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1 Introduction

A classical problem in the control of queues arises when routing decisions have to be taken for
customers that arrive in front of a system which consists of a number of parallel queues with
identical ezponential servers. If the queue lengths are observed, then the intuitive ‘Join the
Shortest Queue’ (SQ) policy has been shown to be optimal with respect to various performance
measures, such as throughput and delay, several times in the literature. The optimality of the
SQ policy was first established by Winston in [14]. He proved that, in a purely Markovian
system with infinite capacities, the SQ policy minimizes the discounted number of jobs that
complete service by a certain time.

Weber [12], Ephremides et al. [4], and Walrand [11] extended Winston’s results to systems
with general interarrival time distributions. In particular, Walrand also provided a strong and
comprehensive stochastic ordering framework which can treat consistently different versions of
the problem. Menich [8] established the optimality of the SQ policy in systems with state-
dependent service rates and Poisson arrivals by means of the standard uniformization method,
which is used to convert a continuous time model into a discrete time one. A similar approach
was used by Johri [6]. Whitt [13] called attention on the exponentiality assumption regarding
the service times and presented counterexamples to demonstrate that there exist service time
disrtibutions for which it is not always optimal to join the shortest queue. All the above authors
considered systems consisting of queues with infinite buffer capacity. The optimality of the SQ
policy was extended to finite capacity queueing systems in [5, 10]. Specifically, it was shown
that the optimal policy always routes an incoming customer to the queue with the smallest
queue length that is not at capacity. The approach in [5] was to use dynamic programming
for optimization, whereas in [10] the analysis involved sample path comparisons of state and
performance descriptors, based on the weak majorization of the joint queue lengths.

In this paper, we study systems, in which service times are exponentially distributed, but
service rates can be state-dependent. This implies that servers may operate at different rates,
depending on the number of customers in the queue. In particular, we assume that service
rates are non-decreasing with respect to queue lengths and can be described by either concave
or convex functions. Note that although concave functions are more frequently encountered in
practice, convex functions are also reasonable to describe the behavior of finite capacity systems
in which service rates are bounded from above by the rate that corresponds to the total system
capacity. We establish the extremal properties of the Shortest Non-full Queue (SNQ) and the
Longest Non-full Queue (LNQ) policies. Under the latter policy, a customer is routed to the
queue that contains the most customers and is not at capacity. In particular, we show that
the SNQ policy provides the best and worst performance in systems with unequal capacities
and service rates that are respectively concave and convex functions of the queue lengths. On
the other hand, the LNQ policy provides the best and worst performance when service rates
are respectively convex and concave functions of the queue lengths, provided that all queue
capacities are equal. Interestingly, the LNQ policy does not maintain these extremal properties
when the queue capacities are unequal due to trade-offs that will be discussed later in the paper.
The performance metrics we study include the number of jobs that are present in the system



at any time ¢ as well as the total number of jobs that are rejected by t.

Our analysis is based on the weak majorization of joint queue lengths under different policies
for a single sample path. Specifically, we use weak submajorization and weak supermajorization
which respectively lead to weak Schur-convez and weak Schur-concave orderings between the
joint queue lengths under an extremal policy and any other dynamic policy. These orderings are
defined via weak Schur-concave/convex functions. This paper completely departs from [10] and
the previous literature in the way service completion events are handled. Our new arguments
include the aggregation of service rates in individual systems, the coupling of service completion
events between different systems by use of the max-operation on the individual aggregate service
rates and the proper use of the preservation property of majorization under convex or concave
functional operators. Moreover, in the case of the LNQ policy, we need to make use of the fact
that all capacities should be equal in order to establish the policy’s extremal properties. Some
new arguments are introduced for this purpose.

Finally, we study the optimal buffer allocation problem. We show that when service rates are
concave, then for a given total buffer capacity, the optimal allocation scheme is the one in which
the difference between the maximum and minimum queue capacities is minimized, i.e., becomes
either 0 or 1. On the other hand, when service rates are convex, it is optimal to allocate all
available buffers to one queue, leaving only one buffer, that accommodates the customer in the
server, to each of the remaining queues. Clearly, these two schemes are ‘extremal’ in the sense
of balancing the number of buffers that are assigned to different queues.

The paper is organized as follows. In section 2 we define weak majorization and related order-
ings, and present some preliminary results. In section 3 we establish the extremal properties of
SNQ and LNQ policies in systems with concave service rates. Section 4 contains systems with
convex service rates and provides similar properties. The buffer allocation problem is treated
in section 5. Finally, some extensions are discussed in section 6.

2 Weak majorizations and related orderings

In this section, we present the mathematical framework on which our analysis will be based
and obtain some preliminary results. Some of the material used here can be found in [7].
Let N,M € INX  IN = {0,1,2,...}, be two arbitrary K-dimensional, integer-valued vectors.
We introduce the notation N to denote the k-th largest element in vector N and define the
following dominance relations.

Definition 1 For any two vectors N,M we say that N weakly submajorizes M (or, N weakly
magjorizes M from below) (written M <, N) if

k k
ZﬁiZZMh k:l,"',K.

