Design and Evaluation of Scheduling
Policies for Two Server Fork/Join
Queueing Systems

Don Towsley, Shenze Chen
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

COINS Technical Report 91-39
April 1991

Design and Evaluation of Scheduling Policies for Two Server
Fork/Join Queueing Systems *

Don Towsley Shenze Chen

Department of Computer & Information Science
University of Massachusetts
Ambherst, MA 01003

Abstract

We consider a two server system that processes a mixture of regular customers and fork/join
customers. A regular customer is one that requires service at one server whereas a fork/join
customer requires service at both servers. We consider two classes of policies for scheduling
regular customers to the servers. The first class consists of distributed policies, where each
policy therein maintains two queues, one for each server. Policies in this class differ from each
other according to the rules by which regular customers are routed to one or both of the two
queues. The second class consists of centralized policies. Here a centralized policy maintains a
common queue which feeds customers to both servers. We develop Markovian models for each
of the policies that provides upper and lower bounds on their performance. These bounds are
evaluated using matrix geometric techniques and can be made as tight as desired at the cost
of additional computation. Using these models, we find the best policy to be a distributed
policy called DP-MR, which allocates copies of a regular customer to each queue and as soon
as one completes removes the other. However, in the case that the system cannot support a
common queue or provide status information regarding each server, an appropriate policy is
the distributed DP-RJ. Last, the method of evaluation is of independent interest as it may be

applicable to a number of problems regarding the analysis of computer systems.

*This work is supported, in part, by the Office of Naval Research under contract N00014-87-K-0796.

1 Introduction

We consider a queueing system consisting of two servers that process two classes of customers. The
first class consists of regular customers that can be processed at either of the two servers. The second
class consists of fork/join customers that require service from both servers. A fork /join customer

generates (forks) two tasks, one for each server. After completion of service, (i-e., completion of

both tasks), the customer departs.

Our interest in this queueing system is motivated primarﬂy by the following analysis problem in
computer systems. Nurmnerous fault tolerant disk I/O systems (see [3] for an example) require that
two copies of each data item be maintained. As a consequence, whenever the data item is updated,
both copies must be modified. On the other hand, a request to read a data item can be satisfied by
either copy. This system maps into the model of interest to us where the update requests correspond
to fork/join customers and read requests correspond to regular customers. Other applications are
found in the area of parallel processing where two processors serve a mix of serial and parallel

programs.

We propose a number of different policies for scheduling regular customers in this system. These

policies fall into two classes.

o Distributed Policies (DP). A distributed policy maintains two separate queues, one for each
server. Distributed policies differ from each other according to the rules used to route regular

customers to these two queues.

o Centralized Policies (CP). A centralized policy maintains a common queue for both servers.
Although centralized policies appear to require only one queue, we shall observe that a second
queue is required for the server that lags behind while processing fork/join tasks. This second
queue called an auziliary queue contains only fork/join tasks except for possibly the request

In service.

In all cases, queues are served in a first come first serve (FCFS) manner. The performance metrics

of most interest are the stationary response times for regular and fork/join customers.

The primary contribution of this paper is the analysis and comparison of a variety of distributed
and centralized policies. We develop tight bounds on the response time distribution of fork/join
and regular customers under these policies for the assumptions of Poisson arrivals and exponential

service times. This is accomplished by judiciously truncating one of the state variables in the

Markov chain that underlies each of these policies and applying the matrix geometric approach,
[12] to obtain the bounds. The presence of these bounds provides an analyst the capability of
approximating the statistics of the response times of fork /join and regular customers to the degree
of accuracy required by changing the truncation parameter. For all these policies an increase in

accuracy is obtained with an increase in computational cost.

Using this approach we compare the performance of these different policies and find that centralized
policies outperform most of distributed policies, but are outperformed by the distributed DP-MR
policy, which allocates copies of a regular customer to each queue and as soon as one completes
removes the other, given the service time is exponential. Clearly, if regular customers are given
a higher priority than fork/join customers, the overall system mean response time can be further
improved [1]. In this study, however, we assume both regular and fork/join customers to have
the same priority. Our method of obtaining the performance bounds may also be of independent
interest. It is likely to be applicable to a large. variety of analysis problems such as those considered
in [6, 10].

Queueing systems with fork/join customers have only recently received attention. Flatto and
Hahn [5] performed an exact analysis of a system with two exponential servers that process only
fork/join customers. Fork/join customers arrive according to a Poisson process and the complete
system is modeled by a Markov chain containing two state variables each of which is unbounded.
They obtain the stationary probability distribution for this chain by transforming the problem
into a boundary value problem. Rao and Posner, [13], performed an approximate analysis of this
model by truncating one of the two state variables and solving the resulting model using the matrix-
geometric methodology developed by Neuts [12]. We will show in the course of this paper that their
approximation to the response time distribution for fork/join customers provides a lower bound on
the correct distribution. In [8], Kim and Agrawala presented an approach to obtain approximate
solutions for a K-server fork/join queueing system, in which response time of fork/join customers
is obtained by tracking the virtual waiting time of each queue, i.e., time to empty a server when
no more arrivals occur. With the restriction of service time being Erlangian distribution, their

formulation results in a form of series, the worth of which is in actually computing numerical

results.

Using a different approach, Nelson and Tantawi [11] have developed an accurate approximation for
the case of K identical servers. Baccelli, Makowski, and Shwartz {4] developed simple (but loose)
computational bounds for a K server system that processes several classes of customers that differ

from each other according to the subset of servers required. This approach can be used to model one

of the distributed policies, termed the DP-RJ policy, where regular customers are probabilistically
routed to the two servers. However, with the exception of the approach used by Rao and Posner

[13], none of the approaches appear to generalize easily to policies other than the aforementioned
DP-RJ policy.

We point out that, although the truncated Markov chain for the DP-RJ policy is similar to that
studied by Rao and Posner [13], they were apparently unaware that their approximation could be

used to provide lower bound on the response time distribution in the system using that policy.

Other work relevant to one of the distributed policies, DP-SQ, can be found in [14], where Rao
and Posner presented an approximate analysis of the shortest queue model. However, only regular

customers are included in their discussions.

The remainder of the paper is structured in the following way. Section 2 contains the description
of the various policies discussed in this paper. The analytic models for these policies are given in
Section 3. Section 4 compares performance of these different policies. A summary of the paper is

contained in Section 5.

2 Description of Policies

In this section, we describe various scheduling policies for the two server fork/join queueing system.
We divide all of these policies into two classes, distributed policies (DP) and centralized policies

(CP). In all cases, customers are served in a first come first service manner within each queue.

2.1 Distributed Policies

In the class of distributed policies, two queues are maintained by the system, one for each server.
At the time of arrival, a fork/join customer generates two tasks that enter each of the two queues.
The various policies differ from each other by the way that they decide which server to send the

regular customer.

¢ The Random Join (DP-RJ) Policy
With this policy, a regular customer, at the time of its arrival, randomly chooses the queue

associated with server i to enter with probability ;, i = 1,2 (a1 + az = 1).

