OPL: An Environment for Posing and
Solving Discrete Optimization Problems

Bruce MacLeod
Robert Moll

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 91-29
April 1991

Abstract

In this work we report on a general and extensible framework, called OPL, for quickly
constructing reasonable solutions to a broad class of complex discrete optimization problems.
Our approach rests on the observation that many such problems can be represented by
linking together variants of well-understood primitive optimization problems. We exploit this
representation by building libraries of solution methods for the primitive problems. These
library methods are then suitably composed to build solutions for the original problem.

To demonstrate the efficacy of the approach we report here on several OPL applications,

including a vehicle routing problem and a real-time computer task and resource scheduling
problem.

1 Introduction and Background

In this paper we report on a notation and computing environment for rep-
resenting and solving complex combinatorial optimization problems. The
problems we consider arise in such diverse areas as scheduling, vehicle rout-
ing, layout, and warehousing.

Our notation and solution methodology is called OPL (for Optimization
Programming Language). In OPL problems are represented by means of a
graph structure called an HCG (Hierarchical Containment Graph). Nodes
in a graph represent either primitive objects or organized collections of prim-
itive objects. The ways in which primitive objects can be organized reflect
the fundamental data structures that appear in many combinatorial opti-
mization problems, e.g. bounded length lists, unordered sets, rings. An arc
represents a function that associates objects in the source node with objects
in the target node. This mapping represents a fundamental (and reasonably
well-understood) optimization problem involving objects that appear in the
source and target nodes associated with the arc.

OPL achieves its power by means of an abstraction mechanism, which
allows a user to create a library of solution methods for the fundamental
optimization problems that are associated with the arcs of an HCG repre-
sentation. Such solution methods are generally approximation algorithms or
local search routines. For example, a suitably constrained map from primi-
tive objects to ring structures can model the traveling salesman problem; it
can be optimized, for example, using library versions of a nearest neighbor
heuristic — an approximation routine, and Lin and Kernighan’s 2-opt - a
local search heuristic. Many library routines have been defined as part of
the OPL environment and their use involves simple calls to the appropriate
library function.

The language of policy programs is the solution component of the OPL
environment. Given an optimization problem and an associated HCG, a user
creates solutions — that is, policy programs — which involve calls to library
routines appropriate to the primitive optimization problems identified in the
problem’s HCG. OPL allows these library calls to be embedded in traditional
programming language constructs (if, while, ...). An important feature of
the language of policy programs is its extensibility. New fundamental data
structures and new primitive optimization problems can be defined, and
given a primitive optimization problem, new solution methods can be created
and added to the solution library. An OPL prototype has been written
in Common Lisp. It has been used to solve problems in vehicle routing,

warehouse layout, real time scheduling, and check clearing operations in a
bank [24, 25, 26].

Other advanced software systems have been proposed for solving prob-
lems in Operations Research. Software environments for mathematical pro-
gramming include AMPL (7], GAMS [1], and Platform [27]. Software sys-
tems based on an intelligent search of the solution space have also been de-
veloped. These include the technique of Global Search [33] and the ALICE
system [21]. The problem of developing languages for describing Operations
Research problems has also recieved some attention. The structured mod-
eling notation, described in [8, 11}, supports the descriptions of a variety of
computational and data processing issues that arise in Operations Research
and Management Science. NETWORKS is a modeling system which is based
on graph grammers [18]. It allows users to specify the characteristics of a
problem instance and a problem class interactively. The OPL notation bears
some similarity to the above two modeling systems. All three approaches
use graphs to represent relationships that exist between principal entities
that make up a particular OR problem. However, the focus of our work
is on problem solving. For a more detailed review of advanced Operations
Research software systems see [9].

This paper describes the OPL environment and the results of apply-
ing OPL to three different problems. In Section 2 we provide an informal
description of the OPL notation and solution machinery. Section 3 uses
the classroom scheduling problem to help describe the process of HCG con-
struction. In Section 4 we consider the style and effectiveness of OPL policy
programs by comparing our performance on the multiple depot vehicle rout-
ing problem with published results. Section 5 considers a real-time computer
resource allocation and scheduling problem. General observations from this
line of investigation are given in the concluding section.

2 Description of OPL and a Simple Example

2.1 OPL Representation Machinery

OPL’s problem representation machinery is motivated by four goals:
¢ Problem representations should be natural,;

e Representations should lead to problem solutions that can be con-
structed using software libraries;

e Natural representations should lead to high quality solutions; and

o The representation system should be extensible.

These goals are achieved using hierarchical constraint graphs, or HCG’s, to
structure the description of optimization problems.

In an HCG, nodes correspond to a set of objects of a particular fun-
damental type (or a tuple of such types). Such types can be primitive,
indivisible objects, or container types, which are types that “hold” other
objects. Containers can hold objects in different ways; the range of pos-
sibilities reflects the class of fundamental data structures that appear in a
great many combinatorial optimization problems, e.g. bounded length lists,
unordered sets, rings. An arc represents a function that associates objects
in the source node with objects in the target node. We view such a map as
representing a fundamental (and reasonably well-understood) optimization
problem that determines the mapping between the data structures identi-
fied in the. source and target nodes associated with the arc. As an example,
Figure 2.1 indicates that objects of type X are to be organized in objects of
type Y. An icon, in this case Hindicates the structural organization of X
objects in the Y objects.

Ch)
=

Figure 1: A Simple HCG

Often such a relationship can be thought of as asserting: “ map each
object of type X into a structured container of type Y”. Indeed, we will
frequently use “object-container” terminology when we refer to the elements
of our generalized assignment mappings. If an object is a container, we
assume that its internal positions have a unique numerical value. If p belongs
to container structure Y, then position(p) gives this location.

The system’s current existing container types are described below. Ad-
ditional types are easy to add.

o unordered sets, B is a structure that is used for partition/clustering
problems.

e ring (bounded or unbounded), *.*, describes an organization of ob jects
into a ring data structure. These structures are used for TSP style
routing problems.

o slotted object, M is used for representing discrete schedules, as well as
for representing other “slotted” situations that are common in opti-
mization problems, e.g., parking trucks in loading bays, plugging com-
puter boards into backplanes, or assigning goods to particular bins in
a row in a warehouse.

o continuous interval, 0 this structure is used primarily to represent
the placement of objects (or tasks) in continuous time.

