infeasible within DOMAIN(n), then no original
state potential failure can be introduced and the hypothetical fault is not a fault.
In the example we were just considering, inability to select a test datum such that
c# 0 and ¢ # 1 at node 2 indicates that the reference to C' and a reference to 1 are
equivalent at this location.

In summary, the meaning of the original state potential failure condition is as

follows:

o Execution of the node n on test data that satisfies the condition does not
produce an original state potential failure implies that the hypothetical fault
is not a fault for all test data that could execute the node (the hypothetically

correct alternate then is not correct);

o Execution of the node n on test data that satisfies the condition produces an
original state potential failure implies that the hypothetical fault may be a
fault and requires additional conditions to transfer the state potential failure

to output (as described next) to be satisfied;

o Inability to select test data that executes the hypothetical fault and satisfies
the original state potential failure condition indicates that the module with the
hypothesized fault and the hypothetically correct module are equivalent (the
hypothetical fault is not a fault).

Chapter 4 discusses in more detail the development and application of the original

state potential failure condition.

42

Once an original state potential failure has been introduced, if the node is not an
output node, we know that either some variable has been assigned an incorrect value
or an incorrect branch has been selected (if indeed the hypothetical fault is a fault).
From this point, to guarantee a failure, the state potential failure must transfer
along some information flow chain to output ® . This is unfortunately much more
difficult than perhaps it at first appears. This is because, as seen in the previous
section, along a single path, a state potential failure may be transferring along
several information flow chains. As a result, there may be nodes where multiple
potential failures referenced at the node may mask each other.

To reveal a failure, after an original state potential failure has been introduced, a
state potential failure must transfer along some transfer set. A transfer set condition
is the necessary and sufficient condition that guarantees transfer of a state potential
failure from the originating node, which is the first node in the transfer set, to the
last node in the transfer set, which is a failure node. In order to develop necessary
and sufficient conditions to transfer an original state potential failure to output,
all potential failure variables at each node must be known. Thus, it is necessary
to consider transfer sets when developing the failure condition rather than simply
single information flow chains in isolation.

The transfer set condition consists of the transfer set path condition, which
guarantees execution of all information flow chains in the set, and the disjunction of
transfer route conditions, which guarantee a failure is revealed at the last node in
the transfer set along some transfer route. Recall that a transfer route of a transfer
set is a subset of the nodes in the transfer set and defines one way that potential
failure information may transfer along the chains in the transfer set. It is necessary

to consider combinations of nodes rather than simply considering combinations of

SClearly, if the originating node is an output node, then the original state potential failure
condition is also sufficient to cause a failure.

43

chains because the latter is not sufficient to identify all potential failure variables at
each node. A transfer route condition is constructed using computational transfer
conditions at the transferring nodes and the complement of computational transfer
conditions at the non-transferring nodes.

Consider again the second transfer route for the example module in Figure 3.2,

discussed in the previous section:

e transfer from X to D at node 3 and do not transfer from D to BP at node 4
and transfer from X to Y at node 5 and transfer from (X and D and Y) to Z

at node 7 and transfer from Z to output at node 8.

To construct the transfer route condition, we conjoin the computational transfer
condition from X to D at node 3 with the complement of the computational transfer
condition from D to BP at node 4 with the computational transfer condition from
X to Y at node 5 with the computational transfer condition from X and D and
Y to Z at node 7 with the computational transfer condition from Z to output at
node 8.

Using the components of the original state potential failure condition and a
transfer set condition, we can derive a failure condition that guarantees detection
of a fault along a particular transfer set. A failure condition for a hypothetical
fault occurring in some selected subexpression in a node n along a selected transfer
set is the conjunction of DOMAIN(n), which guarantees execution of the node,
the original state potential failure condition, which guarantees introduction of an
original state potential failure, and the transfer set condition for the transfer set,
which guarantees a state potential failure transfers along the transfer set to output.

Let us summarize the meaning of this condition.

o Incorrect execution on a test datum that satisfies such a failure condition

indicates that the module contains the fault;

44

e Correct execution on a test datum that satisfies such a failure condition implies

that the module does not contain the hypothetical fault for all input;

e Inability to select test data that satisfy such a failure condition implies that
another failure condition be derived for a different transfer set, and test data

selected to satisfy that failure condition.

Note that we could have defined a failure condition for a transfer route rather
than for a transfer set. We have chosen the latter because of the common path
condition component of a transfer set condition for all transfer routes, and because
transfer sets divide the subpaths in a module that go from an originating node to
some failure node into disjoint sets. This property is discussed more in Chapter 5.

When we cannot select test data to satisfy a failure condition for a particular
transfer set, we must consider and construct another failure condition for a different
transfer set. All failure conditions for a particular hypothesized fault at a node
will have DOMAIN (n) and the original state potential failure condition in common.
The failure conditions will differ only in the transfer set condition.

The total failure condition is the necessary and sufficient condition to reveal a
failure for a particular hypothesized fault in a module. It is the disjunction of failure
conditions for all transfer sets from an originating node to all output nodes. The

meaning of this condition is as follows:

o Ability to satisfy this condition provides the same information as for a failure

condition just discussed;

o Inability to satisfy the total failure condition means that we are unable to satisfy
the failure condition for any transfer set from the originating node to a failure
node. In this case, the module being tested is equivalent to the hypothetically
correct module, and the hypothetical fault is not a fault.

45

In the next chapter, we demonstrate the comstruction of the original state
potential failure condition. Chapter 5 presents the construction of the transfer

route condition.

CHAPTER 4

ORIGINAL STATE POTENTIAL FAILURE CONDITION

A failure condition guarantees fault detection along a selected transfer set and
is composed of the original state potential failure condition and the transfer set
condition. This chapter expands and formalizes the development of the original
state potential failure condition.

The original state potential failure condition for a fault guarantees that exe-
cution of the faulty node would introduce an original state potential failure and is
composed of the origination condition for the fault and the computational transfer
condition required by the node. The origination condition guarantees introduction of
a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>