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Abstract

We use techniques and results from the theory of network emulations to endow
a processor array with (apparent) architectural enhancements solely by algorithmic
means, with no enhancements to the array’s hardware. The specific enhancement we
study endows an N-processor bit-serial processor array A with a “meta-instruction”
GAUGE k, which (logically) reconfigures A into an N/k-processor virtual machine B
that has

e a datapath and memory bus whose (apparent) width is k bits, as opposed to A’s
1-bit width;

o an instruction set that operates on k-bit words, in contrast to A’s instruction set,
which operates on 1-bit words.

The emulation techniques we present can be implemented efficiently even if the bit-

serial array operates in SIMD mode, with very restricted masking capabilities. We

describe at an algorithmic level how to implement our technique—including datapath

conversion (“corner-turning”) and the creation of the bit-parallel instruction sets—

on SIMD bit-serial processor arrays of any network topology. We describe detailed
implementations of our technique for SIMD bit-serial processor arrays based on the

hypercube, the de Bruijn network, and the mesh with reconfigurable buses.

1 Overview

1.1 Motivation

Recent years have seen significant advances in the theory of network emulations; cf. [1],
[4], [5], [9], [13], [18]. We now have a battery of nontrivial techniques that allow one inter-
connection network to emulate another efficiently, even when the emulated and emulating
networks differ dramatically in size and topology. Particularly significant for our concerns
here is the fact that emulation techniques in all of the cited papers, save [13|, operate on an
instruction-by-instruction basis, thereby enabling emulations even within strict algorithmic
regimens. We implement some of these emulations within the regimen of SIMD operation
with very restricted masking.

One potential application that motivated the development of the techniques in the cited
sources is that of allowing a processor array to change the (apparent) size and/or topology of
its underlying interconnection network repeatedly, in the course of a computation, whenever
such a change would enhance algorithmic efficiency. This facility can be viewed as an algo-

rithmic analogue of the philosophy underlying hardware-reconfigurable architectures such as
the Blue CHiP [22].



The just-noted parallel between the (algorithmic) study of emulations and the (architec-
tural) study of hardware-reconfigurable architectures has inspired the research we report on
here.

This paper is devoted to developing, in considerable detail—down to the level of specifying
pseudo-code for all tasks—an algorithmic methodology that allows a processor array to
exhibit multigauge behavior, i.e., to change the (apparent) width of its datapath and memory
bus. '

We view the contributions of this research as three in number.

o We introduce algorithmic techniques that achieve a certain type of architectural en-
hancement.

¢ We demonstrate, by achieving this algorithmic goal within a very restricted architec-
tural environment—bit-serial processor arrays with very simple processors, operating
in a strict SIMD regimen with single-bit masking—that this restricted architectural
environment has unexpected computational robustness.

¢ We demonstrate that our software enhancements can be achieved cleanly, by construct-
ing a virtual machine on top of the native instruction set and below the application
level.

1.2 Multigauge Processor Arrays

A processor array is said to exhibit multigauge behavior if it can dynamically change its gauge
size, i.e., the (apparent) width of its datapath and memory bus. We present a strategy for
achieving multigauge behavior in processor arrays, solely via algorithmic emulations, with no
hardware enhancements. In order to emphasize the versatility of our strategy and to choose
a testbed where our techniques are most likely to be of significance, we assume henceforth
that the processor arrays we endow with multigauge behavior are bit-serial (i.e., have unit
gauge size) and that they operate in a SIMD regimen. Figure 1 depicts schematically how a
gauge-1 (i.e., bit-serial) processor would access (the bits of) a 3-bit word bgbyb;, in contrast
to how a gauge-3 processor would access the same word.

Our choice of multigauge behavior as a goal was influenced by a number of studies in
the literature that demonstrate its value [23], [17]. In particular, it is shown in [17] that
multigauge behavior can improve computational performance in certain applications, by
allowing a single machine to match its gauge size dynamically to the natural width of the
data type it is operating on. '
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Figure 1: (a) A gauge-1 (bit-serial) processor accessing the 3-bit word bob1b,. (b) A gauge-3
processor accessing the same word.

Techniques for achieving multigauge behavior by hardware enhancements have been stud-
ied in [17], [24], [12], [2]. These sources comment on three problems associated with hardware-
enabled multigauging: the costs in hardware, the difficulty of enabling a large repertoire of
gauge sizes, and the extent to which the required early commitment to hardware multigaug-
ing interferes with subsequent design decisions. Algorithm-enabled multigauging encounters
none of these problems, offering great flexibility at modest operating cost; indeed, emulation-
enabled multigauge behavior provides—at least in principle—virtually any conceivable gauge
size? at an operational cost that is a slowly growing function of the present gauge size (cf.
Section 7).

We specify the change of gauge size to a level of detail that renders the change an ordinary
computation step, with the selection of gauge size as easy as parameter passing. In fact,
one can view the programming environment our approach builds on the host N-processor
architecture, as having a software implemented meta-instruction

GAUGE k.

This meta-instruction has a two-pronged effect on the host A by reconfiguring A to an N/k-
processor virtual machine B,. First, it changes the (apparent) width of the datapath and
memory bus from 1 bit to k bits. Second, it (apparently) transforms the instruction set
from one that operates on 1-bit words to one that operates on k-bit words. This approach
stresses and amplifies the known (23] conceptual advantage of multigauge machines. Such
machines are both fine grain and coarse grain; indeed, in our solution, they are multi-grain.
They exhibit this multi-granularity with respect to a single memory, even dynamically with
respect to the same computation. Our approach allows an instance of a bit-serial processor
array A to act as though it were a family {B,} of bit-parallel processor arrays that differ
in gauge size, but whose instruction sets enjoy uniform operational semantics across all

2In practice, there are implementational and operational advantages when the repertoire of available
gauge sizes is restricted to the set of integer divisors of the number of processors.



gauge sizes. And, this fleribility is accompanied by operational performance that is superior
to that achieved by having the physical bit-serial host .A perform k-bit operations in the
straightforward bit-serial way.

The remainder of the paper is organized as follows. Section 2 describes details of the ar-
chitectural framework of our study. Section 3 presents our emulation strategy in a topology-
independent fashion. The next three sections describe and analyze our emulations on three
different genres of array: the hypercube network [25], the deBruijn network [20] (or, equiva-
lently, the shuffle-exchange network [26] [21]), and the extended coterie network, which is a
mesh enhanced with a highly reconfigurable bus that is an abstract version of the University
of Massachusetts CAAPP architecture [28]. The final section summarizes the accomplish-
ments of the paper.

2 Bit-Serial and Bit-Parallel Architectures

The architectures we study are processor arrays; i.e., each comprises a set of identical process-
ing elements (PEs), each having its private memory module, interconnected via a network
that allows them to intercommunicate, by passing data items. As is customary, we adopt an
abstract view of a processor array in which the array is represented as an undirected graph;
the nodes of the graph represent the array’s PEs (with their associated memory modules)

while the arcs of the graph represent the array’s point-to-point inter-PE communication
links.

We make two substantive assumptions about the way the processor arrays we study op-
erate: First, we assume that the arrays observe a pulsed mode of computation in which
computation steps and communication steps may alternate at each pulse. Second, we as-
sume that the arrays compute within a SIMD regimen, so that all PEs execute the same
instruction at each pulse. Both communication and computation steps are initiated by the
central controller of the SIMD machine. Note that the SIMD regimen complicates our im-
plementation of multigauge behavior, in that we must specify the behavior of the individual
PEs solely in terms of the behavior of the SIMD controller. To elaborate on what happens
in these steps, consider a SIMD array Bj with gauge size k. During a computation step,
each PE of B, refers to its own memory for a k-bit operand and/or performs an arithmetic
or logical operation on k-bit operand(s), all PEs executing the same instruction. During a
communication step, each PE of By receives/sends a single k-bit word through one of its [/O
ports from/to a PE that is adjacent in the network-graph.

A processor array is said to be

o bit-serial if it has gauge size k =1



o bit-parallel if it has gauge size k > 1

¢ multigauge if it can assume more than one gauge size during the course of a computa-
tion.

The instruction sets and interconnection topologies of real processor arrays vary rather
widely. We now summarize the basic characteristics that we assume of both the physical
and logical PEs and networks we consider. Our ability to describe both physical and logical
architectures simultaneously derives from our enforcing uniform operational semantics on all

processor arrays; hence, we merely view the physical host array A as the k = 1 instance of
the family of logical arrays {Bs}.

Instruction Repertoire. Each PE in a processor array of gauge size k is capable of the

following operations on words of width k:

e algebraic addition
e logical operations® (both bitwise and accumulative)
e numerical comparison

e circular shifts

We assume that each bit-serial PE has the capabilities of a full adder.

Memory. Since all PEs in a processor array are identical, their memory modules have the
same capacity (in bits). We implement the meta-instruction GAUGE &

e only for values of k that do not exceed the common capacity of the host array’s memory
modules

e in a manner that ensures the uniform capacity of the memory modules of the resulting
bit-parallel array’s PEs.

Implementing the emulations that achieve multigauge behavior may tie up some small (con-
stant) amount of memory within each bit-parallel PE; therefore, the cumulative memory in
a bit-parallel array Bj may be slightly less than in the physical host array A.

Our algorithms and their implementations can accommodate array-memory that is ad-
dressed either directly or indirectly. Directly addressed memory is characterized by an ad-
dress field in each instruction, which names the location being accessed; indirectly addressed

3We allow both bitwise operations that map (z1,...,2,) and (yy,.. .,'y,,) to (Z10¥y1,...,2, 0 ¥y), and
accumulative operations that map (21, 23,...,2,) to zy 02300 2,,.



memory uses the contents of a designated address register associated with each PE as the
address of the accessed location. We consider also one type of implicitly addressed memory,
as epitomized by the presence of a shift register in each PE. Throughout our study, the ad-

dressing mode(s) of the bit-serial host array are inherited by any emulated bit-parallel guest
array.

As part of its memory, each PE has a processor-index register (PIR) which contains the
PE’s unique processor index. Bits of the PIRs are addressed like memory bits, except that
they are accessed in read-only mode.

Data Transfer. Data transfer takes place between PEs that are adjacent in the commu-
nication network. Each PE has an input port and an output port for each incident arc.
The ports have the same width as, and are addressed and accessed very much like memory
locations. A communication instruction transfers the contents of an output port into the
input port of the PE at the other end of the incident arc, at the end of the communication
step. No arc can have both of its output ports active at the same time; only one output port
of each PE can be active at one communication step.

Data I/0. We do not model or emulate the I/O subsystems of logical arrays, relying instead
on the bit-serial host array to load and-unload the physical memory. Specifically, during
physical I/0, each bit-parallel data item is handled by one bit-serial PE.

The major consequence of this decision is that every change in gauge size must begin and
end with the operation of datapath conversion. This operation transforms the contents of all
memory modules to provide the functionality of the corner-turning circuitry of machines that
accomplish multigauging via hardware support. When one goes from bit-serial to bit-parallel
processing, the operation builds the words for the bit-parallel PEs. When one returns from
bit-parallel to bit-serial processing, the operation returns data to its bit-serial format, for
further processing or for output.

