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Abstract

We present algorithms for embedding de Bruijn and shuffle-exchange graphs in books
of 5 pages, with cumulative pagewidth 2" — ] 4 (2/3)(2*! - 2 + (n mod 2)) and
21 4 (1/3)(2™! — 2+ (n mod 2)), respectively. These are the first nontrivial bounds
on the pagenumber of de Bruijn and shuffle-exchange graphs.



1 Introduction

The book of thickness p is a set of p half-planes, called pages, sharing a common
boundary, called the spine. A p-page book-embedding of a directed graph G = (V, A) is
a drawing of G in a book of thickness p so that the nodes of G reside on the spine of the
book, while each arc of G is drawn in exactly onc page, in such a way that no arcs of G
cross. Arc directions are immaterial for book-embedding--the graphs we consider are
directed just for clarity of presentation. The pagenumber of a graph G is the thickness
of the smallest (in number of pages) book into which G can be embedded. The width
of a page in a book-embedding is its maximum cutwidth. The cumulative pagewidth
of a book-embedding is the sum of the widths of all pages.

The book-embedding problem appears in several formulations and has various ori-
gins (cf. [4]); within the realm of parallel architectures it is relevant for the design
of fault-tolerant processor arrays of identical processing elements. The Diogenes ap-
proach to the design of such arrays [3, 12] assumes that processing elements are laid in
a logical line, while some number of “bundles” of wires runs in parallel with the line.
The configuration of the fault-free processors into the desired topology is effected by a
network of switches connecting processors to the bundles of wires. The switching mech-
anism behaves as a stack, to which wires are entered or from which they are removed
as the linear array of processors is scanned during the configuration process. The most
significant cost in a Diogenes layout [3] of an array is the number of bundles of wires,
organized in hardware stacks, required to configure it. A secondary cost is the total
width of these bundles. Therefore, a Diogenes design mandates finding a linearization
of nodes of the target array such that the edges of its interconnection network can be
laid out in few small stacks. This problem, however, is equivalent to finding an efficient
book-embedding of the graph underlying the interconnection network. The pagenumber
of a graph equals the required number of stacks, while the cumulative pagewidth equals
the required stackwidth; it is, therefore, desirable to achieve embeddings of important
graph families, with optimal pagenumber and pagewidth.

This book-embedding problem is very hard in general: we know [5] that for a given
linearization of the nodes of a graph G and a given integer k, the problem of deciding
if the linearization admits a k-page book-embedding of G is N P-complete.

At present, book-embeddings of several graph families are known, though it is
less often known whether these embeddings are optimal. Exemplifying this fact are
the family of complete graphs, whose pagenumber is determined exactly [1], and the
family of complete bipartite graphs, where it is not yet established whether the known
[11] book-embedding is optimal. Very few efficient algorithms exist for achieving book-
embeddings of arbitrary graphs [16] (8].

Optimal (within constant factors, or even absolutely) book-embeddings have been



constructed for almost all seriously proposed interconnection networks, including trees
[4], grids (4], X -trees [4], butterfly-like networks [6] and hypercubes [4]. Yet, no efficient
book-embeddings have been found so far for shuffle-like networks, another very popular
class of interconnection networks represented by de Bruijn graphs and shuffle-exchange
graphs. The very weak upper bound for the much broader class of bounded-degree
graphs applies, but is nonconstructive, so it follows from [4] or [10] that there ex-
ist book-embeddings of N-node de Bruijn (shuffle-exchange) graphs with pagenumber
O(Jﬁ ). This paper presents a construction for embedding these graphs in 5 pages.
The best known lower bound on the pagenumber of de Bruijn and shuffie-exchange
graphs remains 3, which follows from the graphs’ nonplanarity.

It may be interesting to compare our results about shuffle-like networks with the re-
sults known about butterfly-like networks. Both families are bounded-degree hypercube-
derivative networks; their computational power is a frequent topic of comparative stud-
ies (cf. [13]). Both families have small pagenumber: for butterfly-like graphs it is 3, in
contrast to hypercubes themselves, whose pagenumber is unbounded (logarithmic) in
the size of the network.

We remark that Diogenes can utilize a switching mechanism alternative to stacks of
wires; this mechanism consists of queues of wires [12], so the success of Diogenes design
with queues depends on finding efficient queue layouts of graphs. For practically all
popular networks the queuenumber is known [9]; for both butterfly-like and shuffle-like
graphs it is 2.

