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Abstract

Deadlock is one of the most serious problems in multitasking concurrent programming sys-
tems. The deadlock problem becomes further complicated when the underlying system is dis-
tributed and when tasks have timing constraints. Distributed deadlock detection has been
studied to some extent in distributed database systems and distributed timesharing operat-
ing systems, but has not been widely used in real-time systems. In this paper, we investigate
deadlock detection algorithms in distributed environments and extend the results to real-time
systems by considering timing constraints in the algorithms. In particular, we direct our atten-
tion to Ada environment and try to apply our solutions to it. We analyze and categorize the
deadlock problem in Ada environments into four levels of complexity by using Knapp’s hierarchy
of deadlock models. To fully support Ada semantics it is necessary to develop solutions for the
most complex level. Many Ada applications, however, do not utilize all the features that Ada
provides. Consequently, according to the characteristics of an application, the deadlock problem
may be simplified by imposing certain restrictions on the use of Ada. We develop a series of
solutions depending on the level of restriction imposed on the use of Ada and we relate those
solutions to the levels of complexity associated with the theoretical models. Two algorithms
related to the first two levels of complexity are presented in this paper. Related problems, such
as livelocks, orphan tasks, task termination problems, and global state detection, are considered
when it is appropriate.

*This work was supported, in part, by the Charles Stark Draper Laboratory, Inc., and by NSF under grants
TRI-8908693 and CDA-8922572.



1 Introduction

Deadlock is one of the most serious problems in multitasking concurrent programming systems. As
early as in the 60’s the deadlock problem was recognized and analyzed (Dijkstra[11] described it as
the problem of the deadly embrace). Deadlock occurs when one or more tasks in a system are blocked
by each other forever and their requirements can never be satisfied. A deadlock situation may arise
if and only if the following four resource competition conditions hold in a system simultaneously:
(1) mutual exclusion, (2) hold and wait, (3) no preemption, and (4) circular wait. To some degree
the last condition implies the other three. However, it is quite useful to consider each condition

separately in analyzing and designing a deadlock free system.

Principally, there are three strategies for dealing with the deadlock problem:

1. Deadlock Prevention — by ensuring that at lease one of the deadlock conditions cannot hold,

2. Deadlock Avoidance — by providing e priori information so that the system can predict and

avoid deadlock situations, and

3. Deadlock Detection — by detecting and recovering from deadlock states.

The first two strategies ensure that the system will never enter a deadlock state. Deadlock
prevention is commonly achieved either by guaranteeing that tasks do not have to hold and wait on
resources (e.g., by forcing all tasks to acquire resources a priori), or by allowing preemption (e.g.,
a task that holds the needed resource might be preempted by another task with a higher priority).
For deadlock avoidance, a task proceeds if the resulting global state is checked and proved to be

safe from deadlock. These methods carry the following drawbacks [35]:

e They are usually inefficient when applied in complex distributed systems. For deadlock pre-
vention, it is inefficient because it decreases system concurrency by restricting the execution
of the tasks to avoid at least one of the deadlock conditions. For deadlock avoidance, check-
ing for a safe state is computationally expensive and inefficient. This inefficiency is especially

significant in a complex distributed system due to the large numbers of tasks and resources.

e They are apt to fail in complex distributed systems. For example, if the tasks are required
to acquire resources a priori, a group of tasks may get deadlocked in the resource-acquiring
phase due to lack of a perfect global synchronization mechanism. Similarly, in the deadlock
avoidance case, due to inconsistent local views caused by the imperfect synchronization mech-
anism, different sites may all find the states safe and grant the requests concurrently, but the

final global state may turn out to be deadlocked.



e The requirements for deadlock prevention or avoidance may not be fulfilled. For instance,
in many systems future resource requests are unpredictable which makes “a priori resource

acquiring” deadlock prevention impossible.

Alternatively, by applying the third strategy, the system is allowed to enter a deadlock state
and then it is detected and recovered from. The detection of deadlocks requires the examination
of the system state (principally, the task/resource interactions) for the presence of cyclic waits.
Once a deadlock is formed, it persists until it is detected and broken (the so called stable property
of the deadlock problem). The deadlock detection computation can be performed in parallel with
the other normal system activities, therefore, it may not have a serious impact on the system
performance. Also, since certain deadlock detection algorithms can be embedded in the underlying
operating system, they are able to extend the fault tolerance of software design faults even if a

deadlock prevention or avoidance approach is used in the application.

Yet another potential benefit of the “detection” strategy for deadlocks is that it may be inte-
grated with other related problems. For example, many problems appear in multitasking systems,
such as livelock (a.k.a. effective deadlock or starvation), task termination, and orphan tasks, which
must be detected dynamically at runtime. Some of these problems, e.g. task termination and or-
phan task problems, carry the the same stable property as the deadlock problem. The detection
of these system faulty states requires examination of task/resource interactions which is similar to
certain techniques used in deadlock detection. Certain deadlock detection algorithms, therefore,
can be tailored for the detection of these problems and vice versa, without too much additional

effort and overhead.

Considering distributed deadlock detection as part of global state detection is another situa-
tion where deadlock detection may be resolved with related problems. For example, if a global
state detection algorithm is adopted to facilitate applications such as distributed debugging and
distributed system monitoring, it can be extended for detection of distributed deadlocks with little

overhead added.

In real-time systems, deadlock prevention and avoidance methods have received most of the at-
tention and are the current “best” strategies. However, because of the drawbacks pointed out above
these strategies might work successfully in relatively simple systems, but may be inefficient and
very difficult to design and verify in more complex systems such as multiprocessors or distributed
systems. Distributed deadlock detection, which is the focus of this research, has been studied to
some extent in distributed database systems and distributed timesharing operating systems but

has not been widely used in real-time systems. In the rest of this paper, we will first summarize the



related background in terms of graph theory, the Ada system model, and a hierarchi of deadlock

models, and propose extensions and solutions for distributed real-time systems.

The paper is organized as follows. Section 2 briefly summarizes a few terms and results
from graph theory. Section 3 presents Ada’s underlying system model. In Section 4, we discuss
a hierarchy of deadlock models. Section 5 describes some new concerns regarding deadlock in
real-time systems, and shows how the deadlock problem can be divided into four levels of complexity.
We also indicate that to fully support Ada semantics it is necessary to develop solutions for the
most complex level. Many Ada applications do not utilize all the features that Ada provides.
Consequently, according to the characteristics of an application, the deadlock problem may be
simplified by imposing certain restrictions on the use of Ada. In Section 6 we present two algorithms
and relate those algorithms to the levels of complexity associated with the theoretical models and

the restrictions imposed on Ada. Section 7 summarizes the paper.

2 The Concepts from Graph Theory

A wait-for graph is a mathematical tool which has been used to model the system state in describing
deadlock related problems. A wait-for graph is a digraph (directed graph). A digraph is a pair
(V, E), where V is a nonempty set of vertices (which represent tasks or resources) and F is a set
of directed edges (which represent “wait-for” dependencies). Each directed edge in F is an ordered
pair (a,b), where a and b are vertices in V. Also, the notation “a — b” may be used to represent
a directed edge. If both task vertices and resource vertices coexist in a graph, a wait-for graph
becomes a bipartite digraph. A bipartite graph is one in which all the vertices in V are partitioned
into two disjoint subsets (a subset of tasks T and a subset of resources R in the case of wait-for

graphs) such that there are no edges connecting vertices from the same subset.

The state of a system is in general dynamic; that is, tasks continuously acquire and release
resources and communicate with each other. Characterization of deadlocks requires a representa-
tion of the system state in terms of task-task and/or task-resource interactions. Depending the

complexity of the model, a system state can be depicted by one of three types of wait-for graph:

TWFG: The TWFG (Task Wait-For Graph) is the simplest graph among three types of graph.
A TWFG is a digraph in which vertices represent tasks; hence, only the task-task wait-for
relations are depicted in the TWFG.



TRG: A TRG (Task-Resource Graph) is a bipartite digraph in which task-resource interactions
(i.e., resource competitions) can be described by means of the directed edges between 7' and

R.

GRG: A GRG (General Resource Graph) is a generalized TRG in which inter-task communications

are represented by “consumable” resources.

In the following discussions we use the concept of GRG to merge the problems of the deadlocks
due to both inter-task communication and resource competition. The GRG was proposed by Holt
to describe his General Resource System(GRS)[22]. In Holt’s GRS model, the term “resource” is
used in a special sense to mean any object which may cause a task to become blocked. A resource is
either reusable or consumable. “Reusable resources” are used to model competition for objects such
as shared data and memory buffers. “Consumable resources” are used to model explicit interactions

among tasks such as synchronization or exchange of signals or messages among tasks.

Both types of resources consist of a number of identical units which can be requested by
tasks. The total number of units of a reusable resource is fixed, but it is unlimited for any of the
consumable resources. A task requesting units is blocked until enough units are available to satisfy
its request; then the task can acquire the requested units. A task can release units only when it
is not idle (waiting). The fundamental difference between reusable and consumable resources is
that the units of a reusable resource are never created or destroyed, but only transferred (requested
and acquired) from a pool of available units to a task and then transferred back (released) to the
pool. On the contrary, units of a consumable resource are created (“produced,” or released) and

destroyed (“consumed,” or requested and acquired). Therefore, edges in a GRG are of three types:

a request edge: directed from a requesting task to the requested resource,
an assignment edge: directed from a reusable resource to its assigned holder, and

a producer edge: directed from a consumable resource to one of its producers.

3 Model of Ada’s Distributed Concurrent Programming

Environment

Deadlock can be formally studied in isolation by using graph theory. However, in this work we
are interested in explicitly tying the formal properties of deadlock algorithms directly to the actual

languages and systems that need to use the theory. We believe that there is an important gap that



exists between the theory and its application that has not been addressed very well to date. In
particular, we are interested in Ada and its run time environment. To bridge this gap we must
understand Ada’s concurrency, synchronization, and resource allocation models and show how they

relate to the theory.

