e T T e B e B e I e B e B

.

Real-Time Transaction Processing:
Design, Implementation, and
Performance Evaluation
Jiandong Huang
University of Massachusetts
Amberst, MA 01003

COINS Technical Report 91-41
May 1991

g—‘_‘

g £ E E E E E

REAL-TIME TRANSACTION PROCESSING:

DESIGN, IMPLEMENTATION, AND
PERFORMANCE EVALUATION

A Dissertation Presented
by

JIANDONG HUANG

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
May 1991

Department of Electrical and Computer Engineering

E%——-v

g——ﬁ

E E ' E ' E E

© Copyright by Jiandong Huang 1991
All Rights Reserved

This work was supported by the National Science Foundation under Grant IRI-
8908693, Grant DCR-8500332 and Grant CDA-8922572, and by the U.S. Office of
Naval Research under Grant N00014-85-K0398.

R

—

E

—

E- E ET

E E

E‘“‘ T

FE FE T ET

E"'ﬁ

REAL-TIME TRANSACTION PROCESSING:

DESIGN, IMPLEMENTATION, AND
PERFORMANCE EVALUATION

A Dissertation Presented
by

JIANDONG HUANG

Approved as to style and content by:

ohn A. Stankovic, Chairperson of Committee

Donald F. Towsley, Membgr

C. Mam Knshna,
e

Dhlri K. Pradha.nﬁMember

2//@»‘2‘“’

Israel Koren, Member

! . A

I,(Q,t_'f’& ((. (('MAJA

Keith R. Carver, Department Head >
Department of Electrical & Computer Engineering

E T B FE O BT

E— B

—_—

—

gﬁ"‘\

FE O E E FE B BT

ACKNOWLEDGEMENTS

It has been a great privilege for me to work with Professor John A. Stankovic.
He has been extraordinarily patient and supportive, having been always available
for discussion and responding speedily to research reports. I would like to take this
opportunity to thank him for his continued encouragement and guidance throughout

the course of my research.

Many thanks go to Professors Don Towsley and Krithi Ramamritham for work-
ing together in carrying out this research and for their constructive comments and
suggestions. My special thanks go to Dr. Walter Kohler for introducing me to the
CARAT research group and for his generosity and friendly advice. Thanks are also
due to Professors C. Mani Krishna, Dhiraj K. Pradhan, and Israel Koren, for being

on my dissertation committee and for their useful comments on this work.

I would like to acknowledge my officemates Asit Dan and Chia-shiang Shih for
helpful discussions during this research. My special thanks go to Purimetla Bhaskar
for his assistance in implementing a wait policy for an optimistic concurrency control
protocol on the RT-CARAT testbed. I owe my thanks to Ramesh Nagarajan for his

proof reading of part of this dissertation relative to grammar and clarity.

Special thanks go to Betty for sending out all the papers, and to the staff of RCF
and ECS for maintaining our RT-CARAT machines.

Finally, I would like to express my gratitude to my parents who have always
believed in me and encouraged me. And most importantly, I would like to thank my

wife, Ni Ding, for her invaluable support, understanding and love.

v

e E E BT OB oET

E E— ET BT B

ABSTRACT

REAL-TIME TRANSACTION PROCESSING:
DESIGN, IMPLEMENTATION, AND
PERFORMANCE EVALUATION

MAY, 1991
JIANDONG HUANG

B.S., JILIN UNIVERSITY OF TECHNOLOGY, CHINA
M.S., UNIVERSITY OF DETROIT
Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor John A. Stankovic

In addition to satisfying database consistency requirements, as in traditional
database systems, real-time transaction processing systems must also satisfy timing
constraints, such as deadlines associated with transactions. To meet timing con-
straints, transactions need to be well scheduled along the course of their execution.
The scheduling process involves multiple functional components in an entire database
system. It is further complicated by the extensive interactions among those compo-

nents.

In this dissertation, we take an integrated approach to study soft real-time
database systems where data consistency needs to be guaranteed by the notion of
serializability. We develop real-time algorithms for CPU scheduling, concurrency con-
trol, conflict resolution, deadlock resolution, transaction wakeup, transaction restart,
and buffer management. We also investigate the interactions among the processing
components and their combined effect on system performance. The goal is to maxi-

mize the number of transactions in meeting their deadlines, and also to maximize the

E B B

[

i —

F P F B ET OET o§ B BT £

total value that transactions impart to the database system. In order to evaluate the
algorithms and to better understand the operational behavior of real-time database
systems, we implement a real-time database testbed called RT-CARAT. Using the
testbed, we conduct various experiments with a wide range of parameter settings and

statistical validity.

Our main experimental results show that in the integrated system, the CPU
scheduling algorithm has the most significant impact in real-time transaction pro-
cessing; that concurrency control and the associated conflict resolution schemes are
the secondary, but still influential, factors; that optimistic concurrency control, com-
pared with two-phase locking, performs better when integrated with priority-driven
preemptive CPU scheduling, and further, the optimistic approach may not always
outperform the two-phase locking scheme which takes transaction priority into ac-
count in resolving data access conflicts; that the basic priority inheritance should not
be used in a real-time database that employs two-phase locking, but an extension
we developed, called conditional priority inheritance, works quite well; and that the
real-time buffer management, integrated with a recovery scheme, does not provide

significant gain over typical buffer management techniques.

g

E-—A«

A

—

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

ABSTRACT e e e e v

LIST OF TABLES e e e e xi

LIST OF FIGURES et e e e xii
Chapter

1. INTRODUCTION. e 1

1.1 What is Real-Time Transaction Processing? 1

1.2 Issues in Real-Time Transaction Processing 2

1.3 Overview of This Dissertation 4

1.3.1 Research Scopeand Goals 4

1.3.2 Research Contributions 7

1.4 Organization of the Dissertation 10

2. RELATIONSHIP TO OTHER WORK 11

2.1 System and Transaction Modeling 11

2.2 Prority Scheduling 12

2.3 Concurrency Control 15

3. REAL-TIME DATABASE ENVIRONMENT 17

3.1 Real-Time Database Model 17

3.2 Real-Time Transaction Model 19

3.3 RT-CARAT: A Real-Time Database Testbed 21

3.3.1 System Organization 21

3.3.2 System Parameters 25

3.3.3 Workload Parameters 25

REAL-TIME TRANSACTION PROCESSING UNDER TWO-PHASE

4.1
4.2

43

4.4

4.5

ON USING PRIORITY INHERITANCE IN REAL-TIME DATABASES

5.1
5.2

5.3

5.4

CULOCKING . - .

