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Abstract

The problem of scheduling two classes of real-time traffic with correlated time constraints
is considered. Three scheduling disciplines are studied: a priority discipline which gives strict
priority to one class of traffic, a threshold-based scheme in which priority is given to one class
of traffic when the minimum laxity of its queued packets falls below some threshold, and a
“balancing” scheme which assigns priority on the basis of the differences in minimum laxities in
the two classes of traffic. Analytic results are obtained by using a discrete time model to obtain
the state occupancy probabilities for the system. Here, the state is defined using the laxities of
the queued real time packets. Parameters are defined to study the tradeoff in the performance
of the two classes of traffic. Results are obtained to demonstrate how the balancing scheme
permits us to achieve significant improvement in the performance of one class of traffic with
only minimal effect on the performance of other class. A video application is suggested for this

work.

1 Introduction

There is a growing realization in the networking community of the possibilities that real-time appli-
cations offer in wide area networks. Along with increasing speeds in networks, the variety of uses to
which real-time services can be put is also rising. CCITT suggests a class of conversational services
for broadband networks [1] that provide for bidirectional real-time communication. Examples of
applications to which these services could be put would be videotelephony, video conference, voice

transfer etc.

Real-time traffic operates under a deadline, i.e., a packet which is not received at its destination
within a specified amount of time after its generation at a source is considered to be lost. The
deadline itself is typically on an end-to-end basis and may be translated into local deadlines as well
[7]. The performance metric of interest is thus packet loss and the goal of any good scheduling
policy should be to minimize loss. Several classes of real-time traffic may arrive at a node. It then
becomes the responsibility of the output multiplexer of the node to appropriately schedule packets
belonging to these different streams, giving due consideration to to their relative time constraints
and also their relative importance. The manner in which this is done is defined by the scheduling

discipline used at the output multiplexer, and it becomes possible to compare the performance
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of different scheduling disciplines with reference to appropriate metrics. In [5], for example, the

Shortest Deadline First policy is shown to minimize message loss.

The problem of choosing an appropriate scheduling discipline becomes more even complex when
the packets of the different classes of traffic have correlated time constraints. As an example, this
situation could arise in video applications. There is the notion of hierarchical source coding which
implies the separation of the digitized video signal into subsignals of differing importance [2, 3]; the
relatively stable background information in a picture is separated from the information pertaining
to motion. The information content of a scene, in terms of bits needed to represent it, would depend
on the degree of activity in the scene. While the volume of information content could be different
for these different classes of traffic, all the information pertaining to a single frame would have to
be available at the same time at the receiver. Thus, the deadlines for the two classes of traffic are

identical.

In this report, we consider the generic issue of scheduling different classes of traffic with the
same deadline by studying three different scheduling disciplines - priority scheduling, the minimum
laxity thresholding scheme and a new balancing discipline. These policies are described in Section
3. We confine our attention to two classes of traffic and provide an analytical model to study each
of these scheduling disciplines. Parameters are defined that permit us to effect tradeoffs between
the loss probabilities of the two classes of traffic. Our results show that the balancing scheme
permits us to achieve significant improvement in the performance of one class of traffic with only
a minimal sacrifice in the performance of the other class. Moreover, the balancing scheme achieves
performance in which the loss of each class of traffic is often strictly less than that achievable under
the thresholding policy. The analytical methodology that we use derives in part from the work
presented in [4]. In [4], however, attention is given to a mixture of real-time and non-real-time

traffic and hence the problem of correlated time constraints is not treated.

A study of scheduling with a view to investigate the effect of service time distributions is also
given in [6]. Here too, a mixture of real-time and non-real-time traffic is considered. In [8], an
analysis is carried out of the Head-of-the Line with Priority Jumps scheduling discipline for delay

sensitive traffic. Again, correlations between the different classes of traffic are not considered here.

The remainder of this report is structured as follows. In Section 2, we discuss the model that
we use, and in Section 3, the disciplines and metrics that we apply to this model. The solution
approach that we use is considered in Section 4 and results are presented and discussed in Section

5. Section 6 concludes this report.

2 The Model

With the use of ATM networks, all classes of traffic are eventually transmitted in fixed size cells.
This suggests a model of a system in which time is divided into fixed length, discrete slots, with the
time needed to transmit a packet being equal to the length of the slot. We consider a multiplexer in

the output buffer of a node that makes the scheduling decision with regard to two arriving classes
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of real-time traffic with the same deadline. The two classes of traffic can be thought of as being
queued separately and the multiplexer selects a single packet from either queue for transmission at

the beginning of a slot.