¢ The Shortest Queue (DP-SQ) Policy
Under the DP-SQ policy, a regular customer selects the server with the shortest queue at the

time of its arrival.

o The Shortest Queue with Minimum Service (DP-SQ-MS) Policy
The DP-SQ-MS policy behaves the same as the DP-SQ policy, except when a regular customer
arrives to an empty system. In this case, under the DP-SQ policy, the regular customer
randomly chooses a server for service, whereas under the DP-SQ-MS policy, it generates two
tasks, one for each server, which begin service immediately. The regular customer completes
as soon as the first task finishes, and the other task is aborted. However, if there are any new
arrivals before the regular customer completes, one of the tasks (randomly chosen) is aborted
and the freed server starts to service the new arrival. Obviously, the DP-SQ-MS policy can
take advantage of the minimum service time for those regular customers who find both servers
idle. The performance improvement by adopting this strategy is expected to be noticeable

when the system is lightly loaded.

¢ The Minimum Waiting (DP-MW) policy
Under the DP-MW policy, each regular customer generates two tasks, one for each queue.
Whenever any one of these tasks begins service, its counterpart is immediately removed from

the other queue.

¢ The Minimum Waiting with Minimum Service (DP-MW-MS) Policy
The DP-MW-MS policy is defined in a similar way as the DP-SQ-MS policy to achieve a
better performance for a light system. Namely, if a regular customer arrives to find both
servers idle, it begins service on both servers. It departs the system as soon as the first of
the two servers completes. If additional customers arrive before either task of the regular

customer completes, one of its tasks is aborted.

¢ The Minimum Response (DP-MR) Policy
The DP-MR policy is similar to the DP-MW policy which allows regular customers to enter
both queues upon arrival. However, the DP-MR policy aborts one of the tasks associated with

a regular customer once its peer completes its service, whereas the DP-MW policy aborts a

task once its peer begins its service.

’

Remark: Among all these policies, the DP-RJ policy is suitable for systems where the two servers
are physically located at two distant sites, since it requires no information interchange between the
two servers. The other policies, however, are more suitable for systems where the two servers are
located close to each other because those policies have to know the status of each queue in order

to scheduling regular customers.

2.2 Centralized Policies

Policies in this class maintain a common queue for the two servers. Both regular and fork/join

customers enter the common queue at the time of their arrival.

o The Auxiliary Queue (CP-AQ) Policy
Under the CP-AQ policy, a customer at the front of the common queue begins service as
soon as a server becomes available. If the customer at the head of the common queue 1is
a fork/join customer, it also places the second task in an auxiliary queue associated with
the other server. Thus the system requires an auxiliary queue associated with the server
which lags behind. This auxiliary queue contains fork/join customers only (not including the

customer in service). Both the common queue and the auxiliary queue are served in a FCFS

manner.

e The Auxiliar& Queue with Minimum Service (CP-AQ-MS) Policy
The CP-AQ-MS policy is similarly defined as the CP-AQ policy except that a regular customer
is allowed to begin service at both servers whenever they are both idle. This policy behaves

in the same manner as the DP-SQ-MS policy regarding these two tasks.

3 Analytic Models

In order to analyze the policies described in the previous section, we assume that regular and
fork/join customers arrive according to Poisson processes with rates A and v, respectively. Service
times at server 7 are assumed to be exponentially distributed random variables with mean 1/p;,i =

1,2. In most cases we will assume that gy = po. We will explicitly state when this is not so.

Under these assumptions, all of the policies can be modeled by multi-dimensional Markov chains.
We will describe how these Markov chains can be manipulated in order to obtain computable bounds
on the performance of each policy. In all cases, the resulting Markov chain can be solved through
the use of Neut’s matrix-geometric method [12]. In this section we will describe the analysis of
the DP-RJ and CP-AQ policies in some detail. The analyses of the other policies are then briefly
describe&.

3.1 An Analysis of the DP-RJ Policy

We allow p; to differ from p;. Under this policy regular customers select queue i with probability

a;,i=1,2witha; +a; = 1.

Let Wi(r) and Wi(j) denote the response times of the i-th regular and fork/join customers respec-
tively. Let T; = (T:1,T:2) where T; ; denotes the response time of the task generated by the i-th

fork/join customer that enters queue j, j = 1,2. Here T ; can be expressed as
Tij=Usj+ Xij (1)

where U; ; is the unfinished work in the queue at the time that the i-th fork/join customer arrives
and Xj ; is the service time for the task that it generates, j = 1,2. Last, let T; = (T;1,T;2) where
T,-,l = min{T;,,T; 2} and T.;,z = max{T;,T;2}. The response time of the i-th fork/join customer

can be expressed as Wi(f)= T; 2.

We are interested in the limiting random variables for the above defined random variables when

they exist. We shall drop the subscript ¢ when referring to these limiting random variables, i.e.,

W) = lim; o0 W,-('). We are also interested in the random variables N{™) and N(f) that respectively

denote the stationary number of regular customers and fork/join customers in the system.

We first observe that each queue and server can be separately modeled as an M/M/1 system. As
a consequence, the system exhibits stationary behavior so long as a;A + v < p;, ¢ = 1, 2. Since the
response time of a regular customer is affected only by the queue that it enters, the distribution of

W) is given by a weighted sum of the distributions of two independent M/M/1 systems
PW) > w] = age~a-ad=nw 4 o o=(s3-azr-7)w

with mean

EW")] = a1 /(1 — a1d = 1) + 02 /(2 — 22X — 7).

The expected number of regular customers in the system, E[N (")], can be obtained through an

application of Little’s rule [9]. Consequently we focus only on the behavior of fork/join customers.

As a further consequence of the fact that each queue behaves as an M/M/1 system, we can write the

following expressions for the marginal distributions of the response times of the two tasks associated

with a fork/join customer
P[T; > t] = e~(i=eid-mt -1 9,
with means

E[T;)=1/(pj - ajA-7), j=1,2.

Let us now conduct the following experiment; select a random fork/join customer. Select one of

the two tasks associated with this customer with equal probability. Denote the response time of

this task by T'. Then T has the following distribution,
P[T > t] = (P[Ty > t] + P[T; > t])/2.

This randomly chosen task is equally likely to be the first or the last of the tasks associated with

the customer to complete. Consequently we also have the following identity,
P[T > t] = (Fin(t) + Fnaz(t))/2 (2)

where Fpn(t) = P[Tl > t], and Fez(t) = P[T2 > t]. If we are able to obtain the marginal

distribution for either T} or Tz, the above identity allows us to obtain the marginal distribution for

the other random variable.
Equation (2) is also useful for obtaining bounds. For example, let us assume that we have upper

bounds F\)(t) and FS2)(t) to Fonin(t) and Fias(t), iee.,

F(1)

min

v

Fmin(t)) t Z 0)

FU9)(t) > Froa(t), t>0

max -_—

Then equation (2) can be used to obtain the following lower bounds for Fe.(t) and Fpin(t)

Fmaa(t) > 2P[T >t - F%)y), (3)

ma

Frin(t) > 2P[T >t]— F{9)(¢), t>0

- maz

In a similar manner, if we have expressions F®) (t) and F,(,fﬁ)z(t) that bound Fp;n(t) and Fpez(t)

min
from below, then equation (2) allows us to obtain the following upper bounds on the last two

distributions

Frin(t) < 2P[T >] - FGIL(8), (4)

Fraz(t) € 2P[T >4 - F®(2), t>0

= min

We shall make use of these relationships in order to obtain bounds on the statistics of the response

time of a fork/join customer.

