Scheduling In Real-Time Transaction Systems*

John A. Stankovic, Krithi Ramamritham, and Don Towsley

Dept. of Computer and Information Science
University of Massachusetts

Ambherst, Mass. 01003

Abstract

In many application areas database management systems may
have to operate under real-time constraints. We have taken an inte-
grated approach to developing algorithms for cpu scheduling, con-
currency control (based both on locking and on optimistic concur-
rency control), conflict resolution, transaction restart, transaction
wakeup, deadlock, buffer management, and disk I/O scheduling.
In all cases the algorithms directly address real-time constraints.
We have developed new algorithms, implemented them on an ex-
perimental testbed called RT-CARAT, and evaluated their per-
formance. We have paid particular note to how the algorithms
interact with each other and to actual implementation costs and
their impact on performance. The experimental results are nu-
merous and constitute the first such results on an actual real-time
database testbed. The main algorithms and conclusions reached
are presented in this Chapter.

*This work was supported by ONR under contracts NOOO14-85-K-0389 and
N00014-87-K-796, and NSF under grants IRI-8908693 and DCR-8500332.



INTRODUCTION

Real-time transaction systems are becoming increasingly important
in a wide range of applications. One example of a real-time transaction
system is a computer integrated manufacturing system where the system
keeps track of the state of physical machines, manages various processes
in the production line, and collects statistical data from manufacturing
operations. Transactions executing on the database may have deadlines
in order to reflect, in a timely manner, the state of manufacturing opera-
tions or to respond to the control messages from operators. For instance,
the information describing the current state of an object may need to be
updated before a team of robots can work on the object. The update
transaction is considered successful only if the data (the information) is
changed consistently (in the view of all the robots) and the update oper-
ation is done within the specified time period so that all the robots can
begin working with a consistent view of the situation. Other applications
of real-time database systems can be found in program trading in the
stock market, radar tracking systems, command and control systems,
and air traffic control systems.

Real-time transaction processing is complex because it requires an
integrated set of protocols that must not only satisfy database consis-
tency requirements but also operate under timing constraints. In our
work we have developed, implemented, and evaluated integrated suites
of algorithms that support real-time transaction processing. In total,
the algorithms that we have developed deal with the following issues:
cpu scheduling, concurrency control (based on locking and on optimistic
concurrency control), conflict resolution, transaction restart, transaction
wakeup, deadlock, buffer management, and disk I/O scheduling. In all
cases the algorithms directly address real-time constraints. The imple-
mentation was performed on a single node testbed called Real-Time Con-
currency And Recovery Algorithm Testbed (RT-CARAT). This testbed

contains all the major features of a transaction processing system.

As an example of the evaluation of one suite of algorithms, based on
two-phase locking, we have implemented and evaluated 4 cpu schedul-
ing algorithms, 5 conflict resolution policies, 3 policies for transaction
wakeup, 4 deadlock resolution policies, and 3 transaction restart policies,
all tailored to real-time constraints. We compared various combinations



of these algorithms to each other and to a baseline system where timing
constraints are ignored. In addition, we have studied other suites of algo-
rithms to investigate real-time buffering, using priority inheritance in a
real-time database setting, real-time optimistic concurrency control, and
real-time disk scheduling. We also studied (1) the relationship between
transaction timing constraints and criticality, and their combined effects
on system performance, (2) the behavior of a CPU bound system vs. an
I/O bound system, and (3) the impact of deadline distributions on the
conducted experiments. The major observations from these experiments
are presented in this Chapter. For detailed performance data the reader
is referred to the referenced material.

The Chapter is organized in the following manner. We first describe
our database and transaction model. We then describe the suite of al-
gorithms we have developed to study real-time transaction processing
based on two-phase locking. Extensions to the basic work that include
real-time buffer management, the impact of applying priority inheritance
to real-time transaction systems, and a comparison of two-phase locking
with optimistic concurrency control are then presented. The main per-
formance results are presented throughout. All of the evaluations to this
point in the Chapter were conducted on the RT-CARAT testbed. In the
last part of the Chapter we present two new real-time disk scheduling
algorithms and their performance results. The evaluation of the disk
scheduling algorithms was performed via simulation since it was impos-
sible for us to modify the physical disk controllers on our testbed. We
conclude with a summary of the results and present several open ques-
tions.