An HCG arc from X to Y represents a function from objects of type X to
objects of type Y. The most important kind of map is called an installation
map. Such maps place objects from X “inside” one of the structures in
" node Y. Suppose, for example, that in some optimization problem we wish
to assign packages to trucks. We may represent this assignment with an
installation map from X to Y, where X consists of primitive objects — the
packages, and Y consists of unordered sets — the contents of each truck.
Mapping p € X to one of the unordered sets of Y represents the placement
of p in the corresponding truck. We allow the target node of an installment
map to have one further attribute. The node may have either a fixed number
of objects — trucks, for example — or we may allow the node to have a
growing number of objects, which are constructed by a “generator” function
associated with the node.

A second kind of map from node Z to node W, called an attribute map,
associates objects of type Z with objects of type W in a 1-1 fashion. Thus if
Z represents faculty members at a university as primitive objects, and W is a
collection of slotted objects which are to be interpreted as faculty schedules,
then an attribute map from Z to W in effect associates each faculty member
with a unique schedule.

Finally we allow the following kind of map, called a collapsing map.
Suppose node M consists of multiple objects of type S, and suppose node N
consists of a single object of type S. Then the map ¢: M — N is collapsing
if, for m € O, O € M, position(m,0) = position(c(m),N). The primary role
of collapsing maps, as we shall see in sections 3 and 5, is in scheduling
problems.

2.1.1 Kernel Optimization Problems and Abstraction

An installation map from primitive objects in X to, say, unordered set ob-
jects of type Y, is, in a sense, an incomplete object: no objective function
has been supplied, and no predicates have been identified that constrain the
assignment. This situation is remedied by supplying an objective function,
a primary constraint, and, when necessary, a collection of secondary or mi-
nor constraints. In our trucking example, for instance, a weight limit may
constrain the assignment of packages to trucks — and weight might therefore
be the primary constraint of the problem. An attribute such as refrigeration
— does a package require refrigeration and is a particular truck refrigerated?
- would then function as a minor constraint. A typical objective function
for this example might be to minimize the number of trucks necessary to
carry a particular load.

By attributing such objective function and constraint information to an
installation map, a user is frequently constructing a map that represents a
familiar and well-understood optimization problem. It is thus convenient to
introduce an abstraction facility. That is, given an installation map
it M — N with objective function f and major constraint c, we write
(define-map NAME (Source-type Dest-type f c)) to indicate that the map
named NAME is an object with the indicated attributes. We ignore minor
constraints in the naming process. Thus, in our trucking example, we might
name the induced problem generalized-bin-packing (in the case where the
goal is to minimize the number of trucks needed.)

Finally given an optimization problem that has been formulated as an
abstraction as described above, we allow for the creation of problem solving
methods that are appropriate for each type of problem created and which
are bound to that named map. Thus, after creating generalized-bin-packing,
such familiar bin-packing approximation algorithms as first-fit, next-fit, and
best-fit can be defined and installed in a library of routines that are appli-
cable to the generalized-bin-packing named map. We also allow local search
algorithms. Thus Kernighan and Lin’s 2-opt. [22] algorithm for local search
is bound to a ring-placement installation map.

Below we identify seven named maps between objects and container
structures. In each case we supply an icon that denotes the organization of
objects in the container.

e Generalized Bin Pack (GBP), B, seeks an assignment of objects to
container “bins” that minimizes the number of containers needed.
Containers have a capacity constraint and objects have a size with

respect to the containers.

o Capacitated Partition (CP), HH, seeks a feasible partition of objects
into disjoint collections of unordered subsets. Containers have a scalar
capacity constraint which limits their carrying capacity. Note that in
this case the objective function is constant.

e Generalized Graph Partition (GGP), B, seeks a minimum cost par-
tition of objects. Costs are incurred if two objects are not located in
the same container. The cost of separating object 7 from object j is
given by the ij th entry in a cost matrix.

o Traveling Salesman (TSP), *.*, maps objects to one of several un-
bounded rings. Tour cost is calculated by adding the “distances” be-
tween adjacent objects in the tour. A distance matrix provides the
distance between pair of objects. A tour of minimum cost is sought.

o Discrete Scheduling (DS), W, seeks a non-overlapping placement of
objects in slots in a slotted container structure. Objects (tasks) to be
scheduled occupy a fixed number of consecutive slots, and containers
have a fixed number of slots in which to place ob jects.

o Interval Scheduling (IS), [0, seeks to minimize the maximum time on
any schedule. Each object (task) requires a fixed amount of processing
time and schedules may have a maximum processing time.

o Fized Assignment (FA), implements an assignment that is predeter-
mined. Each object has the name of the container and the position in
that container that it must be placed in. There is no optimization or
constraint data associated with this relation. Objects can be organized
according to any of the primitive structures of OPL.

The goal, then, of OPL is to formulate an optimization problem using
named installation maps. Once an HCG of this kind has been built, then
an overall solution can be constructed by suitably composing the library
methods that are bound to the named maps appearing in the HCG.

2.2 Policy Programs

The OPL programming primitive that provides access to library functions of
named installation maps is called an improvement policy. An improvement
policy consists of a sequence of approximation and/or local search library

routines. Each element of the sequence is associated with an arc that is
present in the HCG. An improvement policy seeks to place or rearrange a
collection of objects in such a way that the new solution extends or improves
the old solution. More concretely, an improvement policy consists of:

¢ a collection of objects, called primary objects, which the improvement
policy acts upon.

o a dispatch function which, each time it is called, chooses the next
primary object to be considered by the improvement sequence.

e a sequence (fi,...,t) of transformations called an improvement se-
guence. Each t; is an approximation or local search library routine
that is associated with one of the arcs (and thus, one of the named
maps) in the HCG.

e a collection of HCG arcs called bound arcs, which identify those as-
signments in an existing partial solution that may not be altered by
the improvement sequence.

