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Abstract

Computation on and among data sets mapped to irregular, non-uniform, aggregates of
processing elements (PEs) is a very important, but largely ignored, problem in parallel vision
processing. Associative processing [11]is an effective means of applying parallel processing to
these computations [33], but is often restricted to operating on one data set at a time. What
we propose is an additional level of parallelism we call multi-associativity as a framework
for performing associative computation on these data sets simultaneously. In this paper
we introduce algorithms developed for the Content Addressable Array Parallel Processor
(CAAPP) 35] to simulate efficiently within aggregates of PEs simultaneously the associative
algorithms typically supported in hardware at the array level. Some of the results are: the
efficient application of existing associative algorithms (e.g. [10, 11]) to arbitrary aggregates
of PEs in parallel, and the development of new multi-associative algorithms, among them
parallel prefix and convex hull. The multi-associative framework also eztends the associative
paradigm by allowing operation on and among aggregates themselves, operations not defined
when the entity in question is always an entire array. Two consequences are: support of
divide-and-conquer algorithms within aggregates, and communication among aggregates.
The rest of the paper describes a mapping of multi-associativity onto the CAAPP, and
numerous multi-associative algorithms.

1This work was supported in part by the Defense Advanced Research Projects Agency under contracts
DACAT76-86-C-0015, and DACA76-89-C-0016, monitored by the U.S. Army Engineer Topographic Labora-
tory; by the Air Force Office of Scientific Research, under contract F49620-86-C-0041; and by a Coordinated
Experimental Research gfant from the National Science Foundation (DCR 8500332)



1 Introduction

According to one popular methodology [22, 13], the task of low-level machine vision is to re-
duce the enormous amounts of input data to a manageable size, and to present those datain a
format or representation that allows their easy manipulation. This reduction process usually
consists of collecting, characterizing, and labeling groups of pixels having some property in
common: for example, a value in a spectral band, a texture measure, or a gradient magnitude
or orientation. When abstracted, these collections of pixels can be represented symbolically
as edges, lines, curves, patches, blobs, regions, and their combinations and intersections [6].
In the case where a group of pixels is determined to be a line, for example, it could be
represented by two endpoints. Certain algorithmic approaches to low-level vision are well
established, although their massive computational requirements make them impractically
slow. One consequence has been the design of massively parallel processors for low-level
vision applications. Despite progress in this area, research into algorithms is required to
make effective use of these machines. In this paper we present a new machine independent
computational model, numerous vision algorithms using that model, and a mapping of the
model onto the Content Addressable Array Parallel Processor (CAAPP), a low-level vision
processor that is part of the Image Understanding Architecture (IUA) being developed at

the University of Massachusetts and Hughes Research Laboratories.

The work presented here is part of a machine vision research program to develop method-
ologies, determine their computational requirements, design hardware that meets those re-
quirements, and provide algorithms for that hardware [29]. In turn, algorithmic development
inspires new types of hardware support, bringing to light new computational possibilities,
influencing the way we think about machine vision. Similar research efforts can be found in
[32, 21, 20, 26, 1] and others, with more or less emphasis on either the architecture or the
vision end of the research. A common thread in these studies is that low-level vision involves
more than the window-based operations that dominated earlier research. What makes our
work unique is that our programming model supports broadcast over arbitrarily shaped,
contiguous, regions as a method for taking maximum advantage of the spatial proximity
that dominates low-level vision computation, even when the communication patterns are

irregular or anisotropic.

Until recently, our approach when confronted with the need to solve problems on mul-



tiple irregular aggregates of PEs has been ad hoc: we have often achieved good results
[36], but have not previously used any uniform technique. Precedents do exist, however,
demonstrating that careful orchestration of SIMD communication can promote complex be-
havior: the sorting algorithms of Thompson and Kung [31] and the connected components
algorithm of Nassimi and Sahni [25] are examples, though the communication is still regu-
lar. Willebeek-LeMair and Reeves [37] have embedded binary trees in meshes to implement
broadcast and reduction primitives on non-uniform, arbitrarily, shaped contiguous regions,
and applied those 6perations with great success to parallel region segmentation. |

We begin with a brief review of the vision methodology and computational require-
ments driving our research. Then, following a brief discussion of associative processing in
genefa.l, we present a new extension we call “multi-associativity”, that allows us to solve
multiple problem instances simultaneously, given conditions that usually occur in low-level
visioh computation. The architecture of the target machine, the CAAPP (including the
hardware support for low-level vision), are presented next. Next comes a sketch of the ac-
tual mapping of multi-associativity onto the CAAPP. We close with numerous examples of

multi-associative vision algorithms.

2 A Machine Vision Methodology

2.1 Computational Requirements

Low-level vision processing is often defined in terms of capabilities: we have a massively
parallel array with certain communication support, how can we use it? The answer is
usually that pixels are mapped to individual PEs, and that the procedures are dominated by
certain standard algorithms, such as convolution. In this section we look at low-level vision
from the point of view of requirements; we still define low-level vision as procedures where
pixels' are mapped to processors, but also examine what needs arise when computation at
the low level is integrated into a complete vision system with top-down as well as bottom-up
processing.

Computer vision, the task of deriving descriptions of scenes from their images, is well
knowﬁ to require at least two types of computation: processing of sensory data, and pro-

cessing of world knowledge. Sensory data processing uses the image array representation



and includes line and region segmentation; stereo, motion, and texture analysis; shape from
X, as well as other computations. An example of world knowledge processing might be
constrained model matching between “stored models in the form of generalized relational
structures [30])”, and hypotheses created from the image data. For these two types of pro-
cessing to be effective, there must be also be constant, bidirectional, interaction between
the two levels of representation: for example, as world knowledge is brought to bear on an

image, parameters from algorithms processing sensory data must be recomputed.

A problem that arises in this computational model is that the representations, pixels
on the one hand and generalized relational structures on the other, are incompatible. One
solution is to include one, or possibly several, levels of intermediate representation through
which the interaction between high and low levels takes place. These intermediate represen-
tations are characterized by a uniform symbolic representation for both high and low level
vision events: a low level event such as a contiguous, collinear, group of pixels of similar gra-
dient orientation has the same representation as a high level event such as an edge predicted
from a partial model match. In one such system, the Intermediate Symbolic Representation
(ISR) [6], collections of contiguous image data with similar properties are stored as named
and typed symbolic entities called tokens.

We now refine our model of vision computation. It is the task of high level vision to
hypothesize objects and collections of objects in the scene, and to search the intermediate
levels for evidence of those objects. The task at the intermediate level is to provide a dynamic,
reconfigurable data base. Additional data transformations also occur there, as perceptual
organization algorithms split, merge, add, and/or delete intermediate-level representations.
Low-level vision processing retains the standard pixel mapped functions outlined above, but
also includes routines to support the dynamic recomputations demanded by the intermediate
levels.