In Section 2, we define the bidendral decomposition of de Bruijn graphs, and adduce
its relevant properties. In Section 3 we exploit the decomposition for developing the
book-embedding of de Bruijn graphs. We start by embedding separately the partial
subgraphs produced by the decomposition; then we compose the partial embeddings
into an efficient embedding of the whole graph. In Section 4, we adapt the embedding
to shuffle-exchange graphs.

Notation: We denote by Z, the set {0,1} and we use letters from the beginning of
Greek alphabet (a,f,7, ...} as variables ranging over Z,. For integer k > 0, we denote
by Z¥ the set of all strings of length k over Z,, and we let lowercase letters of Roman
alphabet (a,b,...,2,y,2,...) range over Z¥; Z9 =4.r {1} is the singleton consisting of
the designated empty string A. For © € Z%, |z| =4 K is the length of string . We
define o* € Z¥ as the length-k string whose all elements are equal to a. Let B =4 1-1
and for y € Z¥, let By = By. The length-(k — 1) suffix of a string y € Z¥ is denoted by
o(y), so o(By) =daer ¥-



2 Bidendral Decomposition of de Bruijn Graphs

We commence by defining the graphs of interest—de Bruijn graphs and complete binary
trees.

The order-n de Bruijn graph D(n) [2] has node-set Z3; given y € Z}!, two arcs
are incident out of each node By: the shuffle arc that leads to yB _and the shuffle-
ezchange arc that leads to yf3. Let S(By) =aer yB and E(BY) =der yB. Consequently,
S(By) = o(By)B and £(By) = o(By)P.

The complete binary tree T(h) of height h has node-set Upcr<n Z5 and arcs leading
each y € Z¥, 0 < k < h, to its children y0 and yl. The root of the tree T'(h) is the
empty string A, the leaves of T'(h) are all nodes y € Z}.

Levels in the tree T'(h) are defined naturally: the 2* nodes z € Z¥, for 0 < k < h,
reside at level h — k. So, the root is the only node at level h; the leaves are at level 0.

Within the tree T'(h), we define tree-order on nodes of T'(h) as the lexicographic
order of nodes as binary strings: node z precedes node y if either |z| < |y|, or |z| = |y|
and = < y, where the latter order is defined on the integers represented in binary by =
and y.

We prepare for our embedding of the de Bruijn graph D(n) by identifying two
complete binary trees in D(n) and by determining the structure of partial subgraphs
induced by the arcs not contained in these trees.

We partition the nodes of D(n) into four sets. The first set is a singleton containing
node 0"; the second set consists of all nodes, other than 0", which start with 0. Anal-
ogously, the third set is a singleton containing node 17; the fourth set consists of all
nodes, other than 1", which start with 1. So, for each of the two values of v € {0, 1},
the node-set of D(n) has the following two components:

Sy = {s}={r"}h v €{0,1}
Vo = {wlyez; '\ {7"'}}, v€{0,1}

Call the elements of V, and V; tree nodes, and call s, and s; singular nodes. This
decomposition induces a partition of the arc-set of D(n) into six subsets, so that D(n) is
represented as six arc-disjoint partial subgraphs. So, for each of the two values of
~ € {0,1}, D(n) contains the following three subgraphs:

Trees: T, = (V,, A,), where 7 € {0,1}, is the subgraph of D(n) induced on V,; it is
1somorph1c to the complete binary tree T(n — 2). The isomorphism @, of the
node-set of T(n — 2) to V, is defined as follows: For = € Z5, k < n — 2,



Bo(z) = 0" F0le

&(z) = 1" 2*10z

By definition, ®. is injective; it is also surjective by equal cardinality of its domain
and its range (|V,| = | Uo<k<n_z Z5| = 2"* —1). To show that ®., preserves arcs,
note that =

' 8,(20) = o(®,(2))y = 5(84(2))

B,(21) = o(@,(2)]7 = £(2,(2))

whenever z € Z¥, k < n — 2. Call the two arc-sets Ay and A; the tree arcs of
D(n). Since T'(n — 2) has (2! — 2) arcs, there are 2 x (27! — 2) = 2" — 4 tree
arcs in Ag U A;.