Ada’s concurrent programming mechanisms are generalized from many aspects of Hoare’s
“Communicating Sequential Processes” (CSP)[21] and Brinch Hansen’s “Distributed Processes”
(DP)[4]. A task is the unit of computation in Ada environments. A task is a program module that

is executed asynchronously. Tasks may communicate and synchronize their actions through:

o the entry calls and accept statements, which are a combination of procedure calls and message

transfer, and

e the select statement, which is a non-deterministic control structure similar to the alternative

guarded command in CSP and DP.

Entry declarations and calls are syntactically similar to procedure declarations and calls. Entry
declarations can occur only in the specification of a task. The corresponding accept statements

are given in the body of the task, which have the following form®:

accept <entry—name> [parameters]
[do {statement} end];

The {statement} part of an accept statement can be executed only if another task invokes the
<entry—name>. Invoking an <entry—name> (an entry call) is syntactically the same as a pro-
cedure call in DP. First, parameters are passed before the execution of the {statements}. After
the execution reaches the end statement, parameters may be passed back. Both tasks are free to
continue from this point. The accept statement and the corresponding entry call are executed
synchronously similar to the input and output commands in CSP. This synchronization performed
between two tasks is the Ada’s rendezvous concept. Thus the entry call and accept statement serve

both as a communication mechanism and a synchronization tool.

Choices among several entry calls is accomplished by the select statement, which is similar
to the guarded region in DP. There are three kinds of select statements: the selective wait, the

conditional entry call, and the timed entry call:

!Square brackets [ ] denote an optional part, while braces { } denote a repetition of zero or more times.



The selective wait statement allows a task to accept an entry call from more than one task

non-deterministically. A selective wait statement has the form

select

select—alternative
{or

select—alternative}
[else

{statement}]

end select;

in which select—alternative is of the form

[when <boolean—expression> =] selective—wait—alternative

and a selective—wait—alternative can be one of

accept—statement [{statement}]
| delay—statement [{statement}]
| terminate;

A select—alternative statement is said to be open if there is no prefixed guard (when clause)
before it or if the <boolean—expressions> in the prefixed guard is true; otherwise, it is said
to be closed. A selective wait statement can have at most one terminate alternative. The
delay —statement and terminate alternatives cannot coexist in a selective wait statement. The

else part is not allowed when either a delay —statement or a terminate alternative is present.

According to the Ada Reference Manual[26] the following rules define the execution of a

select—alternative statement:

1. Determine all the open alternatives and start counting time for the open delay —statements

(if any).
2. If there are open alternatives that can be selected, the execution follows the steps:

(a) An open accept—statement alternative may be selected for execution only if a corre-

sponding rendezvous is possible. The subsequent statements, if any, are then executed.

(b) The subsequent statements following an open delay —statement will be selected for exe-

cution if no other alternative is selected before the specified delay duration has elapsed.



(c) A terminate alternative may be selected if all the sibling tasks and their dependent tasks
which belong to the same root creator have terminated or are waiting at a terminate
alternative. A task terminates if it reaches the end of its code sequence or if a terminate
alternative is selected. The termination of a task is subject to the condition that there

are no calls pending to any entry of the task.

3. If the else part is present, it is executed under the condition that no open alternative can
be selected immediately or all alternatives are closed. If no else part is present and open
alternatives exist, the execution is delayed until an open alternative can be selected. If no

else part is present and all alternatives are closed, an error exception is raised.

When attempting to perform an immediate rendezvous, a conditional entry call is used. A

conditional entry call has the form

select

entry —call [{statement}]
else

[{statement}]

end select;

If an immediate rendezvous is possible, then rendezvous takes place and the subsequent statements
following the entry —call are executed; otherwise, the alternative sequence of statements specified

in the else alternative is executed.

When attempting to establish a rendezvous within some specified time period, a timed entry

call is used. A timed entry call has the form

select
entry —call [{statement}]
or
delay —statement [{statement}]

end select;

If a rendezvous can be established within the specified period then rendezvous takes place and the
statements following the entry —call are executed; otherwise, the statements following the specified

delay —statement are executed.

As in most of the concurrent programming environments, deadlocks may occur due to tasks

that are competing for shared resources in Ada’s environment both at the underlying system level,



and at the language level. For example, consider a program with two tasks 77 and T, executing on
a system with two disk drives. Each of T} and 7% needs both disk drives together, say for copying
a file from one disk to the other. Deadlock will occur if each task is holding the permission to use
one disk drive and is waiting for the permission to use the other drive. Deadlocks may also occur
due to tasks that are waiting for each other in Ada’s rendezvous. For example, two tasks 77 and

T, each want to call the other task before accepting an entry call from the other.

A rendezvous can be treated as a consumable resource in GRG. Either one of the calling and
called tasks arriving at the rendezvous first will wait, and, hence, becomes the “consumer” of the
“rendezvous.” The second task which establishes a rendezvous is always the “producer” of the

H

“rendezvous.” After a rendezvous is established, the calling task will wait for the called task to
execute corresponding statements following the accept statement. The called task, therefore, acts

as the producer during the rendezvous period.

Some aspects of real-time processing is supported by the select statement. The else alternative
and the delay statement in the selective wait both provide ready escapes in the event that no
open alternatives exist or that open alternatives are unduly delayed in their selection. Using the
conditional or timed entry calls, the calling task can ensure that it will not be blocked due to the
inability of the called task to complete a rendezvous. However, as discussed in Section 5.1, temporal

deadlock is still a problem in such a real-time system.

Livelock occurs when interacting tasks cannot finish their work in a limited period of time. For
example, if a task T, /7T, is unable to rendezvous immediately with another task T /T}, it performs
some secondary activity, so that it does not waste time being blocked for a rendezvous, and then
tries to rendezvous again. Livelock may occur if every time T; /T, attempts to rendezvous with
Ty/T1, To/T; is performing some secondary activity and is not ready for a rendezvous. Eventually

T; and Ty will miss their deadlines.

Also, task termination and orphan task problems may arise when using Ada’s concurrent

programming facilities in distributed environments:

o Task termination — In Ada, the termination of tasks, whether it is normal termination or
abnormal termination, is well defined not to affect other executing tasks. It is not difficult
to realize a task termination mechanism correctly in a single site system. However, task
termination becomes complex and difficult when implemented in distributed environments

due to intersite task interaction.



e Orphan task — In a distributed system, a task may create several subtasks at different sites.
Due to site failure or network partitioning, a subtask might become an orphan which has
lost connection to its parent task. Similarly, if site failure or network partitioning takes place
when tasks from different sites are in a rendezvous, the tasks waiting for the rendezvous might

become orphans.

The stable property of task termination and orphan tasks are similar to that of deadlock
problem. These problems are all caused by task interaction and once they occur will remain until
they are detected and resolved. Therefore, techniques such as diffusing computations[13] and global

state detection[6] can be extended and applied to solve these problems.

4 A Hierarchy of Deadlock Models and Ada

Knapp[25] classified the deadlock problem into a hierarchy of six models to reflect the complexity
of a particular deadlock problem. Each model is characterized by the restrictions that are im-
posed upon the form resource requests can assume. For example, a task might need to acquire a
combination of resources like (R; and Ry) or R3. The hierarchical set of deadlock models ranges
from very restricted request forms to models with no restrictions whatsoever. The hierarchy can
expand the unified GRS model (see Section 2) to further explore the conditions for deadlock. This
hierarchy can also be used to classify deadlock detection algorithms according to the complexity of

the resource requests they permit. The six models are summarized as follows.

Single-Resource Model: The simplest possible model is one in which a task can have at
most one outstanding resource request at a time and all the resources are not sharable. Hence,
the maximum number of edges from a task or a resource in a GRG is 1. A cycle in a GRG
is the necessary and sufficient condition for deadlock. Examples of this model can be found in
database systems where transactions are requesting data items one by one exclusively. In the Ada
environment, if the resources are non-shareable and only one outstanding request is allowed, and
at most two tasks may be involved in either a rendezvous or task termination, the system can
be formalized as a Single-Resource model. Mitchell and Merritt[31] proposed a very simple and

elegant algorithm based on this Single-Resource model for non real-time systems.

AND Model: In the AND model, tasks are permitted to request a set of resources or resources
are sharable. A task is blocked until it is granted all the resources it has requested. A shared
resource is not available for exclusive use until all its shared lock holders have released the lock.

Applications of the AND model can be found in some distributed DBMS where subtransactions



can be executed concurrently on different sites. In the Ada environment, the shared resources and
the task termination mechanism can be formalized as the AND model. Again, a cyclein a GRG is
a necessary and sufficient condition for deadlock in the AND model. The AND model is, therefore,
strictly more general than the Single-Resource model. Many non real-time algorithms have been

proposed based on this AND model such as [5, 7, 16, 18, 28, 33].

OR Model: In contrast to the AND model, an alternative way for making resource requests
is the OR model. In this model, a task is blocked until it is granted any of the resources it has
requested. For example, in replicated distributed database systems, a read request for a replicated
data item is satisfied by reading any copy of it. Also, in the Ada environment, the mechanism of
the accept statement can be categorized as an OR model. In the OR model, detecting a cycle in
the GRG is not a sufficient condition for deadlock. As pointed out by Holt[22], a knot is a sufficient
condition for deadlock while a cycle is only a necessary condition. Algorithms proposed for the OR

model can be found in [7, 24, 29, 32].

AND-OR Model: The AND-OR model is a generalization of the two previous models. A
task in the AND-OR model may specify resources in any combination of AND and OR requests.
For example, a task may request resources Ry or (Ry and (R3 or R4)) where Ry, Ry, R3, and
R, may exist at different sites. The Ada runtime environment is an AND-OR model since both
AND and OR mechanisms exist as described above. There is no simple construct of graph theory
to describe the deadlock condition in the AND-OR model. In principle, deadlock in the AND-OR
model can be detected by applying the test for the OR model deadlock repeatedly, where each
invocation operates on a subgraph of the AND part of the model. However, this strategy is not

very efficient. Hermann and Chandy[20] proposed a more efficient algorithm to detect deadlock in

the AND-OR model.

