Data Flow Analysis of Concurrent Systems that
use the Rendezvous Model of Synchronization

Douglas Long*
Lori A. Clarke!

COINS Technical Report 91-31
July 1991

*Department of Computer Science
Lafayette College
Easton, Pennsylvania 18042-1781

tSoftware Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This report to appear in
Proceedings of the Fourth
Conference on Testing, Analysis,
and Verification, October 1991

This work was supported in part by the Ofice of Naval Research, grant N00014-90-J-1791, and by the
National Science Foundation, grant CCR-87-04478, in cooperation with the Defense Advanced Research
Projects Agency (ARPA Order No.6104).

Data Flow Analysis of Concurrent Systems that use the
Rendezvous Model of Synchronization

Douglas Long
Department of Computer Science
Lafayette College
Easton, Pennsylvania 18042-1781

1 Introduction

Because of the complex communication patterns sup-
ported in concurrent systems, it is extremely difficult
for developers to understand and reason about these
systems. Thus, it is important that automated anal-
ysis techniques be developed to help detect problems
and assist in software understanding for these sys-
tems. There has been considerable research on vari-
ous analysis techniques for concurrent systems, includ-
ing static analysis techniques [ADW89, MR90, McD89,
SC88, TO80, Tay83b}, dynamic analysis techniques
(CT91, HL85, RL89, Tai86], and hybrid techniques
_ [Dil8s, HK88, YT88, YTFB89).

Data flow analysis is a well-recognized, static analysis
technique that has been successfully used on sequential
systems to support program optimization, static type
checking, and anomaly detection. In addition, there has
been considerable research on efficient algorithms for
implementing intraprocedural and interprocedural data
flow analysis techniques. In this paper we describe a
technique for applying data flow analysis to concurrent
programs that use the rendezvous model of inter-task
communication. Such languages include Ada [Ref83],
Distributed Processes [BH78] and CSP [Hoa78). We also
show how the resulting information can be employed to
detect anomalies in concurrent programs.

One of the major benefits of applying data flow anal-
ysis for anomaly detection is that it can discover in-

This work was supported in part by the Office of Naval
Research, grant N00014-90-J-1791, and by the Nationa! Sci-
ence Foundation, grant CCR-87-04478, in cooperation with
the Defense Advanced Research Pro jects Agency (ARPA Or-
der No.6104).

Lori A. Clarke
Software Development Laboratory

Computer and Information Science Department

University of Massachusetts
Ambherst, Massachusetts 01003

teresting classes of problems relatively efficiently. The
classes of problems that it can address involve recog-
nizing whether specified patterns of events can occur.
Predefined patterns typically include such things as ref-
erences to undefined variables or two consecutive defini-
tions of some variable without an intervening reference
[FO76]. Data flow analysis can also be used to search
for general user-defined sequences of events [0090)].

Our approach to data flow analysis of concurrent pro-
grams is similar in many ways to the interprocedural
data flow analysis described in [All74). In interproce-
dural data flow analysis it is desirable to analyze each
procedure once and produce summary information that
can be used to analyze calls to that procedure. Proce-
dures are analyzed in reverse invocation order so that
each procedure is analyzed before the procedures that
invoke it. Of course, this method breaks down in the
presence of recursion but other methods have been de-
vised for this situation [Bar78, Ros79, HS89). Our ap-
proach to concurrent programs also analyzes each por-
tion of a concurrent program once. This is done by
dividing tasks into fragments. We introduce a new rep-
resentation, called a rendezvous graph, to determine the
order in which task fragments can be analyzed so that
each is analyzed before any portion of the program that
uses it. Recursion between fragments is not a problem
in interfragment analysis since fragments cannot make
recursive calls on themselves.

This work builds upon the work of Taylor and Oster-
weil [TO80]. In the Taylor and Osterweil paper, data
flow analysis techniques are applied to concurrent pro-
grams written in HAL/S, which supports a more primi-
tive or lower-level inter-task communication model than
the rendezvous. Their paper describes the importance
of “parceling” a program into components that only
have to be analyzed once but does not present a general
approach for doing this. We have been able to take ad-
vantage of the higher-level communication model sup-
ported by the rendezvous to define a general decom-

position model. Our anomaly detection techniques are
refinements to the algorithms given in [TO80).

In our examples we use the syntax of Ada. In Ada,
two tasks synchronize their activities and exchange data
primarily via rendezvous. A rendezvous occurs when
a client task makes an entry call to a server task and
the server task accepts the entry call. The execution
of a task making an entry call is suspended until an-
other task accepts that call. Likewise, the execution of
a task accepting an entry call is suspended until another
task makes a corresponding entry call. During the ren-
dezvous, the execution of the calling task is suspended
while the accept statement of the accepting task is ex-
ecuted. At the end of a rendezvous both the client and
server task can proceed with their execution. Informa-
tion may be exchanged via parameters at the start and
end of the rendezvous. Thus, the rendezvousing tasks
synchronize and exchange information at the start and
end of the rendezvous.

For this paper, we make a number of assumptions that
are designied to simplify our presentation. We assume
that the program under analysis does not have nested
tasks or blocks, there are no shared variables between
tasks, there are no abort statements, the model for all
entry call parameters is in—-out, there are no recursive
procedures, and that task priorities are not used. For
the most part, we can relax these assumptions without
difficulty. One possible exception is abort statements,
which are problematical in any kind of static analysis.
In addition, we further assume that there is exactly one
accept statement for each entry of a task. For an en-
try that has more than one accept statement, there is
more than one set of associated summary information.
There are two ways to solve this problem. The first is
to determine exactly which entry calls are serviced by
which accept statements and to analyze each case sepa-
rately. Unfortunately, this determination may require a
substantial amount of effort [Tay83b, Tay83a). In some
situations this extra work may be worthwhile, in which
case the techniques in [Tay83a, YT86, LC89] may be ap-
plied. The second way to solve this problem is to use a
worst case analysis of the summary information for the
various accept statements. This will require less effort,
but may result in less accurate results.