There are several requirements for low-level vision computation in the context of an
overall vision system. The first two presented below are from the standard bottom-up view,

the rest result from integration into a complete system.

1. Computing the attributes of individual pixels, and of small, fixed, neighborhoods of
pixels. These operations include much of previous window based low-level vision work,

and are characterized by regular communication patterns between nearby PEs.



2. Grouping sets of pixels that share attributes. The methods here come under the
heading of segmentation. In these computations, the resulting sets are arbitrary in

shape, although the points are usually contiguous.

3. Characterizing these sets; simply labeling pixels as edge/region points is not by itself
sufficient. Extracting events for the intermediate levels requires collecting information
about the number of points in the set, the number of points with certain characteristics,
the mean and median of the pixel attributes, the spatial dimensions of the set, and
many others. Another part of extracting symbolic events is gathering information

about neighboring sets.

4. Collecting this information in a small number of PEs for rapid transmission to the
" intermediate level processor. This may be the front end, a separate parallel processor
as in the IUA, or the same processor using a different representation. In each case,
however, the complexity of the interaction is reduced if the number of information

carrying points is small.

5. Providing support for symbol manipulation at the intermediate level. Sometimes these
grouping processes can be accomplished by simple operations on the event attributes
within the intermediate levels. Often, however, new symbolic events must be created
at the lowest level and the attributes recomputed. This is especially true if an iterative

combining procedure is used.

6. We need to be able to make all of the above computations not just once, but many
times. As is well known, images of scenes are underconstrained; a consequence is that
the entire image understanding process must be dynamic. Evidence in the original
image can be missed in initial processing. Therefore we must be prepared to recompute

using different parameters.

What characterizes these requirements? We must support regular local commﬁnitiation,
but also the extraction of data from arbitrarily shaped contiguous sets. We must be able
collect this information in a small number of PEs. We must be able to operate on these
sets as distinct entities, with certain innate operations, such as merge. And finally, the

speed at which these characterization, collecting, and merging operations takes place must



be comparable to the original computation and grouping steps. In the next section we

introduce a programming methodology that supports these requirements.

2.2 Associative Processing

In the last section, we grouped computational requirements for low-level vision into six
categories: (1) computing attributes of individual pixels, (2) grouping pixels into events, (3)
characterizing events, (4) extracting event information, (5) support for merging events, and
(6) performing 1-5 repeatedly. Here we present a general programming methodology, called
multi-associative processing, that provides support for most of these groups of operations.
But first we look at the categories in some more detail to characterize the computations they
require.

(6) will be satisfied if (1-5) have all been implemented efficiently. (1) requires only con-
text independent, local, communication, and is supported by the CAAPP nearest-neighbor
communication network. (2) will be discussed in a later paper; however, many of the al-
gorithms presented will also be applicable to pixel grouping. (3-5) do not fit easily into
the standard model of SIMD computation: they are characterized by the need for flexible
communication and rapid feedback. However, it is exactly these operations that characterize

associative processing (also called content addressable processing).

There are four capabilities that are key for the classical model of associative computation
[11]:

1. Global Broadcast/Local Compare/Activity Control
2. Some/None Response
3. Count Responders

4. Select a Single Responder

The prototypical associative operation is for the controller to broadcast a query to the array,
and to receive a response either in the form of Some/None (global OR) or a Count. But.
associative processing, as opposed to the familiar associative memory operations, also enables
the conditional generation of symbolic tags based on the values of data, and the use of those

tags to constrain further processing. These capabilities are useful for low-level machine vision
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when'the controller performs multiple logical operations on pixels or events having multiple
tags based on their attributes and relationships to other pixels or events. Only subsets of the
data are involved in any particular operation, but all pixels and events with a given set of
properties are processed in parallel. See [33, 35] for numerous examples of associative vision
algorithms.

Let us examine in more detail the fundamental operations required for associative pro-
cessing, and the hardware support required to perform them efficiently. Global broadcast,
local compare, and activity control are all standard SIMD operations: a controller can broad-
cast global data as well as instructions, PEs always possess a local compare, and an activity
bit is the standard method to implement branching. Thus, capability (1) is available to
most SIMD processors. However, the distinctive requirement of associative processing is
that of rapid feedback from array to controller: if the controller must query individual PEs
for responses, then all parallelism is lost. Therefore the CAAPP has been designed with spe-
cialized hardware for the rapid execution of Some/None, Response Count, and Select Single
Responder (Select-First) [28]. Typical execution times of these operations are 0.1, 1.6, and
2.4 micro-seconds, respectively. For reference, the execution of a bit serial arithmetic oper-

ation takes between 1 and 6 microseconds.

2.3 Multi-Associative Processing

Associative processing permits operations on any single selected subset of the data. But
what if there are many data sets to work on simulaneously? In the model of vision presented
earlier, we are computing attributes of thousands of events; a simple associative system
would typically perform these computations by time-slicing between sets of pixels. We
would prefer to operate on all sets of pixels simultaneously. We propose new model we call
multi-associative processing, in which associative operations are applied to multiple data sets
simultaneously.

We now define the multi-associative model independently of specific architectures, except
that it assumes an SIMD array of N PEs; the implementation on the CAAPP will be
discussed in the next section. To facilitate the definition, we use set notation. We begin
by aliowing the partition of the processor array into k < N sets S; C {S,..., Sk} of PEs.

Next, we define a set of associative capabilities analogous to those presented above. This



time however, instead of being defined over the entire array, the operations are ezecuted
simultaneously within each set S;. But we still have only one controller for the entire array;
how can these operations be meaningful? By replacing the role of the controller in the global
broadcast, some/none, count, and select first operations, with an arbitrary subset of PEs
within each S;. For example, “global broadcast” from controller to array is replaced with:

“Vi, multicast by selected subset of PEs, SMC** C S; to a selected subset of receiving PEs,

Sfec C S;”. In the same way, “count responders” is replaced with: “Vi, send count of subset

of selected PEs, S5 C §;, to SR C S5;". Whenever |S,-MC°"

> 1, the signal multicast to

the set Sfec is the OR of the values multicast by the individual elements of SMCast,

In addition, we define two operations on the associative sets themselves. These are Split
and Merge. Split allows, for all sets in parallel, the sets S; to be split into any number of
new sets. Merge allows any number of sets to be combined into a single set. We now have

five capabilities defining multi-associative processing:

1. Multicast by a subset/Local Compare/Activity Control

N

. Some/None Response to a subset

w

. Count Responders to a subset

-

. Select a Single Responder

ot

. Split/Merge sets

The first four operations map all associative algorithms defined over processor arrays to
associative sets in parallel. The last operation gives the model new power; there are three

basic advantages:

1. Split and Merge enable the use of divide-and-conquer strategies. It is now possible,
for several important algorithms, to iteratively partition the S; into subsets, solve the
subproblems, and then merge. Just as in the sequential case, we can thereby reduce

the computational complexity from linear to logarithmic.

2. We can save different partial results in individual PEs, as required by parallel prefix

and some reductions.