Leaf subgraphs: Let V;’, where v € {0,1}, be the set of leaves of the tree T,,. Then
the graph L, = (V.*UV5U S5, AL) has node-set consisting of the leaves of tree T,
all nodes of tree 7%, and singular node s5. For each z € V,YL, there is ¢’ € 2372
such that z = vz, so S(z) = Jz'y € (V5U S57) and &(z) = F2'F € (15U S5). We
define the arc-set A% as the arcs incident out of leaves of tree T,. As just noted,
each such arc leads a node in V.' to some node of tree T% or to the singular node
s5. Call the two arc-sets AY and AL the leaf arcs of D(n). Since two arcs are
incident out of each of the 2"~? leaves of T, there are 2 x 2772 x 2 = 2" leaf arcs
in AU AL

Singular subgraphs: There is a self-loop incident to node s., where v € {0, 1}, and
there is an arc from s, to the root of T,. Call these the singular arcs of D(n).
There are 4 singular arcs altogether.

The two trees 75 and T are node-disjoint, so embedding one of them does not
constrain the embedding of the other; however, each arc in both sets of leaf arcs, AL and
AF,| connects nodes from different trees. The difficulty in embedding D(n) in a small
book is in finding a linearization of nodes of the iwo trees which both accommodates
the leaf arcs and respects the relative ordering of nodes within each tree prescribed
by the embedding of the tree arcs. The following lemma clarifies the structure of the
partial subgraph of D(n) generated by the leaf arcs, thereby making it possible to
define the desired linearization. See Fig. 1.

Lemma 1 Let a,b € V', where v € {0,1}, be two leaves of T,, and let (a,u) and
(b,v) be two leaf arcs incident into T5. Then a precedes b in tree-order of T, just when
u follows v in tree-order of T5.



Proof. We first show that tree-order in Ty coincides with the lexicographic order on
nodes of D(n) , while tree-order in T; coincides with the reversed lexicographic order
on nodes of D(n). Indeed, given nodes z and y of T(n — 2) such that = precedes y, we
see that :

Bo(z) = 0"~ Moghl-lel 15 < gn-2-lg1y = Bo(y)
$,(z) = 1" h-lelgz > 17-2-W107 = &,(y)

We complete the proof for the case ¥ = 0, the case ¥ = 1 being dual. Because
a,b € Vi, there are a',b' € Z37? such that a = 0la’, b = 01V, u € {S(a), E(a)} and
v € {S(b),€(b)}. We know that a precedes b in tree-order of Ty just when a' < ¥/,
which means that

S(a) =140 < 1a'1 = £(a) < 160 = £(b) < 1b'1 = S(b).

This chain of relations is true just when u < v, meaning that u follows v in tree-order
of 7). O

If we extend tree-order in the two trees, consistently with the lexicographic order
in D(n), to cover corresponding singular nodes, then Lemma 1 holds also for the case
v = sy, since 85 = " becomes the first node of T5 in tree-order, while the leaf arc
incident into it originates at node y5™~?, which is the last leaf of 1, in tree-order.

Consider the leaves fo’ of T, linearized so that they appear in tree-order. Partition
this sequence into n — 1 successive contiguous segments so that the kth segment,
0 < k < n— 3, has 23 nodes, and the (n — 2)nd segment has 1 node. Let the
singular node s3 be included in level n — 2, together with the root of T5. Our picture
of the partial subgraphs L., v € {0,1}, is rendered by the following.

Proposition 1 Lety € {0,1}, 0< k<n—2,0 < j <23, The leaf arcs incident

out of the jth node, in tree-order, of the kth segment of leaves V.,L of T,, are incident
into the pair of nodes that is the jth pair, in reversed tree-order, of the kth level of T5.

3 Embedding de Bruijn Graphs in Five Pages
Our main result is stated as follows.

Theorem 1 The order-n de Bruijn graph D(n) admits a book-embedding in five pages,
with cumulative pagewidth (5/3)(2" — 1 — (n mod 2)) — (n mod 2).

The embedding that establishes Theorem 1 is developed in three stages. In the first
stage, we specify the subembedding of the two trees To and T1. The node-sets Vp and



V, are disjoint, so these subembeddings are independent; each requires two pages. So,
four pages may be required for the first-stage subembeddings, since we must expect
that the node-sets of the trees Tp and T, appear on the spine interleaved in some
way dictated by the subembeddings of subsequent stages, thus preventing the pages
consumed by one tree from being reused by the other. Four pages are also sufficient, as
the tree-subembeddings do not constrain each other. In the second stage, we show how
to embed each set of leaf arcs AL. The resulting leaf-subembeddings are not mutually
independent, as each involves the leaf nodes Vf‘ of one tree and the nodes Vz U S5 of
the other. The consideration of interference between the second-stage subembeddings
is deferred until the last stage, so these subembeddings are constructed independently;
each requires one page. In the last stage, we exhibit a node layout which is consistent
with the four subembeddings of the first two stages. Finally, we identify two pages
of the first stage that can be combined into a single page in the complete embedding,
thus arriving at the total of five pages.