The next section of this paper describes the task frag-
ments and the rendezvous graph. Sections 3 and 4
present the intrafragment and interfragment data flow
analysis techniques, respectively. Section 5 illustrates
these techniques with an example. Section 6 describes
how the resulting information can be used for anomaly
detection. Finally, the conclusion describes some limita-
tions of this approach and directions for future research.

2 The Fragment Model

In this section, we introduce task fragments and how
they are dependent on one another. In our analysis, task
fragments are analogous in many ways to procedures,
serving as the basic units of analysis. Fragments invoke
other fragments in much the same way that procedures
invoke other procedures. We introduce a rendezvous
graph to capture these dependencies; it is analogous to
the call graph used in interprocedural analysis [All74).

Of central importance is our view of accept state-
ments. To a task that is making an entry call on another
task, the entry call can be considered a remote proce-
dure call. The accept statement in the accepting task
has the role of the remote procedure body. Information
is passed from one task to the other via parameters.
The analysis of such a remote procedure call is similar
to that for interprocedural analysis. The remote proce-
dure is first analyzed to produce summary information
about the effects of the procedure on the parameters.
This summary information is then used in the analysis
of the calling task.

In an accepting task, an accept statement can be con-
sidered as an implicit procedure call. I.e., when the
accept statement is encountered, it can be viewed as
a procedure body that is being implicitly called. In-
formation is passed from the implicitly calling task to
the implicitly called procedure by references to variables
visible in the scope of the accept statement. One can
think of an implicit parameter for each such variable.
The analysis of such an implicit procedure call is simi-
lar to that for interprocedural analysis. The implicitly

called procedure is first analyzed to produce summary

information about the effects of the implicit procedure
on the implicit parameters. This summary information
is then used in the analysis of the calling procedure.

This view of an accept statement as both a remote
procedure for external tasks and an implicit procedure
for the task in which the accept statement is embed-
ded allows the accept statement to be analyzed indepen-
dently and separately from the analysis of the tasks that
make entry calls or contain the accept. A single analysis
of the accept can be used to produce summary informa-
tion that can be used for the analysis of all the calling
tasks and the accepting task. The analysis can pro-
duce summary information for the explicit formal pa-
rameters and the implicit parameters at the same time.
When summary information is needed for an entry call,
the summary information for the explicit parameters is
used and the implicit parameters are considered as local
variables. When summary information is needed for an
implicit call, the summary information for the implicit
parameters is used and the explicit parameters are con-
sidered as local variables.

The first step in our analysis is to recognize these em-
bedded procedures and determine their order of evalu-
ation. Given a set of tasks Ty ,..., Tx we do this by
dividing each task into task fragments representing the
calling and called parts of the tasks. The main body of
each task is itself a fragment. Each accept statement in
a task is a task fragment and is considered separately
from the task or accept statement in which it is embed-
ded. Nested accepts result in nested fragments.

Traditionally, data flow analysis is applied to control
flow graphs annotated with definition and reference in-
formation. For each fragment of a task we therefore
construct a Control Flow Graph (CFG). In each CFG,
each entry call and each implicit call on an embedded
accept statement is represented by a call node. Other
nodes in the CFG represent simple statements. Edges
represent flow of control between nodes of the graph.
The CFG for a fragment F is denoted by CFG(F). We
assume, without loss of generality, that each control flow
graph contains a single entry and a single exit point.
The entry node is referred to as the start node and rep-
resents the initialization that occurs immediately before
the first executable statement of the fragment. The exit
node is referred to as the terminal node and represents
termination activity immediately after all statements
that end execution of the fragment. For example, con-
sider the two tasks shown in Figure 1. There are three
task fragments in this example, the fragment for T'1, the
fragment for T2 and the fragment for the accept state-
ment in T2. The CFG’s of each of these fragments are
shown in Figure 2. The call nodes are marked with a *.
Node +8 represents an entry call and node %17 represents
an implicit call to the accept statement represented by
nodes 17 through 20.

In traditional data flow analysis the order of evalua-
tion of the procedures is determined by examining the
call graph for a program. We introduce a rendezvous
graph, which extends the call graph representation to
also capture the order in which fragments interact. A
rendezvous graph contains a node for each task fragment
and procedure. A directed edge (u, v) in this graph rep-
resents the invocation of fragment or procedure v by
fragment or procedure u. The rendezvous graph for Ex-
ample 1 is shown in Figure 3. Since interprocedural
analysis is well understood we restrict the remainder of
this paper to interfragment analysis.

The analysis presented here is greatly simplified be-
cause we assume that the rendezvous graph for a set
of tasks will be acyclic. In the absence of recursive
procedures, it is our expectation that this will be the
normal situation because the presence of a cycle in the
rendezvous graph will normally be an indication of a
deadlock situation. Deadlock would occur, for exam-
ple, if a task A makes an entry call on a task B, which

then makes an entry call on a task C, which then makes
an entry call on any of the tasks A, B, or C. Figure 4
shows the cycle caused by C making an entry call on
task A. The last entry call introduces a cycle into the

Figure 4: A Rendezvous Graph with a Cycle

rendezvous graph. Since A, B, and C are suspended
during their entry calls, they would be unable to accept
the last entry call made by C and deadlock occurs. The
fact that entry calls cannot be recursive and our restric-
tion that procedures calls are not recursive substantially
simplifies the analysis presented in this paper. We have
yet to consider the effect of recursive procedures on this
analysis.