C(n,k) Model: The C(n,k) model, which was first formulated by Bracha and Toueg[3] as
k-out-of-n request, is a generalization of the AND-OR model. Although AND and OR can also
express a k-out-of-n request, the length of the corresponding AND-OR formulais k-C(n, k). Again,
the algorithm presented by Bracha and Toueg[3] suffers from the same deficiencies as that of the
AND-OR model. Although the AND-OR model can describe the interaction mechanisms among
tasks defined in Ada, in general, we would like to categorize Ada runtime environment as the C(n,k)
model because it is easier to formalize specific situations such as a task requesting k pages memory

from a total of n pages.

10



Unrestricted Model: In the most general model, there is no assumed underlying structure for
resource requests. The only assumption made is the stable property of deadlocks. Since Ada real-
time applications have timing constraints which, if violated, may actually break a deadlock thereby
breaking the stable property, great care should be taken in applying the techniques developed for
this unrestricted model to the Ada environment. Many algorithms related to this model have been

studied theoretically such as: stable properties detection[19] and global state detection[6, 27].

There are similarities between the detection of an OR model deadlock and the detection of the
termination of a group of cooperating tasks in a distributed computation[1, 2, 10, 13, 12, 14, 15, 30].
In a distributed system tasks cooperate with each other in a computation by means of message
exchange. A distributed computation is said to be globally terminated if it reaches a final state
which, in turn, relies on its member tasks reaching their final states and being ready to terminate.
The termination problem arises when tasks are ready to terminate locally, but they still agree
to communicate with other cooperating tasks. The global termination condition is defined as the
condition that each of the cooperating tasks in a distributed computation is either terminated or
ready to terminate. A global termination condition is not satisfied if any of the cooperating tasks
in a distributed computation is not waiting for termination. For example, in Ada environments a
selective wait statement allows a task to terminate if all its sibling tasks and their dependent tasks
which belong to the same root creator have terminated or are waiting at a terminate alternative.
This is a pessimistic model of the termination problem in that it assumes all the active sibling
tasks may want to make an entry call to the ones which are ready to terminate in a selective wait
statement. The distributed termination problem can be viewed as a special case of an OR deadlock
where all the cooperating tasks in a distributed computation are involved in a deadlock (waiting
for others to terminate). Therefore, any knot detection algorithm for the OR deadlocks can also

be tailored for solving the distributed termination problem and vice versa.

In the Ada environment, to use the Single-Resource model, very severe program restrictions
must be enforced. These restrictions are used to eliminate the AND and the OR wait-for mecha-
nisms which may cause multiple outgoing edges in the GRG. The Ada task termination mechanism
(an AND logic wait-for mechanism) should be either avoided or programmed very carefully so that
each terminating task won’t be involved in a more complicated AND deadlock. Further, the Ada
accept statement, an OR logic mechanism, which allows one of many potential calling tasks to be
in rendezvous with the accepting task, must be programmed in a one to one fashion that limits
the number of potential calling tasks to precisely one. Obviously, these are very severe restrictions.

Restrictions upon task termination can be removed for the AND model, while restrictions upon

11



the accept statement can be removed for the OR model. The AND-OR or C(n,k) model is general

enough that all programming constraints on an Ada programmer can be removed.

5 Distributed Deadlock Detection and Resolution in Real-Time
Systems

In this section, some of the design issues concerning deadlock detection problems in a distributed
real-time environments are discussed. In the discussion, the problem will first be defined. The
complexity of the problem is categorized into four levels based on the sufficient conditions required
to detect deadlocks for that problem. The deadlock models associated with each of the four levels
are identified. Finally, design criteria for distributed deadlock detection and resolution algorithms

for real-time systems are discussed.

5.1 Deadlock Problems in Distributed Real-Time Systems

In real-time systems, due to timing constraints attached to each task, time-outs and abnormal
aborts may occur when a task is blocked. If a task T is blocked in a real-time environment, it may

be involved in the following situations:

Stable Deadlock: This is the situation that the reachable set RS(T') of the blocked task T in the
GRG forms a deadlock (may be a cycle or a knot) and neither any time-out nor abnormal
abort is expected. These deadlock conditions are stable in that once they are formed, they

will stay until they are detected and resolved.

Temporal Deadlock: This is the situation that the reachable set RS(T) of the blocked task T
in the GRG forms a deadlock. However, due to timing constraints, a nonempty subset of
tasks in a set of deadlocked tasks may be timed out or aborted from the blocked state. The

deadlock situation, therefore, may not exist forever and, hence, is temporal.

Non-deadlocked Blocking: This is the situation in which a task is blocked, but it is not involved
in any deadlock. The situation exists for a normal wait, or an abnormal condition such as
being livelocked or being an orphan task. In a real-time setting a task needs to make progress
in a limited period of time. It is important that the waiting situation for whatever reason

should be terminated in a timely manner to ensure the timing constraints.

The three situations stated above define three deadlock related problems in real-time systems.

A stable deadlock in real-time systems is the same as a traditional deadlock in non-real-time

12



systems. A temporal deadlock, on the other hand, is a special kind of deadlock which is not treated
as a deadlock or is assumed not to exist in non-real-time systems. Such a deadlock is temporal
and hence not stable. The stable property which is assumed in most of the traditional deadlock
detection algorithms can no longer be used to detect temporal deadlocks in real-time systems.
Timing constraints must be taken into consideration in detecting temporal deadlocks. The timing
information collected for detecting temporal deadlocks can also be applied to resolve many of the

the problems associated with non-deadlocked blocking.

The detection and resolution of temporal deadlock is important for tasks with timing con-
straints in real-time systems. For example, in the Ada environment, task 7" may be in a temporal
deadlock state if there is a cycle (or a knot) in its RS(T) which contains tasks blocked by timed
statements. If T carries the nearest deadline and the highest criticalness in the deadlocked task
set, it is important that a timely detection and resolution is completed before a time in which it
is still possible to meet the timing constraint of 7T'. If no detection operation is attempted, task T’

may fail without knowing the existence of this temporal deadlock.

5.2 The Complexity of Deadlock Models

In Section 4, a hierarchical set of six deadlock models were used to describe the characteristics of
deadlocks. Except for the Unrestricted model, the problem complexity of the other five models can

be roughly divided into four levels based on sufficient conditions for detecting deadlocks:

1. the Single-Resource model (contains only simple cycles; simple cycle detection is sufficient),
2. the AND model (contains nested cycles; nested cycle detection is sufficient),
3. the OR (cycle detection is not sufficient; knot detection is sufficient), and

4. the AND-OR and the C(n,k) models (both cycle and knot detections are not sufficient; cycle
detection may detect false deadlocks whereas knot detection is not sufficient to detect all
deadlocks; a correct detection algorithm requires the recognition of AND, OR, AND-OR, and
C(n,k) requests).

In the Single-Resource model no nested deadlock cycles can occur. This property gives rise
to an interesting solution. If deadlock detection probes are propagated in the opposite direction
along the edges of the GRG, only the in-cycle probes initiated by the tasks in a cycle will detect
deadlock. It is possible that only one task in a cycle will detect deadlock if a probe propagation
rule is enforced. For example, in the algorithm developed by Mitchell and Merritt[31], each of the

13



blocked tasks is assigned an unique identifier and a probe is propagated in the reverse direction only
when its initiator identifier is larger than that of the destination task. This algorithm guarantees
that only the probe with the largest initiator identifier is able to travel through the whole cycle to
detect the deadlock. Such an algorithm simplifies the problem of resolution as well as guarantees
that only genuine deadlocks will be detected in the absence of spontaneous time-outs and aborts.
In real-time systems, due to timing constraints attached to each task, spontaneous time-outs or
aborts are possible which may cause false detection of deadlocks. To eliminate the false detection of
deadlocks, we need to consider timing constraints so that the temporal waiting edges (due to timing
constraints of the waiting tasks) in the GRG are well treated in the algorithm. For example, timing
constraints can be associated with each deadlock detection probe to reflect the timing validity of

the probe (see Section 6.2).

In the AND deadlock model since multiple outgoing edges as well as multiple incoming edges
in the GRG are possible, nested cycles are expected in this model. Each cycle in a group of nested
cycles is stable, but the whole group of nested cycles is not stable because new cycles may be
forming and attaching to the existing nested cycles. Since there are joint parts between any two
nested cycles, the resolution of a deadlock may actually break more than one cycle at their common
part of the graph. Therefore, a detected cycle may not exist if it nested with another cycle which
was detected and resolved earlier at a common part of these two cycles. To avoid false detection
of deadlocks, we need to detect the whole group of the nested cycles as well as to prevent any
new cycle attach to it before the current ones are resolved. This requires synchronization between
deadlock detection and other system activities, for example, to “freeze” the system while a deadlock
detection and resolution in ongoing. Unfortunately, a distributed system is too costly to be frozen
and, therefore, false detection of deadlocks is inevitable. Also, due to the existence of nested cycles,
simple cycle detection algorithms, such as the ones used in the Single-Resource model, can no
longer guarantee that only genuine deadlocks will be detected even in the absence of spontaneous
time-outs and aborts. Situations concerning the nested cycles have to be taken into consideration
to minimize the detection of false deadlocks. In the probe based algorithms, foreign probes, which
is initiated by tasks outside a cycle, may enter the cycle. A foreign probe may travel in the cycle
more than once without detecting any deadlock if there is no mechanism to stop it. A foreign
probe, which happens to meet the rule of the algorithm, may interfere with the in-cycle probes
and, hence, may cause the algorithm to fail to detect the deadlock. For example, similar to the
probe propagation rule introduced in the Mitchell-Merritt algorithm, if the in-cycle probe with the
largest label is expected to travel through the cycle to detect the deadlock, a foreign probe with a

even larger label may enter the cycle and compete with the in-cycle probes. The algorithm may
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fail if such situations are not carefully considered. Again, similar to the Single-Resource model,
timing constraints can be carried by the probes to cope with the effect of spontaneous time-outs

and aborts in real-time systems.