3.1 Embedding the Trees

We present two varieties of what we term a spiral embedding of trees, in particular of
T(h). In both spiral embeddings, nodes are laid out by an appropriate alternation of
tree levels, while each level is contiguous and ordered. In the inward spiral embedding,
the outermost levels are the lowest-numbered levels, while in the outward spiral em-
bedding the outermost levels are the highest-numbered levels. See Fig. 2 and 3. The
following definition makes the layout precise.

Definition 1 Let 0 < k< |[(h —1)/2] and 0 < £ < |h/2].
(a) In the inward spiral embedding of T'(k), the layout of nodes from left to
right along the spine is:

nodes at levels 1,3,...,2k+1,...,h — 1 4+ (h mod 2), in that order, each
level in reversed tree-order;

followed by:

nodes at levels h—-(h mod 2), h—2—(h mod 2),...,h—2¢—(kh mod 2),...,0,

in that order, each level in tree-order.

(b) In the outward spiral embedding of T'(h), the layout of nodes from left to
right along the spine 1s:

nodes at levels h—(h mod 2),h—2—(h mod 2),...,h—2¢—(h mod 2),...,0

in that order, each level in tree-order;

’



followed by:

nodes at levels 1,3,...,2k+1,...,h — 1+ (h mod 2), in that order, each
level in reversed tree-order.

The spiral embeddings separate odd-numbered tree levels from even-numbered ones,
so that all levels of equal parity appear at one side of some point on the spine, while
the levels of opposite parity appear at the other side. Call these sides the even and
the odd side of the spine, according to tree levels that occupy them. In the inward
spiral embedding the odd side is the left side of the spine, while in the outward spiral
embedding the odd side is the right side of the spine. Otherwise, both embeddings
place identically the levels of equal parity relative to each other—the odd-numbered
ones in the order of increasing level number, the even-numbered ones in the order of
decreasing level number. They also place identically the nodes inside each level—in
tree-order within even-numbered levels, in reversed tree-order within odd-numbered
levels. In summary,

Proposition 2 The even side of a spiral embedding is laid out in tree-order. The odd
side of a spiral embedding is laid out in reversed tree-order.

We derive now the properties of the arc-assignment.

Lemma 2 Both outward and inward spiral embeddings of T(h) consume two pages,
with cumulative pagewidth 2h+1 — 2.

Proof. The arcs of T'(h) lead from nodes of one level to nodes at the level below, thus
each arc leads either from the even side of the spine to the odd side, or vice versa.
We assign the arcs that lead from the odd side to the even side to the upper page of
a spiral embedding, and the arcs that lead from the even side to the odd side to the
lower page.

Consider two arcs (z,za) and (y,yB), for distinct 2, y with |z|, |y| < k. Say that
these arcs are assigned to the same page of a spiral embedding. Then z precedes y in
the tree-order just when za precedes y3. However, the even and the odd sides of the
spine are ordered oppositely, so za and yf3 appear on the spine ordered oppositely to
z and y; the two arcs, therefore, nest inside one another.

To verify the cumulative pagewidth, note that the total cutwidth of both pages
equals the number of arcs in T(k), the maximum occurring at the pivot point between
odd and even side. O



Now we are prepared to specify the first stage of the embedding— the layout of the
two trees. At this point, we have a “stand alone” embedding for each of the trees, but
we cannot yet specify the positions of the trees on the spine relative to each other.

Node Layout of the Two Trees T.:

e T, is laid out by outward spiral embedding.

o T is laid out by inward spiral embedding.

Recalling that the height of each tree is n — 2, Lemma 2 yields:

Corollary 1 Each of the two component trees T, where v € {0,1}, of D(n) is em-
bedded in two pages, with cumulative pagewidth 27! — 2.

3.2 Embedding the Leaf Arcs

Our next goal is to embed leaf arcs AL and AL, that lead from V,.,L to V5 U S5, without
violating the relative ordering of nodes of V&, stipulated by the spiral embedding of
T5. See Fig. 4.