It is possible to have a rendezvous graph with cycles
that does not deadlock. For example, task A and task
B may both make entry calls on an entry of task C and
that entry of C may be able to make an entry call on
A when it is called by B but not when it is called by
A. The rendezvous graph contains a cycle, but deadlock
does not occur. A similar situation occurs in interpro-
cedural data flow analysis. Techniques, such as node-
splitting, exist that can accommodate this type of cycle
in a call graph for interprocedural data flow analysis
[Hec77] and we expect that similar techniques can be
used to accommodate this type of cycle in rendezvous
graphs. However, in this paper, we restrict ourselves to
acyclic rendezvous graphs.

Because we wish to analyze each fragment of a task
only once, we cannot analyze a task fragment until all
task fragments that are called by that task fragment
have been analyzed. A rendezvous graph provides infor-
mation about the order in which task fragments can be
analyzed. The partial order defined by the rendezvous
graph is used to construct a total order on the set of
task fragments. In the next section we consider data
flow analysis within a fragment and in section 4 we con-
sider data flow analysis between fragments.

3 Intrafragment Data Flow

Analysis

In this section we describe data flow analysis for a single
task fragment. Consider the CFG for the fragment to
be analyzed. Each node n of the CFG is assigned two
sets, G(n) and K(n), that summarize local information

1 Task body T1 is 13 Task body T2 is

2 begin 14 begin

3 a:=1; 15 X := 2

4 while a < 100 loop 16 while x < 200 loop
5 if a < 0 then 17 accept E(a: in out integer);
6 a:=a+1; 18 a:=a-+ Xx;
7 else 19 X:=a

8 T2.E(a); 20 end E;

9 end if; 21 x := x+1;

10 b:=a 22 end loop;

11 end loop; 23 end T2

12 end T1

Figure 1: Example 1

(b) (c)

Figure 2: (a) CFG(T1) (b) CFG(T2) (c) CFG(T2.E)

Figure 3: Rendezvous graph for Example 1

at that node. In common terminology these sets are
referred to as the gen set and the kill sets respectively.
The definitions of G and K vary depending on the data
flow problem to be solved.

Global data flow information is also summarized by
attaching sets to each node of the CFG. The two general
classes of global data flow information that are consid-
ered in this paper are AVAIL and LIVE.

A variable v is in the set AVAILg, x(n) if and only if
for every path from the start node to n, v is in G(n') for
some node n' on the path and is not in K(n") at any
node n” on the path between n' and n. AVAILg, x(n)
can be calculated by solving the data flow equations in
Figure 5(a) for each node n, other than the start node s.
AVAIL for the start node s, which has no predecessors,
is defined to be the empty set. PRED(n) is the set of
predecessor nodes of n.

A variable v is in the set LIVEg x(n) if and only if
there exists a path from n to another node n' such that
v is in G(n') but is not in K (n”) for any node n” on the
the path. LIVEg x(n) can be calculated by solving the
following data flow equations shown in Figure 5(b) for
each node n, other than the terminal node ¢. LIVE for
the terminal node ¢, which has no successors, is defined
to be the empty set. SUCC(n) is the set of successor
nodes of n.

Both AVAIL and LIVE can be calculated using a
number of different algorithms that are of complexity
no worse than O(N?2), where N is the number of nodes
in the CFG [Hec77)]. ’

For the start node s and terminal node ¢ of CFG(F),
G and K are supposed to represent information before
and after a call to F, respectively. When calculating
AVAIL, one wants a variable to be in G(s) if and only if
the corresponding variable in the calling fragment is in
the AVAIL set of the call node. Note that G(t) and K ()
are not used for the calculation of AVAIL and can thus
be left undefined. When calculating LIVE, one wants
a variable to be in G(t) if and only if the correspond-
ing variable in the calling fragment is in the LIVE set of
the call node. Note that G(s) and K(s) are not used for
the calculation of LIVE and can thus be left undefined.
Since a fragment is analyzed before the fragments that
call it, it is necessary to make worst case assumptions
about G and K for start and terminal nodes. These
worst case assumptions are dependent, of course, on the
data flow problem being solved. Note that, for the prob-
lems we are considering, K is irrelevant for the start and
terminal nodes since the AVAIL(s) and LIVE(t) are de-
fined to be empty, and is therefore defined to be the
empty set at these nodes. Section 5 presents a specific
data flow problem and describes and justifies initial val-
ues of G for that problem.

4 Interfragment Data Flow

Analysis

Tasks fragments are analyzed according to a total or-
der determined from the rendezvous graph for the frag-
ments. Suppose that order is given by Fy, Fs, ..., Fa,
where for j < k, F; does not call any fragment F.
Thus, in the analysis of F; we can make use of the re-
sults of the analysis of any fragment F; that is called by
Fj where 1<i<j<n

The analysis of individual fragments was described
in Section 3. The purpose of interfragment analysis is
to produce summary information about previously an-
alyzed fragments for use in the analysis of fragments
that invoke those fragments. Two sets of summary in-
formation are kept for each fragment. The first, G(F;),
contains all variables, including all explicit and implicit
parameters, for which there is a G of the variable in
the fragment that reaches outside the fragment. The
second, K(F;) contains all variables, including all ex-
plicit and implicit parameters, that are killed by the
call to the fragment. Definitions of G(F;) and K(Fj)
differ for AVAIL and LIVE and will be distinguished
by subscripts AVAIL and LIVE. Gavam and Kavair
are described in section 4.1. Grivg and Kpivg are de-
scribed in section 4.2. Once this summary information
is produced it can be used to calculate G(c) and K(c)
for each call node c of other fragments that call F;. This
is described in section 4.3.