3. We can take advantage of implicit ordering, for example, when we wish to extract

corner points in order around a border.

We emphasize the major restriction of the multi-associative model: there is still only one con-
troller. Therefore, only algorithms with a branching factor < than tile number of associative
sets will run efficiently. However, since most low-level vision applications lend themselves to
algorithms that meet this criterion, the restriction also has a positive side: there is greater

hardware efficiency because only a single controller is needed.

3 The IUA, the CAAPP, and the Coterie Network

In order to build an architecture suitable for machine vision it is apparent that not only
must tremendous amounts of data be processed, but that the processing must be of many
types: low-level feature extraction, intermediate-level grouping, high-level model match-
ing, and continuous communication between the levels. The philosophy behind the Image
Understanding Architecture is that qualitatively different types of computation require qual-
itatively different types of architectures. A detailed discussion of requirements can be found
elsewhere [35]; we summarize a few that are relevant here: the ability to process both pixel
and symbol data in parallel, the ability to simultaneously maintain the representations and
perform computations at the low, intermediate, and high levels, the ability to select particular
subsets of data for varying types of processing, and fine-grained, high-speed communication

and control among processes at each level, and between the different processing levels.

A three level architecture has been developed with each level having an appropriate ar-
chitecture for the set of tasks at that level. The lowest level processes and extracts features
from arrays of pixel data; these operations are usually pixel based, requiring little communi-
cation outside the neighborhood. The processor at that level (the CAAPP) is a SIMD array
of processing elements (PEs). The highest level must support processing by, and information
exchange between, diverse course-grained processes [7], including manipulation of 2D and
3D objiect models, as well as the complex control strategies needed to apply those processes.
The high-level processor (SPA) will therefore run a LISP-based black-board system [9], but
the details have not yet been fully defined.

The intermediate level must provide several functions. One is assisting the CAAPP

with feature extraction by providing control and dynamic structures; shared memory is used
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here. Another is supporting high-level queries. And finally, the intermediate level must be a
processor in its own right. In this last role, the intermediate level processor is charged with
grouping and organizing symbolic representations into more complicated structures. The
ICAP (as the intermediate level processor is known) is a collection of signal processing chips
communicating with each other via a general routing network, and the CAAPP and SPA
levels through shared memory.

The Content Addressable Array Parallel Processor (CAAPP) consists of a 512 x 512
associative array of one-bit processing elements (PEs). Each processing element has several
general purpose registers, 320 bits of on-chip cache memory, 32K bits of main memory,
and an “Activity Register” which is used for branching control. The Array Control Unit
(ACU) broadcasts instructions, data addresses, and global data. The controller can also
extract information from the array by associative polling, as hardware support is provided
for Some/None and Responder-Count operations. Communication between PEs themselves
can take place in two different ways: by using the nearest neighbor mesh interconnection
network, and via a reconfigurable mesh called the coterie network. The first method is
similar to that used by the CLIP-4 (8], the MPP (3], and the DAP [17]. In the second
method, PEs transmit information by writing to a specified register connected to the coterie
network. PEs then read a register which will have been set to the OR of these signals, within
a local group as defined by the network configuration. This scheme is a generalization of the
“flash-through” mode of the ILLIAC III [23] and the propagate operation in the CLIP-4 [8],
and is similar to those proposed by [24, 20]. In order to distinguish broadcast by PEs from
the usual broadcast by the controller, we refer to this operation as “coterie multicast”.

The coterie network is one powerful addition that the CAAPP has over conventional
associative processors. Each PE in the CAAPP controls a set of eight switches (see Figure 1),
enabling the creation of electrically isolated groups of PEs that share a local associative
Some/None feedback circuit. Four of these switches control access in the different directions
(north, south, east, west). Two switches, H and V, are used to emulate horizontal and
vertical buses. The last two switches, NE and NW, are used for creation of eight-way
connected regions. The isolated groups of processors (see Figure 2), called coteries, have
access only to the multicast signals of PEs within their own coteries. For example, when a
set of PEs multicasts within a coterie, the receiving PEs will read the OR of precisely those

PEs multicasting within the same coterie.
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Figure 1: Two PEs and the coterie switches they control

The coterie network switches are set by loading the corresponding bits of the mesh control
register in each PE. Because each PE views the mesh control register as local storage, coterie
configurations can be loaded from memory, or can be based on data dependent calculations.
In general, the coteries can be any contiguous set of PEs, and this is the way the network is
conventionally used to support grouping tasks. However, the coterie network can also be set
so that columns and rows are isolated. Once this is done, the row and column “buses” can
be arbitrarily segmented still further. The coterie network can thus emulate the mesh with
reconfigurable buses [24], and the polymorphic-torus [20]. In this mode, the coterie network
13 well suited for many algorithms designed for regular topologies, such as general routing,
parallel prefix, emulation of various networks, and many other useful constructs.

The rest of this paper is concerned with mapping multi-associativity onto the CAAPP,

and examples of multi-associative algorithms.
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4 Mapping Multi-Associativity onto the CAAPP

At this stage of our research, it is not yet practical to map the completely general model of
multi-associativity onto the CAAPP, as the correspondence between the hardware support
and the multi-associative model is not precise. However, through the use of the available
hardware, software emulation, and some restrictions, we have created a nearly complete
implementation. These restrictions basically consist of requiring that associative sets be
contiguous, not a large loss since that is a characteristic of most of the events extracted at
the lowest level. We begin by describing some basic techniques used in CAAPP programming,

followed by a description of how the multi-associative model is implemented.

4.1 Basic CAAPP Operations

LoadPeld. Always available to each PE is its ID, defined, using standard convention, as
its address in row and column coordinates. Since the ID is used often, LoadPeld is usually

executed once, and the value retained in cache memory.

Select. PEs all contain an activity register, the value of which determines whether that
PE will execute the instruction currently being broadcast by the controller. A PE with an
activity register set to one is said to be “Selected”. Often, PEs are selected according to

whether an internal label matches a broadcast or multicast key.

Coterie Multicast. PEs multicast on the coterie network by loading the X register with
the bit to be output, whence it propagates at electrical speeds for some distance across
the network. The X register value is retransmitted every machine cycle by all PEs having
already received it; the signal thus resembles a wavefront, moving outward until it reaches
every PE. If more than one PE in an electrically connected region (coterie) has written to
its X, register, the resulting signal is the OR of those values. After transmission has been
completed, PEs input the signal by reading their X registers.

For an » X n array, the number machine cycles to propagate the signal to all PEs
is proportional to n. The calculation is simple: the maximum Manhattan distance, with
wraparound, is », and a conservative propagation distance is 50 PEs/machine cycle; therefore
n/50’propa.gation cycles should be adequate. However, when the coterie switches are set,

oddly shaped regions can result. In the worst case, if the switches are set to form a spiral, the

12



distance the signal needs to travel is N PEs. However, our experience has shown that letting
the signal propagate for 2n/50 machine cycles is sufficient in all practical circumstances.