=1 i=1



For instance, if N = (5,0,3,3,1),M = (4,1,2,2,3) we write M <, N
Remark. Whenever N and M further satisfy the relation

K K
YN =Y M
i=1 =1
then N is said to majorize M. In this case we write, M < N. The reader is referred to (7] for
further details on this relation.

Definition 2 For any two vectors N,M we say that N weakly supermajorizes M (or, N weakly
majorizes M from above) (written M <¥ N) if

K . K .
ZN,'SZM;, k=1,.--,K.

i=k i=k

Remark. The definitions of majorization and weak majorization are not restricted to vectors
whose components are non-negative integers. However, we have presented them as such as our
usage of these comparisons is restricted solely to such vectors.

Only weak submajorization was used in the context of routing problems before. Specifically, it
was used by Walrand [11] and Menich [8] for showing the optimality of the shortest queue (SQ)
policy in an infinite capacity system. It has also been used in [9] to show the optimality of certain
classes of longest queue policies in the context of a network flow control problem. Finally, it
was used in [10] to show the optimality of the Shortest Non-full Queue (SNQ) policy in a finite
capacity system. In this paper, we study both weak submajorization and supermajorization;
we analyze preservation properties that are important from a queueing perspective, i.e., the
preservation of majorization under arrival or departure operators, and introduce the associated
stochastic orderings. We begin by defining the following operators.

Operator A: Let AxN denote the vector that adds a unit quantity to the k-th largest element
of N.

Operator D: Let DiN denote the vector that results by subtracting a unit quantity from the
k-th largest element of N; if N = 0 then we set DN = N.

We denote the I-th largest element in AxN, DN by (A,N ),, (D‘:N ); respectively. Note that
it is not necessarily true that (D,,N),c = (N,c -1,0)*, or, (AkN),c = Nk + 1. For instance, if

= (3,3,3) then D,N = (3,3,2), where (DzN)2 = N, rather than (DZN)2 = Nz — 1. When
the vector N represents queue lengths, the two operators, A and D, correspond to arrivals and
service completions respectively.

We now state some conditions under which the relations ‘<,,’ and ‘<™’ are preserved with
respect to either A or D, in the following lemmas.

Lemma 1 For any two vectors N,M € INX such that M <,, N it follows,
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Figure 1: Index ordering for Lemma 2.

1. AfM <, AN, g< f, g, f€{1,...,K}

2. DM <, DN, g> f, g,f€{1,...,K}

8. M <y D,N, for Yo, M; <Y} N,VI>g, g,l€{1,...,K}
4 DM <, N, fe{l,...,K}

Proof: Properties 1,2 follows from Lemma 1 in [10]. Properties 3,4 follow easily from the
definition of ‘<,,’. [ |

Lemma 2 For any two vectors N,M € INK such that M <* N it follows,

1. A;AM <* AN, g< f, 9,.f€{1,...,K}

2. DM <* D,N, ¢>f, 9,f€{1,...,K}

3. DIM <* N, for 2K, M; > YK, Nvi<f, fle{l,...,K}
4. M < D,N, ge{1,...,K}

Proof: We prove part 1. Then part 2 can be proved in a similar way. Let g* = min{i : NV,
Ng,z < g}; likewise, let f* = min{i: M; = M;,i < f}. It follows,

K K K
S (AM), =Y M +1,1< 5 Y (45M), ZM,,t>f
i=l 1=l i=l i=l

Likewise,
K

K
3 (4, N), 2N+11<g,Z(A’T\I ZN,,l>g
i=l

i=l i=l 1=l
Due to the above equations if g* < f* it immediately follows that A;M <* A N. Now assume,
g* > f* (see Figure 1). Clearly, it suffices to prove that,



K . K R
DM;>Y Ny I=f+1,...,9" (1)

i=| i=l
Proceed by contradiction assuming that

K K

S it = 3 A, ()

i=l i=l
for some ! € {,f"' +1,...,9°}. Since X, | M; > TK, | N;, it is implied by (2) that M;_, >
Ni_,. Since N; < N, 1< Mj_y = M; fori = 1-1,. A — 1 it follows that N; < M; for
i=1-1,...,9" - 1. Inpartlcular,N < Ngpy < N; 1< My, = Mg,whlchlmphes
Ny < M. Hence Z‘_,M > 2,_, N;, which due to (2) implies, Zg +1M < Zg +1N if
9"+ 1 < K. This contradicts our hypothe51s M < N. If g*(= g) = K then N; < M; for

i=1-1,...,K -1and Ng < Mg. Thus, "X, N; < K, M;, which contradicts (2) and the
proof is complete

Part 3 is proved as follows. Define f' = max{i: M; = M #,t> f}. It follows,

K K

K
S (D;M), ZM,, I<f; Y (OM), =Y Mi-1,1> .

i=] i=l i=! 1=l

Due to the above and our hypothesis Z{il M; > Z,-Ii, N;, V1 < f it suffices to show that

K ) K )
SM; S Ny l=f+1,...,f, f f'>f.

i=l i=l
Proceeding by contradiction assume that

K K

=) N (3)

=l =l

for somel € {f+1,..., f'}. In particular, let ! be the minimum such integer in {f +1,..., f'},
ie., Z,_, L M; > E,_, 1 ;. This implies that M;_, > Ny_,. Since M; = M;_, > Ni_, > N,

(3) implies that YK, aMi< X, +1 Vi if I < K which contradicts our hypothesis M <* N.
Ifl = K then ) i ) ) ) )
Mg = Mg_1 = Mi_y > Ni_; = Ng_y > Nk,

which contradicts (3).
Finally, part 4 follows easily from the definition of ‘<¥’.