In OR model, a knot is a sufficient condition for deadlock while a cycle is only a necessary
condition. Hence, deadlock detection in OR model can be reduced to finding knots in the GRG. A
task T; in a GRG is in a knot if for every task T; reachable from T}, T; is reachable from T;. To
detect knots, probes are propagated in both forward (to search tasks which is reachable from T3)
and backward (to search tasks which can reach T;) directions along the edges in GRG. After the
GRG has been fully searched, the algorithm can decide the existence of knots. Whenever a sink
in the GRG is reached, a non-deadlock condition is found. A knot detection algorithm should be
able to terminate if it detects either a knot or a non-deadlock condition. As discussed in Section 4,
knot detection algorithms for the OR model deadlocks can be tailored to resolve the distributed
termination problem, and vice versa. Many algorithms proposed in the literature[7, 24, 29, 32] are
actually based on the notion of Dijkstra and Scholten’s diffusing computation which is originally
used for distributed termination detection. Similar to the previous two models, certain techniques
can be used to reduce the number of probes travelling in the GRG. Also, the timing constraints

can be addressed by applying deadlines to the probes.

The problem complexity of the remaining models — the AND-OR model and the C(n,k) model
— are roughly the same. Many systems are neither solely the AND-OR model nor solely the C(n,k)
model but a mixture of two. Such a mixed model system, however, can be mapped either to the
AND-OR model or to the C(n,k) model. The mapping, in general, is easier toward the C(n,k) model
than toward the AND-OR model. The main concern of this complexity level, therefore, is solving
the problems that deal with the C(n,k) deadlock model. As suggested by Bracha and Toueg[3], to
process a global snapshot is a way to find deadlocks in the C(n,k) model. Once again, since AND
deadlocks are embedded in the AND-OR model and the C(n,k) model, nested deadlocks, similar
to the nested cycles in the AND model, may occur. Therefore, we face a similar false deadlock
detection problem as found in the AND model. In real-time applications, the timing constraints
associate with each task can be collected while taking snapshots of the system. A temporal deadlock
or a non-deadlocked blocking can be captured if a blocked task might not be scheduled to become

active in the snapshot to ensure its timing constraints.

Different deadlock models are assumed in the four levels of problem complexity categorized
above. The applications of the algorithms developed for each of these deadlock models, therefore,
have different restraints. For the Single-Resource model, resources must be non-sharable and must

be distinguishable. Low level system provided task synchronization mechanisms can be allowed if
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no multiple outgoing edges in the GRG may result. For example, a semaphore is a synchronization
tool provided in many systems. A semaphore S is an integer variable that can be accessed only
through two atomic operations P and V. The atomic operation P decreases the integer S by 1 if
S is great than zero; otherwise, it waits. The atomic operation V, on the other hand, increases
the integer S by 1. Such a semaphore is usually called a counting semaphore. A binary semaphore
is a semaphore whose integer value can range only between 0 and 1. A counting semaphore may
be “granted” to more than one task, which may cause multiple outgoing edges from the resource
“semaphore,” hence, is not permitted in this Single-Resource model. A binary semaphore may only
be “granted” to at most one task, therefore, is allowed in the Single-Resource model. In the Ada
environment, certain program restrictions must be enforced to ensure the single outgoing edge in
GRG requirement of this model. For example, the Ada accept statement, which allows one of
many potential calling tasks to be in rendezvous with the accepting task, must be programmed in

an one to one fashion that limits the number of potential calling tasks to exactly one.

For the AND or OR model, some of the constraints of the previous Single-Resource model can
be relaxed. In the Ada environment, once using an algorithm powerful enough to solve the AND
model, then all deadlocks with the AND logic mechanisms involved, such as task termination, can
be detected. Also, resources may be sharable in this model. For the OR model, all deadlocks with
OR logic such as task interactions and synchronizations due to accept statements, can be detected.

The counting semaphores can be used in the OR model.

The AND-OR and C(n,k) models are general enough that all the constraints of programming
to conform to the previous two models can be removed. Resources may be indistinguishable or
sharable. All the Ada task interaction and synchronization mechanisms are supported by the

deadlock detection in this model.

5.3 Criteria in Designing Distributed Deadlock Detection and Resolution
Algorithms for Real-Time Systems

A deadlock detection algorithm is correct if and only if it satisfies the following criteria:

Correctness Criterion 1: The algorithm must be able to detect any deadlock in the system in

a finite time.

Correctness Criterion 2: All the deadlocks detected by the algorithm must be genuine ones.
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However, it is generally too expensive to completely achieve these two criteria when designing
algorithms for distributed real-time systems. Some of the issues centered around the correctness

criteria in distributed real-time systems are discussed as follows:

1. These criteria might be violated due to timing constraints in real-time systems. The timing
constraints associated with tasks make deadlocks temporal (i.e., not stable, see Section 5.1).

A temporal deadlock may break without ever being detected.

2. These criteria might be violated due to synchronization difficulties in distributed real-time
systems. For example, if the deadlock detection computations are running concurrently with
the other system activities, false deadlocks may be reported in the AND, AND-OR, and
C(n,k) (see Section 5.2) deadlock models which violates Correctness Criterion 2. To syn-
chronize deadlock detection with the other system activities (e.g., to freeze the system while
running a deadlock detection) is difficult and expensive, especially, in distributed real-time

environments.

3. Another issue that arises is that sometimes one of the correctness criteria might be fulfilled
at the sacrifice of the other one. Again, let’s use the detection of AND model deadlocks as
an example. It is required that the whole group of nested cycles should be detected together.
However, most of the existing distributed deadlock detection algorithms for the AND model do
not use such a complicated approach; instead, due to efficiency concerns, they simply detect
and resolve individual deadlock cycles. When a cycle is detected, it lacks the information
that the cycle might be nested with other cycles and that it might have been broken at the
intersecting part of the graph. Therefore, the limited information indicates only the potential
existence of deadlocks and the algorithm is responsible for the decision whether the situation
is to be treated as a deadlock. Ignoring these potential deadlocks might violate Correctness
Criterion 1. In contrast, treating these potential deadlocks as genuine ones might violate

Correctness Criterion 2.

4. For soft real-time systems where violations will not cause any severe permanent faults these
two criteria can be relaxed to an acceptable level. For example, to cope with timing and
synchronization problems described above, a compromise may be to speed up the algorithm
so the undetected and/or false deadlocks can be minimized. Also, only temporal deadlocks
are allowed to go undetected since they will not stay in the system permanently. However,
the effort of detecting temporal deadlocks before they disappear is still required in order
to prevent a system from staying in a deadlocked state for too long. As for the decision

to be made for the potential deadlocks, Correctness Criterion 1 has a higher priority than
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Correctness Criterion 2. The reason is that leaving the system in a deadlocked state is usually
an uncontrollable fault whereas recovering from a false deadlock is a type of compensating
action which impacts the system less severely. While this line of reasoning may not be true in
some specific systems, our design of distributed deadlock detection algorithms for real-time

systems will follow this criteria priority.

5. In many complex systems, especially in distributed real-time systems, structured (modular)
and/or layered design approaches are used. Many deadlock detection or prevention algorithms
only consider part of the system (i.e., a subset of the sites, the modules, and/or the layers of
a system) as the problem domain and cannot detect or prevent deadlocks across related parts
of the system. By related parts of a system we mean the sites, the modules, and/or the layers
of a system which constitute the environment in which a group of interacting tasks execute.
For example, suppose an algorithm is designed for detecting deadlocks at the application layer
with the assumption that a prevention strategy is used in the underlying system to provide
a “deadlock free” environment. The prevention strategy used in the underlying system has
no knowledge of the user application layer, but simply prevents tasks from circular waiting
upon system resources. Suppose we have two concurrent tasks 77 and T3 in the system. At
the application layer, T} is waiting for T in Ada’s rendezvous while at the system layer 7% is
waiting for 77 upon a system resource. Both waiting situations are allowed to occur separately
in the different layers of the system. From a global viewpoint, the blockings across these two
layers actually form a deadlock cycle. Such deadlocks cannot be detected or prevented unless

a “complete” strategy is adopted.

In addition to the correctness criteria discussed above, we must consider a number of perfor-
mance issues relating to real-time requirements. One major question is whether deadlock detection
is a feasible approach in a soft real-time system. After all, if a task is blocked in a deadlock,
then it is likely to miss its deadline unless the deadlock algorithm is invoked soon enough to not
only detect and resolve the deadlock, but to also leave enough time for this task (and possible
the aborted tasks) to complete (even in the presence of subsequent “normal” blocking conditions).
Consequently, deadlock detection for a given task should begin as a function of its deadline, D,
remaining execution time, F, and the execution time cost for deadlock detection and resolution,
DR. In other words, deadlock detection for this task should start no later than D — E — DR. It
would also be advantageous if the aborted task(s) were able to be restarted and also still make their
deadlines. For many real-time systems we can assume that D and E are known (or at least we have
good approximations for them). On the other hand, the execution time cost of deadlock detection

and resolution will not be known and will vary considerably depending on the graph representing
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the “waiting” states of the distributed system, the cost and delays involved in sending messages,
and the application processing the nodes are performing in addition to the deadlock algorithm it-
self. Fortunately, experience has shown the most deadlock cycles are short, so it may be possible to
develop a reasonable estimate for D R for the common deadlock case. Note that when the estimates
are wrong, one or more tasks involved in the deadlock will miss its deadline and abort, and thereby
deadlock will be broken. Real-time deadlock detection will be successful when it finds deadlock
early enough, resolves deadlock and more and higher value tasks subsequently make their deadlines
than otherwise would have without deadlock detection (i.e., using schemes such as simply using
timeout and abort, or using an “always abort” a lower value task if it blocks a high value task).