A REAL-TIME DATABASE MODEL

In our work to date we have investigated a centralized, secondary
storage real-time database. As is usually required in traditional database
systems, we also require that all the real-time transaction operations
maintain data consistency as defined by serializability. Serializability
may be relaxed in some real-time database systems, depending on the
application environment and data properties [27, 29, 23], but this is not
considered here. Serializability is enforced either by using the two-phase
locking protocol or via optimistic concurrency control.



Users

trans. requesA

- [
Restart
re-submit ~~ terminate
Priority request /release N
assignment a data object o abort

B T commit

. / DB .
wait operation
block

Computation Disk access = Buffer access
OO0
hit !

Figure 1: Real-Time Database Model



Figure 1 depicts our system model from the perspective of transaction
flow. This model is an extended version of the model used in [4]. The
system contains a fixed number of users that submit transaction requests
separated by a think time. This model captures many applications in the
real world, although certainly not all applications (e.g., an open system
model is more appropriate for a process control system). For example,
in an airline reservation system, there is a fixed number of computer
terminals. The airline clerk at each terminal may check a flight, reserve
a seat, or cancel a reservation for customers. After submitting a request
to the system, the clerk waits for a result. He may submit another
request after getting a response from the previous one.

In the system, any new or re-submitted transaction is assigned a
priority that orders it relative to other concurrent transactions. Before a
transaction performs an operation on a data object, it must go through
the concurrency control component (CC), e.g., to obtain a lock on that
object. If the request is denied, the transaction will be placed into a wait
queue. The waiting transaction will be awakened when the requested lock
is released. If the request is granted, the transaction will perform the
operation which consists of global buffer access, disk access (if there is a
buffer miss) and computation. A transaction may continue this “request-
operation cycle” many times until it commits. At its commit stage, the
transaction releases all the locks it has been holding. The concurrency
control algorithm may abort a transaction for any number of reasons
(to be discussed later). In that case, the restart component will decide,
according to its current policy, whether the aborted transaction should
be re-submitted or terminated.

Note that this model only reflects the logical operations involved
in transaction processing and it shows neither the interaction of the
processing components with physical resources nor the CPU scheduling
algorithm. In practice, all of the processing components depicted by a
double circle in Figure 1 compete for the CPU.

A real-time transaction is characterized by its length and a value
function.! The transaction length is dependent on the number of data
objects to be accessed and the amount of computation to be performed,
which may not always be known. In this study, some of the protocols

!Note that there are no standard workloads for real-time transactions, but a value
function has been used in other real-time system work [24, 1].



assume that the transaction length is known when the transaction is
submitted to the system. This assumption is justified by the fact that in
many application environments like banking and inventory management,
the transaction length, i.e., the number of records to be accessed and the
number of computation steps, is likely be known in advance.

In a real-time database, each transaction imparts a value to the sys-
tem, which is related to its criticalness and to when it completes execu-
tion (relative to its deadline). In general, the selection of a value function
depends on the application [24]. In this work, we model the value of a
transaction as a function of its criticalness, start time, deadline, and
the current system time. Here criticalness represents the importance of
transactions, while deadlines constitute the time constraints of real-time
transactions. Criticalness and deadline are two characteristics of real-
time transactions and they are not necessarily related. A transaction
which has a short deadline does not imply that it has high criticalness.
Transactions with the same criticalness may have different deadlines and
transactions with the same deadline may have different criticalness val-
ues. Basically, the higher the criticalness of a transaction, the larger its
value to the system. On the other hand, the value of a transaction is
time-variant. A transaction which has missed its deadline will not be as
valuable to the system as it would be if it had completed before its dead-
line. We use the following formula to express the value of transaction

T:

er, sT <t <dr
VT(t) = er X (ZT — t)/(ZT — dT), dr <t < zp (1)
0, otherwise

where t - current time;
st - start time of transaction T;
dr - deadline of transaction T;
¢t - criticalness of transaction T,
1 < er < eTmaxz;
CTmaz - the maximum value of criticalness.