Control. At each step, the SIMD controller issues the same instruction to every PE. The
instructions specify the operations to be performed and the address(es) of the operand(s).
Each PE has an activity bit register (AB). This register can be addressed and accessed like
a memory location; its role in a PE is to enable or disable the PE for the execution of the
instruction.

We have now specified enough details of the architecture of the bit-serial host array .4
to describe our emulation algorithms in detail; we have now specified enough details of the
architectures of the bit-parallel guest arrays Bi to know what needs to be emulated.



3 The Emulation Strategy

3.1 The High-Level Strategy

Henceforth, for mnemonic emphasis, we denote the given physical host bit-serial SIMD pro-
_cessor array A by H, and we denote its underlying graph by H.*

Say that we want to have the host array H behave as though it were one of the arrays By,
for definiteness, say the gauge-k bit-parallel guest SIMD array G (whose underlying graph -
is denoted G). Our strategy for achieving this objective is to reconfigure the network H
underlying H logically into disjoint isomorphic aggregates of k PEs each. Each aggregate is
viewed as a separate k-PE processor array which acts as a logical macro-PE of the width-k
array G. To emphasize the fact that G and its underlying graph G are logical entities, we
speak of them as a macro-arrayand a macro-graph. We support the logical reconfiguration of
‘H into a macro-array of macro-PEs by a set of procedures, comprising macro-instructions,
to be executed by the SIMD controller of H. Computation macro-instructions effect k-
bit operations within each aggregate, while communication macro-instructions transfer data
among aggregates in a way that honors the structure of the macro-graph G. We strive for a
strong semantic correspondence between each basic instruction executed on the host array
H and its matching macro-instruction interpreted over the macro-graph and the new gauge
size, and we strive to implement the macro-instruction capabilities of G efficiently on top of
the physical instruction set.

The scenario just depicted presents certain challenges relating to the question of how to
partition the host array H. '

o The partition must allow the SIMD controller to “address” all macro-PEs efficiently.

¢ The partition must allow the PEs within each macro-PE to “cooperate” efficiently.

We address these challenges by exploiting the structure of the graph H in determining the
partition that converts H logically into a “fat” version of the macro-graph G.

3.2 The Detailed Strategy

The strategy whose implementation achieves the efficient emulations we seek has three major
ingredients which we describe and discuss in this subsection.

*Throughout the paper, we use uppercase script letters to denote processor arrays and the corresponding
uppercase italic letters to denote the graphs underlying the arrays.
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Ingredient 1: Emulating Direct-Product Arrays

The first ingredient we discuss contributes to our solution by efficiently ensuring structural
uniformity of all graphs.

The direct product of arrays A and B, denoted A x B is defined as follows. The nodes of
A x B are all ordered pairs (u,v), where u is a node of A and v is a node of B. There is an
arc in A X B connecting nodes (u,v) and (', v’') just when either

u = v/, and v is connected to v’ in B

or

v = v, and u is connected to »’ in A.

We apply the notion of direct-product array to the problem at hand, in the following
way. Say we are presented with an N-PE host array H. For each integer k& for which we
want to implement the instruction GAUGE % on array H, we choose a single k-PE array K
to play the role of our aggregate-array, and we choose a specific | N/k|-PE array. G to play
the role of our macro-array.® We then begin our implementation by having array H emulate
the direct-product array K x G:

H emulates X x @
| | | --—- acts as the macro-network
| | -- -— yields identical copies of “factors”
| - .- _—- each copy acts as the k-bit macro-PE

This portion of our strategy automatically solves several aspects of the implementation
problem. Note first that X x G can be viewed as array G with “fat” nodes, each of which
is a copy of array K. Because of the consistency of this world view, all macro-PEs in a
direct-product solution have the same node-set. This completely solves the “addressing”
problem for the SIMD macro-controller (i.e., the SIMD controller of H acting as a controller
for the macro-array G); specifically, the controller uniformly addresses the ith PE of the jth
macro-PE as PE (¢, ) of the (emulated) direct product array. Another consequence of the
world view is that, if copies K, and K, of macro-PE K are “adjacent” to one another within
the macro-array G, then every node of K, is adjacent to its like-named analogue in K; within
the emulated array X x G. This renders trivial the problem of implementing data transfers
within the (emulated) direct-product array; specifically, a word-transfer between macro-PEs

5In all of our examples, we consider only values of k that divide N. While these values of k admit more
efficient solutions, there is no conceptual mandate to insist on this restriction.



k and j is effected via a parallel bit-transfer between PEs (i, k) and (i, j) of the (emulated)
direct product array.

We lend more detail to this description.

We let each copy of K perform the tasks of a macro-PE operating on k-bit operands in
G, and we use the copies of the graph G that underlies G to realize the connections of the
macro-graph. Each copy of the macro-PE K operates as a k-bit ALU, and each bit-serial
PE in K is responsible for one bit-wide slice. In order to assign slices to PEs, we specify
an ordering assignment that numbers the PEs in the macro-PE K, from 0 to k — 1. We
implement the macro-array G on H so that the sth bit of every k-bit operand in G resides in
the ith PE of the corresponding macro-PE, while all the bits have the same memory, port,
or register address.

We effect the transfer of a k-bit operand between two adjacent macro-PEs, call them X,
and K3, by (emulating) k parallel single-bit transfers in G: for all 0 < i < k — 1 in parallel,
the ith PE in array K, transfers a single bit to the ith PE in array X,. For each data transfer
between macro-PEs in the macro-array, the implementation must identify the actual port(s)
of the physical, bit-serial PEs that effect the transfer. For a good emulation, the assignment
of physical ports to macro-ports should be uniform across macro-PEs.

Implementing memory accesses is immediate within our framework, since all bits of a
memory word within a macro-PE have the same bit-serial address; this common address
becomes the macro-address of the word. By concentrating on direct memory access in the
remainder of our study, we allow G to inherit either direct or direct-plus-indirect memory
access from H.

To implement control in the (logical) direct-product array, we must provide the equivalent
of loading the activity bit AB depending on some bit(s) of the processor index. The most
natural solution retains the bit-serial processor indices, while endowing them with a different
interpretation. Each binary processor index is divided into two fields—one for the macro-
PE index in the macro-array (MIR) and one for the node within the macro-PE (AIR). In
this way, a (physical) bit-group in the PIR can characterize either individual like-named
PEs within all macro-PEs (for arithmetic/logical operations) or whole macro-PEs as units
(for data transfer). The detailed implementation of this strategy depends on the specific
structure of the network underlying the array H.

Ingredient 2: Permutation Routing

A (partial) permutation route in a processor array A is a set of inter-PE messages for
which each PE node of A is the source of (at most) one message and the destination of
(at most) one message. The term “permutation route” reflects the fact that the source-
destination pairs form a (partial) permutation of the PEs of A.

10
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(Partial) permutation routes afford us an efficiently implemented vehicle for achieving a
variety of internal data transfers that our strategy requires. Note that we neither require
nor consider the routing of arbitrary permutations in our study; rather, we restrict attention
to three specific types of permutations, all of which yield to efficient solutions within our
computational framework. '

In the following descriptions, the reader should keep in mind that the contribution of our
study lies as much in the implementation of the required routings as in the representation
of these problems in terms of permutation routing. The major implementational challenge
is to orchestrate these routes so that '

e items to be moved at each route can be accessed efficiently within local memories,
within a SIMD regimen;

e control of the routes can be specified within a SIMD regimen

and to accomplish these feats without increasing the number of permutations that must be
routed. These features of the routing procedures are best appreciated within the sections
devoted to specific array topologies.

Emulation Routing. An emulation of a guest processor array G by a host processor array
H entails two mappings. First, each PE p of G is assigned to a PE a(p) of H that will
perform its role. Second, each communication link of G is assigned a routing-path in H,
along which the link’s messages will be sent; specifically, the communication link from PE p
to PE g in G is assigned a routing-path in H from PE a(p) to PE a(q). Let us now “color”
the links of array G so that all links entering the same PE receive distinct colors and all
links leaving the same PE receive distinct colors.® If we interpret each link (p,q) of G as a
partial mapping of the PEs of G that maps PE p to PE gq, then each set of links of G that
receive the same color specifies a (partial) permutation of the PEs of G. Performing such a
coloring of the links of G and such an interpretation of the coloring thus reduces the problem
of emulating one communication step of array G to the problem of performing d (partial)
permutation routes in H, where d is the larger of the maximum indegree of any PE of G and
the maximum outdegree of any PE of G. .

Word Shifting. Shifting k-bit words within a macro-PE each of whose constituent PEs
contains one bit of the word is transparently a permutation route within the macro-PE K.
The route is total when the shift is circular; it is partial otherwise.

Datapath Conversion. In our implementation of the meta-instruction GAUGE k&, the
conversion of the datapath to width k takes place, in parallel, within all macro-PEs. Assume

SEfficient algorithms for such coloring abound; cf. (7], {8}, [27].

11



that the PEs in each macro-PE have been ordered from 0 to k— 1 in some uniform way. The
conversion procedure operates on the words

biobi - big—1

in the memory of the ith PE in each macro-PE; it transposes the contents of the memories
so that the memory of the ith PE ends up containing the vectors

bO,l.', bl,i: erey bk—l,i

of ith bits of all words in the collective memory of the macro-PE. A simple example of
this operation appears in Figure 2, which depicts the transition between three 3-bit words
stored in bit-serial fashion and the same words stored in bit-parallel fashion, within a 3-PE
macro-PE. :

M, M, M, M M, M,
Py | |boo| |bor| [bo2 Py - boo bio bao
Py & |bio] |bu1| |b1a — P e box b1 b
Py | |byo| |b21] |b22 P, & boz b2 b22

CHES (b)

Figure 2: (a) Three 3-bit words stored in bit-serial (gauge-1) fashion. (b) The same words
stored in bit-parallel (gauge-3) fashion.

We illustrate in Figure 3 how datapath conversion from unit gauge size to gauge size
k can be effected via a sequence of k permutation routes, when PEs access their memories
directly. We soon see that the illustrated procedure can be modified to accommodate other
modes of addressing (and, of course, even values of k).

It is important to note that in all three situations where our strategy employs permutation
routes, the permutations to be routed come from a fixed set of permutations that are

e known a prior:
e amenable to SIMD implementation.
In a large variety of networks—including the ones we discuss in later sections, such routing

can be performed in time only slightly exceeding the diameter (i.e., the maximum inter-node
distance) of the network underlying the array in which the routing takes place. When placing

12



Mo My M, My My M,

Py <|| boo bor boz boo  bos lb—L;
= g

Py =|| bio by b1z blO‘ b1a
Py &|| by b b2 !b_ﬁ, bn  ba
boo| bor b2

=>. bio bn [1712
boz bz

bOO bOl b20 boo b10 bzo — Po

bio b1, b21 bo1 | b11 | ba - b
= =4

boa b2 boz | b1z | b2z o b

My M, M, My M, M,

Figure 3: One way to accomplish datapath conversion as a sequence of permutation routes.
Individually bozed bit-positions represent items included in the permutation routed at that
stage.