Performance studies are required to determine which approach proves feasible in practice.

We must also consider resolution decisions based on real-time requirements. Sufficient infor-
mation should be monitored and collected in order to make a good resolution decision to support
real-time requirements. When collecting information to support real-time deadlock resolution, we
need to consider: (1) the inter-dependency of the deadlocked tasks and their related tasks and
(2) the timing dependency among deadlocked tasks. In (1), by related tasks we mean the tasks
(not necessary involved in the deadlock) which rely on the success of a deadlocked task. If a dead-
locked task is chosen as the victim to be aborted, it may result a cascading abort of its related
tasks. The reason for (2) is that a deadlock is a situation of cyclic wait and breaking a deadlock
may result an acyclic wait which, in turn, results in a timing dependency among the surviving
tasks. Depending on where a deadlock is broken, different timing dependencies might be formed.
For example, a cycle of deadlocked tasks 77 — T3 — T3 — T; is detected. Each of these tasks
may reside at different sites. Their criticalness order is 77 < T3 < T5. A simple resolution strategy
may be to abort the least critical task, which is task 77 in this example. This resolution creates
a timing dependency that 75 waits for T3 to satisfy its request. Suppose T3 cannot complete in
time for T5 to make its deadline. Consequently, both 77 and Ty will fail in this resolution. If the
timing dependency among these deadlocked tasks has been considered in the resolution, selecting
T3 as the victim to resolve the deadlock might be a better decision in that both 77 and T3 might
succeed. Therefore, in addition to the criticalness of each task, the timing dependency information
is needed to make a better resolution decision (in the sense that it allows more of the surviving

tasks to meet their timing constraints).

Reliability of the distributed deadlock detection algorithm is another major concern. The
underlying communication subsystem usually can be assumed to be reliable, and a major concern
of the reliability in distributed systems is how to deal with site failures. Site failures in a distributed

system usually change the system state which, in turn, cause the GRG collected at each site to
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become inconsistent. A deadlock detection algorithm is not reliable if it cannot quickly recover the
GRG from a inconsistent state due to site failures. To ensure that deadlock detection computations
function properly after site failures, the GRG inconsistency must be corrected in finite time which
basically can be achieved in one of the two ways: (1) inform the surviving sites of the failures to
clean up inconsistent information or (2) make the inconsistent information obsolete in the view
of newly initiated deadlock computations so that the inconsistency may fade away. In any case,
time is needed to recover and correct the inconsistency, and the deadlock computations execute
concurrently with a site failure recovery may not be able to function properly. Therefore, the
reliability criterion requires that the inconsistency be temporary and be corrected quickly so that

only the deadlock detection computations in progress when the failures occur, may be affected.

6 Proposed Real-Time Distributed Deadlock Detection
Algorithms

The two deadlock detection algorithms proposed in this section are our first attempt at dealing with
timing constraints in distributed deadlock detection. Since there are complicated issues involved in
the resolution of deadlocks in the distributed real-time systems, we simply assume the resolution
of a detected deadlock is done by choosing a deadlocked task which declares the deadlock as the
victim. Also, we only consider a deadline for each task as its real-time constraint to simplify the

problem. More complex real-time constraints can be taken into account in a similar way.

These two algorithms can be used (1) in a general real-time system, where no other strategy
is used, to deal with deadlocks, (2) in a deadlock free real-time system, where deadlock prevention
strategy is used primarily, to increase system dependability, or (3) in the debugging phase of a
distributed real-time system. As we pointed out in Section 5.3 that many “deadlock free” designs
only deal with part of the system which cannot prevent deadlocks across related parts of a system.
Therefore, the integrated approach is one of the major concerns in our design to increase the de-
pendability of such “deadlock free” systems. Also, in such a “deadlock free” system, the occurrence
of deadlocks are rare, therefore, efficiency is another important concern in our design. The probe
based approach is used due to efficiency. A probe computation may be initiated only when there
is a potential deadlock situation. If a task is waiting for its outstanding requests, there is a hint of
potential deadlocks. A probe computation may be initiated after a task has waited for a period of
time At. The At can be chosen as a function of a task’s deadline and/or the average blocking time

of a request. Therefore, in a system where deadlocks are rare, the frequency of deadlock detection
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probe computation can be kept as low as possible (it is limited by a function of deadlines in this

case).

For simplicity and efficiency, our algorithms only initiate probe computation at most once for
each idle task, and a probe is discarded whenever it finds no potential deadlocks (i.e., reaches a leaf
vertex). For each idle task in a GRG, a probe computation may be initiated periodically or only
once after it finds potential evidence of deadlocks. The periodic invocation of probe computations
is not necessary in our algorithms since they ensure that at least one of the tasks in deadlock
will declare deadlock in one invocation. Also, in a probe computation, a probe may be stored or
discarded whenever it reaches a leaf vertex in a GRG. A deadlock may be detected earlier if probes
are not discarded but stored and forwarded later (when new edges are formed) at the leaf vertices.
However, the stored probes may become obsolete and, hence, usually requires a more complicated
mechanism to clean up them (e.g., the algorithms proposed in [36, 8, 9]). Also, this approach
is relatively unreliable since site failures may cause the stored probes to become obsolete as well
which, in turn, may cause the failure of deadlock detection computations if this situation is not

taken into account carefully.

As stated in Section 5.3 it is very difficult in a distributed real-time system for a deadlock
detection algorithm to fulfill the two correctness criteria. The two algorithms proposed in this
paper only “attempt” to detect temporal deadlocks. It is assumed that most of the deadlocks are
simple cycles. The two algorithms are designed to be efficient especially when detecting simple

cycles. Therefore, the undetected temporal deadlocks can be minimized.

In these two algorithms optimizations are made based on efficiency concerns. The optimizations
can reduce the probe overhead in terms of reducing the number of probe messages passed around
as well as eliminating the possibility of repeated detection of a cycle (which means single point of
detection for each deadlock). The deadlock resolution can also benefit from this single point of

detection feature since no synchronization is necessary when resolving a deadlock.

Due to the concerns of simplicity and efficiency of the algorithms for these first two relatively
simple and well defined deadlock models, we do not address the problems of livelocks, task ter-
mination, and orphan tasks, etc. In the solutions for the more complex deadlock models, such as
the OR model and the C(n,k) model, it is necessary to pass around more information for deadlock
detection. The solutions for the livelocks, task termination, and orphan tasks, etc., therefore, may

be incorporated in a deadlock detection algorithm with little additional overhead.

In the following subsections, we first state our design assumptions before the presentation of

the two algorithms.

21



6.1 Design Assumptions of the Algorithms

In developing the deadlock detection algorithms for distributed real-time systems, we made several
assumptions. First, we assume that runtime tasking in the distributed environment is supported
by a Distributed Runtime Tasking Supervisors[34] (DRTS’s). Each of the nodes in a distributed
system is equipped with a copy of DRTS. The DRTS’s provide services by sending messages to
each other. A DRTS could be a separate entity or embedded in the operating system (OS) or
kernel. Information concerning task interactions and synchronizations which are managed by the
0S8, kernel, or DRTS should be available for deadlock detection. For example, the local resource
allocation status should be available in the local OS or kernel, the state of the inter-node task

synchronization such as semaphore and wait/signal mechanisms should be provided by DRTS’s.

Also, we assume that there is a deadlock detection agent at each node because (1) it is more
efficient that local deadlock detection activities are performed in a single entity than in each of
the involved tasks with message exchanges, (2) it is easier and more efficient that global deadlock
detection activities are distinguished and only performed among agents, and (3) it is more secure
and more knowledgeable to gather system wide information in a dedicated agent than in each of
the user tasks. The agent may be a separate entity or embedded in the DRTS, OS, or kernel.
Inter-node deadlock detection operations are performed by the agents which exchange information

with each other.

Information concerning implicit task interactions and synchronizations should be supported
both by the compiler and the runtime environment. For example, in Ada rendezvous semantics,
the calling task is not provided in the accept statement. Without special compiler and runtime
support, this feature makes the deadlock problem unsolvable. It is required that a correct and
up-to-date GRG is built at runtime to support correct deadlock detection operations. One possible
solution to accomplish this requirement is to ask the complier to provide extra data structure and
program code (not explicitly programmed) for deadlock detection. The extra code provided by
compiler is to be executed at runtime to maintain the deadlock detection related data structure.
For example, two kinds of tables are to be built to support deadlock detection for the Ada accept
statement. One reachable entry calls (REC) table for each task, and one possible calling tasks (PCT)
table for each entry point declared in a task. Initial values for these tables should be entered by the
compiler. Program code for maintaining the REC table should be inserted at the proper places in
a task by the compiler. Each task, therefore, can update its REC table whenever it is necessary at
runtime. When a task is blocked by an accept statement at an entry point, the deadlock detection

agent is triggered to search every REC table in every possible calling task which is listed in the
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PCT table of that entry point. An edge is added to the GRG if there is a matched reachable entry

call in a possible calling task.

In real-time systems a timing constraint is usually associated with a task. The runtime system
should be able to detect a missed deadline and abort the task. This deadline information is
not available from Ada. As summarized in Section 3 other aspects of real-time processing are
supported by Ada’s selective wait statement. Using a combination of the delay statement and the
else alternative in Ada’s select statement, one can provide an escape in the event that no open
alternatives exist or that open alternatives are unduly delayed in their selection. These delays and
the ways to terminate them have an effect on whether the task makes its deadline. Similarly, using
Ada’s timed or conditional entry calls, a calling task can ensure that it will not be blocked forever
impacting its ability to make its deadline. Primarily, we are concerned with task deadlines, and to
meet a task’s timing constraints, time-out durations are associated with the timed entry calls for
the task calling an entry and the delay alternative in the selective wait statement for the task which
is waiting for an entry call. How to pick up an appropriate time-out duration for each operation (a
rendezvous attempt or a resource request) is beyond the scope of this paper. A simple choice which
is assumed in the following discussion is to set the time-out of an operation by the task deadline

which, of course, means that if it times out it will not make the deadline.