4.1 AVAIL

The interfragment AVAIL analysis calculates the sum-
mary information GavaiL(F;) and KavaiL(F;) for each
fragment Fj;.

GavaiL(Fj) contains all variables, including all ex-
plicit and implicit parameters, such that for every path
through F; there is a G of the variable without a subse-
quent K of the variable. To calculate G avaiL(F;) we de-
fine a pessimistic version of G called Gpcs. Gpes is iden-
tical to G except that for the start node s, Gpe,(s) = 0.
For other nodes n, Gpes(n) = G(n). For the termi-
nal node Gy.,(t) is undefined. With these definitions,
Gavaw(F;) is AVAILg,,.x ().

KavaiL(Fj) contains all variables that are killed by
the fragment, i.e., the variables such that if they are in
the AVAIL set at the start of the fragment then they
are not in the AVAIL set at the end of the fragment.
To calculate KavaiL(Fj) we define an optimistic ver-
sion of G called Gop:. Gope is identical to G except that
for the start node s, Gope(s) = {all variables in F;}.
For other nodes n, Gope(n) = G(n). For the termi-
nal node Gop:(t) is undefined. With these definitions,
KAVAIL(Fj) is AVAILG”"K(t).

AVAILg x(n) = N
n;€PRED(n)
LIVEg k(n) = U

n;eSUCC(n)

(a)

(b)

(G(n‘-) U (AVAILg, k(n5) N K(n,-)))

(G(m) U (LIVEg,k(ni) N K (ne)))

Figure 5: Data Flow Equations for (a) AVAIL and (b) LIVE

The complete interfragment data flow analysis for
AVAIL is as follows.

1. Calculate AVAILg,,, k(i) for each node i of the
CFG(F;) using the intrafragment algorithm.

2. Calculate AVAILg,,, k(i) for each node i of the
CFG(F;) using the intrafragment algorithm.

3. Let
GavaiL(Fj) = AVAlLg,,, x(t)

where ¢ is the terminal node of CFG(F;).

4, Let
Kavai(Fj) = AVAlLg,,, .k (t)

where ¢ is the terminal node.

4.2 LIVE

The interfragment LIVE analysis calculates the sum-
mary information Grive(F;j) and Krive(F;) for each
fragment F;.

GLive(F;) contains all variables, again including all
explicit and implicit parameters, such that for some
path through F; there is a G of the variable before there
is a K of the variable. To calculate GLive(F;) we define
a pessimistic version of G called Gpes. Gpes is the same
as G except that for the terminal node ¢, Gpe,(t) = 0.
For other nodes n, Gpe,(n) = G(n). For the start node
Gpes(s) is undefined. With these definitions, GLive(F;)
is LIVEg,,,.x (9)-

Kiive(F;) contains all variables that are killed by
the fragment, i.e., the variables such that if they are
in the LIVE set at the end of the fragment then they
not in the LIVE set at the start of the fragment. To
calculate Kypjve(F;) we define an optimistic version of
G called Gopi. Gope is the same as G except that for the
terminal node ¢, Gype(t) = {all variables in F;}. For
other nodes n, Gope(n) = G(n). For the start node

Gopt(s) is undefined. With these definitions, Krive(Fj)
is LIVEg,,,,k(8)-

The complete interfragment data flow analysis for
LIVE is as follows.

1. Calculate LIVEg,,, k(i) for each node i of the
CFG(F;) using the intrafragment algorithm.

2. Calculate LIVEg,,, k(i) for each node i of the
CFG(F;) using the intrafragment algorithm.

3. Let
Guive(F;) = LIVEg,,, k(s)

where s is the start node of CFG(Fj).
4. Calculate

Krive(F;) = LIVEg,,, k(s)

where s is the start node.

4.3 Using Summary Information

Once the interfragment data flow analysis has produced
the necessary summary information for a fragment Fj,
the summary information can be used in the inter- and
intrafragment analysis of succeeding fragments. If ¢ is
a call node in a fragment that calls fragment F; then
G(F;) and K(F;) are used to calculate G(c) and K(c)
as follows. If ¢ is a call node for an entry call then
G(c) is the set of actual parameters that correspond
to formal parameters in G(F;) and K(c) is the set of
actual parameters that correspond to formal parameters
in K(F;). If cis a call node for an implicit procedure
call then G(c) is the set of implicit parameters in G(F})
and K(c) is the set of implicit parameters in K(F;).
The interfragment analysis and the intrafragment
analysis must be applied in the specified order. Note
that for most data flow problems either G,pe = G or
Gpes = G, in which case the intrafragment analysis is
redundant. Even if this is not the case, AVAIL¢g x is

easily calculated from AVAlLg,, x and AVAlLg,, .k
and LIVEg g is easily calculated from LIVEg,,,.x and
LIVEg,., K, although we do not show it here.

5 A Simple Example

This section demonstrates the application of the formu-
las of the previous section. The tasks for this example
are shown in Figure 6. The rendezvous graph for this
example is shown in Figure 7. There are six task frag-
ments in this example. The fragment S1.ADDONE, rep-
resenting the accept statement for the entry ADDONE
of task S1, is called by fragments T1 and S2.ADDTWO
and implicitly called by fragment S1. The fragment
S2.ADDTWO, representing the accept statement for
the entry ADDTWO of task S2, is called by fragment T2
and implicitly called by fragment S2. The control flow
graphs of each of these fragments are given in Figure 8.