We assume that the arrival streams of the two classes of traffic are independent of each other.
Further, arrivals in a slot are independent of arrivals in all other slots. For each class of traffic,
arrivals in a slot are treated as bulks with the bulk sizes being geometrically distributed. All
arrivals in a slot are assumed to have occurred just prior to the beginning of the next slot. Each
arriving packet also has an associated lazity equal to a prespecified deadline, 7. A packet which is
not transmitted within 7 slots of its arrival is considered lost. Thus, the laxity of a packet starts
at 7 and is reduced by one with each succeeding slot. The packet is removed from the queue if it
still has not been transmitted by the time the laxity reaches zero. All arrivals in the same slot of
a particular class are equivalent and all have the same chance of being picked for transmission in

succeeding slots.

3 Metrics and Policies

In [4], the performance of a statistical multiplexer that schedules a mixture of real-time and non-real-
time traffic was studied. The metric of interest for non-real-time traffic was average delay, and for
real-time traffic it was probability of loss. Any real-time packet that does not reach its destination
within the specified deadline is lost and thus the loss probability captures the performance of a
particular policy for a particular class of real-time traffic. In [4], the tradeoff between the loss
probability of real-time traffic and the average delay of the non-real-time traffic was investigated.
Since only real-time traffic is considered in this report, the loss probabilities of the two classes
of traffic may be traded off against one another by various scheduling policies; three scheduling

policies are studied in this report.

3.1 Priority Discipline

In this scheduling policy, priority is always given to Class 1 traffic. Class 2 traffic is transmitted
(served) only if there are no queued Class 1 cells (packets). Within a class, packets are served

FCFS.

3.2 Minimum Laxity Thresholding (MLT)

The laxity of a real-time packet is the time until the expiry of that packet’s deadline. As noted
above, when a packet first arrives at a queue at the scheduler, its laxity is equal to its deadline
and with each passing time slot, its laxity decreases by one. In the MLT discipline, a threshold is
specified on the laxity of Class 1 traffic. If the minimum laxity of the queued Class 1 packets is
less than or equal to the threshold, or there are no queued Class 2 packets, the minimum laxity

Class 1 packet is served. The queued minimum laxity Class 2 packet is served either if the laxity



of minimum laxity Class 1 packet is greater than the threshold or if there are no queued Class 1
packets. When the threshold T is equal to the deadline, MLT becomes the same as the priority

discipline. Reducing T increases the relative importance accorded to Class 2 traffic.

3.3 Balancing Discipline

In this scheduling discipline, a quantity B is specified with reference to the difference between the
laxities of the minimum laxity Class 1 and Class 2 packets. A Class 1 packet is served unless the
laxity of the minimum laxity Class 2 packet is at least B smaller than the laxity of the minimum
laxity Class 1 packet. Thus, B becomes a parameter that can be varied to change the relative
priorities of the two classes. When B is equal to the deadline, the balancing discipline becomes the

same as the priority discipline.

As can be seen from the above descriptions, the MLT and balancing schemes provide us with
parameters 7' and B, respectively, which can be varied to effect tradeoffs between the loss of Class 1
and Class 2 traffic. Both MLT and the balancing scheme become the same as the priority discipline

in limiting cases.

4 Solution Approach

The system is modeled as a two dimensional Markov chain (z1,z2). Here z; is the laxity of the
minimum laxity Class 1 packet (nominally at the head of the queue of Class 1 packets) and 5 is
the laxity of the minimum laxity Class 2 packet. This model is possible because the assumption of
geometrically distributed bulk sizes with independence from slot to slot enables us to write state
transition probabilities in a Markovian manner. The possible values for #; and z5 are 1,2,3,...,7,¢
where e represents the case of there being no packets of the corresponding class of traffic. Hence,

there are (7 + 1) possible states of the system.