In this model, a transaction has a constant value, i.e., its criticalness
value, before its deadline. The value starts decaying when the transaction



value

cTy

CTy

> time
ST, ST, dT2 2T, dT1 i 27y

Figure 2: Value functions for transaction T; and T,

passes its deadline and decreases to zero at time zy. We call zg the zero-
value point. As an example, Figure 2 shows the value functions of two
transactions 77 and T5. Note that when a transaction passes its zero-
value point it is not immediately aborted because this may negatively
affect the currently executing transaction. Rather, the transaction is
aborted the next time the cpu scheduling algorithm attempts to execute
it.

The decay rate, i.e., the rate at which the value of a transaction
drops after its deadline, is dependent on the characteristics of the real-
time transaction. To simplify the performance study, we model the decay
rate as a linear function of deadline and criticalness. We have studied
two models with z7 expressed by the following two formulas.

zr = dr + (dr — st)/er (2)

zr = dr + (dT - ST)/(chaz —cr + 1) (3)

For a given crmqez, when cr increases, under Eq. (2), zr decreases,
whereas under Eq. (3), zr increases. With Eq. (2), if a transaction is
extremely critical (¢g — 00), its value drops to zero immediately after
its deadline. This is typical of many hard real-time systems. In this
work, we use Eq. (1) and Eq. (2) as the base model, and we consider
Eq. (3) as an alternative to Eq. (2).



The transactions considered here are solely soft real-time. Given
the value function, real-time transactions should be processed in such
a way that the total value of completed transactions is maximized. In
particular, a transaction should abort if it does not complete before time
zr (see Figure 2), since its execution after zz does not contribute any
value to the system at all. On the other hand, a transaction aborted
because of deadlock or data conflict may be restarted if it may still
impart some value to the system.

Finally, at times, the estimated execution time of a transaction, rr,
may be known. This information might be helpful in making more in-
formed decisions regarding which transactions are to wait, abort, or
restart. This hypothesis is tested in our experiments by using certain
algorithms that make use of rr.

REAL-TIME TRANSACTION PROCESSING

Given the above system model and the characteristics of real-time
transactions, one objective of our work is to develop and evaluate poli-
cies that provide the necessary support for real-time transactions. In
this section, we explicitly address the problems of CPU scheduling, con-
flict resolution, and deadlock resolution. The algorithms for transaction
wakeup and transaction restart are not presented here due to space lim-
itations and due to the fact that these algorithms do not significantly
impact performance. See [15] for a full description of all these algorithms
and their performance evaluation.

CPU Scheduling

There is a wide variety of algorithms for scheduling the CPU in tradi-
tional database systems. Such algorithms usually emphasize fairness and
attempt to balance CPU and I/O bound transactions. These scheduling
algorithms are not adequate for real-time transactions. In real-time en-
vironments, transactions should get access to the CPU based on critical-
ness and deadline, not fairness. If the complete data access requirements
and timing constraints are known in advance, then scheduling can be
done through transaction preanalysis [5]. On the other hand, in many
cases complete knowledge may not be available. Then a priority based



scheduling algorithm may be used, where the priority is set based on
deadline, criticalness, length of the transaction, or some combination of
these factors.

We consider three simple CPU scheduling algorithms. The first two
algorithms are commonly found in real-time systems, and the third is an
attempt to combine the first two so as to achieve the benefits of both.

¢ Scheduling the most critical transaction first (MCF)

¢ Scheduling by transaction with the earliest deadline first
(EDF)

¢ Scheduling by criticalness and deadline (CDF): In this algo-
rithm, when a transaction arrives, it is assigned a priority based
on the formula (dr — s7)/cr. The smaller the calculated value, the
higher the priority.

Under all of these cpu scheduling algorithms, when a transaction be-
gins its commit phase, its priority is raised to the highest value among
all the active transactions. This enables a transaction in its final stage
of processing to complete as quickly as possible so that it will not be
blocked by other transactions. This policy also reduces the chance for
the committing transaction to block other transactions. Under all three
algorithms, the transactions are preemptable, i.e., an executing transac-
tion (not in its commit phase) can be preempted by a transaction with
higher priority.