We now define functions associated with weak majorizations.



Definition 3 A function ¢ : INX — IR is said to be a weak Schur-convez function iff
M <, N = ¢(M) < ¢(N), YM, N e INX,
Examples of weak Schur-convex functions include YK ; f(Ny), for all convex f (e.g., K., Ni)
and maxy Np.
Definition 4 A function ¢ : INX — IR is said to be a weak Schur-concave function iff
M <¥ N = (M) > ¢(N), YM,N ¢ WX,
The above introduced functions are related to the classes of Shur-convez and Shur-concave

functions, that have been already studied in the literature (see [7] for definitions and references).
These relations are described in the following lemma.

Lemma 3 Consider a function ¢ : INK — IR.

1. ¢ is weak Schur-convez iff ¢ is non-decreasing and Shur-convez.

2. ¢ is weak Schur-concave tff ¢ is non-decreasing and Shur-concave.

Proof: 1 follows from the first part of Theorem 3.A.8. in [7]. 2 follows from the second part
of the same theorem and the fact that v is Shur-concave iff —1 is Shur-convex. ]

Next, we define stochastic orderings among random vectors that are related to weak majoriza-
tions.

Definition 5 If N and M are random vectors of dimension K, we say that N is larger than
M in the sense of weak Schur-convez order (written M <yoce N) iff

E[¢(M)] < E[¢(N)], for all weak Schur-convez functions ¢
Remark. In the case that K = 1, this reduces to the standard stochastic ordering among real-

valued random variables (r.v.’s), i.e., for r.v.’s X and Y we write Y <, X iff Pr(X < 2) <
Pr(Y < z),z € IR.

Definition 8 If N and M are random vectors of dimension K, we say that N is larger than
M in the sense of weak Schur-concave order (written M <ypeo N) iff

E[$(M)] > E[$(N))], for all weak Schur-concave functions



In concluding this section, we give sufficient conditions that involve the preservation of ma-
jorizations. These are due to Theorem 5.A.1. in [7].

Lemma 4 Consider a function f : IR — IR.

1. If f is convez, then

M <N = (f(My),..., f(Mk)) <w (f(N1), ..., f(Nk))

2. If f is concave, then

M <N = (f(M),..., f(Mk)) <* (f(N1),..., f(Nk))

3 Extremal properties in systems with non-decreasing con-
cave service rates

We consider a system of K queues, each with its own server, labelled k = 1,2,- -y K, which
are fed by a smgle arrival stream. We assume that queues may have unequal, ﬁmte capacities.
Let 0 < a; <:-- < an < --- be the sequence of arrival times, i.e., the n-th job arrives at time
a,, and let {‘r,,}n=1 denote the interarrival times, 1, = a, — a,,_l, n=12..., a9 =0. The
customers arrive at a controller which routes them to the different queues. We assume that
the service times at each queue are i.i.d. exponential r.v.’s independent of the arrival times as
well as the decisions made by the controller. Furthermore, we also assume that service rates
in different queues are all equal. However, service rates in each queue can be state-dependent.
We assume that service rates are non-decreasing and concave with respect to the number of
customers in the queue.

We consider a class of routing policies, ¥, that have instantaneous queue length information
available to them and that are required to route jobs to some queue that has available space,
if one exists. Define SNQ to be the policy that always routes a job to the non-full queue with
the least number of jobs. In case of a tie, any rule can be used to choose the destination queue.
Note, however, that since queues with equal lengths may have unequal residual capacities, the
controller may have to choose among a set of distinct queues in case of a tie. As a result of
this, we define Xsyq to be the class of all feasible SNQ policies. Clearly, Xsyg C .

Let N"(¢) = (N{(t),---, NE(t)) denote the joint queue lengths at time ¢ > 0 under policy
7 € X. Let L™(¢) denote the number of jobs lost due to buffer overflow under policy 7 by time
t. Further, let u(N7(t)) denote the service rate in the i-th largest queue at time ¢, i = 1,.--,K.
In this sectlon, we assume that y is a non-decreasmg and concave function, g : IN — IR Note
that p(N7(t)) = p.(N"(t)) whenever N7 (t) = N"'(t), # j. Finally, let r™(t) = TK, p(N7(¢)).

8



For any two policies 7 € X, v € Zsnq let A™ and A be arrival operators under , v respectively.
For instance, if an arrival occurs at time ¢ and the system’s state is N™(¢) under policy =, then
state ATN™(¢) will be reached after the customer is routed to its appropriate queue, as induced
by w. The following result is a consequence of Theorem 2 in [10].