Each node of each CFG is numbered with the state-
ment number that it represents. In addition, each node
is labeled with two sets, DEF and REF. The DEF set
is the set of variables defined at that node and the REF
set is the set of variables referenced at that node. The
DEF and REF for call nodes sets are initially unknown
but are calculated later after analysis of the called frag-
ment is completed. The DEF and REF sets are defined
to be the emptyset at the start node and the terminal
node of each CFG.

5.1 Calculating AVAIL

In the following we use the AVAIL data flow equations to
find the set of variables that are always uninitialized at
each point of the program. This can be done by defining
G and K appropriately. Since is it is not known at the
time a fragment is analyzed which variables are always
uninitialized at the start of a fragment, the conservative
approach is to assume that all variables in the fragment
are uninitialized. The analysis then tells us at which
points in the fragment a variable is uninitialized if it
is uninitialized at the start of the fragment. After the
analysis of all fragments is complete this information
can be used to determine which variables are actually
uninitialized.

We define G and K as follows. For the start node s,
of each CFG, we define G(s) to be the set of all vari-
ables in the fragment and K(s) to be the emptyset. For
the terminal node ¢, G(t) and K(t) are undefined since
they are not used in the calculation of AVAIL. For non-
call nodes n, we define G(n) = 0 and K(n) = DEF(n).
For a call node ¢, G(c) and K(c) are initially unknown
because they can only be calculated after the interfrag-
ment analysis of the called fragment.

From the rendezvous graph in Figure 7 it can be
seen that the fragments can be analyzed in the order
S1.ADDONE, T1, S1, S2.ADDTWO, T2, S2. The re-
sults of the intrafragment analysis for each fragment
are shown in Tables 1-6. For the interfragment anal-
ysis, note that for this data flow problem it happens
that Gope = G, so AVAILg, ..k = AVAILg x. Also,
AVAILg,,, x for each node of each CFG is the empty
set.

The first fragment to be analyzed is SL.ADDONE. G,
K, and AVAIL are shown in Table 1. This CFG contains
no call nodes.

The interfragment analysis of SLLADDONE gives the
following summary information for this fragment.

GavaiL(S1.ADDONE)

AVAILGM‘,K(:H)
0

KAVA!L(SI.ADDONE) = A.VAILG”_“K(:H)
= {a,countl}

Before the intrafragment analysis of the next frag-
ment T1, can be carried out we must first deter-
mine G and K for the call node 7. These sets
consist of the actual parameters of the entry call
for which the corresponding formal parameters are in
GAVA!L(SI.ADDONE) and KAVAIL(SI.ADDONE) re-
spectively. Since GavaiL(S1.ADDONE) = @ it contains
no formal parameters so G(7) = 0. On the other hand,
KavaiL(S1.ADDONE) contains the formal parameter a,
so K(7) contains the corresponding actual parameter 1.
Since, in this example, the first parameter is defined in
the accept statement, this is consistent with our defini-
tion of kill when determining uninitialized variables.

G, K, and AVAIL for T1 are shown in Table 2.

The analysis of S1 is similar to that for T1, except
that node 26 is an implicit call on S1.ADDONE. Thus,
G(26) and K(26) consist of the implicit parameters
of GAVAlL(Sl.ADDONE) and KAVAIL(SI.ADDONE)
respectively. Since GavaiL(SI.ADDONE) = 0, it
contains no implicit parameters, so G(26) = 0.
K avaiL(S1.ADDONE) contains the implicit parameter
countl, so K(26) = {countl}.

G, K, and AVAIL for S1 are shown in Table 3.

In S2.ADDTWO nodes 41 and 42 are entry calls on
S1.ADDONE. Since GavaiL(S1.ADDONE) = 0 it con-
tains no formal parameters so G(41) = G(42) = 0.
KavaiL(S1.ADDONE) contains the formal parameter
a, so K(41) and K(42) contain the corresponding ac-
tual parameter b. G, K, and AVAIL for S2.ADDTWO
are shown in Table 4.

The interfragment analysis of S2.ADDTWO gives the
following summary information for the fragment.

0 00 ~I DM U W

11
12
13
14
15
16
17
18
19
20

task body T1 is
i, n, ¢ : integer;
begin
1:=0;
input(n);
while i < n do
S1.ADDONE(i,c);
end while;
output(i);
end T1;

task body T2 is
j, m, d : integer;
begin
j=0
input(m);
while j < m do
S2.ADDTWO(j,d);
end while;
output(j);
end T2;

21 task S1 body is

in out integer) do

22 countl,max1 : integer;

23 begin

24 countl := 0;

25 while countl < maxl do
26 accept ADDONE(a,e :
27 a:=a+ 1

28 ife / = 0 then

29 countl := countl 4+ ¢
30 end if;

31 end ADDONE;

32 end while;

33 end S1;

34 task S2 body is

in out integer) do

35 count2,max2,g : integer;

36 begin

37 count2 := 0;

38 while count2 < max2 do

39 accept ADDTWO(b,f:
40 g:=1/2

41 S1.ADDONE(b,g);
42 S1.ADDONE(b,g);
43 if £ / = 0 then

44 count?2 := count2 + f
45 end if;

46 end ADDTWO;

47 end while;

48 end S52;

Figure 6: Example 2

@I.ADDONED*— SZ.ADDTW(D

Figure 7: Rendezvous graph for Example 2

@ DEF = 0 @ DEF =0
REF = 0 REF =0

© Rerco’ () Rerzs’

6) DEF = {n} 69 DEF = {m}
REF = 0 REF = 0
DEF = 0 DEF = 0
REF = {i,n} REF = {j, m}
6>____. DEF = 0 DEF = 0
REF = {i} REF = {j}
DEF = ?
REF = ?
7 . DEF = 0 DEF = 0
\ @ REF =90 REF =0

@ DEF = 0 @ DEF = 0
REF =0 REF =190

@9 DEF = {count1}
REF =0

DEF =0
REF = {countl, max1}

29__~@ DEF = 0
REF = 0

DEF =7
REF =7

26
(c)

@a DEF = {count2}
REF =0

DEF =10
REF = {count2, max2}

:@__.. DEF = 0
REF = 0
DEF = ?