The DP-RJ policy can be modeled as a Markov chain with state N(t) = (Ny(t), N2(t)) where Nq(2)
and N,(t) are the number of tasks in the queues associated with servers 1 and 2 respectively at time

t. Let g(¢,j) = limy_o P[N1(t) = i, Na(t) = j]. The stationary probabilities satisfy the following

equations,

(7 + A)q(os 0) = F’lq(la 0) + P'2Q(0) 1):
(v + 2+ p1))e(i,0) = Aazg(i—1,0)+pag(i+1,0) + p2g(i, 1), i=1,---,
(7 + A+ 12)9(0, §) Aazq(0,5 — 1) + p2q(0,5 + 1) + pag(1,5), - 7=1,---,
(v + 2+ m + p2)e(4,5) 79(i = 1,5 — 1) + Aeag(i - 1,5)
+Aa2q(i)j - 1) + ”IQ(i"*' 11.7) + P’2q(i7j + 1)7 i = 1, ! J = 1" o

Unfortunately, this model is not amenable to a simple analysis. We focus instead on a modified
system in which the second queue (associated with server 2) can hold no more than B tasks.
Whenever a fork/join customer arrives to the system at time ¢t and finds N(t) = B, he generates a
single task that enters the first queue. The customer completes when this task completes. Similarly,

a regular customer that arrives to a full queue at the second server passes through without delay.

This modified system can be modeled as a Markov chain with the same state definition. In order to
distinguish the modified system from the true system, we shall use the superscript (Ib), i.e., N()(t)

instead of N(t). We define TS"’) according to equation (1) even though this does not produce the
correct response time at the second queue.! We shall describe an ordering relationship between T

and T{®). We first introduce the following definition [15].

Definition 1 Let X = (X1, X3,--,Xp) and Y = (Y3,Ys,- -+, Y,) be two real valued vector random
variables. We say that X is stochastically larger than Y (X >, Y) if for all increasing functions

f
E[f(X)] 2 E[f(Y)].

In the case that n = 1, this is equivalent to
P[X >a] > P[Y > a,Va.
We will make use of the following property of the above stochastic ordering.

Property 1 Let X = (X1,X5,---,X,), Y =(N1,Y2,--+,Y2), and X <,; Y. Then

(X1, -+, Xp) <ot 9(Y1,---,Yn), V increasing g.

In particular, max(X;, -+, X,) <, max(¥y,---,%,).

We now state and prove the following theorem.

! This is because we have defined the response time at queue 2 to be 0 when the queue length is B at the time a

customer arrives. Equation (1) produces a non-zero response time for that event.

Theorem 1 The following relationships hold between the real system and the modified system.

1. N Zut N(lb):

2. T >, T),

Proof. In order to prove 1), it is useful to study the queue lengths of the system prior to the

arrival of a customer of either class. Let Mglb) = (M, (16) M,-(fzb)) and M; = (M;;, M;3) where M; ;

t,1 ;
and Mt-(f;) are the numbers in queue j (j = 1,2) prior to the arrival of customer % in the real system

and the modified system respectively. These r.v.’s satisfy the following recurrences,

Mi+1'j = (Mi-j + Ii:j - ‘Di..i)+’ J=12,

) _
M = Miy,

Mi(fl),z (Mi(,g’) + Ail; 2 — Dig)*

where

L. = 0 i-th customer does not generate a task for j-th queue
"7 1 1 otherwise

A= 0 queue 2 is full at time of arrival of customer 2
*7 1 1 otherwise

and D;; is the number of departures from queue j between the arrivals of the i-th and i + 1-th

customer.

If the initial state vectors of the two systems satisfy Mo > Mgb), then an induction argument can

be used to show M; > Mslb) for i = 0,1,2,---2 Consequently we conclude that M; >, MS-"’) for
i=0,1,2,.--. Whenever the real system is ergodic, i.e., the r.v.’s M; and ME"’) converge to the
limiting r.v.’s M and M), then M >,; M%), Finally, since arrivals from a Poisson process see
time averages{7, sec. 11-2], M and M(®) have the same joint distribution as N and N{*®) and we
conclude that N >, N(),)

The second part of the theorem is shown in a similar manner by focusing on the Lindley equa-

tions that must be satisfied by the unfinished work in the system at the time of customer arrivals. B

*Here two vectors V = (v1,-++,v,) and V' = (v},-++,v}) satisfy the relation V> V'iff v; > v}, 1 <i < n.

Remark. Tt is possible to show that N(t) >,, N)(¢) for ¢ > 0 where N(t) and N(®)(t) are the

queue lengths of the two systems at time ¢ > 0, and that T; >, Tgu') fori=1,2,---for any arrival

process and i.i.d sequences of service times at each queue.

The modified lower bound system is solved by using the matrix-geometric method (see Appendix

A), which parallels the analysis given by Rao and Posner [13]. They derive the following expression
for the joint distribution of T(%) '

T("’)('wl,wz) = P[Tl(lb) < wl,Tz("’) < w,),
= @[l - exp(—p(I = R)w)]B(w2)
where I is the identity matrix, 7 is a B + 1 element vector containing the stationary queue length
distribution for the M/M/1/B queue with arrival rate ¥ 4+ a;A and service rate s, i.e., the i-th
element of = is (1 — u)u!/(1 — u(B+1)) where u = (a2 + 7)/pa, B(ws) is a (B + 1) column vector
with ¢-th component [1 = _o(pow,)/ exp(—uzwz)] ,and R is the solution of a quadratic matrix

equation given in Appendix A. An application of Theorem 1 along with Property 1 of stochastic

dominance yields the following bound on F,..(w),

Fraz(w) > F®) (w),

v

1- T("’)(w,w),.
= 1-7[I - exp(~p1(I - R)w))]B(w).

Similar arguments can be used to obtain the following bound on the distribution of the time until

the first of the two tasks associated with a fork/join customer complete,

Fain(w) > Fi(w),
= wexp(—p (I - R)w — pow)C(w)
where C(w) is a (B + 1) element column vector with ordered components Zj’:o(ﬂfw)j /il i =
0,1,:--, B. Substitution of F,(,ig,)‘(w) into equation (4) yields the following upper bound on Fy,,.(w),
Fraz(w) < exp(~(s — a1k — 7)) + exp(= (2 - az) = 7)w)
— mexp(— (] = R)w — pow)C(w).

These can be used to obtain bounds on the moments of the response time.

Table 1 gives bounds on the average response time of a fork/join customer for different values of B.

In this example, no regular customers enter the system and both servers are identical. If we take

10

p B=4 B =8 B =16 B = 32
Ib. |ub. |[Lb. [ub. |Lb. [ub. |Lb. |ub.

1] 1.653 | 1.653 | - - - - - .

2| 1.843 | 1.844 | 1.844 | 1.844 | - - - -

.31 2.082 | 2.092 | 2.089 | 2.089 | - - - .

4| 2380 | 2.431 | 2.415 | 2.417 | 2.417 | 2.417 | - .