An improvement policy uses the dispatch function to choose one primary
object from the collection of primary objects. Transformations in the im-
provement sequence are applied to the primary object if the primary object
is from the same class as the tail node of the transformation arc; otherwise,
the transformation is applied to the appropriate relatives of the primary
object. Relatives of object A are all objects which have been assigned to A
(either directly or indirectly) or which A has been assigned to (again, either
directly or indirectly). The transformation is applied to all relatives of the
primary object which have the same class as the tail node of the arc. The
transformation function can assign or modify the assignments of an object
as long as assignments associated with bound arcs are not altered.

A transformation terminates when all allowable placements and rear-
rangements have been considered. Backtracking occurs when a transforma-
tion cannot locate a successful candidate. In this case, the OPL machinery
backs up to the previous transformation and attempts an alternative assign-
ment or rearrangement.

A policy program is an optimizing algorithm for a problem instance that
has improvement policies as primitives, and includes, in addition, elementary
programming constructs (if, do-while, for, ..). Data structuring functions
(sorting, extracting, merging, ...) are also available.

2.3 An Introductory Example

We demonstrate the workings of OPL by illustrating its application to in-
stances of vehicle routing, a classical problem in Operations Research.

In the simplest version of the Vehicle Routing Problem (VRP), vehicles
deliver packages to a collection of geographically dispersed customers. Each
vehicle has a maximum weight carrying capacity. We assume that vehicles
are identical and that vehicle weight capacity is limited in the sense that no
vehicle can carry a significant fraction of the packages. The goal of a VRP
instance is to find a solution that respects all constraints and at the same
time minimizes the total travel time of all the vehicles.

CP,_,

(Packages)

Figure 2: HCG for the VRP Problem

The HCG in Figure 2 represents the relationships that exist between the
packages, the routes, and the vehicles that make up the VRP problem. The
named installment map CP,_, is a capacitated partition map; it partitions
packages among vehicles. The named installment map T'S P,_, represents
the delivery of packages and the relative position of packages in the ring
structures that determine the tour paths of the vehicle routes. Finally,
CP,_, is a capacitated partition map. It assigns routes to trucks. CP,_,
is, in a sense, a trivial map once CP,_, and T'SP,_, have been established,
since a route can only be assigned to the vehicle that already holds those
packages. This principle, which we call the transitivity of containment, plays
a significant conceptual and computational role in our work. It says that
composed maps that follow alternative paths between two nodes in an HCG
must lead to consistent assignments. (In section 5 we will see an example of
a situation in which this transitivity assumption is violated.)

Informally we solve VRP by 1) crudely clustering packages (i.e. delivery

8

sites) and assigning each cluster to a unique vehicle; 2) routing each vehicle;
and 3) optimizing each route.

We realize these steps as follows. First associate an angle with each
package delivery site, using the dispatch depot of the vehicles as origin.
Then sort the packages by angle and assign them to vehicles —a partition
relationship— on a “next-fit” basis. That is, attempt to place a package in
the current vehicle. If it won’t fit, place it instead in the next unoccupied
vehicle. This procedure crudely clusters packages with nearby destinations
into the same vehicle. Next route each vehicle: examine each package in a
vehicle, in turn, and insert it in that vehicle’s route in a position closest to a
package that has already been placed in the route. Finally, optimize routes
by applying 2-opt local search to each route.

Our algorithm does a reasonable job of solving this simple version of
VRP. Below we describe how to build a policy program that realizes this
algorithm. We construct this policy program in four steps.

¢ Step One:

Step one establishes the packages to vehicles assignment. First sort
by angle, as described above. Next apply our first improvement pol-
icy, which we call IP;. Its improvement sequence consists of a single
library approximation routine, which solves the assignment problem
embodied in CPp, using the classical “next-fit” algorithm. In abbre-
viated form we write this policy as:
I Py(packages,next-fit(C Ppy))

Thus, IP; is a bona-fide policy consisting of a transformational se-
quence with one entry (the call to the next-fit library routine). The
collection of primary objects to which I P, is applied consists of all
packages. The set of bound arcs associated with I P, is empty. The
dispatch function of I P; is empty, so by default, the list order of pri-
mary objects applies.

e Step Two:
Improvement policy I P, routes the packages associated with each ve-
hicle. The algorithm considers each package in a vehicle and places
that package in the best possible position in the route-the position
which incurs the least additional travel distance. The improvement
sequence is again one library approximation procedure, which we ab-
breviate as follows:
nearest-neighbor(T'S P,,)

The underlying OPL machinery will maintain consistency automati-
cally in the following sense: packages in different vehicles cannot be
assigned to the same route.

I P, will be called as many times as there are vehicles. Each time it is
called, the packages belonging to the vehicle under consideration are
designated as the primary objects. This process is captured in the
FOR loop of the policy program presented below.

Step Three:
I P3’s singleton improvement sequence improves upon the existing par-
tial configuration by performing local search on each of the routes using
2-opt the library routine local search. The packages to vehicles and
packages to routes arcs are designated as bound. We write

I P3(packages,2-opt(T'S Ppr))
to describe IP;. A 2-opt interchange is accepted if the total travel
distance in a vehicles decreases.

Step Four:
IP; completes the remaining assignment, C P,,. Since the packages in
a route have already been assigned to a vehicle, each route is bound
to the vehicle that its packages are assigned to. In addition, it has
been assumed that no travel time constraints are associated with this
relation. Thus, the required assignment has been made implicitly, and
we make the assignment explicit using the following policy:

I Py(routes,first-fit(C P,))
For each route, the underlying OPL machinery allows only the single
feasible vehicle to be considered, and so each route is trivially assigned
to the proper vehicle.

The preceding steps yield the following program.

packages = sort(packages, polar-coordinates)
1P, (packages,next-fit(C Ppy))
FOR each vehicle in vehicles
begin
packages = packages in vehicle
IP,(packages, nearest-neighbor(7T'S Pp,))
I Py(packages,2-opt(T'S Ppyr))
end
I Py(routes,first-fit(C P,,))

10

The program can now be applied to the problem instance.

The policy program could be augmented further to obtain additional
improvement. For example, after the FOR loop has finished, packages could
be moved or interchanged between routes (and vehicles) by local search
library routines move-1 and swap-2 and then 2-opt local search could be
applied again to individual routes. This strategy involves two local search
procedures operating together in a single improvement policy. The ability
to compose multiple local search and approximation routines in a single im-
provement policy adds considerable power to OPL, as we shall demonstrate
in Section 4, where we present an extended OPL analysis of a generalized
VRP problem.