Open/Close Switches. PEs control switches that determine whether a multicast signal
will pass through the section of the coterie network they control. In this way, electrically
isolated regions can be created. PEs open or close switches to create connected components,
to isolate row or column buses, to separate region borders, or because of the parity of a bit in
an address, ID, or offset as specified by some algorithm. PEs can only multicast information

to other PEs that are members of the same coterie, and all coteries are made up of contiguous
sets of PEs.

4.2 Selected Programming Tools

We present here some of the routines that form the programming tools used to implement
the basic associative operations, together with the restrictions on the sets of PEs over which
they are defined.

Route and Combine. Route is defined as an operation where any source PEf can send

data to any destination PEJP . If multiple PE?’s send packets to the same destination
PEJP , then those packets can be combined according to some operator. For example, in

SumCombine, the result in a PEJP is the sum of the contents of all the packets sent there.
Other combine operations include MaxCombine and combine with boolean operators such
as OrCombine. On the CAAPP, route and combine are implemented as software functions;

more details are given in [14, 15].

OrCombine is also implemented using coterie multicast. As long as the distinct sets of
sending and receiving PEs are members of the same coteries, the result of a multicast is
precisely the logical OR of the transmitted values. The advantage of the multicast version
is that the signal is transmitted at electrical speeds. The advantage of using the software
version is that there is no requirement that the sending and receiving PEs be members of
the same coterie.

Select Max/Min. The goal is to select the PEs with the greatest value within a coterie.
The method is to apply a standard associative array algorithm [10] to regions. At no extra
cost, all the PEs in the coterie “listen in” on the process, and so know the greatest value

itself at the end of the algorithm. The algorithm is bit-serial; for k bit integers the algorithm
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FOR BitNum := AddressLength - 1 DOWN TO 0 DO  {Beginning with the high-order bit}

Response := Address[BitNum] {transmit bit through Response register}
IF (Response = Some) {1f any PE has a 1 in this bit,}

THEN Activity := Response { turn off activity in PEs with a 0 in this bit}
ComponentLabel{BitNum] := Response {Save bit values for component label}

Figure 3: Algorithm to find and distribute the maximum valued label in a region

starts with the high order bit (k¥ — 1). PEs multicast bit k — i: if any are ones, then all
PEs with a zero turn themselves off as they have been eliminated. If there are no ones, or
if they are all ones, then no PEs are eliminated on that step. By the time the low order bit
is reached, only the PEs with the maximum value remain. An analogous algorithm selects
the PEs with the minimum value. SelectMax and SelectMin run in 3k steps, where k is the
number of bits in the word. The restriction on these routines is that they work only for

coteries, and thus only on sets of contiguous PEs. See Figure 3 for pseudo-code.

Ordered Data Collection. This technique works when the coteries are simple curves,
defined on the CAAPP as a coterie where each member has exactly two distinct neighbors
also members of the coterie, except for the end points which have only one. An end point (or
max-ID point in the case of a closed curve) is selected to be the collector of the information. A
rough outline of the technique, is for each PE to determine the links in the directions toward
and away from the accumulator, and for the data to be transmitted in priority according to
the distance away from the accumulator. This procedure requires time linear in the number

of PEs holding data, and so is only efficient if that number is small.
Data Reduction Using Doubling. To use data reduction through the basic divide-and-

conquer primitive of iterative doubling, the shape of the coterie must be restricted further:
it must be either a horizontal or vertical line, or a monotonic curve. A vertical monotonic
curve (the definition for the horizontal case is analogous) is defined as simple curve where
each member has a row ID < the row ID of the neighbor toward the bottom end of the

curve. Further, only one PE per row (assumed to be the right-most) carries data.

The procedure begins by selecting the PE with the minimum row ID, having that PE
multicast the row ID to the rest of the coterie, and having the receiving PEs subtract that

index from their own row IDs. The result is an enumeration of the data carrying PEs in
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each coterie. The details of the rest of this operation will be given below, but the result is a

form of divide-and-conquer that results in a reduction with logarithmic complexity.

4.3 Multi-Associative Primitives

We now present the implementation of the basic multi-associative operations on the CAAPP.
It should be clear from the above discussion, that to use the hardware support effectively,
associative sets must be restricted to contiguous sets of PEs. Although the resulting capabil-
ities are not as general as for the full associative model, they are sufficient for the low-level
vision algorithms presented in the next section.

Create Associative Set. Associative sets are created by opening and closing the network
switches in order to form coteries. These switch settings can be masks stored in memory, or

may be computed locally according to any number of parameters.

Local Compare, Activity Control. These are basic SIMD operations: the first is a part
of the CAAPP PE repertoire, the second is simply Select.

Multicast by a Subset, Some/None Response. These both use the multicast operation

of the coterie network.

Select a Single Responder and Count Responders. These operations are somewhat
different than the others because they are not supported directly, and must therefore be
emulated in software. SelectSingleResponder is implemented by running SelectMax on the
PE ID, and requires 3log N steps. CountResponders can be implemented in two ways: using
SumCombine or using a two dimensional extension of the reduction technique outlined above.
The latter (described in detail below) is usually the algorithm of choice, as it requires only
O(log d) as opposed to O(d) operations, where d is the maximum distance from any PE to
its leader. If d is small, however, a result that can be obtained quickly by the controller,

then we use the simpler SumCombine.

Split/Merge Sets. Sets are split and merged using the same methods used to create them
in the first place.
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5 Multi-Associative Vision Algorithms

We have divided this part into two sections: in the first the multi-associative primitives are
built up into useful functions, in the second the vision algorithms themselves are presented.
To avoid redundancy, the routines are often presented as applied to one data set; in all cases,

however, they can be applied to any number of data sets simultaneously, as defined earlier.

5.1 Basic Operations

Create Connected Component. This is the essential operation in creating multi-
associative sets: once a set of coteries has been created, communication can take place
within each coterie via multicast. In the four-connected version, each PE gets the label
of its four nearest neighbors via the mesh network, and tests them against its own value.
Switches are closed in the direction of the PEs whose labels are equal (or similar according
to some measure), and opened otherwise. The eight-way connected version is slightly more
complicated: to make the diagonal connection, the NW and/or NE switches of neighboring
PEs must be set.

Separate Border. Once connected components have been created, it is possible to form
coteries made up of border PEs. Each PE sets a flag if any of its switches are open. PEs
then open connections in the directions of PEs whose flags are cleared (see Figure 4).
Separate Lines. Some routines are constructed to run first in one dimension and then the
other. In order to restrict coteries to horizontal or vertical lines, two methods are possible.
One is to open the V or the H switches, respectively. The other is to leave the H and V
switches closed, but to open the N and S, or the E and W switches.