13



these timing estimates in perspective, one must recall that the routing for both word-shifting
and datapath conversion takes place in the macro-PEs, each of which is a k-PE array; only
the emulation routing takes place in the N-PE host array.

Before proceeding further, we present a topology-independent algorithm for datapath
conversion, which is the most complex operation that we are guaranteed to need to im-
plement when achieving multigauging via emulations. (Depending on the topology of the
network underlying array H, the other ingredient algorithms, such as emulating a direct-
product array, could be quite complex also.) We carry our discussion of datapath conversion
to this level of detail for several reasons, the first of which is the combination of the impor-
tance of the operation to our strategy and the complexity of the operation. Our detailed
look at the operation also allows us to focus on the differences of the three modes of memory
access that we consider; we conclude that, absent knowledge of the topology of the network
underlying our host array, the SIMD regimen we are assuming favors shift-register memory.
Finally, our detailed specification of datapath conversion affords us a vehicle for introduc-
ing the (hopefully) transparent pseudo-programming language we use to specify all of our
implementations.

The instructions in our language are high level, in that their implementations may take
different numbers of basic instructions on different physical host architectures. Although
these numbers may not be equal across our instruction set, even for a specific host architec-
ture H, the variations across instructions are within small constant factors which are easily
derived from our pseudo-code (once H is specified). For illustration, an instruction such as:

if (PIR[Z] = 0) then from M[j] output (port)
may translate into a sequence of low-level instructions to

1. load the ALU from the ith bit of the PIR

2. load the AB according to this bit

3. load the ALU from the memory bit M[j]

4. transfer the ALU bit to the port named port
5. clear the AB

When assessing the cost of a macro-instruction, we estimate the number of basic instructions
it is likely to take on a conventional host array architecture; we estimate the cost in terms
of the host array’s instructions only, ignoring the cost of the controller program.”

"The costs of the controller program are small, residing only in the time for procedure calls and some
small amount of space that does not depend on k.

14



We now present the main assumptions and notational conventions that persist throughout
our procedure specifications.

Notation and Conventions.

e We assume that the only data type in the N-PE host array H is b:t, while the central
(SIMD) controller’s instructions operate on integer data.

o We assume that the repertoire of interesting gauge sizes—hence, also the numbers of
nodes in a macro-PE is always a power of 2. Clerical changes obviate this assumption,
which is motivated by a desire for notational and clerical simplicity.

e We establish the following notational conventions.

— We write macro-instruction names in uppercase, host-array instruction names in
lowercase, and procedure names in capitalized form.

— Z, denotes the set {0,1},and F=1—( for 8 € Z,.

— Z7 denotes the set of length-n binary strings, the length-0 string being the null
string; lgth(z) denotes the length of string ¢ € Z7, (which is n); 8", where 8 € Z,,
denotes the string in Z7 that consists of n occurrences of 3.

— We write log n for log, n, and we write {(k) for log k, where k is the sought gauge
size.

Our topology-independent k-bit datapath-conversion procedure assumes a given (but
arbitrary) k-node interconnection network K. For purposes of specifying and analyzing the
procedure, we posit the existence of a SIMD protocol that routes an arbitrary permutation =
within K} within R(k) steps and of shift-register access to local memory. The local memory
of the ith PE contains the bit vector b;ob; 1 - - bik—1; the ith PE can access only the bit at
position b;o. The shift instruction left transforms the contents of the memories so that the
memory of the ith PE ends up containing the vector b; x—1b;,0bi1 - - - bi k2. Analogously, the
shift instruction right produces the vector b;1b;3 - - - bik—1bo in the memory of the ith PE.

Note. We present and analyze our conversion procedure within the context of converting a
single set of k k-bit words from bit-serial to bit-parallel format within the macro-PEs built
upon the network K. A “real” application of this procedure would likely convert the entire
memory of all macro-PEs. All of these memories would be converted in parallel, but the
conversion within each macro-PE would proceed serially through chunks of k k-bit words
each.
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macro-instruction GAUGE (k) is {
- - network-independent datapath conversion

LeftShift - = shift by i + 1 positions; ith PE now accesses bit b; _;_,
forj:=0tok—1do{ == all bits in the memory
route (7, k) - - permutation sending the accessible bit to destination PE
right } - — shift; the next bit is ready for routing
RightShift } - = by i + 1 positions; to compensate for the initial LeftShift

The permutation 7(j, k) on the set {aq,a1,...,ak-1} is given by:

. N ) @j-i-1 ifi<y
mld k)les) = { TR Ny

The left circular shift (the right shift being analogous), which makes the element b;;_;_, in
the memory of ith PE accessible, is specified by:

procedure LeftShift is {
- — left shift in ith PE by i + 1 positions

left - — shift by 1 position
form:=0to {(k)—1do{ =~ for bits in PIR
if (PIR[right] = 1) then { - - for each 1
for j:=1to 2™ do { - - as many shifts

left }}}}

The operation LeftShift as specified, with memory behaving as a shift register, performs
k + O(log k) bit-serial computation instructions per conversion (k memory accesses and
O(log k) adjustments to activity bits); the constant hiding in the big-O is estimated to be
under 5. The total datapath-conversion cost is, then, 2k + O(log k) + kR(k). Absent details
about the topology of the network, the term kR(k) cannot be improved upon.

Were we to implement the same algorithm for LeftShift on memory with direct address-
ing and without shift-register capabilities, the time for datapath conversion would rise to
2k* + O(log k) + kR(k); the squaring of the linear term reflects the fact that shifting a word
by one position now requires k& memory accesses. Implementing the algorithm on memory
with indirect addressing and without shift-register capabilities would replace physical shift-
ing by an appropriate reference; thus, the algorithm would operate in time O(kR(k)log k)
when address arithmetic is bit-serial (so that incrementing the address register takes time
proportional to the length of the register) and O(kR(k)) when address arithmetic handles
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words. The only addressing mechanism whose advantages outweigh those of the shifting
capability is the address indez register, which allows its contents to be added to the value
of the address field to obtain the actual address. Such a mechanism reduces the time for
datapath conversion to O(kR(k)).

. Ingredient 3: Emulating Complete Binary Trees

The ability to efficiently emulate the complete binary tree Ty, of height h = [{(k)] plays
a significant computational role in our emulation strategy.

The tree T ), has 2#*! — 1 nodes which are conventionally identified with the set of all
2h*+1 _ 1 binary strings = of length < h. These nodes are conventionally partitioned into
levels by their lengths: the root of 7 is the unique node at level 0, and the leaves of Ty
are all 2" binary strings of length h. The arcs of T} connect every nonleaf node z to its left
child 0 and its right child z1.

We use complete binary trees in two major roles, first as valuation trees, and second, as
(logical) networks for implementing the parallel-prefiz operator [14]. We discuss each of these
roles in turn.

Valuation Trees. A variety of useful binary associative operations can be computed on
sequences efficiently, by emulating complete binary trees level by level, using them as valu-
ation trees. To wit, let * denote such an operation, let £ = (o, z1,...,Zk-1) be a k-tuple of
elements in the domain of *, and let k = [£(k)]. The following algorithm will compute the
“product”

E=Tog*Ty %+ % Tp_

in h parallel emulation steps. Load Z into the leaves of T, from “left to right,” as indicated
in Figure 4, and (logically, via emulation) sweep up T level by level, computing at each
node the *-product of the data in its children, as indicated in Figure 5. After h emulation
steps, the value ¢ will reside in the PE assigned to emulate the root of 7.

@ B FE FE R EOEE

Figure 4: The 8-element data-vector T loaded in the leaves of T3, from “left to right.”
Examples of operations that one might wish to implement using valuation trees are

e Find the sum (resp., product, minimum, maximum) of k integers; in these cases, * = +
(resp., * = x,min, max).

o Find the and (resp., or) of k boolean values; in this case, * = A (resp., * = V).
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STEP 0 [3] [mn) (&) (] (1] [o5] (3¢ [=7)

STEP 1 [zo*21| [@2*2s] EEEEREZEED

STEP2 ﬁo*wl*w2*$3l |2)44;3)5*(CG*Z7]

STEP 3 |:co*a:1*mz*za*m*ms*ze*m]

Figure 5: The 3-step computation of the product ¢ from the vector &. Each step can be viewed
as occurring at the next higher level of the valuation tree. '

In general, if computing * on a pair of data takes c steps, then computing the *-product of
a length-k sequence takes clog k steps.

The Parallel-Prefix Operator. The parallel-prefiz operator [14] (see also the scan operator
of [11], [6]) generalizes the operation of evaluating the product £ of the elements of the vector
#, by simultaneously evaluating the products of all prefixes of . In other words, we again
start with a binary associative operation * and a vector & = (zq, 1, . .., Zx—1) of elements in
the domain of *, but now we compute the k-tuple of products

To
To * Ty

parallel-prefix(Z; ) =

Tog* Ly k% Lp_1

The ability to compute the parallel-prefix operator efficiently enables the efficient parallel
computation of myriad useful functions, including:

e carry-lookahead addition (by having * transmit information about the propagation and
generation of carries)

e broadcast (by having * transmit information from left argument to right argument)

e selection operations, such as max, min, etc. (by having * perform pairwise comparisons,
retaining winners and disposing of losers).

The ability to emulate complete binary trees efficiently, level by level, endows one with the
ability to compute the parallel-prefix operator efficiently. We sketch a justification of this
assertion.
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The Algorithm

1. Start with the z; in the leaves of T4, in left-to-right order, as indicated in Figure 4.

2. In h steps, sweep up 7T, using it as a valuation tree, as in Figure 5. Each node of the
tree retains the partial product computed by the subtree of which it is the root.

3. In two steps, do the following sibling transfers from lefthand nodes of T through
parent nodes to righthand nodes:

(2) Each righthand nonleaf node of 7, replaces its result by its lefthand sibling’s
result.

(b) Each righthand leaf node of T combines its lefthand sibling’s result with its
result.

The result of the sibling transfer is illustrated in Figure 6.
4. Level by level, in h — 1 steps, each righthand node passes its current value down.

(a) A nonleaf child in T4 h replaces its result by the new result.

(b) A leaf child in T combines the new result with its result.

The contents of T, after one iteration of this subprocedure are illustrated in Figure 7

After completing step 4, the leaves of T, contain the desired result, as illustrated in
Figure 8.