This simple example illustrates the style in which OPL problems are rep-
resentation and solved. In the next sections three rather different problems
are considered. Our purpose is to show OPL’s flexibility as a representation
system as well as its effectiveness as a problem-solving idiom.

3 The Course Scheduling Problem

The course scheduling problem arises when an academic institution offers
courses to students who have some flexibility in course selection and se-
quencing. The academic institution attempts to find a schedule of courses
that minimizes the number of student conflicts and is feasible with respect
to classroom usage and faculty schedules [4]. We use the course scheduling
problem to illustrate the HCG specification process. In our simplified ver-
sion of the problem we assume that the assignment of faculty to courses has
already been completed. We ignore such issues as preassignments, infeasible
course assignments and multiple sections of a course.

The construction of faculty schedules is considered first. We model this
problem using three nodes: COURSES, FACULTY, and F-SCHEDULES
(for faculty schedules). (See Figure 3a). Each faculty member is represented
by a unique object in the FACULTY node. Similarly each course is repre-
sented by a unique object in the COURSES node. The arc from COURSES
to FACULTY assigns each course to its predetermined instructor. Each
element in the F-SCHEDULES node is a slotted object representing an ini-
tially blank timetable consisting of slots that represent the time periods that
a course can be taught. For example, one of the faculty schedule time slots
might represent (Tuesday, Thursday 9-10:30). Each instance of a course
object includes data that gives the maximum number of students that can

11

P.Schedules C-.Schedules
1 1

DSc—fa DSc—ca

(a) (b)
Figure 3: Pieces of Classroom Scheduling HCG

attend that course, and also a list of courses which, if scheduled at the same
time, would introduce conflicts for some students.

The map FA._; is fixed - it reflects the predetermined course to faculty
assignment. A;_y, is an attribute map. It assigns to each faculty member
a unique, initially blank schedule. The named installation map DS._¢, re-
quires that a course be assigned to a slot (time period) in the appropriate
faculty schedule. The diagram in Figure 3a shows two paths from COURSES
to F-SCHEDULES. By our principle of containment transitivity, we insist
that these two mappings be consistent. In this case, consistency means that
when a course is assigned to a schedule via path DS._¢,, that schedule’s as-
sociated faculty member must be the same person that the course is assigned
to via the FA._; named map.

The second part of the course scheduling problem, classroom schedul-
ing, is developed in similar manner (see Figure 3b). Three nodes are needed:
COURSES, CLASSROOMS, and C-SCHEDULES (for classroom schedules).
The COURSES node is described above. The CLASSROOM node con-
tains objects that stand for individual classrooms. C-SCHEDULE objects
are slotted objects (discrete schedules) that represent classroom schedules.
Slots in the schedule represent the time periods when a course can be taught
in a classroom. Classrooms objects carry data to indicate the capacity re-
quired in the classroom. As with the FACULTY and F-SCHEDULE nodes
discussed above, each classroom is associated with its own C-SCHEDULE
node, and hence A.._., is an attribute map. The CP._., is a capacitated
partition map that assigns each course to a classroom that can hold it. The
capacity limits are formed by including data about the maximum number of

12

students that could fit into a classroom and the actual number of students
in a course into the capacitated partition named map. The map DS._.,
assigns a course to a time period in its associated classroom.

Now we wish to integrate these two scheduling problems. To accom-
plish this, we create a new “DISCRETE-TIME” node which contains a
single slotted object that represents the time periods at which classes can
be taught. The node serves to coordinate the faculty schedules with the
classroom schedules (see Figure 4). The maps from F-SCHEDULES and
C-SCHEDULES to DISCRETE-TIME are collapsing maps. Thus the posi-
tion of each course in a faculty schedule (time at which the course is offered
by faculty) is mapped to the same position in the discrete-time container
structure. Similarily, the position of each course in a classroom schedule is
mapped to the same position in the discrete-time container structure. By
transitivity, classes — that is, objects of type COURSES - must be mapped
to the same time slots in the DISCRETE-TIME node when viewed from the
faculty schedule and the class schedule subgraphs. In this way, OPL can
correctly model scheduling problems involving schedule coordination.

Classrooms

CPecr

N—— S

Figure 4: HCG for the Classroom Scheduling Problem
The objective function for this problem - the number of potential student

scheduling conflicts — is determined by adding up the number of course
conflicts that occur on each student’s schedule, and then summing over all

13

students. In the OPL environment this function is coded up by the user and
then used to extend the list of named maps. In this case, a new named map
is created by modifying the objective function call for the existing discrete-
schedule named map. Approximation and local search functions that apply
to discrete schedule named map can be inherited by the new map. Therefore,
for this problem, local search functions that move or swap courses between
classrooms are part of the environment and are referenced in the context of
the new named installation map.

A constraint associated with the CP,_., map restricts course to class-
room assignments in which the maximum number of students in the course
is greater than the maximum capacity of a classroom.

A problem’s HCG can suggest different problem solving strategies. For
instance, suppose classroom space is tight. An OPL algorithm might work
on classroom assignments (C P._.,), and classroom scheduling (the DS._c,)
first. Local search routines could be applied to rearrange courses to make the
best use of classroom space while taking into consideration student course
conflicts. After developing a feasible assignment of courses to classrooms,
the faculty schedules would be done. Any infeasibility in faculty schedules
(two courses taught at the same time) could be dealt with by minor rear-
rangements of the classroom schedules or classroom assignments.

4 Benchmarking OPL algorithms: The Multiple
Depot Vehicle Routing Problem

Our initial OPL benchmarks have involved the Depot Vehicle Routing Prob-
lem, or DVRP, which is a generalization of the simple VRP problem outlined
in the introductory section. DVRP is like VRP, except that vehicles and
packages are distributed among several depots, and deliveries are done from
these sites. In this section we demonstrate that OPL is capable of producing
high quality solutions when compared with previously studied approaches to
DVRP. Not surprisingly, many algorithms developed using OPL are similar
to previously developed algorithms. We consider this a strength of the nota-
tion, since OPL algorithms can be developed quickly and correctly through
the extensive use of library routines.