Elect Leader. One of the essential parts of the information extraction process is to collect
the region attributes in a small number of PEs for rapid transmission to the ICAP. An
effici:ent method is for each ICAP element to contain a list of PEs, one per region, with
which it shares memory, and to extract the region information from those PEs. ElectLeader
selects a unique PE within each set by running the multi-associative SelectSingleResponder
operation.

Collect Info. There are several methods of collecting information in the leader PEs. One

is to combine information as it arrives, this is the method used in CountPEs. Another is to
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form an array: this is necessary when collecting information that is not to be combined, such
as the addresses of corner points. If the amount of information to be collected is great, then
arriving data can also be removed synchronously to the ICAP. That is, the CAAPP controller
waits for the information to be read through the shared memory after each iteration before
continuing.

Get Sorted List. Run ElectLeader to select an accumulator. Repeatedly run SelectMax on
the key to get the next highest value, eliminating processors from contention after they have
been selected. The PE with the maximum key value after each iteration multicasts its data
to the leader. If the keys are not unique, then SelectMax must be run, perhaps repeatedly,
on the IDs after every iteration to break the ties. The complexity is roughly the number of
points in the set with the most points (N,,), times the SelectMax complexity. This routine
is most useful when the number of points can be assumed to be relatively small compared
to the number of points in the regions, as it is, for example, during the running of a convex
hull.

Collect Sparse Region Info. If a small number of arbitrarily placed PEs per region
contain information that is to be collected, either in a list or cumulatively, then an efficient
method is the repeated use of SelectSingleResponder and Multicast. First run ElectLeader
to select an accumulator. Then iterate the following for the number of points in S, the set of
points containing the information to be gathered. Execute SelectSingleResponder to select
the next point from S. The selected PE multicasts its information to the accumulator, and

removes itself from S. The accumulator reads and processes that information.

CollectOrderedCurveInfo. This procedure takes advantage of implicit ordering deter-
mined by the position of 2 PE on a curve. Although the basic concept simple, in practice it
is complicated by considerations of regions that are one pixel wide and regions that enclose
other regions. We will only discuss the algorithm in terms of the curve being simple and
closed.

Assume that the closed curve forms a coterie, that is, each PE on the curve has two
closed links, one in the direction of the clockwise neighbor and one in the direction of
the counterclockwise neighbor. The links are labeled by observing their relation to the
local direction from inside to outside the region. Assume further that the PEs holding the

information to be collected are tagged. The first step is to run ElectLeader on the tagged set
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to select an accumulator. The leader opens the switch connecting it to its counterclockwise
neighbor in the loop. The loop is thus transformed into an open figure with the leader at
one end. Every tagged PE in the chain now opens the switch connecting it to its clockwise
neighbor. Next, each tagged PE multicasts its information. Because the tagged PEs have
broken the coterie, only the information from one PE will reach the accumulator. The leader
then multicasts a bit to the coterie, a bit that will only reach the PE whose information was
just received. That PE now removes itself from the set and closes the switch to its clockwise
neighbor, enabling further multicasts to pass through. The process is repeated until no

tagged PEs remain.

Parallel Prefix for Monotonic Curves. This procedure works for horizontal and vertical
lines, as well as monotonic curves First we define parallel prefix: Given an array [z, ..., Z,]

of n elements, one per processor, and a binary associative operator *, compute the n S;’s:
S;=zy*xTo*...*x,

leaving the ith prefix sum in the ith processor. The operation * is not necessarily com-
mutative. The implementation of parallel prefix takes particular advantage of the coterie
network: it requires only log n communication steps, rather than the 2logn required for
a tree-connected parallel processor. In this section we present a multi-associative parallel
prefix for horizontal lines (see Figure 5 for pseudo-code); no assumptions are made as to the
lengths of the lines or starting points. An analogous procedure is used for vertical lines

and monotonic curves.

To execute parallel prefix, there must be at least an implicit ordering to the PEs, in this
case it is the distance from the west end-point. Therefore, the first step of the algorithm is
for PEs to calculate their offsets. Each PE checks its W coterie switch to determine whether
it is on the west end of the line. If so, it multicasts its column position. All PEs on the line
read the data, and subtract it from their own column position to obtain an offset.

The rest of this algorithm is illustrated in Figure 6. The binary numbers represent the
offset of the PE, the decimal numbers the data currently residing there. In the first iteration,
PEs whose rightmost offset bit is a 0 open their E switches, the rest open W. The “0” PEs
multicast their data, the “1” PEs receive it and “sum.” In the next iteration, PEs whose
rightmost two offset bits are < 01, do not participate. All PEs with a bit pattern ending
in 01 open to the left, all PEs ending with 11 open to the right. The 01’s multicast, the
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{Assume Coterie[N,S,NE,NW] = Open, Coterie[H,V] = Closed,}
{and Coterie[E,W] set according to the region boundaries}
SaveCoterieSettings()
{All PEs get offset from east end of horizontal line}
Broadcast(ColumnNumber,ColumnNumberLength,Coterie[E] = Open,Base,All)
Offset := ColumNumber - Base
{Initialize switch masks. All compare operations using OpenLeftMask}
{and OpenRightMask use only the rightmost BitNum + 1 bits}
OpenlLeftMask := 0 "
OpenRightMask := 1
FOR BitNum := 0 TO ColumnNumberLength - 1 DO
IF (OpenEastMask = Offset) Coterie[E] := Open
IF (OpenWestMask = Offset) Coterie[W] := Open
Multicast(Data,DataLength,Coterie[E] = Open,Temp,Coterie[E] = Closed)
IF (Offset > OpenEastMask AND Offset < OpenWestMask)
Combine(Temp,Data) {combine into Data according to a specified operator}
BitSet(BitNum+1,0penEast Mask)
BitSet(BitNum+1,0penWest Mask)
RestoreCoterieSettings()

Figure 5: Algorithm for parallel prefix on a horizontal line

others receive and combine. In the next iteration (the final one of the example), PEs whose
rightmost three offset bits are < 11, do not participate. All PEs with a bit pattern ending
in 011 open their W switches, PEs with 111 open to the right. The 011 PEs multicast, the
rest receive and combine.

Reduce Line/Monotonic Curve. Sometimes results must be collected, but without the
need to save the intermediate values. Although this procedure is simpler than parallel
prefix, it still requires a logarithmic number of steps. Therefore the simplest method is to

run ParallelPrefix and to ignore the intermediate values.

5.2 Vision Algorithms

FindExtremum. One of the most common uses of SelectMin/Max is to find the extrema in
curves and regions. In these situations SelectMin (or SelectMax) is executed on the column
or row address. In an n X n = N array, FindExtremum requires 3log(n) steps.

GetSmallestCircumscribingRectangle. This algorithm follows immediately from appli-

cation of FindExtremum using SelectMin and SelectMax on the row and column addresses,
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and thus requires 12log(n) steps.