There exist clearly definable transition probabilities from one state to another. Due to the
Markovian nature of the model, these transition probabilities depend only on the current state of
the system - i.e., the probability of reaching a particular state in the following time slot depends
only on the current state. Thus, we can write a matrix of state transition probabilities for the
discrete time Markov chain. This matrix will be of dimensions (7 + 1)? x (7 + 1)2. The entries
in this matrix will depend on the scheduling discipline used and represent transitions from state
(z7,2,) to state (2, z,).

Using standard techniques, the transition matrix can be used to obtain the state occupancy
probabilities in steady state. Once these state probabilities have been obtained, the throughput
of each class of traffic can be obtained by simply summing probabilities over those states in which
the scheduling discipline will choose that particular class of traffic for transmisson in the next slot.
For example, for the priority discipline, if the system is in state (4,2), Class 1 traffic is transmitted
in the next slot and thus this state contributes to throughput of Class 1 traffic. For the same

discipline, if the state is (e,2), Class 2 traffic is transmitted in the next slot.
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If the throughput for Class ¢ is 7; and the arrival rate for Class ¢ is A;, then we can write the

probability of loss for Class 7 traffic, Ploss; as

Ai — i
Ploss; = 1
08s y (1)

4.1 Form of the transition matrix

In order to explain how the entries for the transition matrix are obtained, we first define several

quantities:
e «; - probability of having ¢ Class 1 arrivals in a slot
e f; - probability of having 7 Class 2 arrivals in a slot
e o+ - probability of at least one Class 1 arrival in a slot
e f;+ - probability of at least one Class 2 arrival in a slot

e p; - probability that the laxity of the next-to-last oldest queued Class 1 packet is ¢ slots greater
than the laxity of the oldest queued Class 1 packet

e s; - probability that the laxity of the next-to-last oldest queued Class 2 packet is ¢ slots greater
than the laxity of the oldest queued Class 2 packet

e ¢, =(1- Eé':o Pj), probability that there are no Class 1 arrivals up to 7 slots after the arrival

of the present minimum laxity Class 1 packet

o7, =(1- E?:o Pj), probability that there are no Class 2 arrivals up to 7 slots after the arrival

of the present minimum laxity Class 2 packet

We noted earlier that the number of arrivals per slot of each class of traffic is geometrically
distributed. Thus, it is possible to obtain each of the above quantities simply from the parameter
of the geometric distribution for each class. Using all of the above, we now consider the priority
case in detail. MLT and balancing schemes can be understood in an analogous fashion. We consider
the specific case of the deadline 7 being equal to 5. Then, the overall transition matrix will be of

dimension (36 x 36). This is actually a block partitioned matrix with each block being of dimension
(6 x 6). Each of these (6 x 6) matrices in turn represents the transitions of ; to z;. The block
location of the (6 x 6) matrix within the (36 x 36) matrix gives the values of z, and z,. The basic

form of the transition matrix, PP™ for the priority case is as follows:

Ay Ay Ay A; Ay Ry
Bo By By B; B, R,
Bo By B, B; R,
0 By, B, B, R,
0 0 By, B, R,
0 0 0 Ci+ GCo

pPri —




Each entry in PP™ is a (6 x 6) matrix. The rows of PP itself correspond to values of z, =

1,2,3,4,5,e and the columns to m’z’ =1,2,3,4,5,e. Each of the zero entries above corresponds to

a (6 x 6) matrix of all zeros.

To intuitively understand why the form of PP™ is as shown above, let us first look at the zero
entries. For example, P%" is a zero matrix. This entry is for state transitions from (z},4) to (z}, 2)

with mll and ;t:’1’ taking values 1,2,...,e. Since the state indicates the laxity of the minimum laxity
packet for each class, we see that it is ¢mpossible for the minimum laxity of Class 2 packets to drop
from 4 to 2 in one slot; if a Class 1 packet is served, the minimum Class 2 laxity merely goes from
4 to 3. If the Class 2 packet is served (in the priority case, this can only happen if there are no
Class 1 packets), the new minimum laxity Class 2 packet could only have arrived in the same slot
as the Class 2 packet just served, or later. If it arrived in the same slot, the new Class 2 minimum
laxity would be 3; if it arrived later, it would be greater than 3. Thus the probability of going from

(z7,4) to (z7,2) is zero.