A number of researchers have proposed algorithms for solving the DVRP
that conform to the following outline. First, an assignment of customers
(that is, package delivery sites) to depots is developed. Then the indepen-
dent VRP problems at each depot are solved. Finally, in some cases, local

14

search heuristics are applied to improve the solution.

The algorithm presented in [14] assigns customers to depots according
to a heuristic which considers the distance to depots as well as the distance
to nearest customer. The independent VRP problems are solved using a
sweep algorithm [3], and vehicle tours are developed using the local search
algorithms presented in {22, 23]. Tilman and Cain [34] develop an algorithm
based on the savings method. Single customer tours are constructed initially
with each tour bound to its the closest depot. The algorithm then merges
tours if there is a subsequent decrease (a “savings”) in route length. The
assignment of customers to depots can change in the route merging proce-
dure. Golden et al. [16] combine some of the characteristics of both of the
above algorithms to produce a method which is applicable to large DVRP
problems. Wren and Holliday {35] and Salhi and Rand [32] develop algo-
rithms which repeatedly apply a collection of improvement procedures to a
number of different starting solutions. More recent work on the DVRP has
involved the simultaneous solution of both the multiple depot location prob-
lem and the multiple depot routing problem [30]. The algorithm for solving
the DVRP portion of the problem works as follows: the savings method is
applied to the problem to develop a collection of routes, after which two
local search routines are applied.

TSPdv—r

Figure 5: HCG for the DVRP Problem

15

An HCG for DVRP is given in Figure 5. The intuitive embedding of
VRP in DVRP is reflected in the HCG in a natural way. Indeed, if CPp_4 is
satisfied first, then what remains is a collection of separate VRP instances,
and this is certainly a plausible initial solution strategy. Of course after
these independent VRP instances have been solved, it may make sense to
introduce further crosstalk between depots (using a “2-swap” local search
routine) and then optimize any altered routes a second time with, say, 2-opt.

As reported in [26] and [24], we created about a dozen policy programs
for DVRP and applied them to the DVRP data sets cited in (29, 30]. The
best of these policy programs outperformed the results reported in those
papers on all three reported data sets. Let us examine the workings of this
“best” policy program informally.

The policy program is built in two phases, and proceeds as follows: first
a feasible solution is built: packages (i.e. delivery sites for packages) are
first assigned to their nearest depots, subject to depot capacity constraints.
Next VRP routing and optimization is applied to each separate depot, along
the lines described above. This concludes phase I of the algorithm.

Phase II is a pure local search stage. Starting with the final solution
of phase I, packages are moved one at a time to more promising routes;
packages in different routes exchange positions; packages in different routes
exchange routes and are placed in the “best” position in the other package’s
original route; and 2-opt is applied. In general these exchanges take place
across routes associated with different depots.

In summary, then, our DVRP solution for the datasets described in
[29, 30] works by 1) Factoring the DVRP instance into separate VRP prob-
lems by partioning packages among depots; 2) solving each VRP instance
separately; and 3) incrementally mixing these solutions repeatedly, each
time consolidating results by reoptimizing each subproblem. We stress that
this DVRP solution is built easily by appropriately composing OPL library
functions.

As a further test of OPL problem solving capabilities, we considered two
of the problems (problems 6,7) described and solved in [13]. Qur problem
solving machinery is compared to this particular work because it was one of
the few sophisticated, “well tuned” methods for DVRP that also included
datasets.

Our first attempt at solving these two problems involved the application
of the “best” policy program developed for the [29, 30] datasets. The results
were approximately 4% above the reported results in [13]. At this point, we
had a choice. While the sophisticated heuristics described in [13] could be

16

developed and incorporated as a library routine in the OPL environment,
we instead tried a different approach: we used randomization to construct
initial solutions to the [13] datasets.

In the context of OPL, randomized assignments can be constructed for
any collection of arcs in an HCG. In the DVRP packages could be randomly
distributed to depots, vehicles, or positions in routes. Vehicles could also
be randomly distributed to depots. Our initial results indicate that for
these two problems, packages should be assigned to the closest depot and
then randomization of package to route and vehicle assignments is most
effective. Therefore our second solution involves distribution of packages
to closest depot and then random assignments of packages to vehicles and
positions in routes. Once a random solution is constructed, the sequence
of improvement routines described in step 3 of the “best” policy program
is applied to the starting solution. The best among all random starting
solutions was retained. Using this approach we developed a solution for
dataset 6 in [13] that is 1% over the reported results. For dataset 7 in [13]
we constructed a solution that is 0.5% below the reported results.

Extensions to the DVRP are described in [25]. In particular we describe
our first solution to a vehicle routing problem in which vehicles are leased,
and for which there are multiple depots, precedence relations on site visits,
and time windows for package delivery. The objective of the problem is to
find a minimal cost fleet that respects all problem constraints. This exam-
ple highlights OPL’s robustness as a modeling tool. Once the appropriate
primitives were in place, the construction of an OPL problem representation
and associated initial solution was straightforward.

5 Real Time Scheduling and Resource Allocation
in OPL

For our final OPL example we describe a particularly complicated optimiza-
tion problem from the domain of real-time scheduling and resource alloca-
tion. This problem illustrates the level of problem complexity that is within
the scope of OPL.

5.1 Allocation and Scheduling of Tasks and Resources

The real-time computer resource allocation and scheduling problem, or CTRAS,
involves the allocation and scheduling of tasks and resources in a distributed

17

computing network. We formulate this problem as follows. We assume that
a computer system is equipped with a set of identical processors, as well
as a collection of non-identical resources. Tasks are to be executed by the
processors. Each task requires a certain amount of processor time from
one of the processors, and, in addition, each may require different resources
to be available during task execution. The types of resources include files,
data structures, and physical components of a distributed network. As with
tasks, each resource is assigned to a unique processor. A task may access a
resource in shared or exclusive mode. If task A requires resource R in ex-
clusive access, then no other task can use this resource while A is executing.
Shared mode access to a resource means that different tasks can use that
resource at the same time.