D. Summary

This completes our survey of the ingredients of our strategy for achieving multigauge
behavior via emulations. We encapsulate the strategy: We enable a bit-serial N-PE processor

Level 0 |a:o*:c1*mz*m3*m4*a:5*:ce*m7]

Level 1 |:z:o*:cl*a:2*:c,ﬂ [Zo * Ty * T2 * T3]

Level 2 [Zo* x| [z4*Ts] [z4 * z5]

Level 3 |a:o”a:o*a:1||x2”?2*z3||:c4||a:4*msllmﬂ[ﬁ*wﬂ

Figure 6: The contents of the tree after the sibling transfer.
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Level 0 Pco*zl*:cz*z:,*m*zs*zs*m-,l

Level 1 r:co*:cl*:nz*:cﬂ lTvo*azl*:cz{k:c;;l
Level 2 [zo * @y * 23 * 23| [@o * Ty * T3 * 23| [To * Ty * T3 * x5 [To * z1 * z3 * T3

Level 3 [zo| [Zo* 2] [To * 21 * 25| [Zo * T1 * T3 * 23]
[z4] [@4* 5| [@4 * 5 * T | [T4 * T5 * T * T7|

Figure T7: The contents of the tree after one iteration of passing down values.

Leaf 0

Leaf 1 {xzo * 2z,

Leaf 2 [zg*z; * x,

Leaf 3 [z * 1 * T3 * 23|

Leaf 4 [zg* zy * Ty * T3 * T4]

Leaf 5 [@o * @1 * T3 * T3 * T4 * Tg |

Leaf 6 |$o*1§1*$2*$3*ﬂ34*1}5*$6|

Leaf 7 [mo*azl*wg*za*x4*z5*m6*m7|

Figure 8: The final result of the parallel-prefiz algorithm.
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array H to behave as though it were a bit-parallel | N/k]-PE processor array G of gauge size
k, as follows.

1. We have H emulate a direct-product array K x G, where K is a k-PE processor array.

2. We use (partial) permutation routing on A to implement communication paths in

Kxg.

3. We have H emulate (partial) permutation routing on K to implement datapath con-
version (corner-turning) and shift operations on k-bit words.

4. We have H emulate height-£(k) (complete binary) valuation trees to compute accumu-
lative logical and arithmetic operations.

5. We have H emulate height-£(k) complete binary trees to compute the parallel-prefix of

appropriate operations, thereby implementing k-bit-parallel operations such as carry-
lookahead arithmetic.

6. We have the PEs of K do bitwise logic, one bit per PE.

In the next three sections, we add detail to our emulation strategy, by describing its
implementation on three different array topologies, hypercubes, de Bruijn networks, and
meshes with reconfigurable buses. The reader will note that our aggregation strategy (i.e.,
the strategy we use to choose the topologies of the macro-PE array K and the macro-array
G) with these exemplary topologies cleaves to a principle we have not yet enunciated:

The Principle of Self-Similarity. Whenever possible, choose the macro-PE
(array) K and the macro-array G to be smaller versions of the array H. This
principle places our multigauge architectures among the type A architectures of

[23].

In accord with this principle, we (logically) decompose a hypercube into a hypercube of
hypercubes, a de Bruijn network into a de Bruijn network of de Bruijn networks, and a mesh
into a mesh of meshes. This type of decomposition is very convenient when it can be achieved,
because it allows one to retain network-dependent algorithmic strategies across gauge sizes.
Such a decomposition is usually possible with popular network topologies, because these
topologies tend to comprise families of like-structured but varying size instances. The one
practical detractor from this decomposition principle is that it restricts the range of gauge
sizes that one can aspire to. Thus, we always choose a gauge size that is a power of 2 when
we implement our strategy on a hypercubes or de Bruijn networks, and we always choose a
gauge size that is a perfect square when we implement our strategy on meshes.
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Figure 9: The 4-dimensional hypercube graph Q..
4 Hypercube Networks

The n-dimensional (boolean) hypercube @, is a graph whose node-set is Z3. The arcs of @,
connect every pair of nodes u and v that differ in just one bit-position, i.e., node u has the

form u = By and node v has the form v = 28y, for some B € Z; and zy € Z7~'. See Figure
9.

In the architecture Q, built on the graph Q,, we linearly order PEs according to the
numerical ordering on their names: the ith PE of Q,, resides at the node z of @, which is .
the binary representation of integer i. Each PE in Q,, has n input ports and n output ports:
the port that leads node-PE zfy to node-PE zfy, where z € 23", B € 2Zy,and y € Z1,
is called the mth port of node-PE z3y.

4.1 Algorithmic Issues

A. Emulating a Direct-Product Network

We sketch the algorithmic basis for the emulation by an arbitrary (N = 2")-PE hypercube

array Qn of a direct-product hypercube array Qur) X Qn-gr)- Within the context of our
study:
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o O is the host array H;

® Qur) is the macro-PE array K, and Qn-yk) is the macro-array G.

This emulation is, conceptually, a very simple one, because the hypercube graph @, is
(isomorphic to) the direct-product hypercube graph Q) X Qn-y(k)-

As we discussed in Section 3, an emulation has two component mappings. First we
must assign each PE of the guest array to the PE of the host array that will emulate it;
then we must assign routing paths in the host array to effect communications along the
communication links of the guest array. Because our emulation builds on an embedding
of the graph Q) X @n-yk) in the graph Qn, we describe the emulation in graph-theoretic
terms; cf. [1].

We assign each node (z,y) of the guest direct-product hypercube graph Qi) X Qn-gx)
to the node of the host hypercube graph @, whose string-name is the concatenation zy of

the component string-names of the guest node. We thereby implicitly assign the PEs of the
guest array Qyr) X @n—yk) to PEs of the host array Q..

We route the links of the guest array Q) X @n-yk) within the host array Q, by routing
the arcs of the graph Q) X @n-r) Within the graph @, as follows.

e We route the arc )
(‘Boﬁwl, y) — (‘B0€mly y)

(€ € Zy, mozy € Zé(k)—l) within copy y of Q) along the following unit-length path
(i.e., arc) in Q. _
zofT1y — ToéZ1Y.

e We route the arc

(z, yony1) — (=, Yoiiy1)

(n € Za, your € Zy -t(k)_l) between copies yon7y:1 and yofjy: of Q) along the following
unit-length path in Q.

TYoNY1 — TYoTjY1-

This emulation maps arcs of the guest graph to arcs of the host graph; therefore, the
emulation incurs no cost.

B. (Partial) Permutation-Routing

In subsection 4.2, we indicate how the permutation-routes needed for our emulations can
be done efficiently within a SIMD regimen, with very simple masking.
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C. Emulating a Complete Binary Tree (level by level)

Our level-by-level emulation of the complete binary tree T4z by the hypercube array
Qu(x) exploits the string-names of the cube’s nodes to effect the emulation with no slowdown.

We assign PEs of T ) to PEs of Q) via the following many-to-one map. Each PE z
of T yr) is assigned to PE z14k)-lgth(=) of Qyk); in particular, each PE at level h of Ty, is
assigned to a PE of Q) whose name ends with a string of £(k) — & 1s.

We route links of 7 yx) within Q) via shortest paths. Because of the many-one nature
of the assignment, this emulation is not merely a graph embedding.
o We route the link (z,20) of T y4) via the unit-length path
(mll(k)—lgth(z) _ w01l(k)-lgth(c)—l)

within Ql(k) .

e We route the link (z, 1) of Tyz) as a “null” link within Qy), because tree-PEs z and
z1 are assigned to the same PE z14F)-18th(=) of Q.

e We route the predecessor link (23, z) of T ys), 8 € Z,, via the “inverse” of the routing
path for the link (z,z8).

We chose our PE-assignment with the parallel-prefix algorithm in mind. We decrease the
time to emulate each communication step of a righthand PE by employing an assignment
that obviates moving data when following a rightward link.

Our emulation maps links of 7 ) to paths of length 0 or 1 in Qgy); therefore, the
emulation incurs no slowdown.

4.2 Implementation Issues

Computation, Communication, and Control. Because @, is isomorphic to the direct-
product graph Q) X @n-yr), data transfers in the macro-array G are emulated with no
slowdown. We let the PIR of each bit-serial PE be the concatenation of the AIR and the
MIR, so that

AIR:PIR[n—e(k)...n—ll ; MIR = PIR[0...n — £(k) — 1].

Letting g = 2"~4*), we order the macro-PEs in the macro-array G so that the ith macro-
PE consists exactly of those PEs of Q,, whose numbers (in Q,) are in the set A0 = {a|a=

i(mod g)}.

The communication macro-instruction that outputs a k-bit word to macro-port j in G is:
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macro-instruction OUTPUT (j: Port) is {
= = bit-parallel output from macro-port j in G

output (5) }

Within a copy of the macro-PE K, we order PEs so that the :th bit position in all
macro-PE is occupied exactly by those PEs of Q, whose numbers (in Q,) are in the set

Ai={a|i=|a/g]}.

The macro-PE primitive instruction AgOutput, which outputs a bit to port j in K is
specified as follows:

procedure AgOutput (j: Port) is {
- - aggregate data transfer in macro-PE K from port 3
output (n — £(k) +7) }

Both output and input data transfer operations (which are done analogously) in G and
K are performed in unit time, with no slowdown compared to bit-serial data transfers in
H = Q,. For perspective and contrast, we remark that if an (n — £(k))-dimensional subcube
of @, were used to perform the desired computation bit-serially on k-wide data, then the
cost of an I/O operation would be O(k), which is dramatically more costly than in our
emulation.

The parallel-prefix computations that perform arithmetic operations within each macro-
PE K require exactly the PEs on level A of the emulated tree 7T y) to be active at stage
{(k) — h of the ascending phase, or at stage h of the descending phase of the algorithm.
This emulation incurs no slowdown because of the PE assignment we use. The cost of an
arithmetic operation in our emulation is thus O({(k)) = O(log k), while the cost of such
an operation in bit-serial processing of the same data by @, is O(k). The constant hidden
in the first (emulation) expression must be somewhat larger than in the second (bit-serial)
expression, because the parallel-prefix computation operates on 2-bit data. This causes the
emulated arithmetic operations to be slower than the bit-serial ones for a few small gauge
sizes. Compensating for this slight slowdown are two types of significant speedup achieved
by the emulation approach.

The less important, though still significant, speedup is observed when executing compu-
tational instructions. Arithmetic operations are accelerated from linear to logarithmic time
per operation in all gauge sizes except the initial few. Logical operations experience an even
larger speedup, from linear to constant time per operation.