5| 2.764 | 2.925 | 2.861 | 2.879 | 2.875 | 2.875 | - -

6| 3.287 | 3.709 | 3.494 | 3.586 | 3.560 | 3.563 | 3.562 | 3.562

7| 4.093 | 5.103 | 4.444 | 4.823 | 4.676 | 4.716 | 4.708 | 4.708

.8|5.651 | 8.088 | 6.122 | 7.518 | 6.711 | 7.102 | 6.982 | 7.003

.9|10.37 | 17.63 | 10.81 | 16.55 | 11.73 | 15.19 | 13.05 | 14.17

Table 1: Bounds for DP-RJ under different values of B, p; = pp = 1.

P mfpa=1p/p2=2/3 | pa/p2=1/2| p1/p2 =1/3
0.1|1.65 1.38 1.28 1.19
0.2 | 1.84 1.53 1.41 1.32
0.3 | 2.09 1.71 1.58 1.50
0.4 | 2.42 1.95 1.81 1.73
0.5 | 2.88 2.28 2.14 2.06
0.6 | 3.56 2.77 2.62 2.55
0.7 4.71 3.58 3.44 3.37
0.8 | 6.99+.01 | 5.21 5.08 5.03
0.9 | 13.61+.56 | 10.12 10.02 10.01

Table 2: Bounds for DP-RJ under different values of p; /..

the average of the bounds for an approximation, the error is less than 3% for p < .8 when B = 16.
An error of less than 5% can be achieved for p = 0.9 by taking B = 32. Table 3.1 gives bounds
on the average response time of a fork/join customer for different values of u;/p, when py = 1.
Here, the value B = 32 was used. For values of us > 1.5y;, the resulting bounds are identical to at
least three decimal places. As expected the average response time is a decreasing function of y,.
Table 3 presents bounds for the average response time of a fork/join customer in a system with
identical servers that also serves regular customers. Here we observe that for a fixed server load,
the average response time of a fork/join customer increases as the fraction of regular customers
increases. This is because the coupling of the arrival processes to the two queues decreases as there

are fewer fork/join customers. Again B was chosen to be 32.

11

p |pp=0 pr=1/4 |p-=1/2 |[p,=3/4 |pr=1
0.1]1.65 1.65 1.66 1.66 1.67
0.2 1.84 1.85 1.85 1.86 1.88
0.3] 2.08 2.10 2.11 2.12 2.14
0.4 | 2.42 243 2.45 2.47 2.50
0.5 | 2.88 2.89 2.92 2.95 3.00
0.6 | 3.56 3.59 3.63 3.68 3.75
0.714.71 4.76 4.82 4.89 5.00
0.8]6.99+£.01 | 7.08+.01 | 7.18+.01 | 7.31+.01 | 7.50
0.9 | 13.61+.56 | 13.77+.55 | 13.98+.55 | 14.24+.55 | 15.00

Table 3: Bounds for DP-RJ under different p,, g1 = p2 = 1.

3.2 An Analysis of the CP-AQ Policy

In this model, we assume the two servers are identical with y; = u, = u.

Let N1(t) (0 < Ny(t)) be the number of requests in the common queue, Np(t) (0 < N(t)) be the
number of fork/join requests to the server that lags behind, and N3(t) (N3(t) = 0,1) denote whether
the other server is processing a request or not at time t. The state N(t) = (Ny(t), Nao(t), Na(t))
forms a Markov chain. If the system is stationary, (N(t) — N as ¢t — oo0) and we let p(m,n,l) =
lim¢—, o P[N(t) = (m,n,l)], then these probabilities safisfy the following equations,

(A+7+2u)p(0,1,1)

#p(0,2,1) + 2p,pp(1,1,1) + vp(0,0,0) + Ap(0,1,0),
(A +7 +26)p(0,2,1)

#p(0,3,1) + 2p,pp(1,1,1) + p,pp(1,2,1)

+7p(0,1,0) + Ap(0,2,0),

#’p(oin +1, 1) +le-lp(1,n -1, 1)

+ prup(1,7,1) + vp(0,n — 1,0) + Ap(0,n,0), n=3,---
”p(ia2s 1) + 2prp'p(i +1,1, 1) + (A + 7)?(7: -1,1, 1)’ i= 1,---
#p(i,3,1) + 2p5pp(i + 1,1,1) + prpp(i + 1,2,1)
+(/\+’)’)p(i—1,2,1), i=1,--
pp(é,n+1,1) + pspp(i+ 1,2~ 1,1)

(A +7)p(0,0,0) = pp(0,1,0),
(A+v+#)p(0,1,0) = pp(0,2,0)+ Ap(0,0,0) + 2up(0,1,1),
(A+7+w)p(0,n,0) = pp(0,n+1,0)+ pp(0,n,1), n=2,--,

(A+ 7 +2p)p(0,n,1)

(A 47+ 2p)p(i,1,1)
(A +v+ 2u)p(i,2,1)

(A + 7+ 2u)p(i,n,1)

+prp'p(ib+ 1an)1)+ (A+7)p(l_ 13"11): t= 1)"';'"': 3:

We develop bounds on the average response times for regular and fork/join customers by truncating
one of the first two state variables, suitably modifying the infinitesimal generator and applying
matrix-geometric techniques to the resulting model. Our computational experience indicates that

we achieve greater accuracy for the same amount of computation by truncating N,(t). Consequently

12

we teport on this approach. Unfortunately there is insufficient symmetry in this system to allow
us to obtain both optimistic and pessimistic bounds from a single model as we did for the DP-RJ

policy. We describe and analyze separate models for each bound.

3.2.1 Optimistic Bound

In order to obtain optimistic bounds we impose the constraint N»(¢) < B. Whenever the second
queue contains B fork/join requests and a new fork/join request arrives, it passes through without
incurring any delay. Consequently, the fork/join customer associated with this request completes

as soon as its other task completes at the other server.

This modified system can be modeled as a Markov chain with the same state description, N("’)(t) =
(N(t), NEB(), NEB)(2)). Let N(®) = lim,,,_, o, N(®)(2).

Lower bounds on the response times for the true system can be calculated as follows. We define the

following workload vectors U; = (U, ;, U2;) and UE"’) = (Ul('f), Ugf?)) where U;; and U J(fib), ji=1,2,
are the amounts of unfinished work associated with each of the two servers immediately before the

arrival of the i-th customer in the true system and lower bound system respectively. We order the

workload measures so that Uy ; < Up; and Ul(ff) < Uéf?), Last, we define an ordering function % (V)
that takes an arbitrary finite element vector, V, whose elements are real numbers and returns a

vector with the elements ordered in increasing value.

Let {7;}i=1,.. be a sequence of random variables denoting the time between customer arrivals, i.e.,
7; is the time between the arrival of the (i — 1)th and sth customers. Let {R;}=1,... be a sequence of
binary random variables that denote whether the customers are regular or fork/join. Here R; = 0
if the i-th customer is regular and R; = 1 if it is fork/join. Let {X4;, X3 :}i=1,.. be a sequence of
random variables that denote the service times associated with the customers. If the i-th customer
is fork/join, then its two tasks are assigned X, ; and X,; as their service times; otherwise if it is
regular it is assigned service time of X ;. Let {A;};=1,.. be a sequence of random variables denoting
whether the auxiliary queue associated with the server that lags behind is full at the time that the
customers are scheduled for service (i.e., the queue contains B customers at the time that the i-th
customer is scheduled into service). Here A; = 0 if that queue is full when the i-th customer is
scheduled for service and A; = 1 otherwise. The workload vectors evolve according to the following

equations,

Ui = ($(Ui + (X1, RiX2)) — (10, m)) T, (3)

13

Uffﬂ = (¢(U£"’) + (X1, AiRiX23)) — (1, 7))
Here ((V1, V2)* = (max{V;, 0}, max{V3,0}).