In the following, we again coopt the singular node 85 to level n — 2 of T and place
it beside the root %1y of T%, consistently with the ordering described in Proposition
2.

Node Layout of the Partial Subgraph L, Generated by Leaf Arcs A.‘;‘:

Lay out the nodes V5 as mandated by the spiral embedding of tree Tz (inward if § = 1,
outward if ¥ = 0). Then interleave the leaves V' of tree T, with the odd side of the
spiral embedding of 7% so that the following holds:

o Each even-numbered segment of V. is placed contiguously, in tree-order; the kth
segment is placed immecdiately to the left of the leftmost node of level k + 1 of
Ts. .

e Each node of an odd-numbered segment of V.V is placed between the two nodes
of T to which it is adjacent via leaf arcs of AZ.

The properties of the second stage embedding are summarized in the following.

Lemma 3 FEach partial subgraph L., where v € {0, 1}, generated by arcs AL that lead
leaves V.F of T, to nodes of V5 S5, is embedded in one page of width (2/3)2" +(7/3)—
(8/3)(n mod 2). The leaf nodea V.E of T, are laid out in tree-order.



Proof. First, all leaf nodes of odd-numbered segments of V. are placed immediately
beside the corresponding adjacent nodes in the tree T%, so these arcs do not cross any
other arcs on the page; they contribute 1 to the pagewidth.

To complete the proof for leaf arcs incident out of even-numbered segments of V,YL ,
we invoke Propositions 1 and 2. The odd-numbered levels of 75 are placed in increasing
order of level numbers, thus compelling the odd-numbered segments of leaves V,f' to
appear in order of increasing segment numbers. Further, each even-numbered leaf
segment, say the kth, is placed between the levels k — 1 and k + 1 of T, (assuming
both levels exist), thus between the segments k — 1 and k + 1 of leaves V.. This
imposes the order of increasing segment numbers on even-numbered segments. So, all
nodes of even-numbered segments appear in tree-order and lie within the odd side,
while the even-numbered levels of T are also in tree-order and lie within the even side.
By Proposition 1, this results in opposite orders of sources and destinations of these
leaf arcs; therefore, no two leaf arcs cross.

By appealing to Proposition 1 again, we see that the order of nodes within odd-
numbered segments of V;L is opposite to the order within odd-numbered levels of T%.
By Proposition 2, the latter order is reversed tree-order, so the leaves of V. in odd-
numbered segments appear in tree-order. Since leaves in even-numbered segments are
in tree-order by construction, and since all segments are laid out in order of increasing
segment number, we infer that all leaves V,f‘ are in tree-order.

The contribution of leaf arcs incident out of even-numbered segments of leaves V,
into even-numbered levels of tree T and, when n is even, into the singular node s5, is:
125 9
2x(( Y 2%Hrmed2)) 41 — (n mod 2)) = 3(2"+2 - 4(n mod 2))
k=0

which yields the claimed pagewidth after accounting for the one arc contributed by the
leaf arcs incident out of odd-numbered segments. O

3.3 The Complete Embedding

We have to verify now that the partial embeddings defined so far are consistent. The
embeddings of the trees in the first stage are trivially so, since they involve disjoint sets
of both nodes and arcs. The embedding of each partial subgraph L. generated by the
leaf arcs is consistent with the corresponding embedding of the tree Ty; it constrains
only the leaves V, of the other tree T,; by Lemma 3, the mandated linearization of the
leaves V,YL is tree-order; it is, therefore, consistent with the layout of these leaves in the
spiral embedding of T,,. It remains to confirm that each leaf set V.I' can be laid out in
the odd side of the spiral embedding of the other tree T5. To that end, we need only



recall that the two spiral embeddings have their odd (even) sides in opposite sides of
the spine, so the constraint is readily satisfied by identifying the odd side of one spiral
embedding with the even side of the other. See Fig. 5.

Finally, the self-loops incident to the singular nodes are embedded easily, and the
remaining two singular arcs, each incident out of node s, to the root y"'J of T, may
be laid out in either of the two pages of the spiral embedding of T.,, since no other
nodes of T, are placed between s, and y*7'7.

Corollary 2 The four partial embeddings of the two trees T, where v € {0,1}, and
the two partial subgraphs L. generated by the leaf arcs, define an embedding of D(n) in
ST pages.

Our final task is to show that two of the six pages can be coalesced.

Lemma 4 Assume that the lower page of a spiral embedding is the one that accommo-
dates the arcs that lead from the even side to the odd side. Then, the two lower pages
of the spiral embeddings of the trees Ty and Ty can be coalesced.