Lemma 5 If N7(t) <, N™(t) and an arrival occurs at time t both under v and m,then
ATN7(t) <y ATNT(2) (4)

Jorallme X, vy € Xsng, t 2 0.

Inherent in the proof of the above lemma is the difficulty of making sample path comparisons
between systems that employ different routing policies when the queue capacities in each system
are unequal. Lemma 5 is used in the theorem that follows, since the presence of state-dependent
service rates does not change the behavior of a policy 7 in L gy at the occurrence of an arrival
event. This theorem proves that under any policy ¥ in sy the number of jobs that are
rejected by any time ¢ is minimized (in a stochastic sense). Moreover, the vector N™(t) is
shown to be larger than N7(t) in the sense of weak Schur-convex order, for any = € X and all
times ¢{. Based on this last result, one can immediately conclude that the total number of jobs
present in the system at any time ¢ is minimized under the SNQ policy.

Theorem 1

LT(t) Sat Lw(t)i (5)
N(t) Swaee N7(2). (6)

Jorallm € X, v € Bsng, t > 0 provided that N™(0) =, N7(0).

Proof. We condition on the arrival times, service times, and initial queue lengths. The proof is
by induction on event times (i.e., arrival times or departure times), o = 0,1, 2, - - . Specifically,
we will show that

') < L), (M)
N(t) =<w N7(2). (8)

on the given sample path. We consider L™(0) = L7(0) = 0. Further, we can take initial queue
lengths such that N™(0) = N7(0). Although capital letters are usually reserved to denote
random variables within the proof of the theorem, as well as within all proofs to follow, they
also indicate the values of the variables at specific time instants on a single sample path.

To carry on a forward induction, we couple arrival and service times in the two systems. In
particular, we couple service completion events as follows. After an event has occurred, say
at time ¢, we randomly draw a real number ¢; from the interval (0, max(r7(t), »"(t))] and also
schedule a service completion event to occur after some time s, according to an underlying

9



exponential distribution with parameter max(r7(t), 7™(t)). We let ¢ + s, be the time of the next
service completion event at the [-th largest queue under v, if

-1 4
Do HNT(1) < 6 <Y n(N] (1)), (9)
i=1 i=1

for somel € {1,---, K'}. Likewise, we let £+ s; be the time of the next service completion event
at the I-th largest queue under =, if

-1 l

Do u(NF(2) < ¢ < n(NF(2)), (10)
=1 =1

for some I € {1,---, K}. By convention we set 30, p(N%(t)) = 0, h € {y,7}. This coupling

on the service completion epochs is allowed since

1. we can aggregate service rates in each system due to the fact that individual service times
in the queues are exponentially distributed, and

2. exponential aggregate rates enable us to have the next service completion event in the
system with the smaller aggregate rate (i.e., min(r7(t), 7™(t))) occur at the same time at
which the next service completion event occurs in the system with the larger rate, with

probability ;’:’:{:1 tt);:(;)). This is equivalent to the above procedure.

Basis step. By the statement of the theorem, the relations hold for ¢t = t,.

Inductive step. Assume that the relations hold up through t = t,. Clearly they hold for
th <t <tny1. Fort =t,4, we consider the following two cases.

Case 1. Arrival. Suppose that the next event on the observed sample path is an arrival of
a customer. Clearly, the inductive hypothesis Y/C, N7(t,) > X N(t,) guarantees that
L™(tn41) 2 L™(tn+1). Hence, (7) holds at tn41. As to equation (8), it follows at time t,,, by
the inductive hypothesis and Lemma 5.

Case 2. Service completion. Suppose that the next event on the given sample path is a
completion under both or exactly one of the two policies. Equation (7) follows easily at ¢,
since,

L™ (tns1) = L7(tn) 2 L7(tn) = L"(tns1).

As to equation (8), we consider the following cases.

2.1. Service completion under v only.
In this case (8) follows easily at ¢,41, due to the inductive hypothesis and part 4 of Lemma 1.

2.2. Service completion under m only.
Suppose a service completion occurs at the k-th largest queue under 7 only. Then for all I > k
it follows,

l k K l
DouAI(8a) 2 D (N7 () = ben > Y (N7 (tn)) > D u(N7(tn)), (11)
=1 i=1

i=1 i=1
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Figure 2: Index ordering for Theorem 2.

where the middle inequalities are induced by the way we schedule service completions (see (9)
and (10)). Therefore,

1 l
D N7 (t) > 3 NI (ta), VI K, (12)
i=1 i=1

because, if instead Yi_; N7 (tn) = Sboy N7 (tn), then (N (tn), . . ., N (ta)=(NT (), - - . N (E0)),
which along with part 2 of Lemma 4 implies 3}_; p(N7(ta)) < 4, #(N7(t,)). This contra-
dicts (11). Therefore, (12) holds and along with part 3 of Lemma 1 implies (8) at ,;.