Introduction e
A Suiteof Algorithms

421 CPUScheduling
4.2.2 Conflict Resolution Protocols (CRP).
4.2.3 Policies for Transaction Wakeup
4.2.4 Deadlock Resolution
4.2.5 Transaction Restart

Test Environment o v v v v et e e e e e e e e

4.3.1 Parameter Settings
4.3.2 Performance Baseline and Metrics

Experimental Results

4.4.1 System Performance Measurements
442 CPUScheduling

443 Conflict Resolution
4.4.4 CPU scheduling vs. Conflict Resolution
445 CPU Bound vs. I/O Bound Systems

4.4.6 Sensitivity of Different Value Functions

ConcluSIoONS « -« « v v v e e e e e e e e e e e e e e e e e e

Imtroduction e
Transaction Scheduling Under Two-Phase Locking

5.2.1 The Problem of Priority Inversion
5.2.2 Priority Inheritance (PI)
5.2.3 Priority Abort (PA)
5.2.4 Conditional Priority Inheritance (CP)
5.2.5 Priority Ceiling Protocol

Test Environment o i i e e e e e e e e

5.3.1 Parameter Settings
5.3.2 Performance Baselines and Metrics

Experimental Results

5.4.1 Data Contention e e e e e e e e e

viii

28

28
29

29
30
34
35
37

38

38
39

40

41
43
46
49
49
50

51

61

61
62

62
64
65
66
67

67

68
69

71
71

£

L o B

- b .-

—

E

E . e . b E_

S

el e v

e EC & BT O BT BT

g_"‘"i

E B FE T BT

5.4.2 Sensitivity of Threshold (k) Settings
5.4.3 Deadline Distribution
5.4.4 Transaction Length
545 CPUBoundSystem

5.5 ConclusSions . . . v v v v e e e e e e e e e e e e e e e e e e

BUFFER MANAGEMENT

6.1 Imtroduction ¢ i i i i e e e e e e e e e e
6.2 The Buffer Model Used in RT-CARAT
6.3 Buffer Management,

6.3.1 Buffer Allocation
6.3.2 Buffer Replacement

6.4 Implementation
6.5 Test Environment
6.6 Experimental Results

6.6.1 System Calibration
6.6.2 Buffer Management with Buffer Allocation

6.6.2.1 The Effectiveness of Buffer Allocation Schemes . .
6.6.2.2 Buffer Allocation vs. Conflict Resolution
6.6.2.3 Buffer Allocation vs. CPU Scheduling

6.6.2.4 DisCussions ettt e u e e
6.6.3 Buffer Management with Buffer Replacement

6.7 Concluding Remarks.,

OPTIMISTIC CONCURRENCY CONTROL

7.1 Imtroduction
7.2 Optimistic Concurrency Control for Real-Time Transactions . . .

7.2.1 Principle of Optimistic Concurrency Control
7.2.2 Optimistic Concurrency Control Using Locking (OCCL) . .

7.2.2.1 Serial Validation-Write: OCCL-SVW
7.2.2.2 Parallel Validation-Write: QCCL-PVW

7.2.3 Some Implications

.......................

7.2.3.1 Locking Mechanism
7.2.3.2 The Starvation Problem

73
74
75
m

78

88

88
89
91

92
94
96

97
100

101
102

103
105
106
107

108
110

121

121
123

123
124

125
126

127

127
129

7.2.3.3 Implementation Overhead
7.2.4 Conflict Resolution
7.3 Test Environment
74 Experimental Results
741 ProtocolOverhead
742 DataContention
7.4.3 Deadline Distribution
7.44 1/O Resource Contention
7.4.5 Transaction Length e e e e e e e e e e
7.5 Conclusions
SUMMARY AND FUTURERESEARCH
8.1 Summary and Conclusions
82 FutureExtensions
BIBLIOGRAPHY,
X

129
130

131
134

134
135
138
139
140

141

152

152
155

158

E__ & _ [_. & E

o

L e ... b

|

£ B

—

—

&

€ E 7 E E 7 F T B

Table
3.1
3.2
4.1
4.2
5.1
5.2
6.1
7.1
7.2
7.3

LIST OF TABLES

. Page
System Parameters 25
Workload Parameters o v v oot e 27
Experimental Settings 0o 39
System Performance Measurements 42
Experimental Settingso 68
Policies Examined« ¢ ot it i e e 69
Experimental Settings00 98
System Parameters 132
Workload Parameterst 132
Schemes Examined 133