REF =7
)

(d)

Figure 8: (a) CFG(T1) (b) CFG(T2) (c) CFG(S1) (d) CFG(S2)

(26) DEE=0
() pEr- i

DEF =0
REF = {e}

(3) DEE=¢
(o) por-d

4D DEF = ?
(REF =17
Q@ DEF = ?

REF = ?

DEF =0

REF = {f}

DEF = {count2}

DEF =0
REF =10

(e)

DEF = {countl}
REF = {countl, e}

DEF =10
REF =10

(f)

Figure 8: (¢) CFG(S1.ADDONE) (f) CFG(S2.ADDTWO)

n G(n) K(n) AVAILg x(n) REF(n)
26 a,e,countl,maxl 0 0 0
27 0 a a,e,countl,max1 a
28 0 0 e,countl,max1 e
29 0 countl e,countl,max]1 countl,e
31 ? ? e,maxl 0

Table 1: AVAIL for S1.ADDONE

REF = {count2,f}

n G(n) K(n) AVAILg.x(n) REF(n)
3 in,c 0] 0
4 0 i i,n,c]
5 0 n n,c]
6] 0 C i,n
*7] i c iyc
9 9 0 c i
10 ? ? c 0
Table 2: AVAIL for T1
n G(n) K(n) AVAILg k(n) REF(n)
23 countl,maxl 0 [] 0
24] countl countl,max1} 0
25)] 0 maxl countl,maxl
*26] countl maxl countl
33 ? ? max1]
Table 3: AVAIL for S1
n G(n) K(n) AVAILG x(n) REF(n)
39 | count2,g,max2,b,f 0 0 1]
40] g count2,g,max2,b,f f
*41 0 b count2,max2,b,f b,g
*42 0 b count2,max2,f b,g
43]] count2,max2,f f
4 ()] count?2 count2,max2,f count2,f
46 ? ? max2,f 0

Table 4: AVAIL for S2.ADDTWO

GavaiL(S2.ADDTWO) = AVAlLg,,, x(46)
0

KavaiL(S2.ADDTWO) = AVAlLg,,, x(46)
= {count2,g,b}

To analyze T2 we first determine G and K for
the call node 17. Since GavaiL(S2.ADDTWO) =
0 it contains no formal parameters so G(17) = 0.
KavaiL(S2.ADDTWO) contains the formal parameter
b, so K(17) contains the corresponding actual parame-
ter j.

G, K, and AVAIL for T2 are shown in Table 5.

In S2 node 39 is an implicit call on S2.ADDTWO.
Since GavaiL(S2.ADDTWO) = 9, it contains no im-
plicit parameters,
so G(39) = 0. KavaiL(S2.ADDTWO) contains the im-
plicit parameters count2 and g, so K(39) = {count2, g}.

G, K, and AVAIL for S2 are shown in Table 6.

6 Anomaly Detection

Data flow analysis has a wide variety of applications
in compiler optimization, anomaly detection, and other
areas. Our interest is in anomaly detection, although
the techniques described in this paper are applicable in
other areas as well. A number of interesting classes of
anomalies can be detected in a program by making a
suitable choice for G and K, applying AVAIL or LIVE
as appropriate, and then analyzing the results using a
suitable anomaly condition. Examples are: uninitialized
variables, where there is a reference to a variable before
a definition of that variable; dead definitions, where a
definition is followed by another definition or by the
end of the scope of the definition without an interven-
ing reference; and definitions that do not influence the
output, where there is no def-use chain from a definition
to an output. In each case we can distinguish between
elways occurrences of the anomaly, where the anomaly
occurs on every path and therefore always occurs, and
sometimes occurrences, where the anomaly occurs on
some but not all paths and therefore sometimes occurs
during some executions but not during others. Further-
more, one must be aware that, because this is a static
analysis technique, further analysis may be necessary
to determine if the reported anomalies actually occur
in the program or are spurious. Spurious results are
discussed further in the next section.

Using the previous example from Section 5, we first
demonstrate anomaly detection for an always unini-
tialized variable condition. For this case, an always

uninitialized variable anomaly occurs for a variable v
at any node n of a task where v € AVAILg x(n) and
v € REF(n).

Anomalies are reported only after the analysis of top
level fragments (i.e., those fragments not called by any
other fragment). Anomalies detected during the anal-
ysis of lower level fragments (i.e., called by other frag-
ments) are summarized and this summary information
is used during the analysis of higher level fragments.

For this case, anomaly analysis proceeds in the same
order as the calculation of AVAIL. Starting with frag-
ment S1.ADDONE we see that a € REF(27) and a €
AVAILg x(27). Likewise there is a potential anomaly
for e at node 28 and 29 and countl at 29. If any of these
variables is undefined at the start of this fragment then
there is an undefined reference anomaly in this frag-
ment. But it is not known at this point if these variables
are undefined at the start of tlie fragment, so we produce
a summary set REF(SI.ADDONE) = {a,e,countl}
that will be used in the analysis of fragments that call
S1.ADDONE.