The more important speedup is experienced with communication instructions, which are
accelerated from linear to constant time per operation. This speedup strongly and favorably
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affects the overall performance of the emulated machine—for all gauge sizes—to an extent
that is dictated by the frequency of communication steps in any particular computation. It
is worth emphasizing that while many parallel algorithms excel at accelerating computation,
they get bogged down when computations require much communication. In contrast, the
more parallel the computation is, and the more inter-process communication it requires, the
greater the advantage of our emulation approach. '

Datapath Conversion. Our datapath conversion algorithm for the macro-PEs X is very
similar to the matrix transposition algorithm MTADEA of [19], except that we provide a
detailed memory layout, augmented with a precise description of the local bit-wide data
movements under the SIMD regimen. In particular, we interleave block exchanges on a bit
level, so that our overhead is only one bit per bit-serial PE (the bit variable save). Our
macro-instruction GAUGE k performs exactly klog k bit-serial data transfers and O(klog k)
bit-serial computation instructions, with the constant in the big-O estimated to be under
20.

macro-instruction GAUGE (k) is {
- - datapath conversion in Qyx,)

for i :=0 to £(k) — 1 do { - - dimensions
form:=1to k/2*  do { - - blocks
high := (2m — 1)2° - - block start
low :=2(m —1)2! - - block start
for j :=1to 2 do { - = block bits
if (AIR[s]]= 0) then { - - exchange

from M[high] AgOutput (z) }
if (AIR[i]= 1) then {
save := M[low]
Aglnput (i) to M[low]
from save AgOutput (z) }
if (AIR[i]= 0) then {
Aglnput (3) to M[high] }
low := low + 1 - - next bit

high := high +1 }}}}
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Figure 10: The order-3 de Bruijn graph D,.

5 de Bruijn Networks

hop

The (base-2) order-n de Bruijn graph D, has node-set Z?. The arcs of D, connect

e each node Sz, where § € Z; and z € 2!, to nodes z08 (a shuffle arc) and z3 (a

shuffle-ezchange arc),

e each node z, where § € Z, and = € Z}~!, to nodes Oz (an unshuffle arc) and Sz (an

unshuffle-ezchange arc).

See Figure 10.

In the architecture D, built on the graph D,, we linearly order PEs according to the
numerical ordering of their names: the ith PE of D, resides at the node z of D, which is
the binary representation of integer i. Each PE in D, has four input ports and four output

ports. For 8,81 € Z, and = € Z7 72, the ports of node-PE Boz8; are named as follows:

from node | to node | port name
Boz z(3:80 | SHUFFLE
2080 | SHUFFLE-EXCHANGE
B1Boz | UNSHUFFLE
B1Box | UNSHUFFLE-EXCHANGE
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5.1 Algorithmic Issues

A. Emulating a Direct-Product Network

We sketch the algorithmic basis of an efficient emulation by an arbitrary (N = 2")-PE
de Bruijn array D, of the direct-product de Bruijn array Dyk) X Dn-yk)- In the context of
our study:

e The array D, is the physical host array H;

o the array Dy, is the macro-PE K, while the array Dn_yx) is the macro-array G.

Our emulation here is materially more complicated than the corresponding emulation for
hypercubes, because de Bruijn networks do not enjoy a direct-product structure. However,
in common with that emulation, our emulation here operates within the graph-theoretic
framework of embedding the direct product of de Bruijn graphs D) X Dn_gx) in the de
Bruijn graph D,,. Our embedding derives from {1].

We assign nodes of the graph Dy(r) X Dn—gx) to nodes of the graph D, by concatenating

node-names: each node (z,y) € Zg(k) x ZrU®) of the direct-product graph is assigned to
node zy € Z3 of D,,.

We route arcs of the direct-product graph in a way that exploits the ability of de Bruijn
graphs to “rewrite” node-names by traversing the appropriate paths. For the sake of brevity,
we are a bit sketchy in our discussion of the emulation-routing, in two respects:

1. We describe how to implement only the “positive” moves, SHUFFLE and SHUFFLE-
EXCHANGE of de Bruijn graphs, leaving to the reader the task of implementing the
“negative” moves, UNSHUFFLE and UNSHUFFLE-EXCHANGE, which are implemented
by straightforward analogy with their “positive” counterparts.

2. We assume that the sought gauge size is so small that £(k) < n—{(k). This assumption
manifests itself in our choosing (in Figures 11 and 12) to rewrite the first-coordinate
string of node (z,y) of the product array rather than the second-coordinate string. Of
course, when the sought gauge size is so large as to reverse the assumed inequality, one
should merely interchange the roles of the first- and second-coordinate strings.

e We route the arc

((Bz,y), (zv,9))

(z € Z;(k)-l, y € Z;-l(k), B,7 € Z,) within copy y of D) via the length-(2£(k)) path
from node Bzy to node zyy in D, that is depicted in Figure 11.
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Béi1&s - - Eyry-2€4r)-1Y

— &ia - Lury-28ur)-196 shuffle(-exchange)
— &3 Eyry-2€u k)19 62 shuffle(-exchange)
— & Ey)-2bu)-1961626s  shuffle(-exchange)
— Eyry-1¥61€a - Eyr)-2€ur)-1  shuffle(-exchange)
— y&iéa - Eury-17 shuffle(-exchange)
— Y€z - Eury-280r) 1 unshuffle
— Eyk)-17¥6162 - - Eg)-2 unshuffle
— &iéa - Eur)-28ur)-17Y unshuffle
= a2y

Figure 11: The length-2¢(k) path from node Bzy to node vy tn Dy, z = 163+~ Eygi)-1-

¢ We route the arc
((z,8y), (=,97))
(k)

(where 8,v€ Z,,z€ Z; ',y € Z;_‘(k)—l) between copies By and yy of Dyy,) via the
length-(2¢(k) + 1) path from node zBy to node zyy in D, specified in Figure 12.

It is shown in [1] how to orchestrate the traversals of the link-routing paths of this
emulation in D, so that only O(1) messages (i.e., a constant number, independent of n and
k) contend for any single link at one time. This orchestration (which we soon see is consistent
with the SIMD regimen) assures us that the slowdown incurred by this emulation is at worst
proportional to £(k), with a small constant of proportionality.

B. (Partial) Permutation-Routing

In subsection 5.2, we indicate how the permutation-routes needed for our emulations can
be done efficiently within a SIMD regimen, with very simple masking.

C. Emulating a Complete Binary Tree (level by level)

Our level-by-level emulation of 7 k) by Dy derives from [21] (wherein the technique is
used on the shuffle-exchange network, a close relative of the de Bruijn network).
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efy = & Eury-1€un)By
— &y Ly —1€um)BYY
— & Lury—1€y)Byvéa

— Byvbaba--- 'Et(k)—l

— yyéiba-e fz(k)—l.fz(k)

— &y r€aée - Eury—1

— €)1y r€nda - Eury—2

— &1éa - Eyry-16ur)yY
= Ty

Figure 12: The length-(2£(k) + 1) path from node =By to node zyy in D,; © = £,&;

shuffle(-exchange)
shuffle(-exchange)

shuffle(-exchange)
shuffle(-exchange)
unshuffle

unshuffle

unshuffle

We assign each node ¢ of 7 ;) to node 0Uk)-lgth(z) 5 of Dy()-

We route arcs of 7 ) via shortest paths in Dyy,).

o We route arc (z,z0) of T yy) via the shuffle arc

(Oﬂ—lgth(ﬂ!)m:l On—lgth(w)-— 1 :BO)

in ‘Dg(k).

o We route arc (z,z1) of 7 yy) via the shuffle-exchange arc

(01'1—lgth(:::):r:’I On—lgr.h(::}- 1 ;B].)

in Dy).

o €y,

e We route the predecessor arc (283, ) of Ty via the “inverse” of the arc of Dy that

is used to route arc (z,zf3).

Since each arc of Tyy) is routed along a single arc of Dy, this emulation incurs no

overhead.
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5.2 Implementation Issues

Computation, Communication, and Control. For all k < 2", the direct-product array
Dyk) X Dn-yr) can be emulated by the order-n de Bruijn array D, with slowdown O(min(n—
{(k),£(k))); cf. Section 5.1.A. Because we expect to have {(k) < n — £(k) in general, so
that the macro-PE K is smaller than the macro-array G, and because the principles of our
emulation translate easily when the reverse inequality holds, we let the PIR of each bit-serial
PE be the concatenation of the AIR and the MIR, so that

AIR = PIR[n — {(k)...n — 1] ; MIR =PIR[0...n — £(k) - 1].

Letting g = 2" 4*), we order the copies of macro-PE K in the macro-array G so that
macro-PE 7 consists exactly of those PEs of D, whose numbers (in D,) are in the set

A®) = {a|i=a=i(mod g)}.

The communication macro-instruction that outputs a k-bit word to a macro-port SHUF-
FLE in G (other macro-ports are handled analogously) follows the routing function of the

emulation in Section 5.1.A; cf. Figure 12 (with 8 = 4). From PE zfy, where ¢ € Zzt(k),

B € Zyandy € Z; _l(k)-l, the routing makes £(k) + 1 shuffle or shuffle-exchange hops to
node yfAz; from this node, £(k) unshuffle hops take one to the target node zy3. During each
of the first {(k) + 1 hops, the SIMD regimen forces us to spend one transfer cycle for the
communications through SHUFFLE ports and another one for the communications through
SHUFFLE-EXCHANGE ports. Two more cycles per hop are spent on “memorizing” the most
significant processor index bit of the previous node in the sequence, to make it equal the least
significant bit of the next node. PEs with 0 in the most significant bit of the PIR send in the
first two cycles, and PEs with 1 in this bit send in the last two cycles. Four bits of memory
are used to buffer bits as they are input during one 4-cycle hop and output during the next.
OUTPUT(SHUFFLE) performs 5£(k) + 4 bit-serial data transfers and O({(k)) = O(log k) bit-
serial computation instructions, where the constant in the big-O is estimated to be under
10.

macro-instruction OUTPUT (SHUFFLE) is {
- = bit-parallel output from SHUFFLE in Dp_yx)
if (PIR[n — £(k) — 1] = PIR[r — 1]) then {

store to s[0] } ~ = to SHUFF
if (PIR[n — £(k) — 1] # PIR[n — 1]) then {
store to e[0] } - - to EXCH
fori:=1to £(k)+ 1 do { - - toward yPz
7 :=1i(mod 2) - - counters
k:= (7 + 1)(mod 2) - = (alternating)
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if (PIR[n — 1] = 0) then { - = Ist 2 cycles

output (SHUFF) from s[k] - - out
output (EXCH) from e[k] } = — - out
if (PIR[0] = 0) then { -=-in
if (PIR[n — 1]=0) then { - - classify
input (UNSHUFF) to s[j] } - - to shuffle

if (PIR[n — 1]=1) then {
input (UNSHUFF) to e[j] }} - - to ezchange

if (PIR[0] = 1) then { -~1n
if (PIR[n — 1}=0) then { - = classify
input (UN-EXCH) to s[j] } - - to shuffle
if (PIR[n — 1]=1) then {
input (UN-EXCH) to e[j] }} - - to ezchange
if (PIR[n — 1] = 1) then { - = 2nd 2 cycles
output (SHUFF) from s[k] - - out
output (EXCH) from e[k] } = - - out
if (PIR[0] = 0) then { -—in
if (PIR[n — 1]=1) then { - = classify
input (UN-EXCH) to s[j] } - - to shuffle
if (PIR[n — 1]=0) then {
input (UN-EXCH) to e[j] }} - - to ezchange
if (PIR[0] = 1) then { --in
if (PIR[n — 1]=1) then { - = classify
input (UNSHUFF) to s[j] } = - to shuffle

if (PIR[n — 1]=0) then {
input (UNSHUFF) to e[j] }}} - - to ezchange

if (PIR[£(k)] # PIR[0]) then { --atyPz; B?
s[j] = ¢[s] } - - via ezchange
for i := 1 to £(k) do { - - toward zyf

from s[j] output (UNSHUFF)
input (SHUFF) to s[j] }
load from s[j] } - - macro-input

In contrast to the situation with hypercube arrays, the O(log k) cost of a communication

step in a multigauge de Bruijn array cannot be compared to the communication cost in the
bit-serial processing of the same data, as it is not clear that bit-serial processing is even
possible. To wit, whereas Qn_x) is a subgraph of @, for any {(k) < n, there is no known
way to identify a copy of D,_y4) within Dy, in any nontrivial case.