Each task has an arrival time, a deadline, and a required computation
time. Tasks must be scheduled for processing between their arrival and
deadline times.

CTRAS has one additional feature that can affect the quality of solutions
dramatically. If task A requires resource R, and A and R are assigned to
different processors, then an execution time tax is charged to A to reflect the
cost of network activity incurred when A accesses R. We assume a “higher”
execution tax rate in the case where A accesses R in exclusive mode.

This problem arose in the context of a larger project which considers
real-time processing in a distributed network. ! The results of solving the
allocation and scheduling of tasks given a fixed resource/processor assign-
ment has been considered in [31]. Here we consider the situation in which
resources can be assigned to -any processor. Therefore the assignment of
both tasks and resources to processors must be made.

Clearly a good allocation of tasks and resources to processors allows
tasks to access resources locally, thereby avoiding the network traffic tax.

5.2 HCG Representation

We describe the construction of the HCG in stages. The full HCG is given
in Figure 6. First, the problem of scheduling tasks on processors is con-
sidered and issues of resource allocation and scheduling are ignored. Three
nodes and three named maps are sufficient: TASKS, PROCESSORS, and P-
SCHEDULES and CP;_p, IS;_psy Ap—ps. The CP,_, map partitions tasks
among processors. Partition capacity is equal to the maximum schedule

'We gratefully acknowledge the help of Professor Krithi Ramarithan who, as one of
the principal investigators of the SPRING project, introduced us to this problem.

18

time of the processor and each task has a size equal to its required exe-
cution time. Detailed scheduling considerations are ignored. IS;_p, maps
tasks to processor schedules using the interval scheduling named map. After
a task has completed an IS;_,, assignment, it will occupy a continuous time
segment in the processor schedule of length equal to the task’s processing
time. A,_p,, is an attribute map which associates each processor with a
schedule of tasks on that processor. '

Next, we extend the HCG to include resource allocation and scheduling.
Associated with each task is a collection of resource requests. For example,
task A may need to use resources 1,4, and 5. When task A executes on its
processor, resources 1,4, and 5 must be available and are used by task A (ei-
ther in exclusive or shared mode). To model this in an HCG setting, a RTP
(resource-use/task pair) node is created. An RTP object is associated with
each resource request of a task. The fixed assignment named map FA,sp_¢
explicitly designates which task a particular RTP element is associated with.

RTP objects are also associated with a node called RESOURCES, which
has one object instance for each resource in the system. In the above exam-
ple, the three RTP objects associated with task A have fixed assignments to
resources 1, 4, and 5 respectively. Each resource in the RESOURCES node
has a schedule, and these schedules are modeled with the R-SCHEDULES
node. RTP objects must be scheduled with respect to the resource schedule;
an interval schedule map, IS,¢p—,,, designates the scheduling of contiguous
blocks of time on resource schedules for each task’s associated RTP objects.
Finally, an attribute map A,_,, makes the one-to-one correspondence be-
tween resources and resource schedules.

An RTP object must be scheduled during the same time interval that its
component task executes on its processor. This coordination of assignments
is achieved in a manner similar to the schedule coordination in the classroom
scheduling example in Section 3. Two collapsing maps, one from processor-
schedules (Cp,—¢) and the other from resource-schedules (Crs—t) force the
consistent scheduling of resources and tasks. For example, if task A has
been scheduled from time 20 to 50 on a processor schedule, then the Cp,_;
collapsing map will cause task A to be assigned to the 20 to 50 time interval
in the TIME node structure. And if task A requests resource 1, say in
exclusive mode, then the Cy,_; collapsing map and the transitivity principle
will guarantee that the RTP instance associated with task A’s resource 1
use is scheduled during that same interval.

Finally, resources must be allocated to processors. The map CF._,
designates this allocation. This allocation decision may affect a task’s pro-

19

cessing time. If a task needs a resource and this resource is located on a
processor other than the task’s processor, then the appropriate network tax
is added to the total task processing time. Note that the resource allocation
must be completed before the tasks and rtps are scheduled. The total task
processing time is then determined as a function of the resource allocation.

I Srtp—ra

RTP

Figure 6: Combined Allocation and Scheduling of Tasks and Resources

In addition to the structural characteristics defined above, there are mi-
nor constraints associated with I'S;_p, which force task scheduling assign-
ments to occur between the task arrival and deadline times.

We note one final peculiarity of HCG for CTRAS. Our principle of tran-
sitivity fails for paths between the RTP and PROCESSORS nodes, since if
task A requires resource R, there is no guarantee that they will be assigned
to the same processor. Thus it is necessary to disable transitivity checking

at the PROCESSORS node.

20

5.3 OPL Algorithms

The most prominent complication in CTRAS is the following entanglement:
the task to processor assignment is influenced by the resource to processor
assignment and the resource to processor assignment is influenced by the
task to processor assignment. We consider three different strategies for
addressing this difficulty. ‘

The first strategy is driven by task requirements: it completely assigns
and schedules a task and the resources required by that task before going
on to the next task. The second strategy develops the assignments of re-
sources to processors first, after which the scheduling of tasks and resource
requests are completed together. The last strategy develops the allocation
and scheduling in a staged manner. The resource to processor assignment is
developed first, then the task to processor allocation is made, and finally the
task and resource request schedules are constructed. The three strategies
are described in more detail below:

e Integrated : A task and the resources it requests are all allocated
and scheduled jointly. The order of task placement is determined by
a weighted average of task deadline and earliest starting time. The
performance of the minimum weighted deadline and earliest starting
time ordering is described in [31]. Given a partial assignment and a set
of partial schedules, a task is assigned to the processor that requires
the least resource copying time and is feasible with respect to the task
schedule. If a task requires a resource that has not been assigned to
a processor, then the resource is assigned to the processor chosen by
the task.

e Mixed : The second strategy develops the assignments of resources
to processors first, after which the scheduling of tasks and resource
requests are completed together.