Let us now turn our attention to one of the other entries in the transition matrix, say Pg’;i = By.

The form of By is as follows:

Po P1 P2 P3 P4 q4
Po P1 P2 P3 P4 q4
B |0 Po P P2 ps a3
0 =
0 0 po p1 po q2
0 0 0 po m q
| 0 0 0 0 spaq+ Soap |

The first five rows of By correspond to transitions (z;,3) to (z;,2) where z; = 1,2,3,4,5.
Since this is the priority discipline, the transition from 3 to 2 for #, happens automatically when
there exists a Class 1 packet to be served. The probability of going from 2 to 1 for z; is pg. This
is because the current minimum laxity Class 1 packet is served and for the next minimum laxity
Class 1 packet to have a laxity of 1, it should have arrived in the same slot as the packet that is
currently served. The first row is the same as the second row because of the memoryless property
of the geometric distribution. Similarly, we can see that all the other entries for the first five rows
are correct. The last row corresponds to transitions from (e, 3) to (z;,2). Here, it is the Class 2
packet that is served and the probability of z5 going from 3 to 2 is s¢9. From an initial value of e,
the value of z; can either go to 5 (the deadline) or remain at e. The first of these corresponds to
the case of there being at least one Class 1 arrival in the current slot and the second to the case of

there being no Class 1 arrivals in the current slot.



. 3 L
Another example is now shown. P} * = Ry is:

o O O o o
o O O o o

o O O o oo
o O O o oo
o O O o oo
o O O o oo

rsai+ T3Qp |

The transition matrices for the other two schemes, MLT and balancing, are obtained by similar
reasoning. The basic form of the transition matrix for the MLT case, P™* is exactly the same as
that for the priority case. By examining PP™, we see that there are entries that are repeated. An
exactly similar repetitive structure is obtained for P™* though, the actual entries in the component
matrices of P™* differ from from those of PP"i. For example, P2 is written for a threshold, T = 3,

and deadline 7 = 5, as follows:

Do P1 P2 P3 P4 q4
Do P1 P2 P3 P4 q4
Pl — 0 po p1 P2 P3 g3
0 0 s 0 O 0
0 0 0 s O 0
| 0 0 0 0 spay+ Soxg J

It is instructive to compare this with the corresponding entry, By, in PP™. It can be seen
that the first three rows of the two matrices are the same. This is because up to the value of the
threshold, priority scheduling and MLT behave in the same fashion. The last row is also the same
because that corresponds to mll = e, i.e., there are no Class 1 packets that may be served in this
slot. Rows 4 and 5 are different in accordance with the manner in which MLT differs from the
priority discipline.

The form of the transition matrix for the balancing discipline is a little more difficult to obtain.
Since it is difference between z, and z; that counts in determining which Class of traffic is served,
care must be taken while filling the transition matrix. It must always be kept in mind that the
case of either or both of the queues corresponding to each class of traffic (i.e., either mll = e and/or

m’z = e) is a special case and must be treated accordingly. For the specific case of 7 = 5 and B = 3,

we may write a general form for the transition matrix in the following way:

DO Dl DZ D3 D4 S4
Ey Ei E; E3s E, S5,
FF FF F, F3 5
Fb i F S,
0 F() F1 Sl
0 0 G1+ Go

Pbal —

o O o o
[en N en B @n]




For this specific case, the first row is exactly the same as for the MLT case for a value of T' = 3.

This is so because Class 1 traffic is served unless Class 2 minimum laxity is atleast 3 less than
Class 1 minimum laxity. For the first row, Class 2 minimum laxity (m’z) is 1. Hence, Class 1 traffic
is served for mll = 1,2,3 and Class 2 traffic for mll = 4,5,e. The last four rows (corresponding to
m’z = 3,4,5, e) are exactly the same as for the priority case. This happens because for higher values
of z,, ¢, never gets to be atleast B larger than z,. The second row behaves in a manner particular

to the balancing discipline. The value of m’z is 2 and hence Class 1 traffic is served for mll =1,2,3,4.