For fragment T1, the REF set is given in Figure 8 for
all nodes except the call node 7. REF(7) is determined
by examining REF(S1.ADDONE). The formal param-
eters a and e are both in this set so the corresponding
actual parameters 7 and c are in REF(7). With this in-
formation we see that the REF to c at node 7 is in fact
a reference to an uninitialized variable. Since Tl is a
top level fragment we report this anomaly.

The analysis of the remaining fragments is simi-
lar. For fragment S1, REF(26) = {countl} and com-
parison of REF and AVAIL show that there is an
uninitialized reference to maz1 at node 25. For frag-
ment S2.ADDTWO, REF(41) = REF(42) = {b, g} so
REF(S2.ADDTWO) = {b, f, count2}. For fragment T2,
REF(17) = {j,d} so the REF to d at node 17 is a ref-
erence to an uninitialized variable. For fragment S2,
REF(39) = {count2} so the REF to maz2 at node 38
is an uninitialized reference.

Now, suppose we wished to find occurrences of unini-
tialized variables that sometimes occur. We can use
AVAIL to solve this problem as well by defining G(s) =
0, K(s) = 0, G(n) = DEF(n) and K(n) = 0, where
g is a start node of a fragment and n is a non-start
node. We report a sometimes uninitialized variable
anomaly for a variable v at any node n of a task where
v € AVAILg x(n) and v € REF(n). The REF set of a
call node is calculated in the same way as in the previous
example.

We could also solve the always and sometimes unini-
tialized variable problem using LIVE. This is left as an
exercise for the reader.

n G(n) K(n) AVAILg, kx(n) REF(n)
13 jym,d 0 [}
14] j jm,d]
15] m m,d 0
16 0 0 d jym
£17 0 j d jd
19 0 0 d j
20 ? ? d 0
Table 5: AVAIL for T2
n G(n) K(n) AVAILg x(n) REF(n)
36 count2,g,max2 0 0 0
37 0 count2 count2,g,max2]
38 0 0 max2 count2,max2
+39 0 count2,g max2 count2
48 ? ? max2 0

Table 6: AVAIL for S2

7 Conclusion

In this paper we have demonstrated how data flow anal-
ysis techniques can be applied to concurrent programs
that use a rendezvous model of inter-task communica-
tion. Our approach is based on dividing the system into
fragments, where each fragment can be analyzed sepa-
rately. The summary information about each fragment
is then used whenever that fragment is invoked. Two
kinds of invocations are distinguished and each must be
treated differently. A rendesvous graph is also defined
for determining the order in which fragments can be
analyzed. Since the overall approach is very similar to
interprocedural data flow analysis, efficient algorithms
exist for computing all the required information.

The major drawback of data flow analysis is that it
computes conservative estimates about the behavior ofa
system and thus sometimes reports spurious anomalies.
There are two major reasons for these spurious results.
The first has to do with complex data structures, where
the precise identity of a component of an object is com-
puted at run time; for example, via an index or pointer.
In such cases, static analysis can not always identify
the precise component and therefore assumes that all
components have been involved.

The second reason is referred to as the infeasible path
problem. Data flow analysis usually involves analyzing
a control flow graph representation of a program. A con-
trol flow graph represents all paths through a program,
where a path is a syntactically legal execution sequence.
Because of the semantics of the program, however, not

all of such paths may be valid. For example, a FOR
LOOP that has a loop iteration variable that goes from
one to ten with no additional exits from the loop can
not be executed other than ten times. A static analysis
of this graph, however, would consider the fall through
case, where the loop is never executed, a viable path.

Dealing with complex data structures and infeasible
paths are inherent limitations of data flow analysis. One
approach to dealing with these problems is to carefully
distinguish when a detected anomaly is definitely an in-
dication of a erroneous pattern of behavior from when
it might be a spurious result. The latter is usually re-
ported as a warning, and the former as an error. When
a warning is reported it is expected that additional anal-
ysis will be required to determiine if a problem actually
exists.

Thus, data flow analysis is often seen as a two phase
process. During the first phase, data flow analysis al-
gorithms are applied and errors and warnings are re-
ported. During the second phase, additional analysis is
attempted to determine if the execution pattern asso-
ciated with a warning report is feasible. Of course, in
general, the path feasibility problem is not decidable.
In practice, it can frequently be determined relatively
easily by a developer examining the program.

For concurrent systems we propose a three phase ap-
proach for data flow analysis. The two phases asso-
ciated with sequential data fiow analysis remain, but
a new phase is needed between them to determine if
the task interaction specified by a data flow anomaly is
a feasible interaction. For concurrent systems, infeasi-

ble interactions can be due to deadlock, livelock, or be-
cause interactions cannot execute concurrently. This is
an additional complication to the path feasibility prob-
lem. Usually such analysis requires construction of a
reachability graph, which can be exponential in terms
of the number of tasks. While in the worse case a search
through the reachability graph might be exponential, we
believe techniques can be developed to support, at least
experimentally, efficient directed searches that should
not require the construction of the entire reachability
graph [YT86]. A benefit of our approach is that reach-
ability is not even an issue unless the data flow analysis
phase has indicated a reason for concern about a par-
ticular task interaction.

At this point in time we have not implemented the
data flow analysis techniques so we do not have any ex-
perience with the number and kinds of anomalies that
are actually discovered. We believe that conducting
such experiments will provide valuable insight and in-
tend to pursue this in the future.

References

[ADW89] G.S. Avrunin, L.K. Dillon, and J.C. Wile-
den. Experiments With Automated Con-
strained Expression Analysis of Concurrent
Software Systems. In Proceedings of the
ACM SIGSOFT ’89 Third Symposium on
Software Testing, Analysis and Verification
(R.A. Kemmerer, ed.), pages 124-130, De-
cember 1989. Appeared as Sofiware Engi-
neering Notes, 14(8).