LabelConnectedComponents. Perhaps the most direct use of multicast and the coterie
network on the CAAPP is labeling connected components. The connected components are
created, as in the previous section, by closing the coterie switches in the direction of PEs with
the selected value in common and opening the others, thereby forming coteries. ElectLeader
is run to select a single PE in each component. Because of the way that the switches are
set, PEs in each coterie will receive the leader ID at no extra cost. This necessarily unique

value is the label of the component.

PaintRegion. Although this routine consists of a single application of multicast, it shows
the versatility of the IUA model to include graphics functions. Assume that a list containing
the color and the address of thé leader PE of each region is known in the ICAP, a scenario
that occurs in [34]. The ICAP loads the color into the memory of each leader. The leaders
then multicast the color to their regions.

TraceBorder. One of the steps required in [34] was identifying the outer perimeters of
connected regions. The information locally available around a pixel is not sufficient to
distinguish inner from outer borders, as occur, for example, in doughnut shaped regions.
One way to distinguish these borders is to first run ElectLeader to identify a point known to
be on the outer perimeter, and from there transmit a message to label the border. The outer
perimeter will be marked while the borders around holes will not. The traversal section of
the algorithm currently uses only nearest neighbor moves and so will be described elsewhere.
CreateBorder-Corneerst One application of CollectOrderedCurvelnfo is extracting a
list of corners. Although CollectSparseRegionInfo can be used here, there is a major ad-
vantage to extracting the corners in order: reconstructing the shape of the region is greatly
simplified. Assume that the corner points are known. Run SeparateBorder to create a co-
terie from the border points. PEs determine the clockwise and counterclockwise links by
examining neighbors to find the inside of the region. CollectOrderedCurvelnfo now creates
an ordered list of the corner points. This version of CreateBorder-CornerList can only be
run on simple regions as specified above.

GetAdjacentRegionLabels. This routine is used in building a feature adjacency graph,
a process essential in creating complex intermediate-level data structures, as well as to the

region-merging phase of the segmentation algorithm in [4]. The routine starts with the
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boundary PEs fetching the labels of the adjacent regions. Next, a modified version of Col-
lectSparseRegionlnfo is run on the set of boundary cells; the modification is that PEs whose
data matches that just sent remove themselves from the set immediately, rather than sending
the same label again. Since most of the cells will have repeated information, GetAdjacentRe-
gionLabels will only require the number of iterations equal to the number of border regions,
not the number of border PEs.

MergeRegions. During the merging phase of a feature grouping algorithm, the ICAP wi]l
determine the regions to bé merged; the following procedure is then executed on the CAAPP.
Leader PEs in pairs of regions are sent the label of the neighboring region with which each
is to merge, along with a bit telling whether it is the region with the higher or lower ID. The
leaders of the lower ID regions multicast the label of the neighboring region to their coteries.
The PEs on the border between the regions close the coterie switches in the direction of
that other region. The leader PE with the higher ID is selected to be the new leader of
the region. The “former” leader then multicasts its region characterization info (size, etc.),
which is read by the current leader and combined. Alternatively, the ICAP could combine
and download the new region characterization information. Some parameters are not easily

combined and must be recomputed.

Count(Selected)PEs. An essential part of extracting low-level vision events is the char-
acterization of sets of points in a component; some of the basic parameters needed are a
count of the total points in the region and the number of points having some property. In
the latter case we assume that the comparison phase has already taken place, so that what
we are really counting is the number of “selected PEs.” This routine runs in three phases.
The first is to divide the region into single PE width row strips, count the PEs in each strip,
and leave the result at the right end. In the second phase, the right ends form a set of
curves, the data of which is accumulated at an end point. Finally, the data from all of these

accumulators is collected.

The first phase begins with SeparateLines to form horizontal strips. The left and right
end-points of each strip are identified; the right end-points are selected to be the strip
accumulators. For the next step CountPEs and CountSelectedPEs diverge. In CountPEs,
each left end point multicasts its column ID, the corresponding right end point reads it and
subtracts it from its own column ID. In CountSelectedPEs, the routine ReduceLine is run

instead so that only the selected PEs will be counted. The strip phase of the algorithm runs
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in constant time for CountPEs because only a single multicast and subtraction is needed,

while CountSelectedPEs requires log time, the complexity of ReduceLine.

At the beginning of the second phase, only border PEs will have relevant information,
and we could simply collect it in time proportional to the number of accumulator points.
But instead we perform another log time reduction step, as follows. SeparateBorder to form
a coterie consisting of the region border. Next, create monotonic vertical curves made up
primarily of the strip accumulators of phase 1. This is done by finding and labeling the
local minima and maxima of the border, and opening the switches so that these PEs become
end-points. Next, execute ReduceMonotonicCurve so that the local minima accumulate the
runﬂing count. The final phase of this algorithm consists of ElectLeader to select an overall
region accumulator and CollectSparseRegionInfo to combine the subtotals.

The first two phases require at most 2logd communication steps, where d is the maxi-
mum dimension of the largest set. However, the third phase is not so easily bounded: the
number of accumulators remaining from phase two is equal to the number of local minima
(in terms of column ID) on the region boundary. It is possible to construct regions where
this number is large. To deal with most of these cases, phase three is modified; the following

is an example of the use of global feedback to bound an algorithm.

After each iteration of phase three, the global controller (ACU) performs a CountRespon-
ders operation on the leader PEs of the regions not yet having completed. When this number
falls below a threshold, say ten, then a globally associative version of Count(Selected)PEs
takes over; the algorithm finishes by performing CountResponders on each of the remaining
regions. The hybrid version of phase three guarantees that the number of iterations required
to complete the algorithm will be small in virtually all cases. Although problems remain
when there are tens of regions all with tens of local minima, the likelihood of such patterns
arising as the output of an image segmentation is very small.

GetMean. The next two algorithms are derived from the standard associative model [11]:
they can now be applied multi-associatively as all of the basic operations have been imple-
mented. The algorithm to find the mean is similar to SelectMax in that both are bit serial
over a k-bit label, and both run from high to low order (k—1 to 0). Assume we are trying to
find the mean of a label L over the PEs in a region. We sum the L’s by successively counting

the PEs that have the ith bit of L set, and scaling that count by 2'. We start at the high

24



Sum :=0 {Initialize Sum}
FOR BitNum := LabelLength - 1 DOWN TO 0 DO

Activity := Label[BitNum] {Select PEs with bit set}
Sum := (Sum << 1) + CountSelectedPEs() {Count number of active PEs and scale}
Mean := Sum/CountPEs() {Count all PEs and divide Sum}

Figure 7: Algorithm to compute mean

order so that scaling can be accomplished with one shift per iteration.

Select PEs with bit & — 1 of L set. Run CountSelectedPEs to get the count. Add the
count to the accumulator (zero to start). Shift the accumulator left 1 bit. Repeat this process
for bits k — 2 to 0 of L, but without shifting after the final iteration. GetMean requires a
number of iterations equal to log(Maz(L)); each iteration contains one add, one shift, and
one CountSelectedPEs operation. See Figure 7 for pseudo-code.