LIST OF FIGURES

Figure
3.1 Real-Time Database Model
3.2 Value Functions for Transaction Tyand T,
3.3 RT-CARAT processes and message structure
3.4 Some Real-Time Related Functional Components in RT-CARAT . .
4.1 CPU Scheduling, w/r = 2/6,T7(12,4,10),a=3.
4.2 CPU Scheduling, w/r = 2/6,T(12,4,10),a = 3
4.3 CPU Scheduling, w/r = 2/6,T(12,4,10),a = 3
4.4 Deadline Distribution under EDF
4.5 Concurrency Measurement, w/r = 2/6,T(z,4,10),a = 3
4.6 CPU Scheduling, w/r = 2/6,T(12,4,10)
4.7 CPU Scheduling, w/r = 2/6,T(z,4,10),a = 3
4.8 CPU Scheduling, T'(12,4,10),a = 3
4.9 CPU Scheduling, T(12,4,10),¢=3
4.10 Conflict Resolution, w/r = 8/0,T(z,4,10),a=3
4.11 Conflict Resolution, w/r = 8/0,7(16,4,10),a =3
4.12 Conflict Resolution, w/r = 8/0,7(16,4,10)
4.13 Conflict Resolution, T'(16,4,10),¢=3

4.14 CPU Scheduling Vvs. Conflict Resolution,
w/r =8/0,T7(12,4,10),a=3,

4.15 I/0 Bound System, w/r = 8/0,T(12,4,0),a=4.
4.16 Value Functions, w/r = 2/6,T(12,4,10)
5.1 Data Contention,z =6,a=4,h=2
5.2 Data Contention,z =6,a=4,h=2
5.3 Data Contention,z =6,a=4,h=2
5.4 Data Contention,z =6, a=4,h=2
5.5 Data Contention,z=6,a=4,h=2
5.6 Data Contention,z=6,a=4,h=2
5.7 Data Contention, z =6,a=4,h=2
5.8 Data Contention,z =6,a=4,h=2
5.9 Sensitivity of Threshold, z =6,P, =06,a=4
5.10 Sensitivity of Threshold, z =6,P, =06, a=4¢

............

............

............

..................

59
60
60
80
80
81
81
82
82
83
83
84
84

[

£ . B

E__

e e b B _

Y e

£ £

A Y T

E’"-‘a

E & E B

5.11

5.12
5.13
5.14
5.15
5.16
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Sensitivity of Threshold, z =6,P, =06,a=4
Deadline Distribution, z =6,P, =06,h=2
Transaction Length, P, =0.2,a=4,Ah=2
Long. Transactions, z =16,a=4,h=2.
Mixed Length, z = avg[4,8],P, =06,h=2
CPU Bound System, P, =0.2,a=4,h=2
The Buffer Model
System Calibration, Uniform Access

System Calibration, Skewed Access

System Calibration, Uniform Access
System Calibration, Skewed Access
System Calibration, Uniform Access
System Calibration, Skewed Access
Comparisons of Allocation Schemes
Comparisons of Allocation Schemes
Comparisons of Allocation Schemes
Comparisons of Allocation Schemes
Allocation vs. Conflict Resolution
Allocation vs. Conflict Resolution
Allocation vs. CPU Scheduling
Allocation vs. CPU Scheduling
Allocation vs. CPU Scheduling
Comparisons of Replacement Schemes.
Replacement vs. Conflict Resolution
Concurrency Control Overhead
Data Contention, MPL=8,z=6,aa=5...............
Data Contention, MPL =8,z =6,aa=5
Data Contention, MPL =8,z =6,aa=25
Data Contention, MPL =8,z =6,a=5
Data Contention, MPL =8,z =6, =5
Data Contention, MPL =8,z =6,aa =35
Data Contention, MPL =8,z =6,a =5
Data Contention, MPL =8,z =6,a =25
Data Contention, MPL=8,z=6,a=5...............
Deadline Distribution, MPL =8,z =6, P, = 0.2
Deadline Distribution, MPL =8,z =6,P, = 0.8

...............

...............

...............

...............

...............

..........

85

85

86

86

87

87

80
112
112
113
113
114
114
115
115
116
116
117
117
118
118
119
119
120
143
144
144
145
145
146
146
147
147
148
148
149

7.13 Deadline Distribution, MPL = 4,2 =6,P, =02
7.14 Deadline Distribution, MPL =4,z =6,P, =0.8
7.15 Mixed Transactions, MPL = 8,z = [4,8},a=5
7.16 Mixed Transactions, MPL = 8,z = [4,8],P, = 0.2,a =2

xiv

149
150
150
151

E B B B B

g'—"‘ al

N

£ OF T ET BT BT o€ € €

E o B

CHAPTER 1

INTRODUCTION

In this introduction the nature of real-time transaction processing is examined,
followed by an identification of some of the issues unique to the study of real-time

transaction processing. Then, this dissertation and its major results are summarized.

1.1 What is Real-Time Transaction Processing?

A real-time database is a database system where (at least some) transactions
have explicit timing constraints such as deadlines. In such a system, transaction
processing must satisfy not only the database consistency constraints but also the
timing constraints. In other words, real-time databases are different from traditional
databases in that the correctness of a transaction execution depends not only on data
integrity, but also on the time frame in which the results are produced. Real-time
database systems are becoming increasingly important in a wide range of applications
where information needs to be processed in a timely manner. Examples of real-
time database systems include computer integrated manufacturing systems, program
trading in the stock market, radar tracking systems, command and control systems,

and air traffic control systems.

With regard to timing constraints, real-time database systems can be catego-
rized as hard or soft. Hard real-time database systems are those that must absolutely
guarantee that transactions will make their deadlines; otherwise, catastrophic conse-
quences may result. A real-time database used in a nuclear power plant, for example,
is such a system. The database may store various control parameters for a reactor
and a huge amount of information for describing the state of the power plant. Trans-
actions that respond to the control messages, for instance, must be completed within

the specified time period, or fatal accidents may occur. In hard real-time database

systems, the requirements on data consistency may not be absolute in certain situa-
tions. For example, real-time data, such as those arriving from sensors, have limited
lifetimes - they become obsolete after a certain point in time. Consider two transac-
tions, update and read, which periodically update and read temperature and pressure
of a nuclear reactor. Since the read transaction works with real-time data, it may
read either of the two parameters from the database even though the update transac-
tion has not completed its update operations on both parameters. Thus, if necessary,
real-time transaction processing in hard real-time databases may emphasize meeting
timing constraints over maintaining data integrity. Hard real-time database systems
require very careful design and implementation at all levels so that the execution
of transactions is predictable, thereby translating into the ability to guarantee that

timing requirements can be met.