[ALl74) F.E. Allen. Information Processing 74,
chapter Introprocedural Data Flow Analy-
sis, pages 398-402. North Holland Pub. Co.,

Amsterdam, 1974.

[Bar78] J.M. Barth. A Practical Interprocedural
Data Flow Analysis Algorithm. Communica-

tions of the ACM, 21(9):724-736, Sept. 1978.

(BH78] P. Brinch Hanson. Distributed Processes: A
Concurrent Programming Concept. Com-
munications of the ACM, 21(11):934-941,

November 1978.

[CT91] R.H. Carver and K.-C. Tai. Replay and Test-
ing for Concurrent Programs. IEEE Soft-
ware, 8(2):66-74, March 1991.

[Dil88] L. K. Dillon. Symbolic Execution-Based
Verification of Ada Tasking Programs. In
Third Int. Conference on Ada Applications

end Environmenis, pages 3-13, May 1988.

[FOT6)

[HeeT7]

[HK88]

[HL85]

[Hoa78]

(HS89)

[LC89]

[McD89]

[MR90]

[0090)

[Ref83]

L. D. Fosdick and L. J. Osterweil. Data flow
analysis in software reliability. Computing
Surveys, 8(3):305-330, September 1976.

M.S. Hecht. Flow Analysis of Computer Pro-
grams. North-Holland, New York, 1977.

L. J. Harrison and R. A. Kemmerer. An
Interleaving Symbolic Execution Approach
for the Formal Verification of Ada Programs
with Tasking. In Proceedings of the Third In-
ternational IEEE Conference on Ada Appli-
cations and Environments, pages 3-13, May
1988.

D. Helmbold and D. Luckham. Debug-
ging Ada tasking programs. IEEE Software,
2(2):47-57, March 1985.

C. A. R. Hoare. Communicating Sequen-
tial Processes. Communicatlions of the ACM,
21(8):666-677, August 1978.

M.J. Harrold and M.L. Soffa. Interproce-
dural Data Flow Testing. In Proceedings
of the SIGSOFT °’89 Third Symposium on
Software Testing, Analysis, and Verification,
Key West, Florida, pages 158-167, Dec.
1989.

D.L. Long and L.A. Clarke. Task Interaction
Graphs For Concurrency Analysis. In 11th
International Conference on Software Engi-
neering, pages 44-52, May 1989. Pittsburgh,
Pennsylvania.

C.E. McDowell. A Practical Algorithm for
Static Analysis of Parallel Programs. Jour-
nal of Parallel and Distributed Computing,
6:515-536, 1989.

S.P. Masticola and B.G. Ryder. Static In-
finite Wait Anomaly Detection in Polyno-
mial Time. Tech Report LCSR-TR-141,
Laboratory for Computer Science Research,
Hill Center for the Mathematical Sciences,
Busch Campus, Rutgers University, New
Brunswick, NJ 08903, January 1990.

K.M. Olender and L.J. Osterweil. Ce-
cil: A Sequencing Constraint Language
for Automatic Static Analysis Generation.
IEEE Transactions on Softwere Engineer-
ing, 16(3):268-280, March 1990.

Reference Manual for the Ada Programming
Language, Washington DC. United States
Department of Defense, January 1983.

[RL89)

[Ros79]

[SC88]

[Tai86]

[Tay83a)

[Tay83b]

[TO80]

[Y'T86]

[Y'T88]

[YTFB89)

D. S. Rosenblum and D. C. Luckham. Test-
ing the correctness of tasking supervisors
with TSL specifications. In Proceedings of
the ACM SIGSOFT ’89 Third Symposium
on Software Testing, Anelysis and Verifica-
tion (R. A. Kemmerer, ed.), pages 187-196,
1989. Published as Sofiware Engineering
Notes, 14(8).

B.K. Rosen. Data Flow Analysis for Pro-
cedure Languages. Journal of the ACM,
26(2):322-344, April 1979.

S. M. Shatz and W. K. Cheng. A Petri Net
Framework for Automated Static Analysis of
Ada Tasking Behavior. Journal of Systems
and Software, 8(5):343-359, 1988.

K.-C. Tai. A graphical notation for de-
scribing executions of concurrent Ada pro-
grams. Ade Letters, 6:94-103, January-
February 1986.

R. N. Taylor. Complexity of analyzing the
synchronization structure of concurrent pro-
grams. Acta Informatica, 19:57-84, 1983.

R.N. Taylor. A General-Purpose Algorithm
For Analyzing Concurrent Programs. Com-
munications of the ACM, 26(5):362-376,
May 1983.

R.N. Taylor and L.J. Osterweil. Anomaly
Detection in Concurrent Software by Static
Data Flow Analysis. IEEE Trensections
on Software Engineering, SE-6(3):265-277,
May 1980.

M. Young and R.N. Taylor. Combining
Static Concurrency Analysis With Symbolic
Execution. In Proceedings of the Workshop
on Software Testing, pages 170-178, July
1986. Published by IEEE Computer Society
Press.

M. Young and R.N. Taylor. Combining
Static Concurrency Analysis and Symbolic
Execution. IEEE Transactions on Soft-
ware Engineering, 14(10):1499-1511, Octo-
ber 1988.

M. Young, R. N. Taylor, K. Forester, and
D. Brodbeck. Integrated concurrency anal-
ysis in a software development environ-
ment. In Proceedings of the ACM SIG-
SOFT '89 Third Symposium on Software
Testing, Analysis and Verification, (R. A.

Kemmerer, ed.), pages 200-209, 1989. Pub-
lished as Sofiware Engineering Notes, 14(8).