GetMedian. The method used is analogous to binary search: we find the range of possible
values and successively halve the interval on each iteration. Start by running SelectMin and
SelectMax to find the lower and upper bounds (L and H), and CountPEs to obtain C the
number of PEs in the region. Let the initial guess G = Z£Z . Select and count the PEs with
a label greater than G and run CountSelectedPEs again. Depending on whether the count
is higher of lower than C/2, the the new guess G is either Z1€ or Liz:Q H or L are also
updated. The algorithm continues for log(Maz(H) — Min(L)) iterations.

Histogram within Regions. Run ElectLeader to select an accumulator. For each bin,
multicast the value of that bin. PEs are selected according to whether their value matches
that of the bin. Run CountSelectedPEs to get the bin count. The algorithm requires a
number of iterations equal to the number of bins, and each iteration contains one CountSe-

lectedPEs operation.

ParallelPrefix. Among the applications that use parallel prefix are: the enumeration of
selected PEs, Radix Sort, parsing regular languages [16], and carry propagation in multi-
gauge emulation (2]. See [18, 5] for many more. ParallelPrefix can be run multi-associatively
if the regions consist of rectangles; this technique is also extendible to semi-convex regions,
that is, regions convex in the horizontal or vertical direction. For regions of arbitrary shape,

the multi-associative implementation of parallel prefix is more complex, and the applications
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fewer. One application that remains useful, however, is enumeration of PEs, an essential

operation for implementing distributed buckets in a multi-associative histogram.

Start by separating the region into horizontal strips with SeparateLines. As in Count-
PEs, identify the left end PEs of each line and have them multicast their column IDs to the
rest of the line. By subtracting this offset, PEs obtain their positions relative to the begin-
ning of the line; we now execute ParallelPrefixLine on these strips. Next, form a coterie of
the right end points of the lines with SeparateContours, forming a line or monotonic vertical
curve. Execute ParallelPrefixCurve and move these partial results down one PE. Multicast
the values back down the rows. Each PE reads the multicast and combines that value with
its own to obtain the final result. ParallelPrefix requires at most 2logd + 3 arithmetic and

communications operations,

Reduction. Reduce combines information from multiple PEs according to some operator,
and leaves the result in a single PE. Reduce can be executed by methods analogous to the
one dimensional case: run ParallelPrefix and ignore the intermediate results. Alternatively,
Reduce can be run using Combine; the choice depends on whether the operator is associative,

and on the shapes of the regions.

ConvexHull. The convex hull of a set of points S is defined as the smallest convex set
contained in S. Intuitively, the convex hull in a plane can be found by conceptually wrapping
S with a rubber band and eliminating the interior points [27]. Two leading methods for
finding the convex hull on a serial processor are the Graham Scan [12] and the Jarvis March
[19].

The Graham Scan works as follows: A point p known to be on the hull is chosen.
Without loss of generality, let p be the point with the smallest X-coordinate, where smallest
Y-coordinate breaks any ties. For all other points s; in S, calculate the slope of line segment
ps;. Sort the s;’s by slope. Traverse the list of points in order: for each point compute
the angle that it makes with its predecessor and its successor. If the angle is reflex, then
eliminate that point. The serial Graham Scan is of complexity O(N log N), which is the
minimum time required for the sort. The scan phase requires only O(N) steps because at

most N points can be either eliminated or traversed.

The Jarvis March is analogous to wrapping the points in a package, one hull edge at

a time. Again, the algorithm begins with the selection of a point p known to be on the
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hull. The slope of each segment 73; is calculated, and the next point on the hull selected by
finding the segment p5; that makes the smallest angle with respect to the positive X-axis.
This process is repeated for all h points on the hull, and therefore the Jarvis March has
a complexity of O(hAN). In general, the Jarvis March should be used when the expected
number of points on the hull & is less than log N.

The parallel versions of these algorithms are again assumed to be over sets of points in
connected components. Also, we assume that the points in S are mapped to PEs according

to their row and column coordinates.

The first step in the parallel Graham Scan is to select an extreme point p in S by using
ElectLeader. The other s; calculate their slopes with respect to p. The next step is to sort
the PEs by slope by using a variation of GetSortedList, modified so that each s; retains the
IDs of its predecessor and successor points. Using these IDs and that of the coterie leader,
the s; determine whether they are on the hull. If a PE does not represent a point on the

hull, it removes itself from S.

However, this procedure may require a few iterations to simulate the backtracking that
is sometimes necessary in the serial version. Therefore the above procedure is repeated until
no points drop out. Typically only two iterations are sufficient, although it is possible to
construct cases where more are required. As we have not proven a constant bound on the
number of iterations, we can only conjecture that the complexity is O(N), where N is the
number of points in S in the coterie that takes the longest to terminate. This assumes that

SelectMin in GetSortedList is counted as a unit operation.

The Jarvis March can be parallelized somewhat more easily: A point p on the hull is
found using ElectLeader, and its ID is simultaneously distributed to the rest of S. The s;
calculate the angle formed by p3; with the column axis. Calling SelectMin locates the next
point on the hull. The procedure is then repeated until the PE forming the smallest angle is
P, in other words when the loop has closed. The complexity is therefore O(k), the number

of points on the hull, if SelectMin is counted as a unit operation.

6 Conclusions and Future Work

The two keys to the success of a computational framework are for the user to be able to

simply and efficiently:
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1. create the necessary algorithms for the chosen application, and

2. map the framework onto an existing architecture.

With respect to algorithms, it is never possible to know in advance all of the uses to which
a computational framework will be put, but in the present context we have addressed this
problem both generally and specifically. Generally, we have broken down the application into °
classes of problems, whence we derived a set of computational requirements. Those satisfied
by multi-associativity include rapid feedback of information from multiple, irregular, data
sets. Specifically, we have created numerous multi-associative algorithms that enable the
extraction of data over multiple features simultaneously, often through the use of a divide-

and-conquer strategy.

With respect to mapping onto an existing architecture, we have presented a direct im-
plementation of multi-associativity on the CAAPP, with the restriction that PE aggregates
be contiguous, and that SelectFirst and CountResponders be emulated in software. But
most of the features of interest at this level are either contiguous, or can be derived simply
through other means (e.g. a Hough transform), while the emulations have only logarithmic
complexity, a small price when the number of features is typically in the thousands.

Our work on low-level support for higher level processing continues; a current project
includes a parallel implementation of the ISR at the ICAP layer, for which it is likely that
new multi-associative algorithms will be needed. We will also be using multi-associativity
in other domains: the application to segmentation is also currently under way. Also under
consiaeration are more problems from computational geometry. Another long term project
is the mapping of multi-associativity to other SIMD architectures and the evaluation of

features with respect to this model.
Acknowledgments

We would like to thank Jim Burrill, Deepak Rana, Mike Rudenko, Ross Beveridge, Bob

Collins, and Bruce Draper for their useful comments.