In the first part of the mixed strategy, resources are randomly assigned
to processors. Then assignments are modified by the local search rou-
tines move and swap. A resource will be moved or swapped with an-
other resource if there is an overall improvement in the total resource
adjacency. The resource adjacency of two resources is the fraction
of total schedule time that two resources are requested by the same
task. This gives a measure of how beneficial it would be to have two
resources located on the same processor. Changes in resource assign-
ments are also affected by the total time required by the tasks that

21

use a resource. If the total time requested by tasks that use a pro-
cessor’s resources exceeds the total amount of processor time, then
a surcharge is added to the local search metric. This completes the
resource assignment stage.

After the assignment of resources to processors is made, each task and
its resource requests are allocated and scheduled jointly by a single
improvement policy. This improvement policy assigns tasks in order of
minimum deadline and minimum earliest starting time to the processor
that requires the least resource copying time.

e Staged : Resource assignment are developed first in the same style
as the mixed approach. Then tasks are assigned in order of weighted
minimum deadline and minimum earliest start time to the processor
that requires the least resource copying time. After developing an
initial allocation of all tasks to processors, local search routines move
and swap are applied to reduce the total resource copying time by
tasks. After all task to processor rearrangements are completed, tasks
are scheduled on processors and resource requests are scheduled on
resource schedules in a single improvement policy.

The number of tasks that can be feasibly scheduled by a problem solving
strategy gives a measure of that strategy’s performance. To distinguish
the performance of different methods, extremely difficult test datasets were
constructed and strategies were compared based on the fraction of tasks that
could be successfully scheduled.

The dataset construction process was implemented with an OPL policy
program that was modeled after the dataset construction algorithm given in
(31]. First a set of resources are created and assigned randomly to proces-
sors. Next a task is generated with a random computation time. Then it is
scheduled on the processor that allows the earliest starting time. Resource
usage patterns are assigned to the task after its schedule on a processor has
been set. These resources are chosen at random from the set of resources,
such that no resource scheduling conflicts occur. Once resource usage pat-
terns are determined for a task, its running time can be determined. We now
report the task’s arrival time as its starting time in the synthetic schedule,
and its deadline as a function of completion time in that schedule. Clearly
the dataset generation process develops very tight schedules.

We consider the amount of time needed to access resources across the
network to be a parameter of the CTRAS problem. The resource access time

22

Resource Copy Taz | Integrated Mixed Staged
1% 85 % 85% 90%
10% 83 % 78% 87%
25% 81% % 87%
50% 81% 76% 7%
100% 87 % 80% 76%
150% 91 % 82% 75%

Table 1: Results of Three Strategies for the CTRAS Problem

will of course vary according to the type of task and the type of resource.
In order to compare the above strategies, we simplified this potentially non-
uniform data characteristic to one value. This value is taken to be the
percentage increase in task processing time if a resource must be accessed
across the network. For instance, if a task requires exclusive access to a
resource on a different processor in the distributed network and this param-
eter is equal to 10%, then the processing time of the task will increase by
a total of 20% (exclusive access requires access to the network twice). In
Table 1 the results of applying our three strategies to datasets constructed
with different resource copy times are presented.

The three strategies represent a spectrum of decomposition approaches
to problem solving. The results from this table can be interpreted with the
level of decomposition in mind.

The problem decomposition strategy of the staged approach allows ini-
tial allocation decisions to be rearranged. When resource copy costs are low,

. this strategy is effective because the problem resembles a graph partitioning
problem with multiple partitions. That is, each resource can be considered
a node in a graph. The cost of separating two resources is proportional to
the sum of the remote access costs incurred by tasks which require both re-
sources. All other things being equal, two resources that are jointly accessed
by a collection of tasks are better off being placed on the same processor.
Local search performs well on the graph partitioning problem and the per-
formance of local search in rearranging resources on processors can be seen
in light of this comparision to graph partitioning.

But as a comparison with the mixed strategy indicates, local search
on the resource to processor assignment is not always adequate. The as-
signment of tasks to processors can also be effectively rearranged when the
resource copy costs are low. Local search on the task to processor named

23

map (CP,_p) allows the movement and interchange of tasks if an overall re-
duction in the resource copying costs occurs. When resource costs are low,
these rearrangements reduce the total processing time and thereby improve
the overall chances of producing good schedules.

When the resource copy costs are high, the scheduling aspects of the
problem take over and the rearrangements of allocation decisions are no
longer as effective. The rearrangements of the staged and mixed strategies
cannot appropriately anticipate the scheduling problems which arise in later
parts of the problem solving process. The integrated strategy does relatively
better because both the allocation and scheduling of a task and its associated
resource use are considered together.

This section has described the results of a rapid prototyping session
for the CTRAS problem. When resource copying costs are low, a problem
solving strategy which built a solution one “arc” at a time was the most
effective. When resource copying costs were high, the results of this analysis
indicate that an integrated solution, where all relations are satisfied together,
was a more effective. OPL and the HCG specification machinery provided
the appropriate structure to describe and evaluate these different problem
solving strategies.

6 Conclusions

The OPL problem solving notation and associated programming environ-
ment has been designed to allow for the natural representation and solution
to a broad class of discrete optimization problems. Problems are represented
as graphs, in which nodes stand for the objects of the problem, and arcs rep-
resent recognizable primitive optimization problems. OPL allows solutions
to be built quickly with the aid of extensible software libraries, which pro-
vide off the shelf solution machinery for the atomic “pieces” of a problem’s
OPL representation.

OPL is extensible. Primitive problems can be added to the existing list
of named maps and solution methods for new and existing named maps can
be added to the OPL libraries.

The constructive manner in which HCG’s and policy programs are built
makes problem integration a fundamental part of the OPL environment.
Indeed, problem integration has been applied at some level to each of the
problems described in this paper. An HCG specification of the classroom
scheduling problem was constructed by ’gluing” together the two, potentially

24

independent, problems of faculty scheduling and classroom scheduling. The
multiple depot routing problem was an easy extension — both notationally
and computationally - of the single depot routing problem. And the CTRAS
problem gives an example of integrating both allocation and scheduling deci-
sions for the two distinct groups of objects. The ability to piece together the
description and solution of related subproblems is an invaluable technique
for addressing complex optimization problems.

We expect OPL to evolve as experience with one class of problems adds
new insights for problem representation and new entries in the environment’s
software libraries. Indeed, this evolutionary process allowed much of the
CTRAS problem to be built from the “pieces” of the multiple depot vehicle
routing problem, and we expect further leaps of this kind in the future.