Within a macro-PE K, we order PEs so that the sth bit position in all macro-PEs is
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occupied exactly by those PEs of D, whose numbers (in D,) are in the set 4; = {a | i =
la/g]}.

The macro-PE data-transfer primitive AgOutput requires one bit in the PIR of the PE at
hop £(k) to depend on a bit in the PIR of the first PE in the sequence; cf. Figure 11 (with
B = 7). This precludes memorizing this bit on the way; so, two complete rounds of 2£(k)
cycles (one for each value of the bit) must be performed in sequence. The number of bit-serial
data transfers is 6£(k), while the number of computation instructions is O(4(k)) = O(log k),
with the constant in the big-O estimated to be under 10.

procedure AgOutput (SHUFFLE) is {
- — macro-PE data transfer from SHUFFLE in Dyy,)

for 3:=01to1ldo{ - = 2 rounds
if (PIR[r — 1] = B) then { - = the round
if (PIR[n — 2] = PIR[n — 1]) then {
output (SHUFFLE)} - = Bzy; start

if (PIR[n — 2] # PIR[n — 1]) then {
output (SH-EXCHANGE) }} - - Bzy; start
for 1 := 0 to {(k) — 2 do { - - toward yz(3
if (PIR[n — 2] = PIR[n — 1]) then {
output (SHUFFLE) }
if (PIR[r — 2] # PIR[r — 1]) then {
output (SH-EXCHANGE) }}
if (PIR[n — 1] = ) then { - - arrival; (%
output (SHUFFLE) }
if (PIR[n — 1] # B) then {

output (SH-EXCHANGE) }

for i := 1 to {(k) do { - - toward zfy
output (UNSHUFFLE) }
if (PIR[n — m] = B) then { - - zfy; round?
store to save }}
load from save } - - Aglnput

As described in Section 5.1.C, the parallel-prefix computations that implement arithmetic
operations within each macro-PE K are performed by emulating a complete binary tree; our
emulation is inspired by the corresponding emulation in the perfect shuffle network [21].
In this emulation, the PEs of KX play the following roles: each nonleaf PE z of the tree
communicates with its left child z0 through its SHUFFLE port and with its right child =1
through its SHUFFLE-EXCHANGE port; each nonroot PE z3 of the tree communicates with
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its parent through its UNSHUFFLE port if § = 0 and through its UNSHUFFLE-EXCHANGE port
if B = 1. The emulation takes time O(log k) within K; but, recall, X is itself implemented
via the emulation by D, of the direct-product array D) X Dn_yr), and this emulation takes
time O(log k) to emulate each communication step of K. It follows that each k-bit arithmetic
operation takes O(log?® k) steps by Dh,.

Datapath Conversion. Finally, datapath conversion in K is performed by the macro-
instruction GAUGE k. Our pseudo-code is designed to reveal the similarity between this
procedure and its analogue for the hypercube (in global communication and data layout).
Communication is slower here by a factor of O(log k), reflecting the emulation overhead
for macro-PE data transfers. So, the “corner-turning” procedure takes O(klog®k) steps

per k-word block of k-bit words. To the best of our knowledge, the following algorithm is
original.®

macro-instruction GAUGE (k) is {
- - datapath conversion in Dyy,

for 2 := 0 to {(k) — 1 do { - - dimensions
for j:=1to k/2"*  do { - - blocks
high := (25 — 1)2} - = block start
low :=2(5 — 1)2 - = block start
forj:=1to2'do{ - - block bits

if (AIR[i]= 0) then { - - ezchange
from Ml[high] AgOutput (NEXT) }
if (AIR[¢]= 1) then {
save := M[low]
store to M{low]
from save AgOutput (PREVIOUS) }
if (AIR[Z]= 0) then {
store to M[high] }
low := low + 1 - — next bit
high := high +1 }}
AgOutput (UNSHUFFLE) }}

8For the purposes of this algorithm, we view node z1 as the “next” node after node z0 (although it
actually is two links away), whence the words “NEXT” and “PREVIOUS” in the procedure.
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6 Extended Coterie Networks

The final family of networks we study differs from the others we have studied in two funda-
mental respects. Firstly, each structure in the family is the union of a graph and a hypergraph
[3]. Secondly, each structure is dynamic in the sense that its hypergraph component may
change at each communication step of a computation. We represent this dynamic nature by
parameterizing each structure with a time-index as well as a size-index.

The time-t n x n Extended Coterie Network graph (ECN graph, for short) C{t) (¢t =
0,1,...) has node-set Z2. Each node (3, 5) of C{!) is incident to arcs leading to and from the
(at most four) nodes (7, ') of C{¥) for which |i —4'|+|j — j'| = 1. Thus, the graph component
of C!) is a directed n x n mesh.® Additionally, each node of C{* is incident to precisely one
coterie-hyperedge: the coterie-hyperedge incident to node (i,j) of C{*) is a subset S of Z7
that

e contains node (3, j)

e is connected in the sense that the induced subgraph of the n x n mesh on the set S is
a connected graph.

Note that at each time ¢, the coterie-hyperedges partition the node-set Z2 of C{). The
coterie-hyperedges of C{!) do not depend in any way on the coterie-hyperedges of C{~1).
The coterie-hyperedges of C{°) are singleton sets of nodes. See Figure 13.

In the Extended Coterie (EC) processor array C*) built on the ECN graph C{"), we order
PEs according to the row-major ordering on their node-names: node (3, j) is the (in + j)th
PE in the ordering. Each PE in C!*) has input and output ports that link it to its “North,
South, East, and West” neighbors, i.e., to PEs (i + 1, ) and (¢, j £ 1); of course, PEs on the
“edges” of the mesh lack some of these neighbors. Additionally, each PE has an input and
output port connecting it to precisely one coterie, i.e., a (possibly irregularly shaped) bus:
PEs (4,7) and (k,1) of the EC array C\*) are connected at time ¢ to the same coterie (bus)
just when nodes (i,7) and (k,I) of the ECN graph C() are incident to the same coterie-
hyperedge. A coterie is a bus in the sense that, at any time, a single incident PE can “talk”
while all other incident PEs “listen.”1°

9There is a natural “torus” variant of the ECN graph, in which each node (%, 7) has precisely four neighbors:
((i + 1) mod n, j) and (4, (j £ 1) mod n). Since our emulation strategy requires the present “mesh” variant
of the graph eventually (cf. Section 6.1), we ehoose to consider only the “mesh” variant throughout.

19The actual coterie network has the additional feature that if multiple PEs “talk,” the “listeners” receive
the bitwise logical OR of those messages. However, we have not yet found a use for this feature in the present
context.
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: (b)

Figur.e 1'3: Tf}e 4 x4 ECN graph; shaded areas denote the coterie hyperedges: (a) when each
coterte is a singleton; (b) with “arbitrary” coteries.
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6.1 Algorithmic Issues

Our assessment of the time for communicating in an EC array is consistent with our practice
in previous sections, except as regards the time for coterie (bus) communications—which
does not arise with the other networks we study. In the interests of getting a practical
assessment of communication time in an EC array, we sacrifice scalability, by viewing the
side-dimension 7 of C*) as a fixed integer (say, 512, as in the implemented version of the
network). At the cost of the scalability of our results, we assess only one step for broadcasting
a message along a coterie. We discuss the rationale behind our cost assessment in Section
6.2. A scalable delay model would emerge from the following reasoning. Since switches are
necessary to implement the ability of a PE to join or leave coteries at every time step, the
delay of a message along a coterie is proportional to the number of switches the message
traverses; therefore, although the constant of proportionality is quite small in practice (a
conservative estimate would be 1/50th the transit time of a PE), an honest scalable delay
model would be linear in the diameter of the coterie.

A. Emulating a Direct-Product Network

Although the n x n mesh that underlies the ECN graph is the direct product of two copies
of the length-n linear array, the aggregation that arises from this observation is computa-
tionally inferior to an aggregation that has the ECN array C'Ef) emulate the direct product
C(\;)E X CE:/)\/E' In short, the latter aggregation affords us data transfer times that are both
symmetric in the row and column directions and smaller in the worse of these directions than
they would be with the former aggregation (which would mandate “long skinny” aggregates).
Moreover, in accord with our Principle of Self-Similarity, the latter aggregation allows the
direct use of vk x vk versions of EC array algorithms on the macro-PEs of the gauge-k
logical EC array. Finally, the latter aggregation allows us to exploit the observed fact that
many computational problems map more naturally onto square mesh-like arrays than onto
“long skinny” ones. For simplicity of notation, we assume henceforth that the desired gauge
size k 1s a perfect square.

We now sketch the algorithmic basis for the emulation by an arbitrary (N = n?)-PE EC
array C'!) of a direct-product EC array CE;)E % CS?\/; Summarizing the preceding discussion,
within the context of our study, at each time ¢, I

o the n x n EC array C*) is the host array H;

o the sought gauge size k is a perfect square;

o the vk x vk EC array C% is the macro-PE array K,

o the n/vk x n/vk EC array Cf:/)ﬁ is the macro-array G.
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We assign each node ((a, b), (¢, d)) of the guest direct-product array C% X CS/) v to node

(cvk + a,dvk + b) of the host array cl,
We emulate the links and coteries of the guest array C%— X Cf:/) i within the host array

C!® as follows.

o We route mesh-links of the forms

((8,8),(c,d)) — ((a£1,b),(c,d))
((a,),(c;d)) — ((a,6£1),(c,d))

within copy (c,d) of macro-PE CE;)E along the unit-length paths (i.e., arcs) in the host
array C{*):

(cVk +a,dvVk+b) — (cVk+ax1,dVk+b)
(cVk+a,dVk+b) — (cVk+a,dVk+b+1)

¢ We route mesh-links of the forms

((a,b),(c,d)) — ((G"b)’(cilad))
((a,8),(c,d)) — ((a,b),(c,d £ 1))

between macro-PEs (¢, d) and either (¢ +1,d) or (¢,d % 1), respectively, within macro-

array CE:/) & along the following length-v/% paths in C{®):

(cx/1;+a,d\/l:+b)—>(c\/l;+a:t1,d\/7c_+b)-—->--~—-»(C\/ic-—{-azl:\/z,d\/ﬁﬁ-b)
(cVk+a,dvVE+b) — (cVk+a,dvVk+b+1) — -+ — (cVE +a,dVE + b+ VE)

Each link of C*) that appears in one of the length-v/k paths is used to emulate v/ dif-
ferent paths in the macro-array. Pipelining allows one to avoid much of the congestion
suggested by this fact. Specifically, one can ensure that, at every host communication
step (v of which are required to emulate each guest communication step), each host
link is devoted to exactly one of vk guest links routed over it.