In contrast, soft real-time database systems do not require absolute guarantees
of meeting transaction deadlines. In such a system, missing a transaction deadline
is not catastrophic, but the value of completing the transaction may diminish. An
example of soft real-time database systems is program trading in the stock market. A
transaction for updating trading information may need to be executed periodically. If
the transaction execution exceeds the specified time interval, it may affect the trading
activities, but will not result in catastrophic consequences. In soft real-time databases,
guarantee of data consistency can be more desirable than that of timing constraints.
Usually, research into algorithms and protocols for such systems explicitly address
deadlines and make a best effort at meeting deadlines.

Clearly, real-time databases occur over a wide spectrum of applications, from
hard real-time to soft real-time, and from stringent data consistency requirements to
relaxed situations. This thesis focuses on soft real-time database systems where data

consistency needs to be guaranteed using the notion of serializability [Bern87).

1.2 Issues in Real-Time Transaction Processing

Most research on traditional databases focuses on issues like database consistency,
but not on meeting any time-constraints associated with transactions. On the other

hand, real-time systems research deals with task scheduling to guarantee responses

2

L oL L

L L

. b e b

L

Er—

é—*W

—_—

£

E B E B ET

within deadlines, but has largely ignored the problem of guaranteeing the consistency
of shared data. In real-time transaction processing, many new and challenging issues
arise as both data consistency and timing constraints are taken into account. In the

following, we highlight some of these issues.

Transaction characterization: In traditional databases, a transaction is com-
monly characterized by atomicity, consistency, isolation and durability, i.e., the
so-called ACID property. However, ACID is not sufficient in describing real-time
transactions. In real-time database systems, a deadline may be associated with trans-
actions which specifies the time by which the transaction must complete. In addition,
transactions in real-time systems may be assigned different priority levels, reflecting

the degree of importance in the real world.

Transaction scheduling: Because of timing constraints imposed on transactions,
scheduling becomes an important part of real-time transaction processing. In tradi-
tional real-time systems, task scheduling usually takes place at individual processing
components such as CPU and I/O, but scheduling processes are relatively independent
of each other. Transaction scheduling is different from task scheduling. It involves di-
rect interactions among various processing components across the entire system. For
instance, transaction execution may go through CPU scheduling, concurrency con-
trol, buffer management, disk scheduling, deadlock detection, and commit procedure.
In this processing environment, transaction scheduling needs to deal with all these
processing components so that real-time transactions can be treated in a uniform
way in meeting their timing constraints. Thus, the problem of transaction scheduling
i1s not merely to develop algorithms that directly address real-time constraints for
each individual component, but also to integrate them in a synergistic fashion. It is

the dynamic interactions among the different processing components that makes the
scheduling difficult.

Concurrency control: Besides enforcing consistency requirements, as used in tra-
ditional databases, concurrency control also participates in transaction scheduling in
real-time database systems. To schedule real-time transactions, a concurrency control
protocol should produce a schedule that reflects the priority of concurrent transac-

tions. Unfortunately, none of the existing concurrency control protocols developed for

traditional databases directly support this kind of priority-driven concurrency con-
trol. For example, the use of two-phase locking in real-time database systems may
lead to a blocking problem where a high priority transaction must wait for a low pri-
ority transaction due to an access conflict. The effect of blocking may jeopardize the
scheduling efforts for real-time transactions. Thus, it is necessary to develop real-time

oriented concurrency control protocols that can support transaction scheduling.

Similarly, other processing components in real-time database systems also need
to be investigated in order to support the systemwide transaction scheduling. Here

we give one more example.

Buffer management: Data buffering plays an important role in reducing transac-
tion response time in disk-resident database systems. In traditional database systems,
distributing the available buffer frames among concurrent transactions and capturing
transaction reference behaviors are the main concerns in buffer management. In a
real-time environment, however, the buffer management may need to further consider
the timing constraints imposed on referencing transactions. For example, it may be
necessary to allocate available buffer frames favoring transactions with earlier dead-
lines. The impact of buffer management on supporting real-time transactions needs
to be studied. |

Performance evaluation: Since transaction scheduling involves various processing
components, it is inadequate to simply evaluate scheduling schemes for any particular
processing component in isolation. Rather, the effect of process interaction on overall
system performance needs to be considered. Furthermore, a challenging task that
1s often ignored in performance studies is to examine the impact of the overheads

involved in protocol implementation.

1.3 Overview of This Dissertation

1.3.1 Research Scope and Goals

Real-time transaction processing can be studied from several different perspec-

tives. This largely depends on how the system is specified in terms of consistency

|% [

L

R A

L

L L

£ E . B B _

o

0 B

requirements and {iming constraints. This thesis considers centralized secondary stor-
age real-time database systems, where database consistency is defined by the notion
of serializability [Bern87) and the timing constraints associated with transactions are

soft real-time.

Our objective in this thesis is to design and to evaluate algorithms and pro-
tocols in order to support real-time transaction processing in meeting consistency

requirement and timing constraints. This thesis includes six aspects:

1. Transaction characterization

As an initial part of this study, we consider the characterization of real-time
transactions. In order to model real-time transactions, we introduce a value
function which captures both transaction deadline and importance. We are
interested in the relation between deadline and importance in protocol design

and their combined effect on system performance.

Given the transaction model, the performance goal is to maximize the total
value that transactions impart to the system and to maximize the deadline

guarantee ratio, i.e., the percentage of submitted transactions that meet their

deadlines.