Conflict Resolution Protocols (CRP)

Two or more transactions have a data conflict when they require
the same data in incompatible lock modes (i.e. write-write and write-
read). The conflict should be resolved according to the characteristics of
the conflicting transactions. Here we present five protocols for conflict
resolution.

In the following descriptions, T denotes the transaction which is
requesting a data item D, and Ty is another transaction that is holding
a lock on D. The five protocols have the following common algorithmic
structure:



Tg requests a lock on the data item D
if no conflict with Ty

then Tg accesses D

else call CRP: (i =1,2,3,4,5)
end if

We start with the simple protocols in terms of complexity and the
amount of information required.

Protocol 1 (CRP1): Based on criticalness only.

This simple protocol only takes criticalness into account.

if cr, < cry, for all Ty
thenTr waits
else
if ey, > cgy, for all Ty
then Tg aborts all Ty
else Tg aborts itself
end if
end if

Note that protocol 1 is a deadlock-free protocol, since waiting trans-
actions are always considered in order of criticalness. In addition, this
protocol implements an always-abort policy in a system where all the
transactions have the same criticalness.

Protocol 2 (CRP2): Based on deadline-first-then-criticalness.

We anticipate that criticalness and deadlines are the most important
factors for real-time transactions. Protocol 2 only takes these two factors
into account. Here we separate deadline and criticalness by checking the
two parameters sequentially. The algorithm for this protocol is:

if dr,, > dr,, for any Ty
then Tg waits
else
if e, < eqy, for any Ty



then Tg waits
else Tg aborts all T
end if
end if

Protocol 3 (CRP3): Based on deadline, criticalness and estimation of
remaining execution time.

CRP3 is an extension of CRP2. This protocol takes the remaining
execution time of the transaction into account in addition to deadline
and criticalness. Here we assume that the computation time and I/0
operations of a transaction are known and that they are proportional to
each other. Then the remaining execution time of transaction 7' can be
estimated by the following formula:

time_neededr(t) = (t—s1)x(R-totaly— R_accessedr(t))/ R-accessedr(t)

where R _totalr is the total number of records to be accessed by T;
R_accessedr(t) is the number of records that have been accessed as of
time £. The protocol is as follows:

if dr,, > dr,, for any Ty
then Tg waits
else
if e, < ery, for any Tw
then Tg waits
else
if ¢, = ey, for any Tw
then
if (time_neededr,(t) + t) > dr,
then Tg waits
else Tg aborts all Ty
end if
else Tg aborts all Ty
end if
end if
end if



Protocol 4 (CRP4): Based on a virtual clock.

Each transaction, 7', has a virtual clock associated with it. The vir-
tual clock value, VTr(t), for transaction T is calculated by the following
formula.

VTr(t) = s7 + Br * (t — s7), t> sT

where Bt is the clock running rate which is proportional to transaction
T’s criticalness. The higher the ¢, the larger the value 87. The protocol
controls the setting and running of the virtual clocks. When transaction
T starts, VT7(t) is set to the current real time sy. Then, the virtual
clock runs at rate By . That is, the more critical a transaction is, the
faster its virtual clock runs. In this work, 87 = er. The protocol is given
by the following pseudo code.

if dr,, > dr,, for any Ty
then Tk waits
else
if any VTTH(t) > dTH
then Tg waits
else Tg aborts all T
end if
end if

In this protocol, transaction Tg may abort Ty based on their relative
deadlines, and on the criticalness and elapsed time of transaction T'g.
When the virtual clock of an executing transaction has surpassed its
deadline, it cannot be aborted. Intuitively, this means that for the trans-
action T to make its deadline, we are predicting that it should not be
aborted. For further details about this protocol, the reader is referred
to [29].

Protocol 5 (CRP5): Based on combining transaction parameters.

This protocol takes into account a variety of different information
about the involved transactions. It uses a function C'Pr(t) to make
decisions.



CPr(t) = crx (w1 *(t— sT) —wakdr + w3 xpr(t) + waxior(t) — wsxIr(t))

where pr(t) and ior(t) are the CPU time and I/O time consumed by the
transaction, I7(t) is the approximate laxity? (if known), and the wy’s are
non-negative weights. The protocol is described by the following pseudo
code.

if C Pr,,(t) < CPr,(t) for any Ty
then Tg waits

else Tg aborts all Ty
end if

By appropriately setting weights to zero it is easy to create various out-
comes, e.g., where a smaller deadline transaction always aborts a larger
deadline transaction. Again, the reader is referred to [29] for further
discussion of this protocol.