2.8. Service completion under both policies.

Suppose that the next service completion occurs at the f-th largest queue under 4 and the
g-th largest queue under 7. If g > f then (8) follows easily at time t,,; due to the inductive
hypothesis and part 2 of Lemma 1. Next, assume g < f. Let, f* = max{j > f: N;(t,,) =

ﬁ}(tn)} and likewise ¢g* = max{j > g: N;’(tn) = ﬁ;(tn)}. It is seen that,

] { { l
DN (i) = DNt U< £ Y N (tn) = 3 B (ta) — 1,1 > f~. (13)
i=1 i=1 =1 i=1
Likewise,

l l l l
ZN{(tn-l-l) = ZNiR(tn):l < g% ZNI(th) = Zﬁf(tn) -Li>g" (14)
i=1 i=1 i=1 i=1
Due to the above two equations, if f* < g* it immediately follows that N7(tnt1) <w N™(tny1).
We now consider the case f* > g* (see Figure 2). Clearly, due to (13) and (14) it suffices to
prove the following strict inequality,

l i
DNT(tn) > Y N(tn), l=g,---,F — 1. (15)
i=1 i=1
First, we prove that,
l l
Y AT(tn)> Y N (t), =g, o, f~ 1. (16)
i=1 i=1

11



We proceed by contradiction. Assume that !_, N7 (ta) = iy N7 (tn), for somel € {g,---, f—
1}. Then, by using Lemma 4 as in case 2.2 it follows,

1 l
D B(NT(ta)) < 3 (B (tn)). (17)
i=1 i=1

Moreover, by the fact that the service completion occurs at the g-th and f-th largest queue
under 7 and 1 respectively, and g < I < f, we get, Yi_; p(N7(tn)) > ¢r, > Shey p(N7(t0))
which contadicts (17). Thus, (16) holds for I € {g,---, f — 1}.

Note that in case f = f*, (16) yields (15) immediately. Next, we assume that f* > f and prove
(15) for I = f,---, f* — 1. Again, assume that,

i l
2 NT(tn) = YO N7 (ta), (18)

i=1 i=1

for some I € {f,---,f* — 1}. In particular, consider ! to be the minimum such integer
in {f,---,f* = 1}. Thus, 312} N7(t.) > Si2} N7 (tn), which combined with (18) implies,
N[ (ta) < NJ'(t,). Since, NJ(t,) > N7 (tn) and N;'(t,) = N (tn), we get, NEL(ta) <
N}, (ts). This, combined with (18), implies, 3411 N7 (t,) < Y1 N7(t,), which contradicts
our induction hypothesis. Thus, (15) holds for I = f, ..., f*.

Removal of the conditioning on arrival times and service times completes the theorem. |

It is noteworthy that the SNQ policy minimizes the expected number of jobs that are present
in the system at any time instant ¢, while minimizing the total number of jobs that are rejected
by t. Moreover, the SNQ policy is both individually and socially optimal (e.g., [1]). Specifically,
the SNQ policy is optimal for any incoming customer, in the sense of minimizing its individual
expected waiting time; and at the same time, it is socially optimal, in the sense of minimizing
a total cost function (see below) to which not all customers contribute the same.

Next, define a cost function of the form
Vin) = E [ /0 ” e~ g(N™(£))dt|N(0) = n]
+E [ /0 ” e PH(L™(t) — L™(¢7))dt|N(0) = n] (19)

for any weak Schur-convex function ¢, a,# > 0,n € {0,---, B}¥, and 7 € . Note that VI (n)
is a Shur-convex function in n. Here, the first term accounts for a-discounted holding costs for
jobs that are buffered in the system, whereas the second term accounts for B-discounted loss
penalties for jobs that are rejected. Holding costs are appropriate to express both throughput
and delay in systems with infinite queues. However, in finite capacity systems it is possible that
a policy which minimizes holding costs will, in fact, maximize the mean delay if it sufficiently
decreases the throughput (i.e., the number of customers that are not rejected). Interestingly, the

12



SNQ policy minimizes both holding and blocking costs. The discounting factors e=*¢, e~A* above
guarantee that the cost function is well defined over an infinite horizon (see [2] for example).
We assume that the sequence {n}32, is non-ezplosive (see [3], chapter 2). The optimality of
the SNQ policy is established in the following corollary.

Corollary 1 Any policy v € Zsnq minimizes the cost function in (19) over all policies in .

Proof. The proof follows from the definition of <,¢, <wsez, and Theorem 1. |

In the remainder of this section, we restrict attention to systems in which all queues have equal
capacities. Let C' be the capacity of a single queue. Define the Longest Non-full Queue (LNQ)
policy to be the policy that always routes a job to the non-full queue that contains the most jobs.
We prove that LNQ provides the worst performance over all policies in £. Note, however, that
in systems with unequal capacities, the LNQ policy does not preserve this extremal property.
Specifically, in that case there exists a trade-off between routing to the queue with the longest
queue length and routing to some other queue with fewer jobs but larger capacity. This latter
policy will increase the chance of filling up the queue with the larger capacity at a future time;
therefore, it provides the potential for performing worse than the LNQ policy. Note that since
all queues have equal capacities, there is no need to define a class of LNQ policies. In the case
of SNQ policies, in systems with unequal capacities, this need was necessitated by the fact that
queues with the same queue length may have unequal residual capacities.

Theorem 2

L7(t) <a LMNQ), (20)
N™(t) <weee NEVQ(1), (21)

for allw € I, t > 0, provided that all queue capacities are equal, and N™(0) =,, NIV Q(0).