Define Wi(f), Wi("), W,-(f)(lb), and W,-(')(lb) to be the response times of the ¢-th customer in the true
and lower bound systems respectively for the case that they are either fork/join or regular. They

are calculated from the work load vectors as follows:

Wi('f) = max{Ul,,' + Xl,ia Uz,i + Xz’i}’
W‘.(r) = U]_,i + Xl,iw

WD = max{U® 4 Xy, U 4 4%, (6)

W = gy x,,, (7

"

We further define another random variable W,-' , which is useful in our following calculations, as,
Wi = max{U%) + Xy, U:Ef?) + Xa,}

We have the following theorem. Here W(r), W{f), w(r)i®) w(f)(#) and W' are the stationary
values of W'i(r), W,-(’c), W,-(')(lb), VV,-('f)("’), and W/ respectively.

Theorem 2 The true system and the modified system satisfy the following relationships,

1. W >, W' >, W)
2. W) >, ww),

3. N >, N®)

Proof. If the workload vectors initially satisfy Ug >, U(()"’), then an induction argument can be
used to show U; >, Uglb) for i = 0,1, - Whenever the real system is ergodic (i.e., the r.v.’s U;
and Ug"’) converge to the limitingr.v.’s U and U("’)), U >,, U), This is certainly true under the
assumptions of Poisson arrivals, exponential service times, and) + 29 < 2p. It then follows from
the relation U; >, U™ that W) >,, W] 2, W and i 5, wi® ;-1 ... Again, if
the real system is ergodic, then W (/) > W' >, WENE) gng wir) >, W),

14

The proof of the third relation is similar to the proof of theorem 1. L

Remark. The transient results hold for an arbitrary arrival process and arbitrary service times.

Corollary 1 Let N(*), N}, N (")) gnd NUB) denote the stationary queue lengths of regular
and fork/join customers in the two systems. The following inequalities hold between their ezpecta-

tions, E[N(")] > E[N(r)(lb)] and E[N#)) > yE[W'] > E[N(H®)),

Proof. The proof follows from Little’s result and the fact that E[X] > E[Y] whenever X and Y
are r.v.’s such that X >, Y. [|

Again, the matrix-geometric method is used to solve the modified lower bound CP-AQ system.

The detailed calculation is given in Appendix B.

In the remainder of this section, we will derive lower bounds on the expected number of regular
and fork/join customers as well as the expected response time for regular and fork/join customers.

In the case of fork/join customers, we will make use of Theorem 2 and its Corollary.

The expected length of the common queue, E [Nl("’)], is

E[N®)] = y(1)R[I - R} %,

where the vector y(1) and rate matrix R are solved for in Appendix B, and e is a vector with all
elements 1. The average number of regular customers that are in service equals A/u. Consequently,

by Theorem 2 and Corollary 1, a lower bound on the expected number of regular customers is

E[N®)) 2 EINO®) = E[N{")/(A +7) + M.

Little's result yields
EW®)) 2 BW®) = BN/ (A +7) +1/m

The expected number of fork/join customers in the common queue of the modified system is

7E[N§"’)] /(A + 7). A lower bound on the expected number of fork/join customers that are in
service is obtained by first determining the expected service delay incurred by a fork/join customer

(i.e., time from beginning of processing of first task until completion of both tasks) in the modified

system and then applying Little’s result. Denote this expected delay by d(llb). The time required to

15

service a fork/join customer depends on the length of the auxiliary queue and whether both servers
are busy. If a fork/join customer begins service when the auxiliary queue contains 7 — 1 tasks ahead

of it, then the time to complete service is denoted by k(%) which satisfies the recurrence

h(1) = 3/(2p),
h(i) =1/(2p) + h(i - 1)/2+i/(2p), i=2,3, -

The first term in the recurrence for k(%) corresponds to the average delay until the first of the two
servers completes. If the server associated with the auxiliary queue completes, then the fork/join
customer observes the system with one less customer in the auxiliary queue. The average delay in
this case corresponds to the second term in the above recurrence. Last, when a fork/join customer
begins service, one of his requests immediately begins service in the other server. Consequently, if
this server completes, the average of the remaining delay of the fork/join corresponds to the average
delay of the request still present in the auxiliary queue. This is the sum of average service times of
his request and of the 7 — 1 requests ahead of it in the auxiliary queue. This gives rise to the third

term. This recurrence has the following solution

h(i) = (i+27")/p, i=1,..

There are three possible scenarios when a fork/join customer arrives to the system. First, both
servers may be idle, second one of the servers may be idle, and third both servers may be busy. In
the first two cases, the customer initiates service immediately. In the last case, the customer begins
service only when he is at the head of the common queue. If at this moment an auxiliary queue has
not built up at either server, the customer begins service as soon as either server completes service
of its customer. Otherwise, the customer begins service only if the server without the auxiliary

queue completes service.
The above observations yield the following expression for dg"’),

d® = 4(0,0,0)h(1) + y(0)Vi + {y(1)[I - R) " e}y(1)R[I - R)~V;/{y(1)R[I - R]™'V3}

where

W

(h(2), h’(3)a R h(B)? h(B + 1))T1
(2h(2): h(3): h(4)a Tt h(B)’ h(B + 1))T:

Vi = (2,1,1,---,1)7.
B-1

Va

16

The coefficient 2 for the first element of V> and V3 is a consequence of the observation that service of
a new customer is initiated whenever a departure occurs from either server and there is no auxiliary

queue.

The expected value of W', which bounds the W(f) from below, can now be computed by,

E[W') = EIN{")/(1+ 2) + d{".
This can be used to obtain the following lower bound on the average number of fork/join customers
(Corollary 1),
EINU) 2 yEIN{)/ (7 + 3) +ve®.
Lower bounds on the expected response times are found in Tables 4 for different mixes of regular

and fork/join customers (the entries in columns p, = 1/2 and p, = 3/4 are both upper and lower

bounds accurate to three plé,ces). These values were calculated for B = 16.

3.3 Pessimistic Bound

A pessimistic bound on the performance of the CP-AQ policy is obtained in a similar manner. The
auxiliary queue is allowed to have up to B requests. Whenever this queue is full and a request
completes at the other server, the completed request is required to repeat its service. This avoids
the possible event of a fork/join customer at the head of the common queue placing a request in the
auxiliary queue and thus increasing its length above B. The resulting Markov chain is identical to

the one described for the optimistic bound except for the following changes in the transition rates,
1. Remove state (0, B, 0) and all transitions to and from it.