Proof. Let (zo,y0) be an arc on the lower page of the outward spiral embedding of
To, and let (z,,y;) be an arc on the lower page of the inward spiral embedding of Tj.
We prove that the only possible ordering of the endpoints of these arcs on the spine is
To, Y1, T1, Yo, In which ordering the two arcs do not cross. Since the sources of the
arcs are in the even sides, and the destinations in the odd sides of the corresponding
spiral embeddings, we know that both z¢ and y; are to the left of z; and yo, as the left
side is even for Ty and odd for T}.

To prove that z, is to the left of y;, we find a node which is both to the left of Y1
and to the right of zy. Indeed, 2 is in some non-leaf even-numbered level of T, so it is
to the left of all leaves of Tp, by properties of the outward spiral embedding. However,
Y1 1s in some odd level of T}, hence is to the right of segment 0 of the leaves of T, by
properties of the embedding of leaf arcs. Thus, all nodes in segment 0 of Vil are to the
left of y; and to the right of @¢. Analogously, all nodes in segment 0 of Vil are to the
left of yo and to the right of «;, whence the claimed ordering. O

We complete the proof of Theorem 1 by noting that the cumulative pagewidths of
the component embeddings, as established in Corollary 1 and Lemma 3, combine to
yield the claimed cumulative pagewidth.

10



4 Embedding Shuffle-Exchange Graphs in
Five Pages

The order-n shuffle-ezchange graph S(n) [15] has node-set Z7; given y € Z;~! and
B € Z,, tl_l_e shuffle arc leads node By to node yB and the ezchange arc leads node yf
to node yf.

The book-embedding of de Bruijn graph D(n) almost contains that of the shuffle-
exchange graph S(n), as announced by the following. (See Fig. 6.)

Theorem 2 The order-n shuffle-echange graph S(n) admits a book-embedding in five
pages, with cumulative pagewidth 2" — (1/3)(2"! — 1 — (n mod 2)).

Proof. The node layout is identical to that of D(n). All shuffle arcs of S(n) are
identified with shuffle arcs of D(n). Each exchange arc of S(n) is incident to nodes yy
and 57, for some y € Z3~!. However, one of {y7, %7} is the immediate successor of the
other in the tree-order of one of the trees, say T.,. There are no nodes of V, between
y7 and 7, and a new arc between them does not cross any other arc in either of the
two pages of the spiral embedding of T,,.

The claimed cumulative pagewidth is arrived at after removing the shuffie-exchange
arcs from the embedding of D(n), and subsequent incrementing by 1 the common width
of the pages of the spiral embedding of the two trees. O

5 Conclusion

We have presented algorithms for embedding shuffle-like graphs in books of five pages.
It still remains unknown whether five pages are necessary, as the best known lower
bound is 3: Fig. 7 presents our embedding of the order-5 de Bruijn graph in four
pages.

The pagewidths of our book-embeddings are greater than optimal by a factor loga-
rithmic in the size of the graphs. This weakness is found in other book-embeddings of
popular interconnection networks (cf. [6, 4]); it would be very interesting to bring the
pagewidths of these embeddings closer to optimal, while retaining small pagenumbers,
or to find some pagenumber-pagewidth tradeoffs. The general problem of transform-
ing a book-embedding with optimal pagenumber and suboptimal pagewidth into one
having the pagewidth in the order of optimal and the pagenumber not much greater
than optimal is still open for all but one-page graphs: [7] presents an algorithm which
converts one-page book-embeddings into two-page book-embeddings having logarith-
mic (asymptotically optimal) cumulative pagewidth. Although the general problem

11



for graphs with arbitrary pagenumber is still open, some special cases offer evidence
that good solutions are possible: [4] describes a two-page and a three-page graph fam-
ily whose cumulative pagewidth decreases dramatically (from linear in the number of
nodes to a constant) when only one more page is used; [14] constructs families with
the same property, but for an arbitrary value of the pagenumber. For the Diogenes ap-
proach to fault-tolerant design of processor arrays, simultaneous optimization of both
cost measures in the book-embeddings of the prevailing interconnection networks would
greatly reduce the price of fault-tolerance.

Acknowledgment. The author is greatly indebted to her research advisor Arnold L.
Rosenberg, who proposed the problem and supplied many valuable comments which
have substantially improved the presentation.
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Figure 7: Embedding D(5) in four pages