6.2 Algorithm for the Single-Resource Model

In this section, a simple probe algorithm that deals with the Single-Resource deadlock model in
distributed systems is presented. This algorithm is able to detect all the stable deadlocks and
attempts to detect temporal deadlocks. Spontaneous time-outs and aborts may occur and may
cause false detection of temporal deadlocks. False detection of temporal deadlocks are minimized
by attaching a deadline to each of the probes. If all the system clocks are perfectly synchronized
and all the deadlines attached to the probes are absolutely accurate, the false detection of temporal
deadlocks is eliminated. Also, a temporal deadlock may not be detected if the timing constraint in
a cycle is so tight that none of the in-cycle probes can finish travelling through the cycle in time.
An undetected temporal deadlock is resolved automatically when a task in the cycle times out or

aborts. This spontaneous time-out or abort, however, may not be the best resolution of a temporal

deadlock.

For the Single-Resource model, the basic idea of using probes in deadlock detection is to initiate
a probe whenever a task is blocked by a pending request. Probes are propagated backward along

the edges of a GRG and are discarded when they reach end vertices. If a probe comes back to its
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initiator, a deadlock is found. This method, although it guarantees the detection of all deadlocks,
may detect a single deadlock cycle multiple times if different tasks in a cycle initiate probes almost
simultaneously. This method has two drawbacks: (1) it is inefficient in terms of message overhead
and (2) it is complicated to recover a deadlock due to multiple detection of a cycle. By using a
technique similar to that used in the Mitchell and Merritt’s algorithm[31], our algorithm can reduce
the number of probe messages and achieve a single point of detection of every deadlock cycle. Each
probe is assigned a timestamp (the probe_id) which is a number greater than the largest timestamp
that a task and its waiting resource have ever seen. Each vertex in a GRG memorizes the largest
probe timestamp it has propagated. The probes which are allowed to pass through a vertex are in
increasing timestamp order. Consequently, only the probe with the largest timestamp (it is likely
to be the latest probe initiated by the task which closes the cycle) is allowed to go through the
whole cycle and declares the deadlock. Each probe is associated with a deadline (the probe_dl).
The probe deadline is defined as the earliest task deadline that a probe has ever seen. A probe
misses its deadline if at least one of the tasks it visited misses the deadline. Therefore, a probe is

discarded immediately if it is found to miss its deadline.

The data structures for the probes, tasks, and resources are defined in the Figures 1, 2, and
3, respectively. In Figure 1 the fields probe_id and initr_id give each probe an unique identification.
A probe is said to be larger than another one if it carries a larger probe_id. The larger initr_id is
used to distinguish between two probes with the same probe_id. The deadline of a probe is defined
by the field probe_dl. Figure 2 shows the data structure for tasks, which may be part of a task
control block or may be a separate data structure dedicated for deadlock detection. Two buffers are
prepared for storing probes for each task: probe_init stores its own initiated probe and probe_bufd
stores the largest probe ever received. Figure 3 defines the data structure for resources. Only one
probe buffer is prepared for storing the largest probe ever received for each resource since no probe

may be initiated by resources.

Probes are only initiated by the tasks when they become BLOCKED from the ACTIVE state
(or after a period of time At which is chosen as a function of a task’s deadline and/or the average
blocking time of a request). The procedure TASK_INIT PROBE depicted in Figure 4 describes
how a probe is initiated. The newly created probe has the largest probe_id ever received by its
creator. The deadline of the probe is initially set according to its creator’s timing constraints.
The newly created probe is, then, treated as the largest probe ever received and is propagated

accordingly.

When a task receives a probe, it invokes the procedure TASK_RCV_PROBE described in

Figure 5. This algorithm guarantees that only tasks in the BLOCKED state may receive probes
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type PROBE_ID_TYPE is range 0.INTEGER'LAST;
type TASK_ID_TYPE is range 0.INTEGER'LAST;
type PROBE_TYPE is

record
probe_id : PROBE_ID_TYPE := 0; —— probe id
initr_id : TASK ID TYPE := 0; —— the task_id of the probe initiator
probe_dl : DURATION := 0.0; —— probe deadline is determined by the earliest

—— timing constraint in its travelling path
end record;

Figure 1: Data structure for probes in the Single-Resource algorithm.

type TASK_STATE_TYPE is (ACTIVE, BLOCKED);
type TASK_TYPE is
record
task_id : TASK_ID TYPE := 0;
task_state : TASK_STATE TYPE := ACTIVE;

probe init : PROBE TYPE; —— probe initiated
probe bufd : PROBE TYPE; —— probe buffered
resource_table : RES_TABLE_TYPE; —— resources held by the task

end record;

Figure 2: Data structure for tasks in the Single-Resource algorithm.

type RESOURCE_ID_TYPE is range 0.INTEGER’LAST,
type RESOURCE_STATE_TYPE is (FREE, HELD);
—— For a consumable resource, it is FREE if it is produced but is not consumed yet; on
—— the other hand, it is HELD by its producer if it is requested but is not produced yet.
type RESOURCE_TYPE is
record
resource_id : RESOURCE_ID_TYPE := 0;
resource_state : RESOURCE_STATE_TYPE := FREE;
probe bufd : PROBE TYPE; —— probe buffered
waiting_queue : QUE_TYPE; —— waiting queue for the resource
end record;

Figure 3: Data structure for resources in the Single-Resource algorithm.
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procedure TASK_INIT_PROBE (T: in out TASK_TYPE,
R: in RESOURCE_TYPE) is
—— This procedure is invoked when a task T requested a resource R which is not FREE.
—— The task T is in transition from ACTIVE state into BLOCKED state. It requests the
—— probe from the waited resource R.probe bufd. A period of waiting time At which is
—— chosen as a function of task T’s deadline and/or the average blocking time of a request
—— might be inserted right before the calling of this procedure.
resource : RESOURCE_TYPE;
begin
—— prepare a new probe
T.probe_init.probe_id := MAX(R.probe_bufd.probe_id,
T.probe_bufd.probe_id) + 1;
—— function MAX(a,b) returns the maximum value of a and b
T.probe_init.initr_id := T.task_id;
T.probe_init.probe_dl := (deadline of the operation);

—— put the new probe in probe_bufd
T.probe_bufd := T.probe_init;

—— propagate the new probe to all the resources it holds
for resource in T.resource table loop
SEND (T.probe_bufd, resource);
end loop;
end TASK_INIT PROBE;

Figure 4: Procedure for probe initiation in the Single-Resource algorithm.

since probes are propagated in the reverse direction along the edges in GRG. The received probe is,
first, checked to see if it has missed its deadline. If so, it is discarded immediately because at least
one task in the path that the probe traveled has timed out or was aborted at the time the probe
is received. If the probe is still valid, it is checked whether it is initiated by the receiving task. If
s0, a deadlock (may either be a stable deadlock or a temporal deadlock) is found. Otherwise, the
probe is checked to see if it is the largest probe ever received. If so, the deadline of the probe is

updated, if necessary, and then the probe is propagated to all the resources held by the task.

When a resource receives a probe, it invokes the procedure RESOURCE_RCV_PROBE shown
in Figure 6. This algorithm guarantees that only HELD resources may receive probes since probes
are propagated in the reverse direction from a BLOCKED task to all its HELD resources. In the
Single-Resource model, a resource can only be held exclusively by one task and does not initiate

any probes. It is not necessary to detect deadlocks at a resource vertex. The probe at the resource
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procedure TASK_RCV_PROBE (T: in out TASK_TYPE; P: in PROBE_TYPE) is
—— This procedure is invoked whenever a task T receives a probe P.
begin
if (P.probe_dl <= current_time) then
—— the received probe missed its deadline
null; —— discard the received probe
elsif ( (P.probe_id = T.probe_init.probe_id) and
(P.initr_id = T.task_id) ) then
a deadlock is found;
elsif ( ( P.probe_id > T.probe_bufd.probe_id ) or
( ( P.probe_id = T.probe_bufd.probe_id ) and
( P.nitr_id > T.probe_bufd.initr_id ) ) ) then
—— update its deadline if necessary and put it in probe_bufd and propagate it
if (P.probe_dl > deadline of T’s operation) then
P.probe_dl := (deadline of T’s operation);
end if;
T.probe_bufd := P;
for R in T.resource table loop
SEND (P, R);
end loop;
else
null; —— discard the received probe
end if;
end TASK _RCV_PROBE;

Figure 5: Procedure for tasks handling received probes in the Single-Resource algorithm.

vertex, therefore, is only checked to see if it has missed its deadline. If so, the probe is discarded;

otherwise, it is propagated to all the tasks waiting for that resource.

Initially, all tasks are ACTIVE, all reusable resources are FREE, and all consumable resources
are HELD by the producers. In Ada, synchronization between two tasks occurs when the task issuing
an entry call and the task accepting an entry call are ready to establish a rendezvous. A rendezvous
is a consumable resource. Either one of the calling and called tasks arriving at the rendezvous first
will wait, and, hence, becomes the “consumer.” The second task which establishes a rendezvous
is always the “producer.” After a rendezvous is established, the calling task becomes BLOCKED
while the called task is executing corresponding statements following the accept statement. The

called task, therefore, is ACTIVE and acts as the producer during the rendezvous period.

When a task is in transition from the ACTIVE state to the BLOCKED state, it adds an edge to
the GRG and executes the procedure TASK_INIT_PROBE to initiate a deadlock detection probe.
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procedure RESOURCE_RCV_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE) is
—— This procedure is invoked whenever a resource R receives a probe P.
begin
if (P.probe_dl <= current_time) then
—— the received probe missed its deadline
null; —— discard the received probe
else
—— put it in probe_bufd and propagate it
R.probe_bufd := P;
for T in R.waiting queue loop
SEND (P,T);
end loop;
end if;
end RESOURCE_RCV_PROBE;

Figure 6: Procedure for resources handling received probes in the Single-Resource algorithm.