28



References

[

2]

3]

[4]

(5]
(6]
[7]
(8]

(9]

[10]
[11]

[12]

M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M.Lam, O. Menzilcioglu, J.A. Webb
(1987): “The Warp Computer: Architecture, Implementation, and Performance,” IEEE
Trans. on Computers, C-36 (12).

F. Annexstein, M. Baumslag, M.C. Herbordt, B. Obrenic, A. Rosenberg, C.C. Weems
(1990): “Achieving Multigauge Behavior in Bit-Serial SIMD Architectures via Emula-
tion,” Proc. of the 8rd Symp. on the Frontiers of Massively Parallel Computation.

K.E. Batcher (1980): “Design of the Massively Parallel Processor,” IEEE Trans. on
Computers, C-29 (9).

J.R. Beveridge, J. Griffith, R.R. Kohler, A.R. Hanson, E.M. Riseman (1989): “Seg-
menting Images Using Localized Histograms and Region Merging,” Int. J. of Computer
Vision, 2 (3).

G.E. Blelloch (1989): “Scans as Primitive Parallel Operations,” IEEE Trans. on Com-
puters, C-38 (11).

J. Brolio, B.A. Draper, J.R. Beveridge, A.R. Hanson (1989): “ISR: A Database for
Symbolic Processing of Computer Vision,” IEEE Computer, December.

B.A. Draper, R.T. Collins, J. Brolio, A.R. Hanson, E.M. Riseman (1989): “The Schema
System,” Int. J. of Computer Vision, 2 (3).

M.J.B. Duff (1978): “Review of the CLIP Image Processing System,” Proc. of the
National Computing Conference, AFIPS, pp. 1055-1060.

L. Erman, F. Hayes-Roth, V. Lesser, D. Reddy (1980): “The Hearsay-II Speech Under-

standing System: Integrating Knowledge to Resolve Uncertainty,” Computing Surveys
12 (2).

A.D. Falkoff (1962): “Algorithms for Parallel Search Memories,” Journal of the ACM,
9 (4), pp. 488-511.

C.C. Foster (1976): Content Addressable Parallel Processors, Van Nostrand Reinhold
Co. New York.

R.L. Graham (1972): “An Efficient Algorithm For Determining the Convex Hull of a

29



Planar Set,” Information Processing Letters, 1, pp. 132-133.

(13] A.R. Hanson and E.M. Riseman (1987): “The VISIONS Image Understanding System-
1986,” in Advances in Computer Vision, C. Brown ed., Erlbaum, Hillsdale, N.J.

[14] M.C. Herbordt, C.C. Weems, D.B. Shu (1990): “Routing on the CAAPP,” Proc. of the
10th Int. Conf. on Pattern Recognition.

(15] M.C. Herbordt, C.C. Weems, J.C. Corbett (1990): “Message Passing Algorithms for a
SIMD Torus with Coteries,” Proc. of the 2nd ACM Symp. on Parallel Algorithms and

Avrchitectures.
(16] W.D. Hillis and G.L. Steele Jr. (1986): “Data Parallel Algorithms,” Comm. of the ACM,
29 (12).

[17) D.J. Hunt (1981): “The ICL DAP and its Application to Image Processing,” in Lan-
guages and Architectures for Image Processing, M.J.B. Duff and S. Levialdi eds., Aca-

demic Press, London.

(18] R.M. Karp and V. Ramachandran (1988): “A Survey of Parallel Algorithms for Shared-
Memory Machines,” TR 88.408, U.C.B.

[19] R.A. Jarvis (1973): “On the Identification of the Convex Hull of a Finite Set of Points
in the Plane,” Information Processing Letters, 2, pp. 18-21.

(20] H. Li and M. Maresca (1989): “The Polymorphic-Torus Architecture for Computer
Vision,” IEEE Trans. on PAMI, PAMI-11 (3).

[21] J.J. Little, G.E. Blelloch, T.A. Cass (1989): “Algorithmic Techniques for Computer
Vision on a Fine-Grained Parallel Machine,” IEEE Trans. on PAMI, PAMI-11 (3).

(22] D. Marr (1982): Vision, W.H. Freeman, San Francisco, CA.

(23] B.T. McCormick (1963): “The Illinois Pattern Recognition Computer — ILLIAC I11,”
IEEE Trans. on Elect. Computers, C-12 (12).

[24] R. Miller, V.K. Prasanna Kumar, D. Reisis, Q.F. Stout (1988): “Meshes With Recon-
figurable Buses,” Proc. of the MIT Conf. on Advanced Research in VLSI.

[25] D. Nassimi and S. Sahni (1980): “Finding Connected Components and Connected Ones
on a Mesh-Connected Parallel Computer,” SIAM Journal of Computing, 9 (4).

30



[26] VK. Prasanna- Kumar and D. Reisis (1989): “Image Computations on Meshes with
Multiple Broadcast,” IEEE Trans. on PAMI, PAMI-11 (11).

(27) F.P. Preparata and M.I. Shamos (1985): Computational Geometry An Introduction,
Springer-Verlag, New York.

[28] D. Rana and C.C. Weems (1990): “A Feedback Concentrator for the Image Understand-
ing Architecture,” Proc. of the Int. Conf. on Application Specific Array Processors, pp.
579-590.

[29) E.M. Riseman and A.R. Hanson (1989): “Computer Vision Research at the University
of Massachusetts-Themes,” Int. J. of Computer Vision, 2 (3).

[30] A. Rosenfeld (1984): “Image Analysis: Problems, Progress and Prospects,” Pattern
Recognition, 17 (1), pp. 3-12.

[31) C.D. Thompson and H.T. Kung (1977): “Sorting on a Mesh Connected Computer,”
Communications of the ACM, 20 (4).

[32] L.W. Tucker (1988): “Architecture and Applications of the Connection Machine,” IEEE
Computer, August, pp. 26-38.

[33] C.C. Weems (1984): “Image Processing on a Content Addressable Array Parallel Pro-
cessor,” COINS Tech. Rpt. 84-14 and Ph.D. Dissertation, University of Massachusetts.

(34] C.C. Weems, E.M. Riseman, A.R. Hanson, A. Rosenfeld (1988): “IU Parallel Process-
ing Benchmark,” Proc. of the Computer Society Conference on Computer Vision and

Pattern Recognition.

[35] C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman, J.G. Nash, D.B. Shu (1989):
“The Image Understanding Architecture,” Int. J. of Computer Vision, 2 (3).

[36] C.C. Weems, E.M. Riseman, A.R. Hanson, A. Rosenfeld (1991): “An Image Under-
standing Benchmark for Parallel Computers,” Journal of Parallel and Distributed Com-
puting, 11 (1).

[37) M. Willebeek-LeMair and A.P. Reeves (1990): “Solving Nonuniform Problems on SIMD

Computers: Case Study on Region Growing,” Journal of Parallel and Distributed Com-
puting, 8.

31