In a disk resident database system, it is difficult to determine the
computation time and I/O time of a transaction. In our experiments,
we simplify the above formula for CP calculation as follows:

CPr(t) = cr*[wl*(t — s7) — w2 x dr + w3 x (R_accessedr(t)/ R-totalr)]

where R_totalt and R_accessedr(t) are the same as defined in CRP3.

In summary, the five protocols resolve data conflict by either forcing
the lock-requesting transaction to wait or aborting the lock holder(s),
depending on various parameters of the conflicting transactions.

Deadlock Resolution

The use of a locking scheme may cause deadlock. This problem can
be resolved by using deadlock detection, deadlock prevention, or dead-
lock avoidance. For example, CRP1 presented in the previous section
prevents deadlock. In this study, we focus on the problem of deadlock

?Laxity is the maximum amount of time that a transaction can afford to wait but
still make its deadline.



detection as it is required by the remaining concurrency control algo-
rithms.

Under the deadlock detection approach, a deadlock detection routine
is invoked every time a transaction is queued for a locked data object. If
a deadlock cycle is detected, one of the transactions involved in the cycle
must be aborted in order to break the cycle. Choosing a transaction to
abort is a policy decision. For real-time transactions, we want to choose
a victim so that the timing constraints of the remaining transactions can
be met as much as possible, and at the same time the abort operation
will incur the minimum cost. Here we present five deadlock resolution
policies which take into account the timing properties of the transactions,
the cost of abort operations, and the complexity of the protocols.

Deadlock resolution policy 1 (DRP1): Always abort the transaction
which invokes deadlock detection. This policy is simple and efficient since
it does not need any information from the transactions in the deadlock
cycle.

Deadlock resolution policy 2 (DRP2): Trace the deadlock cycle. Abort
the first transaction T with t > z7; otherwise abort the transaction with
the longest deadline.

Recall that a transaction which has passed its zero-value point, z7,
may not have been aborted yet because it may not have executed since
passing zr, and because preempting another transaction execution to
perform the abort may not be advantageous. Consequently, in this and
the following deadlock protocols we first abort any waiting transaction
that has passed its zero-value point.

Deadlock resolution policy 3 (DRP3): Trace the deadlock cycle. Abort
the first transaction T with t > z7; otherwise abort the transaction with
the earliest deadline.

Deadlock resolution policy 4 (DRP4): Trace the deadlock cycle. Abort
the first transaction T with t > z7; otherwise abort the transaction with
the least criticalness.

Deadlock resolution policy 5 (DRP5): Here we use time_neededr(t)
as defined in CRP3. A transaction T is feasibleif (time_neededr(t)+t) <
dr and tardy otherwise. This policy aborts a tardy transaction with the
least criticalness if one exists, otherwise it aborts a feasible transaction
with the least criticalness. The following algorithm describes this policy.



Step 1: set tardy_set to empty
set feasible_set to empty

Step 2: trace deadlock cycle
for each T in the cycle do
ift > zp
then abort T
return
else
if T is tardy
then add 7 to tardy_set
else add T to feasible_set
end if
end if

Step 3: if tardy_set is not empty
then search tardy_set for T' with the least criticalness
else search feasible set for T with the least criticalness
end if
abort T'
return

In general, the experimental results from the testbed indicate the
following:

e In a CPU-bound system, the CPU scheduling algorithm has a sig-
nificant impact on the performance of real-time transactions, and
dominates all of the other types of protocols. In order to obtain
good performance, both criticalness and deadline of a transaction

should be used for CPU scheduling;

e Various conflict resolution protocols which directly address dead-
lines and criticalness produce better performance than protocols
that ignore such information. In terms of transaction’s critical-
ness, regardless of whether the system bottleneck is the CPU or
the I/0, criticalness-based conflict resolution protocols always im-
prove performance; performance improvement due to cpu schedul-
ing predominates that due to conflict resolution;

e Both criticalness and deadline distributions strongly affect transac-
tion performance. Under our value weighting scheme, criticalness



is a more important factor than the deadline with respect to the
performance goal of maximizing the deadline guarantee ratio for
high critical transactions and maximizing the value imparted by
real-time transactions;

e Overheads such as locking and message communication are shown
to be non-negligible and cannot be ignored in real-time transaction
analysis.