Emulating the coteries of the guest direct-product array is concéptually as easy as emu-
lating the mesh links: by dint of our assignment of PEs of C(‘% X C(t/ vi to PEs of C¥), each

n
coterie within a macro-PE and each coterie within the macro-array is a coterie within the

host array.
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¢ Each coterie S(t) C Z?%, within macro-PE (a, b) of C(t) is the coterie

817 = {(avk +u), (5vE +)) | (,v) € SO}
in the host array.

e Each coterie S*) Ve S Cc Z? VR within the macro-array ct® n/VE is the coterie
53 = {(avk +u), (0VE +2)) | (2,8) € S5 2 A (w,v) € 227}

which contains all nodes of each macro-PE incident to 5'7(:/) JE

In particular, our PE-assignment ensures that the nodes of S() and S, () are connected in
Cﬁf) just when the nodes of Sf;% and Sr(:/) /& are connected in C( and C* /YR respectively; the
host coteries are, therefore, well defined.

B. Routing (Partial) Permutations

In Section 6.2 we indicate how the permutation routes needed for our emulations can be
done efficiently within the SIMD regimen, with very simple masking.

C. Emulating a Complete Binary Tree (level-by-level)

Within our delay model of unit transfer time a.long a coterie, level-by-level emulation of
the complete binary tree 7 y4) by the EC array c) V& can be performed with no slowdown.

We simplify our description (without compromising conceptual generality) by assuming that
the sought gauge size k is simultaneously a perfect square and a power of 2, i.e., has the
form 2% for some p.

We assign PEs of T y) to PEs of C% via the following many-to-one map. For any binary
string «, let A(z) denote the integer represented in binary by z.

e For p < I < {(k), each level-l node = € Z} of Ty, is assigned to node (a,b) of CE;’)E’
where (a,b) € Z‘z/; is the unique pair such that avk + b = A(z14*)-1).

o For 0 <! < p, each level-l node = € 2. of Ty is assigned to node (A(z1P~), vk — 1)
of Ci?-
2

We observe that our assignment maps all level-p nodes of 7 yx) to nodes in column (v k—1)
of C ), it' maps every node ¢ € Zj to row A(z). Every node of Tyy) in a level [ < p is
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mapped to the same node of C% to which its right child is mapped. In much the same way,

the height-p subtree T, of T yx) rooted at level-p node = is mapped to row A(z) of CU\/—L
Consequently, for all length-(0 < I < {(k)) string/nodes z, nodes z and z0 of 7 ) both
belong either to the same row or to the same column of C%; no other level-I or level-(I + 1)

nodes of Tyy) are mapped to the (shortest) path, call it P, that connects the images of =
and z0.

We emulate the links of 7 ) within C Ej); as follows.

e We route the link (z — 20) via the coterie P;.

e We route the link (z — z1) as a “null” link within C%, because tree-PEs z and 1 are

both assigned to the same PE of C%.

o We route the predecessor link (28 — z) of T y1), B € Z3, via the reversal of the routing
path for the link (z — z0).

Our emulation maps links of T y) to paths of length 0 or 1 in C%; therefore, the emulation
incurs no slowdown. ~

6.2 Implementation Issues

We now apply the techniques developed for the ECN array to a real processor array, the Con-
tent Addressable Array Parallel Processor (CAAPP). We describe a specific implementation
of the EC network: the components (mesh-links and coteries) have different overhead prop-
erties, hence are discussed separately. First we sketch the target architecture and present
the programming model.

Basic CAAPP Architecture. The CAAPP is an SIMD array that, for the purposes of our
study, differs from the model architecture of Section 2 mainly in its memory hierarchy: Each
PE of the CAAPP has 320 bits of on-chip cache (accessible in a single cycle) and 32K bits of
off-chip memory that can be loaded into cache memory roughly at the rate of one bit every
three cycles. All instructions, unless otherwise specified, require a single cycle (time-step).

The CAAPP has two communication networks, the nearest-neighbor mesh interconnec-
tion network with wraparound, and a reconfigurable mesh (also with wraparound) called
the coterie network. These correspond to the mesh-links and coteries of the ECN array.
respectively. When using the mesh network, PEs perform the following operation in a single
instruction:
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Given a specified memory location M and a direction D (north, south, east, or
west), they read data from M in the neighboring PE in the D direction and
deposit the contents in location M in local memory.

In conformance with our assumptions about pure SIMD behavior, all PEs must read (or.
write) the same memory location from (or to) the same direction.

In order to use the coterie network (simplified slightly for this paper), each PE controls
a set of four switches, N, S, E, and W, enabling the creation of electrically isolated groups
of PEs that share a common bus. The switches control access in the north, south, east, and
west directions, respectively. These isolated groups of processors form coteries. For example,
when mesh-neighbor PEs close switches between them (e.g. a PE closes its W switch, its
west neighbor closes its E switch) to share a circuit, those PEs are then members of the same
coterie. The network is used to transfer data as follows: (1) PEs write the specified datum
to the coterie-link; (2) the array controller issues an instruction for the network to propagate
the data; (3) PEs get the data from the coterie network by reading from their coterie links.

The coterie network switches are set by loading the corresponding bits of the mesh control
register (MR) in each PE. Because each PE views the MR as local storage, coterie configu-
rations can be loaded from memory; they can also be set as a result of local data-dependent
calculations. -One particular way of using the coterie network is to set the switches so that
columns and rows are isolated. It may also be useful to then divide the row and column
“buses” into segments. The coterie network can thus emulate the mesh with reconfigurable
buses [16] and the polymorphic torus [15].

The Cost of Coterie Network Operations. The operations that read and write on the
coterie links (steps (1) and (3) of the data transfer paradigm) each take one cycle. The
“propagate” operation (step (2) of the paradigm) also takes one cycle in the context of this
paper. This last time assessment warrants a more detailed description of the workings of the
coterie network.

Once values have been written to the coterie network (i.e., step (1) of the paradigm has
been executed), the controller issues a command for the signal to propagate. At the end of
the instruction cycle, the signals will have propagated through a certain number of PEs in
all directions from the originating PEs. The actual function of number of PEs traversed per
unit time depends on the characteristics of the device, but is not of critical importance to
multigauge emulation. It has been experimentally determined to be 50 PEs per instruction
cycle. Since the maximum gauge k can be assumed to be not larger than a few hundred.
and since the shapes of the macro-PEs are rectangles, the coterie for the macro PE will be
less than 50 in diameter and thus only a single propagation step is required.

Implementation Notation. In order to show the effect of our technique on a real system,
. we will use the actual language in which the algorithms are written on the CAAPP, and from
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which timings have been directly computed. The CAAPP PE instructions are indicated by
brackets “[ ]” and are embedded in the C language programs of the controller. The CAAPP
PE instructions in the sample code below use the following notation:

I all PEs execute the instruction unconditionally

Al only PEs with register A set execute the instruction
AX are one bit registers; X is also the coterie network read/write port.
X-PC precharge the coterie network (to compensate for the
unequal times to charge and discharge the buses)
MR a four-bit register containing the coterie switch settings;

can be loaded from memory in a single instruction.

The Use of Precomputed Masks. In the implementations discussed below, the decision
whether or not a PE executes an issued instruction often depends on its position within the
macro-PE. To make these determinations during the execution of the macro-PE instruction
is not practical: operations on the position representation require O(log k) bit-serial instruc-
tions. Instead, we use precomputed masks: we assume that the PEs to be involved in each
instruction can be selected by loading the A register with a precomputed mask that resides
in cache memory. Since for any gauge-k, only k + 6log k + 5 bit-masks are needed in our
implementation, this strategy consumes only moderate time and space. In particular:

e all masks for a given gauge size less than, say, 128 fit easily into PE cache memory;

e all masks for all gauge sizes likely to be used, say 20 different sizes, fit into a small
fraction of PE main memory;

e loading the PE cache with the necessary masks (for a given gauge size as part of the
GAUGE k instruction) takes only a small fraction of the cost of corner turning: 128

bits can be loaded in less than 400 cycles, while corner turning requires O(k?) cycles
(as is shown below).

A. Macro-PE to Macro-PE Data Transfer

The Mesh Network. The primitive operation of the nearest-neighbor mesh network is a
transfer (for all PEs -at once) of data from location M in memory to that same location in
the neighboring PE in a specified direction. The corresponding macro-array instruction is
identical except that it transfers k-bit macro-words among macro-PEs, instead of single bits.
The macro-array instruction
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macro-instruction MeshOutput :
(Direction: Port, MemLoc: MemoryAddress) is {
[ MemLoc := Direction( MemLoc ) !! |; }

is emulated by the following host array procedure:

procedure AgMeshOutput

(Direction: Port, MemLoc: MemoryAddress) is {
for (i = 0; i < Vk; i++)

[ MemLoc := Direction( MemLoc ) !! |; }

This procedure uses vk nearest-neighbor moves, each requiring one time-step. The
equivalent gauge-1 procedure to move k-bit words a distance of one PE uses k nearest
neighbor moves and k time-steps.

The Coterie Network. Since the actual communication mechanism in the coterie network
is primitive—there is only one Read/Write port—the implementation of the macro-array
coterie network consists of emulating two primitive operations:

e setting the macro-array Cf:/) VR switches, and

e the actual data transfer among macro-PEs in the same coteries.

The first of these operations requires setting the appropriate switches in the underlying
host array C{): the second requires orchestrating the use of the communication links (time-

multiplexing) when multiple PEs in a copy of macro-PE C% are sending data.

We present first the mapping of the switch settings of CS/) vk onto C®. A macro-PE
switch is emulated entirely by switches of the k host-array PEs that comprise the macro-
PE. We call a switch internal (resp., ezternal) if it connects PEs that belong to the same
(resp., distinct) macro-PEs. At each step during the operation of the macro-array coterie
network, all internal switches are closed, so that each macro-PE will act as a unit. The
external switches in a given direction (e.g., toward the macro-PE in the east direction) are
set according to the setting of the corresponding (logical) macro-PE switch. For example, if
the E switch of the macro-PE is set, then the E switches of all vk PEs on the east side of
the macro-PE will also be set.