References

(1] Bisschop, J. and A. Meeraus, “On the Development of a General Al-
gebraic Modeling System in a Strategic Planning Environment”, Math.
Programming Studies Vol 20, 1982, North-Holland, Amsterdam.

(2] Bodin, L.,Goldin, B., Assad, A., Ball, M., “Routing and Scheduling
of Vehicles and Crews”, Computers and Operations Research, Vol. 10,
No. 2, pp. 63-211, 1983.

[3] Clarke, G., Wright, J., “Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points”, OR, Vol. 12, 1964, pp. 568-581.

[4] de Werra, D. “An introduction to timetabling”, European Journal of
Operations Research, Vol 19, No 2, 1985.

[5] Dinkel, John J., John Mote and M.A. Venkataramanan, « An Efficient
Decision Support System for Academic Course Scheduling”, Operations
Research Vol 37, No. 6, 1989.

(6] Dyer, James S., and John Mulvey, “An Integrated Optimiza-
tion/Information System for Academic Departmental Planning”, Man-
agement Science Vol 22, No. 12, August 1976.

[7] Fourer, R, D.M. Gay, and B.W. Kernighan, "AMPL: A Mathematical
Programming Language,” Computing Science Technical Report No. 133,
1987, AT&T Bell Laboratories, Murray Hill, NJ 07974

25

[8] Geoffrion, A., “An Introduction to Structured Modeling”, Management
Science 33:5, May 1987.

[9] Geoffrion, A., “Modeling Approaches and Systems Related to Struc-
tured Modeling”, Working Paper 339, Western Management Science
Institute, May 1987, University of California, Los Angeles.

[10] Geoffrion, A., “SML { A Model Definition Language for Structured
Modeling” Working Paper 360, Western Management Science Institute,
1988, University of California, Los Angeles.

[11] Geoffrion, A., “The Formal Aspects of Structed Modeling”, Operations
Research, Vol 37, No. 1, 1989.

[12] Gheysens, F., Golden, B., Assad, A., “A Comparison of Techniques
for Solving the Fleet Size and Mix Vehicle Routing Problem”, OR Spek-
trum, Vol. 6, 1984, pp. 207-216.

[13] Gillet, B. and J. Johnson, (1974) “Sweep Algorithm for the Multiple
terminal vehicle dispatch algorithm” 46th ORSA meeting San Juan,
Puerto Rico.

(14] Gillet, B. and J. Johnson, (1976) “Multi-terminal vehicle dispatch al-
gorithm” Omega 4 pp 711-718.

[15] Glassey, C. Roger, and Micheal Mizrach, “A Decision Support System
for Assigning Classes to Rooms”, Interfaces 16:5 1986.

[16] Golden, B., T. Magnati, and H. Nguyen “Implementing vehicle routing
algorithms”, Networks 7 pp 113-148, 1977 .

(17} Golden, B., Assad, A., Levy, L., Gheysens, F., “The Fleet Size and
Mix Vehicle Routing Problem”, College of Business and Management
Technical Report 82-020, University of Maryland, 1982.

[18] Jones, Christopher, “An Introduction to Graph-Based Modeling Sys-
tems”, ORSA Journal on Computing, Vol. 2, Spring 1990.

[19] Kernighan and Lin (1970), “An Effective Heuristic Procedure for Par-
titioning Graphs” BSTJ No. 2

(20] Langston, M. (1987) “A Study of Composite Heuristic Algorithms” J.
Opl. Res. Soc. Vol 38, No. 6. pp 539-544.

26

[21] Lauriere, J.L., “Alice: A Language for Intelligent Combinatorial Ex-
ploration” A.I Journal, 1978.

(22] Lin, S. “Computer Solutions of the TSP”, BSTJ, No. 10, December,
1965, pp. 2245-2269

[23] Lin S., and Kernighan, B.W. “An effective Hueristic Procedure for the
Traveling Salesman Problem” Operations Research 21 pp 498-516.

(24] MacLeod, B. “OPL: A Notation and Solution Methodology for Hierar-
chically Structured Optimization Problems”, Ph.D. Thesis, University
of Massachusetts, 1989.

(26] MacLeod,B. and Moll, R.N. “A Toolkit for Vehicle Routing”, Pro-
ceedings of The IEEE Conference on Systems Integration, Morristown,
N.J., April, 1990.

[26] Moll, R.N. and MacLeod, B. “Optimization Problems in a Hierarchical
Setting”, COINS Technical Report 88-87, October, 1988, University of
Massachussets, Amherst, MA 01003

[27) Palmer, K., “A Model Management Framework for Mathematical Pro-
gramming”, 1984, Wiley, New York.

[28] Papadimitriou, C. and Steiglitz, K. Combinatorial Optimization: Al-
gorithms and Complezity, Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

[29] Perl, J. and M. Daskin “A Warehouse Location Routing Problem”,
Transporation Research-B Vol 19B, No. 5, pp. 381-396, 1985.

[30] Perl, J. “The Multi-Depot Routing Allocation Problem” American
Journal of Mathematical and Management Sciences Vol 7, pp. 7-34,
1987.

[31] Ramamritham, Krithi, John A. Stankovic, and Perng-Fei Shiah, “O(n)
Scheduling Algorithms for Real-Time Multiprocessor Systems”, Inter-
national Conference on Parallel Processing, 1989.

[32] Salhi, S. and G. Rand “Improvements to Vehicle Routing Heuristics”,
Jrnl. Opl. Res. Soc. Vol 38 No. 3, pp 293-295, 1987.

[33] Smith, D. “Structure and Design of Global Search Algorithms” Kestrel
Institute Technical Report July 1988. Palo Alto, California 94304. 1988.

27

[34] Tillman, F. and T. Cain “An Upper Bounding Algorithm for the Single
and Multiple Terminal Delivery Problem”, Management Science Vol
18, No 11, pp 664-682, 1972.

[35] Wren, A. and A. Holliday, “Computer Scheduling of Vehicles from One
or More Depots to a Number of Delivery Points”, Operational Research
Quarterly Vol 23, No. 3, 1972.

28