When a task becomes ACTIVE from the BLOCKED state, it deletes the corresponding edges from the
GRG. Resources are the passive entities in the GRG which will not initiate deadlock computation.

If resources are eliminated and a TWFG is considered, the correctness of this algorithm still holds.

A GRG can be implemented as a two dimensional matrix. One dimension represents tasks,
and the other dimension represents resources. Each of the elements in a GRG matrix represents one
of the following three states: (1) the task is waiting for the resource, (2) the resource is held by the
task, or (3) there is no relationship between them. Another possible implementation of GRG is to
store the information in each of the task tables and resource tables, for example, the resource_table in

TASK_TYPE and the task waiting_queue in RESOURCE_TYPE used in our algorithm data structure.

An agent is assumed to handle the deadlock detection activities at each site. The probe SEND
procedure, which is not described explicitly in the algorithm, is assumed to be handled by the agent.
A simple copy operation can accomplish a local SEND operation, while a real message will be sent
out for an inter-site SEND operation. The procedures TASK_INIT PROBE, TASK_RCV_PROBE,
and RESOURCE_RCV_PROBE are designed to be executed by the agent on behalf of each task or

resource.
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6.3 Algorithm for the AND Model

In this section, we propose a set-based probe algorithm that deals with the AND deadlock model
in distributed real-time systems. This algorithm is able to detect all the stable deadlocks and
attempts to detect temporal deadlocks. Spontaneous time-outs and aborts are allowed if they are
needed for timing constraints. Since cycles may be nested, spontaneous aborts can also occur in
stable deadlock cycles. Consequently, false detection of deadlocks are possible in stable deadlock

cycles as well as in temporal deadlock cycles.

For the AND model, the basic idea of using probes in deadlock detection is to initiate a probe
when a task becomes blocked if not all of its requests are granted, or when a task is granted one
of its pending requests but remains blocked. Probes are propagated either forward or backward
along the edges of a GRG and are discarded when they reach the end vertices. If a probe revisits a
task, a deadlock is found. Again, this method is inefficient and may cause multiple detections of a
single deadlock. In the algorithm we proposed for the Single-Resource model, we solve the problem
by propagating probes backward and using the probe timestamps. These techniques can also be
applied to the algorithms for the AND deadlock model. A GRG in the AND model is symmetric
in the sense that multiple incoming and outgoing edges of a vertex are allowed. Therefore, the
probe propagation direction does not make any difference. However, if we assume that most of
the resources are not shared and most of the tasks do not make multiple requests, the backward
propagation is preferred for the AND model algorithms. Unfortunately, the choice of the backward
probe propagation conflicts with the optimization made with the probe timestamps when timing

constraints are considered. We will discuss this issue later on.

Similar to our Single-Resource algorithm, each of the probes is assigned a timestamp which is
an integer value greater than the largest timestamp that a task and its granted resources (or the
resources it is waiting for if probes are propagated backward) have ever seen. Again, the probes
which are allowed to pass through a vertex are in increasing timestamp order. Since the foreign
probes may enter a cycle in the AND model and interfere with the in-cycle probes, it is required
that every probe (either in-cycle probes or foreign probes) should be able to detect deadlocks. More
information, therefore, is needed for the foreign probes to determine the existence of a cycle. The
notion of set-based probe was first proposed by Chandy and Misra[5] and followed by Haas and
Mohan[18]. In Haas and Mohan’s algorithm, a probe carries a set of permanent blocking edges that
has been known to the probe. The probes are propagated in the forward direction along the edges
of a GRG. Upon receiving a probe, each task searches for cycles that involve itself and deletes the

edges related to the detected cycles from the set. If the remaining set is not empty, the task will
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append itself to the set and propagate it to the tasks it is waiting for. The set grows as it reaches

more and more tasks and shrinks when cycles are detected.

In the algorithm proposed here, each probe includes a set of edges which only contains the path
travelled by the probe. A set is an one-dimensional chain in our algorithm as opposed to a tree-like
structure sub-GRG in the previous algorithms. The original motivation to propagate a tree-like
set in each of the probes is to discover all cycles that involve a deadlocked task which can then
act as a deadlock resolver. If deadlock resolution is taken into consideration, some of the detected
cycles might have been broken (false deadlocks) due to the fact that cycles may be nested in the
AND model. When a deadlocked task knows all cycles that it is involved with, this only reduces
the false detection of deadlocks. On the contrary, if only chain-like set probes are propagated in
detecting cycles, each deadlocked task will detect at most one cycle at a time. The remaining
deadlock cycles, if they exist, will be detected as soon as all the involved tasks are searched by a
probe. Unlike a tree-like set algorithm, in which a deadlock resolution is delayed until a task can
determine it has detected all the cycles it involves, our algorithm attempts to resolve deadlocks as
soon as it is detected. The probability of related false detection of deadlocks will be reduced since
the detected deadlocks are resolved as soon as possible. Also, processing and propagation of the
tree-like set probes are more costly compared to the chain-like set probes. Therefore, our algorithm
can avoid some false detection of deadlocks comparable to the previous algorithms, while providing
better efficiency. Consequently, in real-time applications where timing constraints are important,

a chain-like set probe algorithm is more attractive than a tree-like set probe algorithm.

Different from the Single-Resource algorithm, only part of a probe’s trace may form a cycle.
The timing constraints can no longer be associated with the probes but should be attached to the
tasks in the chain-like set transferred along with the probes. When searching for cycles in the set,
the timing constraints attached to each of the tasks are also evaluated. A deadlock is found if none
of the tasks which form the cycle has missed its deadline. A chain may be broken at a task in the
chain if the task is found missed its deadline. Also, the tasks in the chain dependent on the one
that missed its deadline should be discarded. This is because the wait-for information may have

been changed when the task which missed deadline aborted and released its resources.

If a probe is propagated backward, the chain grows by adding new dependents to the chain. A
new dependent is impossible to be added to the chain if the chain is broken. Therefore, a backward
propagated probe should be discarded if its chain is broken. Consequently, the algorithm may fail
to detect the deadlock which is supposed to be searched and declared by the discarded probe. For
example, consider a chain T; - R; - T, —» --- — T, — --- — R, — T, is propagated along with

a probe. If the task 7}, is found to miss its deadline, the chain is broken at T, and its left hand
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side of the chain T; — R; — --- — Ty, is discarded. Since the probe is propagated backward, a
new entry (a dependent of T;) should be added to the left hand side of T; which is no longer exists
in the chain; the whole probe, therefore, should be thrown away. Suppose at the time the probe
is discarded, a cycle T, - R; — T; — R; — T}, exists and all the other probes are eliminated due
to their smaller timestamps. This deadlock may not be detected if no new probes with a larger
timestamp could possibly reach this cycle. Consequently, backward probes cannot be used when

timing constraints are considered.

In contrast, if the probe is propagated forward along the directed edges, the new entries are
added to the right hand side of T;; and the probe, after discarding its invalidated part of the chain,
can continue to search the GRG until it reaches an end vertex (an active task) or finds a cycle. In

other words, the forward propagated probe avoids the error that the backward probe exhibits.

A GRG is a bipartite graph that vertices are divided into two disjoint subsets, a set of resources
vertices and a set of task vertices, such that there are no edges connecting vertices from the same
subset. The graph may be simplified by eliminating one subset of the vertices. The subset of the
resource vertices may be eliminated in the GRG by replacing an assignment edge (or a producer
edge) and a request edge pair attached to a resource vertex with a single directed edge between
two tasks. For example, T; — R; — T} can be simplified to T; — T} if the resource vertex R; is
not necessary in the graph. If all the resource vertices are eliminated, it becomes a task-wait-for
graph (TWFG). In the algorithm presented, we ignore the resource vertices in the chain propagated
along with the probes since we are not interested in detecting deadlocks at the resource vertices in

a GRG. This simplification can reduce the size of the probe messages.

The data structures for the probes, tasks, and resources are defined in the Figures 7, 8, and 9,
respectively. In Figure 7, the fields probe_id and initr_id are defined in the same way as those in the
algorithm for the Single-Resource model. A set of task_id’s which record the path of the probe are
chained together to propagate along with the probes. The field chain_head points to the head of such
a path. Figure 8 shows the data structure for tasks. Two buffers are prepared for storing probes
for each task: the probe_init stores its own initiated probe and the probe_bufd stores the largest
probe ever received. Also, the data structure for chained task is defined as CHAINED _TASK. In
the CHAINED_TASK, each task_id is attached with a task_dl (task deadline). Figure 9 defines data
structure for the resources. Only one probe buffer is prepared for storing the largest probe ever

received for each resource since no probe may be initiated by resources.

Probes are only initiated by the tasks when one becomes BLOCKED from the ACTIVE

state or when a BLOCKED task is granted one of its pending requests and remains BLOCKED.
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type PROBE_ID_TYPE is range 0.INTEGER'LAST;
type TASK_ID_TYPE is range 0.INTEGER'LAST;

type TASK_PTR; —— point to a task in a chain
type PROBE_TYPE is
record
probe_id : PROBE_ID_TYPE := 0; —— probe identification
initr_id : TASK ID TYPE := 0; —— the task_id of the probe initiator

chain_head : TASK_PTR := null;
—— a chain of tasks which records the path of the probe;
—— the chain_head points to the head of the path
end record;

Figure 7: Data structure for probes in the AND algorithm.

type TASK_STATE_TYPE is (ACTIVE, BLOCKED);
type TASK_TYPE is
record
task_id : TASK_ID TYPE := 0;
task_state : TASK_STATE TYPE := ACTIVE;

probe init : PROBE TYPE; —— probe initiated
probe bufd : PROBE TYPE; —— probe buffered
holding_table : RES_TABLE_TYPE; —— resources held by the task
pending_table : RES_TABLE_TYPE; —— pending requests of the task
end record;
type CHAINED_TASK; —— a task in a chain

type TASK_PTR is access CHAINED_TASK;
type CHAINED_TASK is

record
task id : TASK ID TYPE := 0; —— task id
task dl : DURATION := 0.0; —— task deadline
next : TASK_PTR; —— pointer link to the next task in chain

end record;

Figure 8: Data structure for tasks in the AND algorithm.
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type RESOURCE_ID_TYPE is range 0.INTEGER’LAST,
type RESOURCE_STATE_TYPE is (FREE, HELD);
—— For a consumable resource, it is FREE if it is produced but is not consumed yet; on
—— the other hand, it is HELD by its producer if it is requested but is not produced yet.
type RESOURCE_TYPE is
record
resource_id: RESOURCE_ID_ TYPE:=0;
resource_state : RESOURCE_STATE_TYPE := FREE;

probe bufd : PROBE TYPE; —— probe buffered
waiting_queue : QUE_TYPE; —— waiting queue for the resource
granted_table : TASK_TABLE_TYPE; -—— granted tasks of the resource

end record;

Figure 9: Data structure for resources in the AND algorithm.