2. Taking an integrated approach

Because of the strong interactions among the various processing components in
real-time database systems, we adopt an integrated approach to study real-time
transaction processing. An integrated approach is necessary because even a sin-
gle entity in the system which ignores timing issues may undermine the best
efforts of algorithms which do account for timing constraints. In total, the func-
tional components that we have studied in this thesis include: CPU schedul-
ing, concurrency control, conflict resolution, transaction restart, transaction
wakeup, deadlock detection/resolution, and buffer management. The focus of
this study is to understand the effect of these processing components on sys-

tem performance and further to identify the dominant factors in this integrated

environment.

3. Using priority inheritance

Priorit}; inversion is a special problem caused by the interaction between
priority-driven preemptive CPU scheduling and concurrency control operations.
We investigate this scheduling problem for real-time database systems that use
two-phase locking [EswaT76, Stea76] for concurrency control. We examine two
‘basic schemes for addressing the priority inversion problem, one based on pri-
ority inheritance and the other based on priority abort. We seek answers to the
following questions: “Is the priority inheritance scheme appropriate to solve the
priority iﬁversion problem in real-time da.tabase systems?”, “ Which mechanism,
priority inheritance or priority abort, is better?”, and “ Is there an approach

better than these two basic schemes?”

. Data buffering

Data buffering is another important aspect of database systems. In a real-time
environment, the goal of data buffering is not merely to reduce transaction
response time, but more importantly, to increase the number of transactions
meeting their timing constraints. We study this processing component based
on the existing organization of a real-time database testbed, especially in con-
nection with a recovery scheme using after-image journaling. Here the principal
questions are, “How can the transaction timing information be utilized in buffer
management?” and “How effective will a real-time buffer management scheme

be in an integrated real-time system?”.

. Concurrency control

In pursuing the goal of enforcing serializability, we examine two basic concur-
rency control approaches, two-phase locking (2PL) and optimistic concurrency
control (OCC) [Kung81]. 2PL has been well studied in traditional database
systems and is being widely used in commercial systems, while OCC has the
property of deadlock freedom and the potential for a high degree of parallelism.
Hence a natural question is, “Which of these two approaches is more suitable

for real-time transaction processing?”.

We also investigate 2PL and OCC in the context of the starvation problem.
Because of their higher probability to conflict with other transactions, long

transactions are likely to be repeatedly restarted and thus have less chance to

6

|§;

L

E

L .

L. b

E

.

E

@—4—:

meet their deadline than short transactions. In traditional database systems,
the starvation problem is usually addressed by limiting the number of trans-
action restarts. However, this resolution scheme is inappropriate for real-time
transactions, since it may undermine the efforts of transaction scheduling. To
cope with the starvation problem in real-time database systems, there is a need
to incorporate proper scheduling schemes with proper concurrency control pro-

tocols.

. Implementation and experimentation

Another aspect of this thesis is to build a real-time database testbed. The
implementation work is twofold: First, the testbed is built as a flexible tool
for testing and performance evaluation of proposed algorithms and protocols;
second, the testbed captures the system overheads, which are largely ignored in
simulation studies, thus providing an improved understanding of the functional

requirements and operational behavior of real-time database systems.

1.3.2 Research Contributions

The following is a summary of the major contributions of this thesis:

e Testbed implementation

We have built the first real-time database testbed. Using the testbed, we con-
ducted various experiments, with a wide range of parameter settings and statis-
tical validity, to study and evaluate all the protocols and algorithms developed
in this study. The implementation work and experimental studies have provided
a deeper insight into many of the issues encountered in the design of real-time
database systems. For example, our experimental studies show that the phys-
ical implementation schemes required for optimistic concurrency control have
a significant impact on the protocol performance over logical operations con-
sidered in simulation studies. This result becomes apparent only because we
considered the implementation details and since ours is a testbed, the overheads

of the implementation manifest themselves in the performance figures.

o System integration

We have taken an integrated approach to develop real-time algorithms for CPU
scheduling, concurrency control (based both on locking and on optimistic con-
currency control), conflict resolution, deadlock resolution, transaction wakeup,
transaction restart, and buffer management. In identifying the dominant factors

in such an integrated environment, the experimental results indicate

- that the CPU scheduling algorithm has the most significant impact on
real-time transaction processing. It may improve the transaction deadline
guarantee ratio by as much as 30%. In addition, it has been observed,
for instance, that switching CPU scheduling from a multi-level feedback
queue algorithm to an earliest-deadline-first policy completely reverses per-
formance ordering of two-phase locking and optimistic concurrency control

protocols;

- that concurrency control and the associated conflict resolution schemes
are secondary, but still influential, factors in the integrated system. For
example, some real-time oriented conflict resolution protocols may achieve
up to 18% performance improvement with respect to transaction deadline

guarantee ratio; and

- that the real-time oriented buffer management schemes do not signifi-
cantly improve system performance over non real-time buffer management

schemes.

We have also investigated the interaction between CPU scheduling and concur-
rency control in the context of priority inversion. To address this problem, we
developed a conditional priority ‘inherita.nce scheme that capitalizes on the ad-
vantages of both of the priority inheritance scheme and priority abort scheme.

We have clarified through experiments

- that the basic priority inheritance technique is sensitive to the priority
inheritance period. Due to the life-time blocking problem under two-phase
locking, the basic priority inheritance scheme, which has been shown to

be effective in real-time operating systems, does not work well in real-time

|‘<

.. o e L. L @ BE._

L__ E

L

E‘*“’W

-

E

S e T S S

E““? g"“““ g—"—'x

database systems. Rather, the conditional priority inheritance scheme that
we developed and a simple priority abort scheme perform well for a wide

range of system workloads; and

- that blocking resulting from priority inversion is a more serious problem
than wastage of system resources. This is especially true when transaction

deadlines are loose or when a system is CPU bound.