2. Remove the transition from state (3,B,1)to (i-1,B,1),i=2,---

Let N(®)(¢) = (Nl("b)(t),Ngub)(t),Né"b)(t)) be the state of this new system. Let W()“) and
W) denote the stationary response times for a regular customer and fork/join customer res-

pectively. Let N(¥2) be the stationary queue length vector for the upper bound system. We state

the following theorem.
Theorem 3 The true system and the modified system satisfy the following relationships,
1. Wb)(f) > . wih),

17

pr=0 pr=1/4 pr=1/2 Pr=3/4
p_| E[Wy EW,] [EW; | EW:] [E(Wy] | BE[W,] | E[Wy]
0.11.65 1.03 1.65 1.02 1.65 1.02 1.65
0.2 1.84 1.07 1.84 1.07 1.83 1.06 1.81
0.3 | 2.09 1.14 2.06 1.14 2.03 1.12 1.99
04| 2.42 1.25 2.35 1.24 2.28 1.23 2.21
0.5] 2.88 1.42 2.74 1.41 2.61 1.39 2.48
0.6 | 3.56 1.70 3.28 1.69 3.05 1.65 2.84
0.7 | 4.70+.02 2.20 4,12 2.19 |'3.73 2.12 3.41
0.8 | 6.92+.19 3.26 5.66 3.24 4.97 3.09 4.47
0.9 | 13.23+2.11 | 6.68%+.07 | 9.73+.09 | 6.51 8.45 6.06 7.52

Table 4: Bounds for CP-AQ under different p,, x = 1.

2. wub)r) >, wir),

3. N > . N.

Proof. We observe that the workload vector for the upper bound system satisfies equation (5)
except that the service times are no longer the same. Instead the service times are X ; > X;;,
t=1,2; 7 =1,.... The reason for the inequality is due to the fact that an occasional task is re-
quired to take an additional service time in the upper bound system. Consequently a simple proof

by induction yields U; <, UE"b) for i = 1,.... The rest of the theorem duplicates the arguments
in the proof of theorem 2.]

The procedure for calculating the lower bounds on the average buffer occupancies and response
times in the previous section applies with no change to the computation of the upper bounds.
Numerical results for these bounds can be found in Tables 4 and for different mixes of regular and
fork/join customers. Again B is taken to be 16. One observes that the bounds are tight for server

utilizations less than 0.9 or when the fraction of regular customers exceeds 1/4.

3.4 Analysis of Other Policies

In this subsection, we simply describe analytic models for all other policies discussed in this paper.

The basic techniques used to provide bounds for these systems are similar to those presented above.

18

3.4.1 The DP-SQ Policy

In this case we assume that the servers are identical, y; = p, = p. This policy can be modeled by
a Markov chain N(t) = (Nmaz(t), Nmin(t)), where Npmoz(t) is the number of tasks in the longest
queue and Nyin(t) is the number of tasks in the shortest queue at time t. We are interested in the

stationary behavior of this policy. We describe how tight bounds can be obtained for this system.

Optimistic Bound for the DP-SQ Policy: The optimistic bound for the DP-SQ can be obtained
by truncating one of the state variables, say Npin, to a constant B, and then applying the matrix-
geometric method. The modified system behaves as follows. If a fork/join customer arrives to
find B tasks in the shortest queue, it generates only one task which enters the longest queue. In
this case, the fork/join customer completes as soon as the task in the longest queue finishes. If an

arriving regular customer finds B tasks in the shortest queue, then it exits the system immediately

(and incurs zero delay).

We denote the state of the modified system as N() = (N, N} and the stationary response
time as W(r) and w(£)(®),

The stationary distribution for this modified system satisfies the following equations. The calcula-

tions leading to their solution are based on the matrix geometric approach and are omitted.

(A+7)p(0,0) = pp(1,0),
(A+7+p)p(i,0) = pp(i,1)+pp(i +1,0), i=1,---
(A+7+2p.)p(i,i) =)‘p(iai_ 1)+ﬂp(i+11i)+7p(i—1’i_1): i= 1:""B— 1.
()‘ +7+ 2#)?(7: + 11i) = 7P(i7i"' 1) + Ap(i,i)+ Ap(i +1,i- 1)

+2up(i +1,i+1), i=lonB-t.
p(i = 1,5 — 1) + Ap(4, 5 — 1) + pp(3, j + 1)

A+ + 2p)p(4,5)

+#p(i+13j)) j=1"")B-1;i=J’+;2;"'

(A+ 7+ 2u)p(B, B)

7p(B - 1,B — 1)+ Ap(B,B - 1)
+up(B +1, B),
(y+2p)p(B+1,B) = (A+p)p(B,B)+p(B,B-1)
+Ap(B +1,B - 1) + pp(B + 2, B),
(v+2p)p(i,B) = 7p(i-1,B)+vp(i—1,B-1)+Ap(i,B - 1)
+pp(i+1,B) i=B+2,--

Note: p(i,j)=0fori < j.

Pessimistic Bound for the DP-SQ Policy: To obtain a pessimistic bound, we make a slight
change to the system state description. The state is now defined as N(t) = (Nmin(t), A(t)), where

19

Npin(t) is the number of tasks in the shortest queue at time ¢, and A(t) is the difference between
the shortest queue and the longest queue at time ¢, i.e., Npmao(t) = Npin(t) + A(t). An upper
bound on performance is obtained by truncating the state variable A to B. Whenever A equals B
and there is a departure from the shortest queue, while the true system will transit from (Nmin, B)
t0 (Nmin — 1, B + 1), the modified system generates a fictitious task occupying the server, so that

the system state is unchanged.

Let N()(t) = (N, (“b)(t), A()(t)), and the stationary response time be W{)X%) and W), We

min
omit the equations that describe the behavior of the stationary distribution for this upper bound

system along with the calculations leading to their solution.

We state the following theorem without proof.

Theorem 4 The true system and the two modified systems satisfy the following relationships,

1. Ngz)z Sat Nmaa: Sat ngl:‘:;;

2. N(lb) <st Nmin <st N(ub)

min — = min’
3. Ww®) <, wir) <,, wir)ub)

4. W) < wl) <, W),

3.4.2 The DP-SQ-MS Policy

Observe that the only difference in the behaviors of the DP-SQ-MS and the DP-SQ policies occurs
when a regular customer arrives to a idle system. While under the DP-SQ policy, the regular
customer randomly selects a server from which to obtain service, under the DP-SQ-MS policy, it
generates two tasks and commences service at the both servers simultaneously. The Markov chain
for the DP-5Q-MS policy is obtained from that of the DP-SQ policy by adding an additional state,
say (1,17), that corresponds to the state where a regular customer has a task executing on each

server. The Markov chain for this policy is partially illustrated in Figure 1.

A modification for producing an upper bound can be made in a similar manner.