Proof. We condition on the arrival times, service times, and initial queue lengths, and couple
the event times as in Theorem 1. The proof is by induction on event times (i.e., arrival times
or departure times), ¢o = 0,;,23, - - -. Specifically, we show that

I™(t) < L*e(), (22)
N™(t) < NENQ(y), (23)

on the given sample path. We consider L™(0) = LE¥Q(0) = 0. Further, we can take initial
queue lengths such that N™(0) = N(0).

Basis step. By the statement of the theorem, the relations hold for ¢ = to.

Inductive step. Assume that the relations hold up through ¢ = t,. Clearly they hold for
th <t <itpyy. Fort =t,y; we consider the following two cases.
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Case 1. Arrival. Suppose that the next event is an arrival of a customer at the f-th largest
and g-th largest queue under # and LNQ respectively. Clearly, the inductive hypothesis
YK, NrF(t,) < TK, NiLNQ(t,,) guarantees that L™(tny1) < LEN¥9(t,41). Hence, (22) holds
at tn41. As to equation (23), it follows immediately at time ¢,,;7 by part 1 of Lemma 1 if g < f.
If g > f then define f* = min{i < f: N7(t,) = ﬁ}’(tn)} and ¢* = min{i < g : NFV9(t,) =
NEI’NQ(t,,)}. It is seen that,

! ! ! !
Y NI (b)) =D N"(ta), 1< 55 Y NF(tng1) =Y N"(ta) + 1, 1 > f~.
i=1

i=1 i=1 i=1

Likewise,

! ! ! :
ZNiLNQ(tn+1) = ENLNQ(tn): l< !1*3 ZNiLNq(tn-l-l) = ZJVLNQ(t") +1, 12 g*'

i=1 i=1 i=1 i=1

Clearly, if f* > g* (23) holds at ¢,4;. If now g* > f* it suffices to prove that

l !
SONF(ta) < YNVt 1=, 0 - 1.
=1 =1

This follows easily since Yi_; N7 (t,) < IC (N}'.(tn) < C)and %_, NFY9(t,) = IC for all
le {f*)"')g*_ 1}'

Case 2. Service completion. The case of a service completion is handled exactly as in Theorem
1.

Removal of the conditioning on arrival times and service times completes the theorem. |

Thus, the LNQ policy provides the worst performance in the following sense.

Corollary 2 The LNQ policy mazimizes the cost function tn (19) over all policies in T when
all queue capacities are equal.

4 Extremal properties in systems with non-decreasing convex
service rates

In this section, we consider systems with non-decreasing convexz state-dependent service rates.
Again, we restrict our attention to systems in which all queues have equal capacities, given by
C. We let * denote the class of feasible routing policies in this system. The main result of
this section states that the LNQ policy provides the best performance over ¥, whereas the
SNQ policy provides the worst. Note, however, that in systems with unequal capacities the
LNQ policy does not maintain this optimality property. Specifically, in that case there exists
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a trade-off between routing to the queue with the most jobs and routing to some other queue
with fewer jobs but larger capacity. This latter policy will increase the chance of filling up the
queue with the larger capacity at a future time; therefore, it may perform better than the LNQ
policy.

Theorem 3

L™(t) 2. LMV, (24)
N™(t) <wsew NINQ(2). (25)

for all # € %, t > 0 provided that all queues have equal capacities and N™(0) =,, NEVQ(0).

Proof. We use the same sample path approach as in Theorems 1 and 2 and prove by induction
that on a single sample path the following relations hold.

(t) > L*M9), (26)
N7(t) <* NINQ(). (27)

As before, we establish the above relations at time t,,41 assuming they hold at time ¢,, where
tn,tns+1 are two consecutive event times on the considered sample path. In particular, af-
ter an event has occurred at time ¢, we randomly draw a real number 3, from the interval
(0, max(r™(t),»’N9(t))] and also schedule a service completion event to occur after some time
8¢, which is exponentially distributed with a parameter equal to max(r™(t),»Z¥9(t)). More-
over, we let the next service completion event occur at the l-th largest queue under policy
h=m,LNQ,if XK, u(NF2)) > ¢ > TK, 11 w(NV(t)), for some I € {1,---,K}. By conven-
tion we set Y5 g1 u(NB(t)) =0, h =7, LNQ.

We consider the following two cases.

Case 1. Arrival. Suppose that the next event on the observed sample path is an arrival of a
customer at the f-th largest and g-th largest queue under # and LN @ respectively. Equation
(26) holds at ¢,41 as in case 1 of Theorems 1, 2. As to equation (27), it follows immediately at
time t,41 by part 1 of Lemma 2 if g < f. If ¢ > f then as in Lemma 2 it suffices to prove that

K K
S ONF(ta) > YN, 1= 41,97, f <y, (28)
i=l i=l
where f*,g* are defined as in Lemma 2. Note that
i . l
Y NF(t) <10 =Y NOt,), 1= £, 97 -1, (29)
i=1 i=1
since ﬂ}’.(tn) < C. Then by the inductive hypothesis -5, N7(t.) > T X, N¥9(t,) and (29),
(28) follows.
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Case 2. Service completion. Suppose that the next event on the given sample path is a
completion under both or exactly one of the two policies. Equation (26) follows easily at ¢,
as in case 2 of Theorem 1. As to equation (27) we consider the following cases.