Real-Time Buffer Management

Data buffering plays an important role in database systems where
part of the database is retained in a main memory space so as to reduce
disk I/O and, in turn, to reduce the transaction response time. The
principle of buffer management is based on transaction reference behav-
iors [20]. In terms of locality, there are basically three kinds of reference
strings in database systems:

1. intra-transaction locality, where each transaction has its own refer-
ence locality, i.e., the probability of reference for recently referenced
pages is higher than the average reference probability.

2. inter-transaction locality, where concurrent transactions access a
set of shared pages.

3. restart-transaction locality, where restarted transactions repeat their
previous reference behavior.

Buffer management policies should capitalize on one or more of these
three types of locality.

Buffer allocation and buffer replacement are considered to be two
basic components of database buffer management [11]. Buffer alloca-
tion strategies attempt to distribute the available buffer frames among
concurrent database transactions, while buffer replacement strategies at-
tempt to minimize the buffer fault rate for a given buffer size and alloca-
tion. The two schemes are closely related to each other and are usually
integrated as a buffer management component in database systems.

In this work, we consider buffer management in real-time database
systems where transactions have timing constraints, such as deadlines.



In a real-time environment, the goal of data buffering is not merely to
reduce transaction response time, but more importantly, to increase the
number of transactions satisfying their timing constraints. To achieve
this goal, buffer management should consider not only transaction ref-
erence behaviors, but also the timing requirements of the referencing
transactions.

We investigated several real-time buffer organizations based on the
system structure of RT-CARAT which includes a workspace buffer for
each transaction [16]. On RT-CARAT, we then implemented a global
buffer in connection with a transaction recovery scheme using after-image
journaling. Based on the overall system structure, we studied both real-
time buffer allocation and real-time buffer replacement for the manage-
ment of this global buffer which captures inter-transaction locality and
restart-transaction locality.

Our basic idea for real-time buffer allocation is to distribute the avail-
able (global) buffer frames to the transactions with shorter deadlines. Let
T;(i = 1,2, ...n) be the total of n concurrent transactions in the system.
The allocation scheme is described by the following algorithm.

1. sort T; by T;.dl in ascending order, for i = 1,2, ...n;

2. allocate the global buffer to the first m 7}’s such that the following
condition holds.

m m+1
ZTj.ws < Gobuffer_size < Z T; ws (4)

The replacement policy comes into play when there are no free global
buffer frames for newly fetched pages. In a real-time database environ-
ment, the replacement scheme should aim not only at minimizing the
buffer fault rate, but also at maximizing the number of transactions in
meeting their timing constraints. The replacement scheme considered
in this study is a modification of the LRU policy. Under the real-time
replacement scheme a deadline and a count of active transactions us-
ing the page, is associated with each page. The deadline represents the
largest deadline value of the transactions that have accessed that page.
We also define a search window which is the maximum distance from the



bottom of the LRU stack which the new algorithm will traverse. The
algorithm then searches the LRU stack backwards checking either if no
active transaction is using the page or if all transactions using the page
have now passed their deadlines. If so the page is removed. If we do not
find any such page in the window, then simply remove the last page in
the window.

The experimental results obtained from the testbed indicate that un-
der two-phase locking, the real-time oriented buffer management schemes
do not significantly improve system performance. With regard to global
buffer allocation, we have shown that data contention is a constraint on
the performance improvement of buffer management. Under data con-
tention, conflict resolution becomes a key factor in real-time transaction
processing. In addition, CPU scheduling is more important than buffer
allocation, even if the system is not CPU bound. Concerning buffer re-
placement, we have seen that the modified LRU algorithm which deals
with dealines performs no better than the simple LRU policy. Again,
under data contention, it is the conflict resolution that significantly im-
proves transaction performance. This study suggests that, given an ar-
chitecture with both local and global buffers, rather than developing
sophisticated real-time buffer management schemes, it is more impor-
tant to improve the performance of other processing components, such
as conflict resolution, CPU scheduling and I/O scheduling.