A sample entry from this row is shown below:

"0 0 0 0 O 0
0000 O 0
0000 O 0
bal _ 1 __
Py =FE2=1|4 000 o 0
0 00 s5 O 0
| 0 0 0 0 ssa7+ S200 |

5 Results

The method described in the previous section was used to develop the transition probability matrices
for each of the three cases. Standard numerical techniques were used to solve the matrix equations
for state occupancy probabilities in steady state. This was done in each case for the specific
deadline value of 10. Once these probabilities are obtained, the throughput for each class of traffic
is obtained by simply summing the appropriate state probabilities. For instance, in the priority

case, throughputs for the two classes of traffic can be written as

T

=3 Y P(ig) (@)

=1 j=e,1
and

=3P ) (3)

where P(i,7) gives the state occupancy probability for the system state (¢, ) in steady state. Once
the throughputs are obtained, the respective probabilities of loss can be obtained using Equation
1.

Throughput equations for the MLT case are given by

T T
=30 P(i,4) (4)

=1 j=e,1
and

=3 Y PG, j) (5)

i=e,T+1 j=1
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Throughput equations for the balancing case are

i = > P(3,7) (6)

(i—5)<B,j=e ite

75" = > P(4,5) (7)

(i-4)>Bi=e,jFe
Equation 6 arises from the fact that Class 1 traffic is served in the balancing case whenever the
minimum Class 1 laxity is either less than the minimum Class 2 laxity, or if minimum Class 1 laxity
is utmost (B — 1) greater than minimum Class 2 laxity. Both these situations are taken care of
by the condition (¢ — ) < B in the summation in Equation 6. The other two conditions on the
summation arise because Class 1 traffic is served whenever there are no Class 2 packets (i.e., j = e),

provided there are some Class 1 packets waiting for service (i.e., 7 # e).

Figures 1 through 4 show the plots for Ploss; vs Plossy for 7 = 10 for the case of balanced
traffic. These figures look at arrival rates (expressed as the average bulk size/slot) of 0.3, 0.4, 0.45
and 0.5. The arrival rates are the same for each class of traffic (i.e., A\; = A2). Ploss; (the Y-axis)
is plotted on a log scale. For the MLT and balancing disciplines, the parameters 7' and B can
respectively be varied to yield a set of achievable performance levels. For the priority discipline,
there is no such parameter and there is only one point in the graph for each value of the arrival
rate. In all the figures, T and B go from a value of 1 to a value of 7 (i.e., the deadline). Both T
and B increase with increasing X-axis values. As can be seen, both MLT and balancing tend to the
priority case in the limiting cases of T = 7 and B = 7, respectively, and all three disciplines have
identical performance. The lines joining the points are indicated for clarity - the points themselves

are obtained through independent solutions to the set of state transition equations.

As can be seen from the graphs, as T increases, Ploss; decreases in the MLT case. This happens
because the chance of serving Class 1 increases. For the balancing case, as B increases, Ploss;
decreases. This is true because as B increases, Class 2 minimum laxity has to be much smaller
than Class 1 minimum laxity for a Class 2 packet to be served. Consequently, the chance of serving

Class 1 increases thereby reducing loss probability for Class 1.

Not unexpectedly, the probability of loss for both classes increases when the arrival rates in-
crease. This can be seen by simply comparing the numbers across graphs for increasing arrival
rate. A more interesting result can be obtained by comparing the MLT and balancing curves on
the same graph. It is clear that the balancing scheme achieves a lower maximum loss (for both
classes) over a range of T' and B values. Since T and B are independent parameters, they cannot
strictly be compared. However, no matter what value is chosen for 7', it is possible to choose a B
such that the probability of loss of Class 1 traffic is lower in the balancing case than in the MLT
case and that of Class 2 traffic is not substantially higher for the balancing case than for the MLT
case. However, it must be pointed out that the MLT case can always attain a lower minimum value
of Plosss than the one achievable by the balancing case. This is made possible only at the expense

of high values for Ploss;.