3.4.3 The DP-MW Policy

Consider the behavior of the DP-MW policy. Suppose at some time ¢, there are n tasks waiting in

the first queue, and m tasks waiting in the second queue, w.l.o.g., n > m. Then the last m tasks in

20

(10) * 2,0

Al Be Al |

QI/L Z {21

v

Figure 1: Partial Transition Diagram for DP-SQ-MS.

both queues are associated with the m most recently arrived customers who have not received any
service yet. These m customers correspond to those customers waiting in the common queue under
the CP-AQ policy. On the other hand, the first n — m tasks waiting in the first quene must be
fork/join tasks, which correspond to those fork/join tasks waiting in the auxiliary queue under the

CP-AQ policy. This observation leads to the conclusion that the DP-MW policy behaves identically
to the CP-AQ policy. '

3.4.4 The CP-AQ-MS and the DP-MW-MS Policies

The same observation as that made in the last subsection leads to the equivalence of the DP-MW-
MS and CP-AQ-MS policies. As was done in analyzing the DP-SQ-MS policy, the Markov chain
describing the behavior of the CP-AQ-MS policy differs from that of the CP-AQ policy only when
a regular customer arrives to an empty system. This is accounted for by introducing a new state

that represents a regular customer receiving service at both servers.

3.4.5 The DP-MR Policy

Similar to the DP-SQ policy, this system can also be modeled by a Markov chain N(t) = (Nmaz(t),
Nrmin(t)), where Np,qz(t) is the number of tasks in the longest queue at time ¢, and the Npin(t) is the
number of tasks in the shortest queue at time . However, the infinitesimal generator matrix is diffe-
rent from that of DP-SQ. Lower bounds on the stationary behavior of this policy is obtained by trun-
cating the state N,,;, and applying the matrix-geometric method. Upper bounds are obtained by
truncating and solving for the stationary probabilities of the Markov chain N(t) = (Nmin(t), A(2))
where A(t) denotes the difference between the longest and shortest queues. Similar relations-
hips as stated in Theorem 4, i.e., the stochastic ordering between N and N N(=b) w(r) and
W), wb)(r) and W) and WIS, w(ub){), also exist here. The detailed proof and calcula-

tions are omitted.

21

4 Performance Comparisons of Different Policies

In this section, we compare the performance of the policies described and analyzed in the previous
two sections. The performance metrics of most interest are the mean sojourn times of regular and

fork/join customers.

In our experiments, we assume thatl the two servers are homogeneous with rate g = 1. The arrival
rates of regular customers and fork/join jobs are A and v respectively. The probability of a randomly
chosen customer being a regular customer is p, = A/(A + 7), and the probability that a randomly
chosen customer is a fork/join customer is py = 1 — p,. We assume that under the DP-RJ policy,
regular customers choose either server with equal probability, a; = a; = 1/2. We estimate the
mean sojourn times of the two classes under different policies by averaging the lower and the upper
bounds obtained from the models introduced in last section. In fact, as shown in previous tables,
'!the bounds are very tight. The difference between the lower and the upper bounds appears only

when the system is highly loaded (server utilization around or over 90%).

In Figure 2 and 3, we show the mean sojourn times for regular and fork/join customers as a function
of the server utilization. In Figure 2, most customers are fork/join customers (p, = 0.25), and in
Figure 3, most customers are regular customers (p, = 0.75). From these results, we observed that
the DP-SQ policy performs better than the DP-RJ policy. This is because the DP-SQ policy can
achieve a better balance among the queue lengths. The CP-AQ policy shows a higher performance
than the DP-SQ policy because, instead of balancing the queue lengths, the CP-AQ tries to balance
the unfinished work among the two servers. It is interesting to note however that the DP-MR policy
provides the best performance among all the policies. This is in spite of the fact that the servers are

given higher loads, i.e., both servers may simultaneously process tasks belonging to the same regular

customer. However, the benefit is probably explained by the fact in this case, each server will not

be required to work for a time that exceeds the minimum of two i.i.d. exponentially distributed
service times which has mean that is one half that of a single service time. In addition, the DP-MR.

policy accrues a definite advantage when the system is empty at the arrival of a regular customer.

Figure 4 shows the impact of processing a regular customer on both servers when the system is
empty at arrival. The results are obtained by comparing the DP-SQ-MS policy against the DP-SQ
policy. As we expected, the performance improvement is noticeable when the server utilization
decreases. In addition, the improvement is greater when the fraction of regular customers is large
than when the fraction is small. In this case, fork/join customers can also benefit a little from the

MS-modification. The improvement of the DP-MW-MS(CP-AQ-MS) over the DP-MW(CP-AQ) is
similar and is omitted here. '

22

Mean Response Time

Mean Response Time

10.0

5.0

1.0

05

10.0

5.0

1.0

0.5

5.0 10.0
1 1

Mean Response Time

1.0

0.5

02

1 v ¥ T T !

04 0.6 0.8 0.2 04 0.6

P P
(a). Regular Customers. (b). Fork/Join Customers.

Figure 2: Performance of Different Policies (p, = 0.25)

08

—— DP-RJ
o
---DP-sSQ // S 1
o
E o |
- v
]
7]
[=4
[]
[«
2
o
c
(]
[+1]
=
Q
0
o
¥] T 1]] T 1]
0.2 04 0.6 0.8 0.2 0.4 0.6 08
P P

(a). Regular Customers. (b). Fork/Join Customers.

Figure 3: Performance of Different Policies (p, = 0.75)

23

o O .
€ 1 — orsa 21— orsa
DP-SQ-MS Fork/Join o | DP-SQ-MS

o " -
2 5 x
F =
] /]
g e
2 2
3]
@ (a4
c c
8 $
2 o | 2 q

0 0 |

i T 1)] i i T ¥ ¥

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
P . P
(a). DP-SQ vs. DP-SQ-MS Policies (Pr=0.25). (a). DP-SQ vs. DP-SQ-MS Policies (Pr=0.75).

Figure 4: The Impact of M S-Discipline

5 Summary

In this paper we have described several policies suitable for two server fork/join queueing systems
which serve both regﬁlar and fork/join customers. We developed analytic models that can be used
to bound the performance of these policies. These bounds are obtained by appropriately approxi-
mating a Markov chain with two unbounded state variables by a chain with only one unbounded
state variable. These chains are solved using the Matrix geometric methodology and lead to either
upper or lower bounds on the performance metrics of interest. Numerical results show that these
bounds can be quite accurate. Consequently, the performance of the two categories of fork/join

queuing systems can be studied for different workloads, server speeds, etc.

Using these models, we observed that the performance of centralized policy, CP-AQ, to be better
than most of distributed policies, since it tries to balance the unfinished workload between the
two servers. Allowing a regular customer who arrives to a idle system to start service at the
two servers simultaneously may lead to a slight performance improvement, especially when the
system workload is light or most customers are regular. Finally, assigning each regular customer
to both servers and as soon as one completes removing the other leads yet to another additional

performance improvement, given the service times are exponentially distributed. In a previous work

24

[16], where performance of a mirrored disk is examined, we also observed that the DP-MR policy
outperforms other policies while the disk service time is non-exponential. However, we point out
that when service times are constant, the DP-MR policy is worse than the DP-SQ, since serving
a regular customer at two servers simultaneously may not reduce any service time but will block

other customers from attaining service.