Priority Inheritance Applied to Real-Time Transactions

Priority Inheritance is a technique for dealing with soft real-time
tasks that access shared resources. In this approach, a task blocked by
a lower priority task imparts its priority value to the task holding its
needed resource. The idea is to allow the lower priority task to finish
and release its resources quickly so that the higher priority task can
continue. It has been shown that this approach is effective in real-time
operating systems.

The goal of this work is to investigate Priority Inheritance in real-
time transaction systems. By implementing and evaluating Priority In-
heritance in our testbed [17], we found that for short transactions the
performance of the system using Priority Inheritance is better than us-
ing simple two-phase locking. However, when compared to a priority



abort scheme (where priority inversions are avoided by simply aborting
the lower priority transaction), and to a combined abort and priority
inheritance scheme which we call conditional priority inheritance, the
basic Priority Inheritance protocol performed poorly. The reasons that
the abort policy works well are that the higher priority transaction is
never blocked, and an abort occurs as early as possible, not wasting
system resources. Conditional priority inheritance works well because it
aborts a low priority transaction when that transaction has not executed
for very long (thereby wasting few resources), but raises the priority of
low priority transactions when they are near completing (again, wast-
ing few resources and also permitting more low priority transactions to
complete). Further, we found that the performance for basic Priority
Inheritance is even worse than simple two-phase locking for long trans-
actions. This occurs because Priority Inheritance increases the deadlock
rate and the transactions which get an increased priority execute for too
long a time for the strategy to be effective (i.e., they significantly increase
the blocking time for higher priority transactions). The main conclusion
is that basic Priority Inheritance is inappropriate for conflict resolution
under two-phase locking, and that both simple priority abortion (best
under low data contention or loose deadlines) and conditional priority in-
heritance (best under high data and resource contention) work very well.

Optimistic Concurrency Control

While two-phase locking is widely used for concurrency control in
non real-time database systems, this approach has some inherent disad-
vantages for real-time systems, such as the possibility of deadlocks and
long and unpredictable blocking times. In seeking alternatives of two-
phase locking, we investigate the optimistic approach [22] which ideally
has the properties of non-blocking and deadlock freedom. Owing to its
potential for a high degree of parallelism, optimistic concurrency control
is expected to perform better than two-phase locking when integrated
with priority-driven CPU scheduling in real-time database systems.

In this study [18, 19], we examine the overall effects and the impact
of the overheads involved in implementing real-time optimistic concur-
rency control. Using a locking mechanism to ensure the correctness of
the OCC implementation, we develop a set of optimistic concurrency



control protocols. The protocols possess the property of deadlock free-
dom and have the potential for a high degree of parallelism. Integrated
with priority-driven preemptive scheduling, the blocking time under the
proposed protocol is limited and is predictable compared with 2PL.

Our performance studies conducted on RT-CARAT show that the
blocking effect caused by the locking mechanism adopted in the imple-
mentation scheme has a major impact on the performance of the op-
timistic concurrency control protocol. In particular, the protocols are
sensitive to priority inversion, but not to resource contention (as mea-
sured by I/O utilization). Furthermore, in contrast to the simulation
results from [12, 13], our experimental results show that OCC may not
always outperform a 2PL protocol which aborts the lower priority trans-
action when conflict occurs. The optimistic scheme performs better than
the two-phase locking scheme when data contention is low, and vice
versa when data contention is high. The “degraded” performance of the
optimistic approach becomes apparent only because we considered the
implementation details and since ours is a testbed, the overheads of the
implementation manifest themselves in the performance figures. The
experimental results indicate that the physical implementation schemes
have a significant impact on the performance of real-time optimistic con-
currency control.

We also investigate optimistic concurrency control in the context of
the starvation problem. Because of their higher probability to conflict
with other transactions, long transactions are likely to be repeatedly
restarted and thus have less chance to meet their deadline than short
transactions. Instead of limiting the number of transaction restarts, as
is often proposed for traditional database systems, we use length and
deadline sensitive priority assignment to address the problem. We show
that integrated with the proposed weighted priority scheduling policy
the optimistic concurrency control approach is more flexible in coping
with the starvation problem than the two-phase locking scheme.