¢ Transaction characterization

We have developed and studied a rea.l—timé transaction model which captures
both transaction deadline and criticalness (importance). The experimental re-
sults show that these two factors, criticalness level and deadline djstributions,'
strongly affect transaction performance. Under our value weighting scheme,
criticalness is a more important factor than the deadline with respect to the
performance goal of maximizing the deadline guarantee ratio for high critical
transactions and maximizing the value imparted by real-time transactions. This
has important implications for real-time scheduling research, which to date has
focussed primarily on time constraints independent of the value of tasks (trans-

actions).

Real-time optimistic concurrency control

We have proposed an optimistic scheme, in connection with priority-driven pre-
emptive CPU scheduling, as an alternative to two-phase locking for real-time
concurrency control. Based on a locking mechanism to ensure the correctness of
the OCC implementation, we developed a set of optimistic concurrency control
protocols. To address the starvation problem, we also developed a weighted pri-
ority scheduling algorithm which is transaction length and deadline sensitive.

Our experimental studied indicate

- that optimistic concurrency control, when integrated with priority-driven
CPU scheduling, performs better than two-phase locking. This result is

contrary to conventional wisdom in database systems;

- that the optimistic approach may not always outperform the two-phase

locking scheme which takes transaction priority into account in resolving

data access conflicts. This is due to the blocking effect caused by the

locking mechanism adopted in the OCC implementation; and

- that integrated with the weighted priority scheduling algorithm, optimistic
concurrency control exhibits greater flexibility in coping with the starva-

tion problem than two-phase locking.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes
the relationship of this thesis to previous and concurrently ongoing work. In Chapter
3, a real-time database model and a real-time transaction model are developed. In
addition, the system architecture of the real-time database testbed that is built and
used for performance evaluation in this study is presented. Chapter 4 describes the
work on real-time transaction processing using two-phase locking, in which a set of
integrated protocols and their combined effects are examined. As a further inves-
tigation on the interaction between priority-driven CPU scheduling and two-phase
locking concurrency control, the problem of priority inversion is examined in Chapter
5. In Chapter 6, the problem of buffer management in real-time database systems is
discussed and the algorithms for real-time oriented buffer allocation and replacement
are developed and evaluated. In Chapter 7, real-time optimistic concurrency con-
trol is studied and is further compared with the two-phase locking scheme. Finally,

Chapter 8 contains conclusions and directions for future research.

10

L. E__

E E

E

e L.

E . B E__

-

g““"ﬂ

g‘_‘"ﬁ

E

E~ ET E T ET E

[;E”‘_-“T

CHAPTER 2

RELATIONSHIP TO OTHER WORK

Real-time rtransa.ction processing spans a w;'de area of research, from real-time
systems to database management. Besides the related work in those “traditional”
research fields, recently there has also been some work in the area of real-time trans-
action processing. This chapter describes the relationship of this dissertation work
to previous or parallel work in terms of system and transaction modeling, priority

scheduling, and concurrency control.

2.1 System and Transaction Modeling

In modeling real-time database systems, this thesis, and most other research
[Stan88b, Sha88, Abbo88a, Abbo88b, Liu88, Abbo89, Care89, Son89, Son90, Hari90a,
Chn90, Abbo90, Hari90b, LinS90, Jau90, Chn91], assume that timing constraints are
directly associated with transactions. In such a model, the transaction is the process
entity in the system and transaction scheduling is done to ensure the deadlines are
met. An alternative model has been proposed in [Kort90], where timing constraints
are applied to consistency constraints. In this model, consistency constraints are
represented by database states which faithfully reflect the states of outside world.
Any change reflected on a database state may render a consistency constraint invalid,
and the state may need to be restored within a specific time period. The system
restores the state by choosing one or more transactions from a pre-defined library.
The execution of selected transactions may futher invalidate other constraints. But
the system must eventually return the entire database to a conmsistent state. This
model introduces another framework in modeling real-world systems. However, more

concrete work needs to be done in integrating and supporting such a system.

11

In modeling real-time transactions, an unique aspect of this thesis is that it
considers not only transaction deadline but also importance. To model the two char-
acteristics of real-time transactions, a value function is developed. This was influenced
by the concept [Lock86] that completion of a process has a value to the system which

is expressed as a function of time.

2.2 Priority Scheduling

In early work on real-time transaction processing, different eligibility, priority
assignment, and concurrency control algorithms for a main-memory database system
was studied in [Abbo88b]. The simulation results show that under the assumption
of knowing transaction run time, using an eligibility test to screen out transactions
that have missed or are about to miss their deadlines greatly improves system perfor-
mance, that earliest-deadline is tl.1e best overall for priority assignment, and that the
conditional restart policy works the best for concurrency control. Since this was the
first study of real-time scheduling for database systems, some issues were not well ad-
dressed. For example, only three transaction processing components were considered

in the study, and the effect of their interaction was not examined.

A theme of our thesis is to take an integrated approach to develop priority-
based protocols and algorithms for major processing components which constitute a
real-time database system. This study investigates not only the performance of each
pr?cessing component, but also the interaction among different components and their

combined effect on system performance.