Appendix A: Calculations of the DP-RJ Policy

In this Appendix, we obtain the stationary probabilities for the model that produces a lower bound
on the performance of the DP-RJ policy, P[N®) = (i,)] = ¢(3,7),s = 0,1,--+; j = 0,1,---, B. We
define the steady state probability vector Y = (y(0),y(1),y(2), - -) where y(i) is a (B + 1) element
vector, y(z) = (q(¢,0),4q(%,1),---,9(¢, B)), : = 0,1,---. The infinitesimal generator @, satisfying
YQ =0, is listed below)

[By A4 0 O
B, Ay Ag O
Q = 0 Az A1 Ao
0 0 A 4

where the matrices B;, B, Ag, 41, and A; are defined as (B + 1) x (B + 1) matrices,

al)\ 9
0 o v
Ag = ' .
A+
i —(')’ + A) Aay 0
e —(y+p2+A) azA
0 72} (v +p2+2)
By = ..
2 —(7+p2+A) azA
I p2 ~(v+ p2 + ead) |

By = Az = p1l(B11)x(B+1)

25

Co azA
H2 €1 02

= - 2)

0 e Co (v+m+

A = S a = —(v+m+p2td)
ez = —(Y+p+p2tand)

Define the matrix 4 = Ag+ A; + A,. Neuts [12] showed that @ is positive recurrent if T Age < TAze,
where 7 is the unique solution to 7A = 0, me = 1. Here e is a column vector containing B + 1
ones and 7 is a B + 1 element vector containing the stationary queue length distribution for
the M/M/1/B queue with arrival rate ¥ + a;A and service rate y,, i.e., the i-th element of 7 is
(1 - w)u'/(1 — ulB+1) where u = (@3 + 7)/p2. In the modified model, the condition for positive
recurrence is ¥ + a;A < py. Whenever @ is positive recurrent, the stationary probability vector Y

can be expressed as

y(3) = y(0O)R', i=0,1,---.

where R is the minimal solution of 49+ RA; + R24, = 0. The matrix R can be obtained iteratively
by the following approach. Let R(n) denote the value of R after n iterations.

R(0) = o0,

R(n+1) = —AoA7' - RY(n)A,A7Y, n>o0.

Rao and Posner [13] have shown that the vector y(0) takes the form

¥(0) = =(I - R).

The preceding analysis differs from that presented by Rao and Posner only in the definition of the
submatrices Bl, Bz, Ao, Al, Az.

Appendix B: Calculations of the CP-AQ Policy

The stationary probability distribution for the model that provides a lower bound on the perfor-
mance of the CP-AQ policy, P[N(®) = (m,n,)] = ¢g(m,n,l), m =0,1,---; n=0,1,---,B; | =
0,1, is obtained here. We define the steady state probability vector Y = (z,y(0),y(1),¥(2),---)
where z = [¢(0,0,0)], y(0) is the B element vector (9(0,1,0),4(0,2,0),---,¢(0, B,0)], and y(i)isa
B element vector y(i) = (¢(i — 1,1, 1),---,q(¢-1,B,1)),i=1,2, .. The infinitesimal generator

26

@ satisfying YQ = 0 is listed below,

[Dy C By 0 0
Dy C, B, 0 0
Q — 0 C3 Az Al 0
0 0 Az A4, A
R |
where D, is a one element vector D; = —[A+7], D3 is a B element column vector D3 = [g,0,- - -, 0]T,

Bo and C are B element vectors By = [g,0,---,0], C; = [A,0,---,0], and C,, Cs, By, 41, A, As

are B X B matrices

[—(r+2+4) 0 0
7 -(r+A+p) 0
Cy = 0 b -(Y+A+p)
o —(r+Ar+n)
2 0
0 p
Cs = .
0 n
o ;
Ay
Bl’—'- ‘.
A7
| A+]

A = (7 + A)IBXB)

—(7+X+2p) 0
7 (YA +2p)
A = —
po—(r+Xr+2p)
2uM /(v +2) 2pv/(v+2) 0

0w 4N /)
o) ;
3 A +A) pr/(r+2)
I

27

Define the matrix A = A; + A; + Az. The infinitesimal generator @ is positive recurrent if
rAje < wAge, where 7 is the unique solution to 1A = 0, me = 1. The stationary probability vector

Y satisfies the matrix-geometric form
y(z) = y(l)Ri-l: 1= 1)21' o

where R is the minimal solution of A; + RA; + R2A3 = 0. The matrix R can be obtained in a
similar manner as for the model of the DP-RJ policy. Finally, the vectors z, y¥(0), and y(1) are

obtained by solving the following set of equations,

zD, +y(0)D3 = 0,
2Cy +3(0)C2 + ¥(1)Cs = 0,

zBo + y(0)By + y(1)[A2 + R45] = 0,
2+ [W(0)+ ¥ - R = 1.

References

(1) Avi-Itzhak, B. and Halfin S. 1990. “Non-Preemptive Priorities in Simple Fork-Join Queue,”
RUTCOR Research Report, # 41-90, Aug.

(2] F. Baccelli. 1985. “Two parallel queues created by arrival with two demands: The M/G/2
symmetrical case”. Report INRIA No. 426.

(3] J.F. Bartlett. 1981. “A Nonstop* Kernel,” Proc. Eighth Symp. on Operating System Principles,
PP. 22-29.

[4] F. Baccelli, A. Makowski, A. Shwartz. 1989. “Fork-join queues and related systems with syn-

chronization constraints: Stochastic ordering, approximations and computable bounds”, Adwv.
Appl. Prob. 21, pp.629-660.

[5] Flatto L. and S. Hahn. 1984. “Two parallel queues created by arrivals with two demands I,”
SIAM J. Appl. Math., vol. 44, pp. 1041-1053.

[6] Green, L. 1985. “A queueing system with general-use and limited -use servers,” Operations
Research, Vol. 33, pp. 168-182.

(7] D.P. Heyman, M.J. Sobel, 1982. Stochastic Models in Operations Research, Vol. I, McGraw
Hill.

28

[8} Kim, C. and Agrawala, A. K., 1989. “Analysis of the Fork-Join Queue,” IEEE Trans. on
Comp., Vol.38, No.2, Feb., pp.250-255.

[9] Little, J.D.C. 1961. “p proof of the queueing formula L = AW,” Operations Research, Vol. 9,
pp. 383-387.

[10] Nelson, R. and B.R. Iyer. 1985. “Analysis of a replicated data base,” Performance Evaluation,
Vol. 5, pp. 133-148.

[11] Nelson, R. and A.N. Tantawi. 1985. “Approximate é,nalysis of fork/join synchronization in
parallel queues,” IBM Report RC11481.

[12] Neuts, M.F. 1981. Matriz-Geometric solutions in stochastic models - an algorithmic approach,

John Hopkins University Press.

(13] Rao, B.M. and M.J.M. Posner. 1985. “Algorithmic and Approximation Analyses of the Split
and Match Queue,” Stochastic Models, Vol. 1, pp. 433-456.

(14] Rao, B.M. and M.J.M. Posner. 1987. “Algorithmic and Approximation Analyses of the Shortest
Queue Model,” Naval Research Logistic. Vol. 24, pp.381-398.

[15] Stoyan D. 1983. Comparison methods for queues and other stochastic models, John Wiley &
Sons, Chichester England.

[16] Towsley, D., Chen, S. and Yu, S-P. 1990. “Performance Analysis of a Fault Tolerant Mirrored
Disk System,” Proc. PERFORMANCE’90, Sept. Edinburgh, Scotland, pp.239-253.

29