As the rate increases, the two curves come closes together. However, for rates of 0.3 and 0.4
(corresponding to offered loads of 0.6 and 0.8, respectively), the balancing graph is more flat than
the MLT scheme. Thus, the parameter B can be used to effect a useful tradeoff between Ploss;
and Plosss. By reducing B, we move towards the left along the balancing curve and increase the
relative importance given to Class 2 traffic. By looking at Figure 1, we can see that a halving
of Plossy is possible while still keeping Ploss; at a low level. At B = T = 7 = 10, MLT and
balancing give the same performance with Ploss; = 0.000004 and Ploss; = 0.011537. At T = 8§,
the MLT case gives Plosss = 0.006037, but with Ploss; = 0.000018. Thus, a 48% reduction in
Plossy is achieved at the cost of a 350% increase in Ploss;. For the balancing case, however, we
obtain Plosss = 0.006313 and Ploss; = 0.000005 for B = 7. Therefore, a 25% increase in Ploss;
is sufficient to achieve a 45% reduction in Plossy. In fact, at B = 8, we get Plossy; = 0.008157
with no change in Ploss; (i.e., Ploss; = 0.000004). Thus a 29% drop in Ploss, is possible with
0% increase in Ploss;. The MLT scheme, on the other hand, demands a 100% increase in Ploss;
(to 0.000008) for T' = 9, while providing a 28% drop in Plossy (to 0.008360). The performance of
the balancing scheme is clearly better than that of MLT for operation in this region.

Figures 5 to 8 look at the case of unbalanced traffic for a deadline of 7 = 10. Figures 5 and
7 are plotted on linear scales on both axes because the loss probability of Class 1 traffic drops to
zero as the priority accorded Class 1 traffic increases while the rate at which Class 1 traffic arrives
is maintained at only a fifth that of Class 2 traffic. Figures 6 and 8 are plotted with Ploss; on a
log scale as before. Here, the arrival rate of Class 2 traflic is a fifth that of Class 1 traffic. The
conclusions drawn above with regard to balanced traffic are still largely valid. For lower overall
load (Figures 5 and 6), the balancing scheme still performs well. By suitably choosing the value
of B, a substantial decrease in Plosss can be obtained without an increase in Ploss; as shown in
Figure 6. This is achieved despite the fact that Class 1 traffic arrives at five times the rate of Class
2 traffic. However, when the overall load is high, as in Figure 8, a similar claim cannot be made.

The reason for this is clear intuitively.

Figure 9 looks at the case of a much more relaxed deadline constraint of 7 = 20 for a balanced
load. What is interesting is that Ploss; quickly approaches 0 for all the scheduling disciplines for
a not too high a value of Ploss;. This suggests, quite reasonably, that scheduling becomes an
important problem in the context of tight time constraints. At more relaxed constraints, it might
be more meaningful to look at other metrics - for example, average delay - and study the effect of

various scheduling disciplines on those performance measures.

6 Conclusions

In this report, we have considered the problem of scheduling two classes of real-time traffic with
correlated time constraints. Three scheduling disciplines were studied: a priority discipline which
gives strict priority to one class of traffic, a threshold-based scheme in which priority is given to

one class of traffic when the minimum laxity of its queued packets falls below some threshold, and
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a “balancing” scheme which assigns priority on the basis of the differences in minimum laxities in
the two classes of traffic. Our analytic results showed that the balancing discipline, which explicitly
considers the difference between minimum laxities of the two classes of traffic, can yield both better
performance for both classes of traffic than MLT and can be more effectively used to exploit the
tradeoffs that exist between the two classes of traffic. This was found to be particularly the case

when time constraints were relatively tight and links were loaded up to an 80 percent nominal load.

In carrying out the analysis, we made several assumptions. Since we were interested in the
fundamental problem of scheduling two classes of real-time traffic with correlated time constraints,
these helped make the analysis easier. For particular applications, however, these assumptions
might be hard to justify. There is the assumption of independence between the arrivals of the
two classes. With reference to video applications, since both classes are obtained from the same
video source, the chances are that there is correlation between them. Further, we assume indepen-
dence from slot to slot. Again, for video applications, this is difficult to justify. Usually, what is
transmitted over the network is the difference in the picture from frame to frame with a regular
refresh of the entire picture [2]. Hence, there is likely to be correlation from slot to slot. Thus a
logical extension of the work would be to relax these independence assumptions and to carry out
the analysis again. It is to be expected, however, that this would be a more difficult task and that

we would have to look at a different state description for the system.
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Figure 2: Ay = A2 = 04,7 =10
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Figure 7: Ay = 0.15,A, = 0.75,7 =10
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Figure 8: Ay = 0.75,A, = 0.15,7 =10
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