A period of time At which is chosen as a function of a task’s deadline and/or the average
blocking time of a request may be inserted right before the initiation of a new probe. The
procedure TASK_INIT_PROBE depicted in Figure 10 describes how a probe is initiated. A probe
chain is created and is accessed through the chain_head in the new probe. The new probe is stored
both in probe_init and probe_bufd, and is propagated to each resource in its pending_table (pending

request table).

When a BLOCKED task receives a probe, it invokes the procedure TASK_RCV_PROBE de-
scribed in Figure 11. The probes received by ACTIVE tasks are simply discarded. In the received
probe, the head of the chain is treated separately because if it misses its deadline, the whole chain
is thrown away and the probe will not be propagated. The cycle detection is done by search the
current task id in the chain starting from the head of the chain. The deadlines are also checked for
each task in the chain. If an expired task is found, the un-searched part of the chain is disconnected.
Similar to the Single-Resource algorithm, if no cycle is found, the probe is checked to see if it is
the largest probe ever received. If so, the current task is appended to the head of the chain, and

the probe is propagated to all the resources which the task is waiting for.

When a resource receives a probe, it invokes the procedure RESOURCE_RCV_PROBE shown
in Figure 12. The resource simply propagates the probe to all the tasks in its granted_table if it is

the largest probe ever received.

Again, an agent is assumed to handle the deadlock detection activities at each site, therefore,

the intra-site probe SEND can be achieved by a simple copy operation. The intra-site chain transfer
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procedure TASK_INIT_PROBE (T: in out TASK_TYPE) is
—— 'This procedure is invoked when an ACTIVE task T requests resources which are not all
—— FREE, or when a BLOCKED task is granted one of its pending requests but remains
—— BLOCKED. A period of waiting time At which is chosen as a function of task T’s
—— deadline and/or the average blocking time of a request might be inserted right before
—— the calling of this procedure.
R : RESOURCE_TYPE;
begin
—— prepare a new probe
T.probe_init.probe_id := T.probe_ bufd.probe_id
for R in T.holding table loop
T.probe_init.probe_id := MAX(R.probe_bufd.probe_id,
T.probe_init.probe_id);
—— function MAX(a,b) returns the maximum value of a and b
end loop;
T.probe_init.probe_id := T.probe_init.probe_id + 1;
T.probe_init.initr_id := T.task_id;
T.probe_init.chain_head := new TASK_PTR
(T.task_id, <deadline of the operation>, null);
—— put the new probe in probe_bufd
T.probe_bufd := T.probe_init;
—— propagate the new probe to all the resources it is waiting for
for R in T.pending_table loop
SEND (T.probe_bufd ,R);
end loop;
end TASK_INIT PROBE;

Figure 10: Procedure for probe initiation in the AND algorithm.

operation can be done by simply copying its pointer. A real message will be sent out for an inter-site

SEND operation.

There are two weak points of this algorithm. First, the detection of a deadlock may not be
done in a limited period of time. This is because the foreign probes with increasing timestamps
may keep on interfering with each other until one eventually travels through the whole cycle. The
detection of an existing deadlock, therefore, may be infinitely delayed. This situation is more likely
to happen in a complicated GRG. However, the statistical analyses, such as the one done by Gray
et al.[17], have shown that most of the deadlocks are simple cycles with a length of two to three
vertices involved. This implies that the chance of infinitely delay of a deadlock detection is rare, and
in many systems it may be justifiable to live with this rare occurrence in order to take advantage of

the optimization made with the probe timestamps. Secondly, the resolution of a detected deadlock
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procedure TASK_RCV_PROBE (T: in out TASK_TYPE;
P: in out PROBE_TYPE) is
—— This procedure is invoked when a BLOCKED task T receives a probe P.

ptr : TASK PTR; found : BOOLEAN := FALSE;
begin
ptr := P.chain_head;
if ptr.task_dl <= current_time then —— the head missed its deadline
null; —— discard the received probe

elsif ptr.task id = T.task _id then
a deadlock is found;
else
—— search the current task in the chain
while not found and then ptr.next /= null loop
if (ptr.next.task_dl <= current_time) then
ptr.next := null; —— discard the rest of the chain
else
ptr := ptr.next;
if ptr.task_id = T.task_id then
found := TRUE;
end if;
end if;
end loop;
if found then
a deadlock is found;
elsif ((P.probe_id > T.probe_bufd.probe_id) or else
((P.probe_id = T.probe_bufd.probe_id) and
(P.initr_id > T.probe_bufd.initr_id))) then
—— append the task T to the head of the chain
P.chain_head.next := new TASK PTR
(T.task_id, T.probe_init.probe_id, P.chain_head);
T.probe_bufd := P; —— put it in probe_bufd
for R in T.pending_table loop
SEND (P,R); —— propagate the probe to each
end loop; —— resource in T’s pending table
else
null; —— ignore the received probe
end if;
end if;
end TASK _RCV_PROBE;

Figure 11: Procedure for tasks handling received probes in the AND algorithm.
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procedure RESOURCE_RCV_PROBE (R: in out RESOURCE_TYPE;
P: in PROBE_TYPE) is
—— This procedure is invoked when a resource R receives a probe P.
begin
if ((P.probe_id > R.probe_bufd.probe_id) or else
((P.probe_id = R.probe_bufd.probe_id) and
(P.initr_id > R.probe_bufd.initr_id))) then
R.probe_bufd := P; —— put it in probe_bufd
for T in R.granted_table loop
SEND (P,T);
end loop;
else
null; —— ignore the received probe
end if;
end RESOURCE_RCV_PROBE;

Figure 12: Procedure for resources handling received probes in the AND model.

is limited to the abortion of the task which declares the deadlock. If more information is carried
with each of the probes, such as the priorities of the tasks in the chain, the algorithm may be able
to declare the deadlock at the task which is going to be chosen as the victim for the resolution.
The priority may be defined to reflect any combination of the criticalness, timing constraint, task
processing time, lazity, amount of I/O completed, etc. Also, if the priority considers the degree of
forward and backward dependency of the task in GRG, the false detection of deadlocks due to the
existence of nested cycles may be further minimized. However, more overhead in terms of the size

and the number of the probe messages is required.

7 Summary

In the literature, the “stable property” is an important notion of the deadlock problem. This
property means a deadlock situation persists once it is formed. Many algorithms proposed in the
literature assume and utilize this property. In real-time systems, timing constraints are attached to
the tasks. A task may time out from a state in which it is waiting. Deadlocks may not be stable if
timing constraints are considered. In this paper, we described the deadlock problems for real-time
systems in which timing constraints are considered. Three types of problems: “Stable Deadlock,”

“Temporal Deadlock,” and “Non-deadlocked Blocking” are identified and discussed.
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We adopt Knapp’s hierarchy of deadlock models for the analysis of the problem complexity.
Based on the sufficient conditions for deadlock detection, we roughly divide the problem into four
levels of complexity: (i) the Single-Resource model, (ii) the AND model, (iii) the OR model, and
(iv) the AND-OR and the C(n,k) models. To fully support Ada semantics it is necessary to develop
solutions for the most complex level. Since many Ada applications do not utilize all the features
that Ada provides, the deadlock problem may be simplified by imposing certain restrictions on the
use of Ada. We have indicated how Ada features are related to certain levels of deadlock problem
complexity, and how the deadlock problem could be simplified if the use of certain Ada features
are restricted. In each of the four complexity levels, we also address how the deadlock problems

can be solved and how the timing constraints are considered in the possible solutions.

After discussing the issues and needed solutions in general, we then provide two algorithms;
one for the Single-Resource model and one for the AND model. Both algorithms are able to detect
stable deadlocks and attempt to detect temporal deadlocks. One unique aspect of these algorithms
is their ability to address timing constraints of tasks. Both algorithms are based on probes to
detect deadlock cycles. Probe message overheads are optimized by carefully choosing a probe
propagation direction and imposing a probe propagation rule. In the algorithm developed for the
Single-Resource model we have shown that the backward probe propagation is the best choice.
Also, in the algorithm developed for the AND model, backward probe propagation is preferred if
no timing constrains or no other optimizations cause conflicts with this choice. In both algorithms
probes are assigned with timestamps. The probes which are allowed to pass through a vertex are
in increasing timestamp order. This probe propagation rule can greatly reduce the probe overhead
and ensure the single detection of deadlock cycles. This rule, however, conflicts with backward
probe propagation in the AND algorithm if timing constraints are considered. Consequently, our
algorithm for the AND model is forced to use forward probe propagation. Also, we point out that
imposing this rule may cause an unlimited delay of the detection of certain deadlocks. However,
this situation may be so rare that it is still justifiable to take advantage of the optimization made

with the probe timestamps.

Our future work includes developing complete algorithms for the next two levels of complexity,
formally proving all four algorithms correct, and implementing and evaluating the performance of

the algorithms on our current real-time database testbed called RT-CARAT[23].
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