2.1. Service completion under LNQ only.
In this case (27) follows easily at ¢,;1 due to the inductive hypothesis and part 4 of Lemma 2.

2.2. Service completion under w only.

Suppose a service completion occurs at the k-th largest queue under 7 only. Then VI < kit
follows,

K . K . K N K R
DM (ta)) 2 Y B(NE (1)) 2 tr, > D p(WE9(ta)) > 3 w(FEVQ(,)),  (30)

i=l i=k i=1 i=l

where the middle inequalities are induced by the way we schedule service completions, given
¥t,. Therefore,

K K
Y NI(ta) > Y NEVO(), Vi <k, (31)
i=l i=l
because, if instead of (31) K, NF(t.) = LK, N/V9(t,), then (N7 (tn), ..., Nx(t,)) <
(Nt . . ., N(ta)EN?), which along with part 1 of Lemma 4 implies K w(NE(,)) <
X p(IViI‘NQ(tn)). This contradicts (30). Thus, (31) holds and along with part 3 of Lemma 2
implies (27) at ¢,41. Note that (30) and (31) are the dual of (11) and (12) in Theorem 1.

2.3. Service completion under both policies.

Suppose that the next service completion occurs at the f-th largest queue under 7 and the g-th
largest queue under LNQ. If g > f then (27) follows easily at time £, due to the inductive
hypothesis and part 2 of Lemma 2. Next, assume g < f. Arguments similar to those in case
2.3 of Theorem 1 suffice to prove

K K
YNt > YN, 1=g7 41, f, (32)

i=l i=l

where f*,g* are defined as in case 2.3, Theorem 1. This is the dual of (15). The rest of the
proof involves arguments similar to those in case 2.3 of Theorem 1.

Removal of the conditioning on arrival times and service times completes the theorem. ]

Now, define a cost function of the form
Jim) = B[ e tp(NT(e)dN(0) = n
+E [ fo ” eBH(L7(t) — L™(¢7))dt|N(0) = n] (33)

for any weak Schur-concave function ¥, @, > 0, n € {0,---, B}X, and = € 3~

The optimality of the LNQ policy is shown in the following corollary.
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Corollary 3 The LNQ policy minimizes the cost function in (33) over all policies in T* when
all queue capacities are equal.

Similarly to Theorem 2, we can show that any policy 7 € X5y provides the worst performance.
We define L5y to represent the class of SNQ policies in systems with non-decreasing, convex
service rates. The proofs of the following Theorem and corollary are omitted since they use
arguments very similar to those described in detail before.

Theorem 4

L"(t) <« L7(1), (34)
N(t) Swsew NT(2). (35)

for all ® € £*, 7 € T5nq, t > 0 provided that all queues have equal capacities, and N™(0) =,
N7(0).

Corollary 4 Any policy ¥ € Tgnq mazimizes the cost function in (33) over all policies in L*
when all queue capacilies are equal.

It can be shown that, in fact, any policy ¥ € Z5yo provides the worst performance, even if
queue capacities are not equal. This involves some additional algebraic arguments similar to
those used in Lemma 3 and Theorem 2 in [10].

5 The optimal buffer allocation problem

A related problem is to determine the optimal allocation of B buffers to K parallel queues
(B > K). Any feasible allocation scheme defines a system in which there exist a number of
different routing policies that can be employed. Thus, our objective becomes to

1. specify the optimal routing policy in the buffer allocation scheme which we expect to
perform optimally, and

2. show that under this policy the system defined by the optimal scheme does, indeed,
outperform any other system that may be defined by a different scheme and may employ
a different policy.

In case of systems with concave service rates, we can take advantage of the fact that the opti-
mal routing policy (SNQ) has been already determined, in order to specify a unique allocation
scheme, which is optimal in the sense of minimizing (19). The problem becomes more com-
plicated when service rates are convex. In this case the optimal policy is not known, except
when all capacities are equal. We show later in this section that when all buffers are assigned
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to a single queue, the LNQ policy is optimal and this allocation scheme provides the best
performance.

Let B = (By, -, Bx) be an allocation scheme such that Y% | B; = B, B; > 1 forall i = 1,.,K.

Let
K

B={B=(B:,--,Bx) : ) Bx=B,B;>Biy; >1,i=1,---,K - 1} (36)
k=1

denote the class of all feasible allocation schemes.

Define the scheme B° = (BY,- -, B%) such that

B? =

3

|B/K|+1, BmodK #0,i=1,.., BmodK, (37)
|B/K|, otherwise,

i.e., the B;’s can differ by one at most. We show that B° is the optimal allocation scheme
provided that service rates are non-decreasing and concave. We begin the analysis in this
section with a preliminary lemma.