In parallel, a systemwide priority scheduling approach was also adopted in
[Care89, Jau90]. In [Care89], a real-time database system with three priority-based
resources - CPU scheduler, I/O scheduler and buffer manager (including admission
control) - was studied. It was shown through simulation that regardless of whether the
system bottleneck is the CPU or the disk, priority scheduling of the critical resource
must be complemented by a priority-based buffer management policy. However, the
conclusion is questionable because of the inadequate design of the disk scheduling al-

gorithm (see the review on disk scheduling below). The work was extended by further

12

e L. L. [L [

E_

E B

—

—

-

e

e s I A

developing algorithms for buffer management and by examining priority-based con-
currency control schemes in [J au90]. The simulation results indicate that a database
system can be made to behave like a preemptive-resume server through the use of
appropriate priority scheduling algorithms in individual components. While this was
a good study on exploring the multiplicity of system components, some important is-
sues were not addressed. For instance, a non-preemptive, priority-based round-robin
algorithm was the only CPU scheduling scheme used throughout the study. It was
not clear how the scheme relates to other real-time oriented scheduling algorithms,
such as priority-base preemptive ones. Another éxa,mple is that the relation between

CPU scheduling and concurrency control was not examined.

Priority inversion [Sha87] is a scheduling problem that occurs due to resource
sharing during priority-driven preemptive CPU scheduling. This problem was first:
investigated in real-time systems. The basic approach proposed to rectify the problem
uses the priority inheritance protocol [Sha87), where a task blocked by a lower priority
task imparts its priority value to the task holding its needed resource. The idea is:
to allow the low priority task to run and release its resources quickly so that the
higher priority tasks can continue. The priority ceiling protocol [Rajk89, Chen90) is
another scheme developed to solve the priority inversion problem. Under this scheme,
the priority inversion is bound to no more than one critical section execution time.
The scheme also has the property of deadlock freedom. The performance studies
based on the rate-monotonic scheduling framework [Rajk89) have demonstrated that
these protocols, applied to the shared resources accessed via semaphores, provides a

significant performance advantage.

In early work on the priority inversion problem in real-time transaction process-
ing, a priority abort scheme was used in [Abbo88b), where priority inversions are
avoided by simply aborting the lower priority transaction. However, the scheme may
lead to a high transaction abort rate. This may become a serious problem when a
system already contains highly utilized resources. A priority cetling protocol was also
considered [Sha88, Son90]. However, this scheme requires a prior knowledge about
data to be accessed by real-time transactions. This condition appears to be too re-
strictive to some real-time database systems where data access is random. Moreover,

the scheme becomes extremely conservative, with respect to the degree of concurrency,

13

if transactions can access any data objects in the database. In [Son90], priority ceiling
protocol was evaluated and compared with two-phase locking in a distributed (soft-
ware) prototyping environment. However, more work on the performance evaluation

needs to be done before any conclusion can be drawn from this study.

This thesis investigates the priority inheritance technique in the context of real-
time transaction processing. We compare the priority inheritance scheme with the
priority abort scheme and further develops a combined abort and priority inheritance

scheme which capitalizes on the advantages of the two basic schemes.

Disk scheduling is one aspect of real-time transaction processing for secondary
storage database systems [Abbo89, Care89, Abbo90, Chn90, Chn91). In [Abbo89)], a
SCAN -algorithm based on transaction priority was suggested, where the scan direc-
tion is determined by the I/O request with the highest priority. It was demonstrated
that when the I/O system is highly utilized, using the priority-based I/O scheduling
yields significant performance gains over scheduling I/O requests in a FIFO man-
ner. The algorithm was further extended to take deadline feasibility into account
[Abbo90]. A priority-based SCAN algorithm was also proposed in [Care89]. How-
ever, because under the algorithm the lower priority requests along the SCAN direc-
tion are not served, the average seek time can be worsen as the number of priority
levels increases, thus resulting in worse performance on average. Proposed in [Chn90)
were two disk scheduling algorithms which take both transaction deadline and seek
distance into account. The performance studies indicated that the two algorithms
perform consistently better than the real-time disk scheduling algorithms suggested
in [Abbo89, Care89, Abbo90].

Besides disk scheduling, I/O subsystem architectures were also explored in the
real-time database context. A model for handling read requests differently from write
requests was investigated in [Abbo90). This model buffers write requests in a separate
queue from read requests. Two techniques for managing the buffer were examined
and both found to be effective. In [Chn91], a mirrored disk architecture was studied.
The performance results showed that a mirrored disk I/O subsystem can decrease the

fraction of transaction that miss their deadlines over a single disk system by 68%.

14

£ L B

£

| A

L

E_

E__. E_. E___

i - B N

.

%_"—1

T F o E B

This thesis is experimental in nature and uses a real-time database testbed. In the
testbed, unfortunately, disk access is under the control of disk controllers instead of
the operating system, i.e., there is no way to directly manipulate disk access through
the system utilities. Thus, real-time I/O scheduling is not specifically considered
in this thesis. However, through careful design of the experiments, we are able to
determine the impact of not doing real-time I/O scheduling on system performance.
Also, the testbed itself can be used to assist and to verify the simulation studies on

disk scheduling [Chn90, Chn91].

2.3 Concurrency Control

Most research work on real-time concurrency control [Stan88b, Sha88, Abbo88a,
Abbo88b, Son89, Hari90a, Hari90b, Son90, LinS90, Jau90), including this thesis, fol-
lows the notion of serializability [Bern87], while some work considers the relaxation of
consistency requirements based on the argument that timing constraints may be more

important than data consistency [Stan88b, Liu88, Son88, Vrbs88, Lin89, Song90].

In enforcing serializability, two-phase locking has been used as the basis of
real-time concurrency control in most work [Stan88b, Sha88, Abbo88a, Abbo88b,
Care89, Son89, Son90, LinS90, Jau90]. This is not surprising since 2PL has been
well studied in traditional database systems and is being widely used in commercial
databases. But 2PL, on the other hand, has some inherent problems such as the
possibility of deadlocks and long and unpredictable blocking times. These appear
to be serious problems for real-time transaction processing, since in a real-time en-
vironment, transactions need to meet their time constraints as well as consistency

requirements.