When programming the physical coterie network, one sets switches by writing to the
corresponding bit in the MR register. This 4-bit register is loaded from memory in a single
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instruction cycle. The macro-array instruction loads the macro-PE equivalent of the MR
with the low-order 4 bits from a specified memory location starting at, say, location MemLoc.
The emulation proceeds by first creating coteries corresponding to each macro-PE (closed
internal, open external switches), and then having PEs 0 through 3 successively broadcast
their MemLoc values. Each PE in the macro-PE then sets its switches according to the value
of the input signal and its position within the macro-PE. The following masks are used:

IsolateMacroPEMask: contains the initial switch settings

MacroPEMask(0, ...,k — 1): specifies selection of PEs 0,...,k — 1 within each macro-PE

SwitchMask(N, E, W, S): indicates which PEs participate in the setting of the switches
in each direction.

The macro-array instruction

macro-intruction LoadMeshRegister
(MemLoc: MemoryAddress) is {
[ MR := MemLoc ! ]; } - = Load macro-PE mesh registers

is emulated by the host array procedure:

procedure Agl.oadMeshRegister
(MemLoc: MemoryAddress) is {

[ MR := IsolateMacroPEMask !! ]; - —make coteries of macro-PEs
for (i = 0; i < NumberOfSwitches; i++) { ‘
[ A := MacroPEMask(z) !! |; - —select PE 1
[ X-PC := MemLoc Al ; - —send macro-switch setting
[ PROPAGATE |; - —let signal propagate
[A:=X1] - —input broadcast signal
[ MRCopy(2) := SwitchMask(z) A! |; } - —if set, close switch
[ MR := MRCopy !! }; } - —load mesh registers

The procedure executes five instructions per switch plus two cycles of overhead for a total
of 22. ' :

We now examine how the actual data transfer is carried out. Broadcast of k-length words
(from location MemLocSend to location MemLocReceive) by macro-PEs must be done bit-
by-bit, as all & PEs in each macro-PE are members of the same coterie. The locations
of the broadcasting and receiving macro-PEs are stored in variables BroadcastMask and
ReceiveMask, respectively. The macro-array instruction
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macro-instruction CoterieQutput
(MemLocSend: InputAddress, MemLocReceive: OutputAddress) is {

[ A := BroadcastMask !! |; - -select sending macro-PEs
[ X-PC := MemLocSend Al |; - —broadcast data

[ PROPAGATE |; . - —propagate

[ A := ReceiveMask !! ]; - ~select receiving macro-PEs
[ MemLocReceive := X Al |; } - —get data

is emulated by the host array procedure

procedure AgCoterieOutput
(MemLocSend: InputAddress, MemLocReceive: OutputAddress) is {
for (1 = 0; 1 < k; i4++) {

[ A := BroadcastMask !! l; - —select sending macro-PEs
[ A := A AND Macro-PE-Mask(z) !! |; - —select PE i for ith bit

[ X-PC := MemLocSend A! |; ‘ — —broadcast a bit

[ PROPAGATE |; ~ =let signal propagate

[ A := ReceiveMask !! |; - =select receiving macro-PEs
[ A:= A AND Macro-PE-Mask(z) ! |; - —select PE i for ith bit

[ MemLocReceive := X Al |; }} - —input from network.

This procedure executes 7k instructions to transfer a k-bit word.

The coterie network can also be used to emulate the mesh with reconfigurable buses
network: since the communication in that network takes place in only one dimension at a
time, each macro-PE can be partitioned into vk coteries corresponding to vk x 1 paths of
PEs. Since each of these strips can transmit independently, only vk broadcast cycles (rather
than k) are required.

Datapath Conversion. If one uses the permutation-routing techniques of Section 3.2
to implement datapath conversion on the CAAPP, the resulting algorithm consumes time
O(Vkk?) to perform the gauge size k conversion. However, one can exploit the broadcast
capability of the coterie network to derive a competing algorithm that consumes O(k?) steps.
The broadcast-based procedure begins by loading the appropriate masks from main memory
into cache. The first PE instruction isolates each macro-PE as a coterie by appropriately
setting the coterie network switches. Then sequentially, but parallel in the sense that the
same operation is being executed within each coterie, each bit of each PE is broadcast to its
destination. '
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AgGauge k is {
LoadMultigaugeMasks(k);
[ MR := IsolateMacro-PEMask !! |;
for (2 = 0; ¢ < k; t++)
for(j =0:7> ki 7++) {
[ A := Macro-PEMask(z) !! |;
[ X-PC := MemorySend(7) A! |;
[ PROPAGATE |;
~ [ A := Macro-PEMask(j) !! ];
[ MemoryReceive(i) :== X Al ]; } }

This procedure requires five instructions per bit: load the sender mask, put the output
bit into the transfer register, execute the broadcast, load the receiver mask, and get the bit
from the transfer register. Using this method, datapath conversion takes 5k% + 50 machine
cycles per k bits of memory.

Parallel-Prefix. The parallel-prefix operator can be implemented on the CAAPP by ap-
plying the standard two-phase algorithm to the tree network emulation presented in Section
6.1.C. It is possible, however, to modify that algorithm to take advantage of the broadcast
data transfer capability of the coterie network, thereby cutting in half the number of com-
munication steps. The following algorithm is a simplified and (slightly) more efficient version
of the one developed for the mesh with reconfigurable buses (see e.g. [16]).

The broadcast-based algorithm collapses two phases of the standard algorithms for com-
puting the parallel-prefix on a complete binary tree. Specifically, as data passes up the tree,
level by level, being combined with sibling data at each node, we broadcast the partial re-
sult computed at each node to all descendants of the right-hand sibling node. Through this
mechanism, the second phase of the standard algorithm (wherein partial results are passed
down the tree) is obviated.

This procedure is implemented by creating coteries during each phase i = 0,...,logk —1
(during which level 7 of the tree is emulated). At phase 7, each coterie contains: one PE at
level log k — i — 1, both of its child-PEs, and all of the descendants of its right child. These
coteries are constructed as follows. Recall that our emulation of the binary tree by the
coterie network has the same coterie PE emulate each tree node and the node’s right child.
The link from the left child to the parent therefore also contains the right child. Further,
for the emulation of the lower log vk levels of the tree, all descendants of the right child are

also part of that coterie. The emulation of the upper log vk levels of the tree is not quite so
direct, but is still straightforward.

The following operations take place during each phase i: j = 2!°8%~i-1 coteries are formed,
each consisting of 2° + 1 tree-nodes. One PE in each coterie broadcasts its data; the rest of
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the tree-nodes receive that data and combine it with their own. Using row-major indexing
within the macro-PEs, the PEs within the jth coterie during iteration i can be enumerated
as follows: the sender PE is computed by taking i 1s and adding j * 2°*!. The receivers
are the 2' PEs numbered consecutively from the sender. As in the previous procedures,
much of the computation occurs off-line: for each of the logk iterations, there resides in

memory masks for the coterie switches (PPSwitchMask) and the sending and receiving PEs
(PPSendMask,PPReceiveMask).

procedure AgParallelPrefix '
(Data: MemoryAddress, DataSize: WordLength) is {
for (: = 0; 7 < log k; i++) {

[ MR := PPSwitchMask(z) !! |; - =Create Coteries
for (j = 0; j < DataSize; j++) { ‘
[ A := PPSendMask(:) ! |; - =left sibling

[ X-PC := Data(z) A! ];
[ PROPAGATE |;

[ A := PPReceiveMask(z) ! ; — —right sibling and descendants
[ Temp(z) := X Al']; }
[ Combine(Data, Temp,j,*.Al) ]; } } - —=macro to perform * operation

This procedure requires log k iterations during which a mask is loaded (one instruction),
j bits transfered using the coterie network (57 instructions), and the data combined with
the current value (27 instructions). The total is log k(77 + 1).

7 Conclusion

We have presented, and illustrated on three examples, a strategy for emulating a family {8}
of k-bit-parallel SIMD processor arrays on its bit-serial instance H = A = B;. Our tech-
nique requires emulating a direct-product graph by H, and implementing ALU-computations
within its aggregates. Our goal has been a collection of consistent virtual machine instruc-
tion sets, indexed by the gauge size. The flezibility and conceptual clarity of the result are
accompanied by significant performance advantages. We believe that the most appropriate
method of assessing these advantages is to compare the cost of the various macro-instructions
we have implemented to the cost of achieving the same instruction functionality within a
purely bit-serial computation regimen. While an exact assessment would require details of
network topology and specifics of the node-architecture, the following big-O assessment in-
dicates that our emulation approach outperforms its bit-serial alternative when processing
k-bit data as follows.
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The following compares the time required for various k-bit operations when implemented
on a bit-serial hypercube, a bit-serial de Bruijn array, and a bit serial extended coterie array,
both using our emulation algorithms and using only straightforward software implementa-
tion, without emulations. We consider three classes of operations.

1. Operations that are chéap (O(1) circuitry) if multigauge behavior is implemented in
hardware [24] (e.g.: communication, bit-wise logic, memory reference)

Bit-serial Computation | Emulated Bit-Parallel Computation
Hypercube || O(k) steps per operation O(1) steps per operation

De Bruijn | O(k) steps per operation | O(log k) steps per communication
O(1) steps per other operation
ECN O(k) steps per operation | O(vk) steps per communication
O(1) steps per other operation

2. Operations that are moderate in cost (O(k) circuitry) if multigauge behavior is imple-
mented in hardware [24] (e.g.: arithmetic)

Bit-serial Computation | Emulated Bit-Parallel Computation

Hypercube || O(k) steps per operation O(log k) steps per operation

De Bruijn || O(k) steps per operation O(log* k) steps per operation
ECN O(k) steps per operation O(log k) steps per operation

3. Operations whose hardware complexity is substantial and detail-dependent [24] (e.g.:
shifting and multiplication)

Bit-serial Computation | Emulated Bit-Parallel Computation
O(k°")) steps per operation I O(log®V k) steps per operation

Note that operations in this class typically would not even be present in the native
instruction set of a bit-serial machine, but would be welcome in a bit-parallel one. Our
emulations achieve such operations at modest cost.

Of course, the above assessment ignores the cost of datapath conversion, which is incurred
each time a new gauge size is selected. As we noted earlier, in our implementation of macro-
instruction GAUGE k in Section 3.2, when one changes from bit-serial mode to gauge size k,
this overhead cost is never greater than the cost of k£ deterministic off-line permutation routes
within the emulated k-PE macro-PEs (multiplied by any overhead incurred when emulating
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these macro-PEs); indeed the particular form of the needed permutations often allows one
to route these permutations even more efficiently than general ones.

Because the problem of achieving multigauge behavior has been a vehicle for illustrating
a general philosophy of trying to achieve architectural enhancements algorithmically rather
than in hardware, we have taken no pains to optimize our multigauge virtual machines. Were
we to undertake such optimization, one path we would explore is estimating the instruction
mix of our bit-parallel machines and considering the possibility of emulating totally parallel
adders ([10], Section 4.7) in our macro-PEs, rather than carry-lookahead adders. Emulating
such adders would increase both the overhead of gauge conversion and the cost of bit-parallel
operations such as comparison, but in the presence of the appropriate instruction mix, this
might be a cost-effective tradeoff.
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