Lemma 6

B°<B, VBeB

Proof. Follows from the definition of B° and “<”. [ ]

Next, we only consider systems that employ optimal policies. We modify our earlier notation
so that whenever we are interested in the behavior of a system under the optimal policy, when
the buffer allocation is determined by some scheme B® € B, we will use the superscript of B
and write Lb(t), N®(t). The following result is a consequence of Lemma 5 in [10].

Lemma 7 For any two allocation schemes B, B? € B, with B> < B!, it follows
N2(t) <w N'(t) = ASNON?(¢t) <, ASVON(t)

t>0.

Now the next result follows easily.

Theorem 5 If B2 < B!, then

I*(t) <a I'(D) (38)
N%(t) <wsez N(t) (39)

for all B}, B? € B, t > 0 provided that service rates are non-decreasing and concave, and
N2(0) =, N(0).
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Proof. The proof is similar to that of Theorem 1. In particular, arrival events can be treated
easily due to Lemma 7. [ |

As a result of Lemma 6 and Theorem 5, we conclude that the buffer allocation scheme B®
provides the optimum performance in the following sense.

Corollary 5 B° minimizes the cost function in (19) over the class B when service rates are
non-decreasing and concave.

Now, define the scheme B® = (B, ..., BZ) such that

BO = B-K+1, i=1,
i T 1 otherwise.

(40)

Implicit in the above definition is the assumption that at least one buffer has to be allocated
to each server. In other words, we assume that servers must occupy one buffer. We show that
the above scheme B© provides the optimal performance when service rates are non-decreasing
and convex and the LNQ policy is employed.

Theorem 6 For any allocation scheme B® € B it follows,
@) 2 IO (41)
N°(t) Suwsew NO(2) (42)

provided that service rates are non-decreasing and convez, and N*(0) =,, N°(0).

Proof: Let 7 be the policy employed in B’. We allow 7 to be arbitrary. This overcomes the
obstacle of the optimal policy in B* being unknown. The proof follows exactly that of Theorem
3, by substituting 7 by s and LNQ by O anywhere in the notation. The only difference is in
equation (29) which should now read,

l ]
S ONf(ta) < (B-K+1)+(1-1)=) N2(ta), I=f,...,9" - L.

i=1 i=1
In particular, the first strict inequality in the above relation follows from the fact that for any
allocation scheme B* € B, max(Y}_; Nf(t)) < (B- K +1)+ (I - 1) at all times ¢ > 0 (this
maximum value is achieved when all queues are at capacity) and the queue N }.(tn) isnot full. N

As a result, we conclude that the buffer allocation scheme B provides the optimum perfor-
mance in the following sense.

Corollary 6 B minimizes the cost function in (19) over the class B when service rates are
non-decreasing and convez.

Remark: Note that when service rates are convex and servers can be removed out of the system,
it is preferable to leave only one server in the system, thus allocating the (K — 1) buffer positions
occupied by the (K — 1) servers to the single remaining server.
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6 Extensions

Some extensions are possible. First, consider the case of monotonically increasing Poisson
arrival rates. For instance, consider two systems S;, S, with arrival rates Ay, A; respectively
such that A; < A;. Then, Theorem 1 should be extended to read,

Li(t) <« L3(t), (43)
NJ(t) <ws= N3(t) (44)

where the subscripts 1,2 refer to Sy, Sz respectively. The proof involves only one additional
step: couple the arrival times in the two systems so that an arrival occurs in S; only if it occurs
in S3. This is allowed by our assumption of Poisson arrival rates. Note that arrivals only in S,
will strengthen (43), (44) above. Similarly, all other results can be extended.

It is also possible to assume that when the system is full, the arrival process is shut-off so
that no customer is ever lost. This model is more appropriate to use in systems that employ
mechanisms for overflow avoidance (e.g., window protocols in communication networks). For
instance, in view of Theorem 1, N7(t) <,, N™(t) implies that an arrival may occur either in
both systems, or only under 4. In this latter case, we can reassure that the majorization is
preserved since all queues under 7 are at capacity.

Another possible extension regards families of state-dependent service rates. Specifically, all
results still hold if service rates are of the form p(N7(t)/ Y X, N7(t)) instead of p(N7(t)) and
the assumption of p being either concave or convex is maintained where appropriate. This
follows by a single extension of Lemma 4:

M, Mg M Nk

M<N=(—p—,... < ey ———
( {‘;1Mi, ,E£1Mi) ( £1Ni ’Z,-IilN.-)’

since E{il N; = X, M; by the definition of ‘<’. These families of state-dependent service rates
can be used to model processor sharing systems in which the processing capacity is distributed
among the different stations according to their load. The case of concave processing sharing
service rates was also discussed in [8].

Last, another extension is to consider a system in which buffer space is available at the controller.
This implies that whenever a customer arrives at the system, it may be queued at the controller
before it is routed to one of the parallel service stations. In this case, it can be shown that
if service rates are concave, the optimal policy always delays making routing decisions, i.e.,
holds customers at the controller as long as none of the parallel queues is empty. Then, when
the controller becomes full, an incoming customer is routed to the station with the shortest
queue length. This is an extension of a result in [10]. On the other hand, when service rates
are convex, the controller should always route customers to the queue with the largest queue
length and never delay routing of a customer.
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