As an alternative of two-phase locking, this thesis proposes an optimistic concur-
rency control approach in connection with priority-driven CPU scheduling. We focus
on the development of protocols for physical implementation and on the performance

study of the impact of the overheads involved in the implementation.

In parallel, real-time optimistic concurrency control was also studied in [Hari90a,
Hari90b). In particular, priority-based conflict resolution mechanisms, such as pri-

ority wait, were incorporated in the optimistic approach. The proposed schemes are

15

carefully examined through performance evaluation. It was shown that the real-time
optimistic concurrency control outperforms the two-phase locking which aborts lower
priority transaction in resolving conflict, and that using priority information in con-
flict resolution further improve the perfbrma.nce of the optimistic concurrency control.
However, the results are based on simulation, where optimistic concurrency control
1s carried out at the logical level and detailed implementation issues at the physical
level are ignored. In practice, the implementation schemes and the corresponding

overheads may affect the protocol performance.

Another parallel work is the development of an algorithm that functions in-
between two-phase locking and optimistic approach [LinS90]. The goal is to execute
transactions with higher priorities first so that high priority transactions are never
blocked by uncommitted low priority transactions, while lower priority transactions
may not have to be aborted despite conflicting operations. This is achieved by dy-
namically adjusting the serialization order of active transactions. Since the algorithm

has not been evaluated, its performance is not clear at this point.

It should be pointed out, as concluding the chapter, that all the performance
studies in the area of real-time transaction processing were based on simulation where
implementation issues and their overheads were largely ignored. A unique aspect of
this thesis is that it takes an experimental approach. This is important because
implementation and experimentation provide deeper insight into system design and

performance studies.

16

L

L__

£ _

E -

E B E

E- E - &E T B E

E g

£ - E— E EC E ET

CHAPTER 3

REAL-TIME DATABASE ENVIRONMENT

The real-time transaction processing environment considered in this thesis will
now be described. A real-time database model, wiﬁch contains major functional com-
ponents and is sufficient to demonstrate interactions among the processing compo-
nents, will first be discussed. This will be followed by the development of a real-time
transaction model which captures both transaction deadline and importance. In
connection with the proposed models, the overall structure of a real-time database
testbed, which is implemented on VAX/VMS machine and used for performance stud-

jes in this thesis, will then be presented.

3.1 Real-Time Database Model

Figure 3.1 depicts our real-time database model from the perspective of trans-
action flow. This model is an extended version of the model used in [Agra87] and

accurately describes the way a transaction executes in database systems.

The model represents a closed queueing system where a fixed number of users
submits transaction requests one after another, with a certain think time in-between.
This model captures many applications in the real world. For example, in an airline
reservation system, there is a fixed number of computer terminals. The airline clerk
at each terminal may check a flight, reserve a seat, or cancel a reservation for cus-
tomers. After submitting a request to the system, the clerk waits for a result. He may
submit another request after getting a response from the previous one. Of course,
this model does not capture all applications. For instance, an open system model is

more appropriate for a process control system.

As shown in Figure 3.1, any new or re-submitted transaction is assigned a priority

that orders it relative to other concurrent transactions. Before a transaction performs

17

Users

trans. request A

Restart
re-submit) terminate
Priority request/release
assignment a data object abort .
___@ | C\ commit
' W,
. DB :
wait operation
block
Computation Disk access Buffer access
® g
-/
hit

Figure 3.1: Real-Time Database Model

an operation on a data object, it must go through the concurrency control component
(CC), e.g., to obtain a lock on that object. If the lock request is denied, the transaction
will be placed into a wait queue. The waiting transaction will be awakened when the
requested lock is released. If the request is granted, the transaction will perform the
operation which consists of global buffer access, disk access (if there is a buffer miss)
and computation. A transaction may continue this “request-operation cycle” many
times until it commits. At its commit stage, the transaction releases all the locks it
has been holding. The concurrency control algorithm may abort a transaction for
any number of reasons (to be discussed later). In that case, the restart component
will decide, according to its current policy, whether the aborted transaction should

be re-submitted or terminated.

Note that this model only reflects the logical operations involved in transaction
processing. It does not show the interaction between the functional components and
physical resources. In practice, all of the processing components depicted by a double

circle in Figure 3.1 compete for the CPU.

18

L. L

L.

.

L.

B

[

E. i E L i

E B

g“"i

E_‘"“

g‘-“ﬂ

E E

3.2 Real-Time Transaction Model

A real-time transaction is characterized by its length and a value function.! The
transaction length is dependent on the number of data objects to be accessed and
the amount of computation to be performed, which may not always be known. In
this study, some of the protocols assume that the transaction length is known when
the transaction is submitted to the system. This assumption is justified by the fact
that in many application environments like banking and inventory management, the
transaction length, i.e., the number of records to be accessed and the number of

computation steps, is likely to be known in advance.

In a real-time database, each transaction imparts a value to the system, which is
related to its importance and to when it completes execution (relative to its deadline).
In general, the selection of a value function depends on the application [Abbo88a). In
this work, we model the value of a transaction as a function of criticalness, start time,
deadline, and the current system time. Here criticalness represents the importance of
transactions, while deadlines constitute the time constraints of real-time transactions.
Criticalness and deadline are two characteristics of real-time transactions and they are
not necessarily related. A transaction which has a short deadline does not imply that
it has high criticalness. Transactions with the same criticalness may have different
deadlines and transactions with the same deadline may have different criticalness
values. Basically, the higher the criticalness of a transaction, the larger its value
to the system. On the other hand, the value of a transaction is time-variant. A
transaction which has missed its deadline will not be as valuable to the system as if
it completed before its deadline. We use the following formula to express the value

of transaction T:

cr, ST <t< dT
VT(t) =4 CT (ZT - t)/(ZT - dT), dr <t<z2p (3.1)
0, otherwise

where ¢t - current time;
st - start time of transacti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>