REAL-TIME I/0 (DISK) SCHEDULING

In this section, we present two new disk scheduling algorithms for
real-time systems and discuss their performance. The two algorithms,
called SSEDO(for Shortest Seek and Earliest Deadline by Ordering) and



SSEDV (for Shortest Seek and Earliest Deadline by Value), combine dead-
line information and disk service time information in different ways.
While the algorithms were evaluated as part of an integrated collection
of protocols for real-time transaction processing, we believe that the re-
sults can be applied to any soft real-time system that requires real-time

disk scheduling.

Before describing the algorithms we make some preliminary remarks
and define a few symbols. Both algorithms maintain a queue of I/0O
requests sorted according to the (absolute) deadline of each request. A
window of size m is defined as the first m requests in the queue. Hence,
we may also refer to these two algorithms, SSEDO and SSEDYV, as win-
dow algorithms. Let

r; : be the I/O request with the i-th smallest deadline at a scheduling
instance;

dist; : be the distance between the current arm position and request 7;’s
position;

L; : be the absolute deadline of r;.

The SSEDO Algorithm

At each scheduling instance, the I/O scheduler selects one of the disk
I/O requests from the window of size m for service. The scheduling rule is
to assign each request r;, a weight, say w; where w; =1 < wy < ... < wyy
and m is the window size, and to choose the one with the minimum value
of w; x dist;. We shall refer to this quantity w; x dist; as p;, the priority
value associated with request r;. If there is more than one request with
the same priority value, the one with the earliest deadline is selected.
It should be clear that for any specific request, its priority value varies
at each scheduling instance, since dist;, r;’s position with respect to the
disk arm position, is changing as the disk arm moves.

The idea behind the above algorithm is that we want to give requests
with smaller deadlines higher priorities so that they can be serviced
earlier. This can be accomplished by assigning smaller values to their
weights. On the other hand, when a request with large deadline is “very”
close to the current arm position (which means less service time), it



should get higher priority. This is especially true when a request is to
access the cylinder where the arm is currently positioned. Since there is
no seek time in this case and we are assuming the seek time dominates the
service time, the service time can be ignored. Therefore these requests
should be given the highest priority. There are various ways to assign
these weights w;. In our experiments, the weights are simply set to

w; =471 (B>1) i=1,2,...n.

where 8 is an adjustable scheduling parameter. Note that w; assigns
priority only on the basis of the ordering of deadlines, not on their abso-
lute or relative values. In addition, when all weights are equal (8 = 1),
we obtain an approximate Shortest Seek Time First (SSTF) algorithm
which converges to pure SSTF as the window size becomes large. When
the window size is equal to one, the algorithm is the same as the ED
algorithm. Experimentally, we have shown that the performance of the
system improves dramatically over ED when a window size of three or
four is chosen even when the average queue length is as high as 15.

The SSEDV Algorithm

In the SSEDO algorithm, the scheduler uses only the ordering infor-
mation of requests’ deadline and does not use the differences between
deadlines of successive requests. For example, suppose there are two re-
quests in the window, and »{’s deadline is very close but ry’s deadline
is far away. If ry’s position is “very” close to the current arm position,
then the SSEDO algorithm might schedule ry first, which may result in
the loss of r1. However, if r; is scheduled first, then both r; and r; might
get served. In the other extreme, if ro’s deadline is almost the same as
r1’s, and the distance dist, is less than dist;, but greater than dist, /g,
then SSEDO will schedule r; for service and r5 will be lost. In this case,
since there could be a loss anyway, it seems reasonable to serve the closer
one (rg) for its service time is smaller. Based on these considerations, we
expect that a more intelligent scheduler might use not only the deadline
ordering information, but also the deadline wvalue information for deci-
sion making. This leads to the following algorithm: associate a priority
value of adist; + (1 — a)l; to request 7; and choose the request with the
minimum value for service, where [; is the remaining life time of request



r;, defined as the length of time between the current time and r;’s dead-
line L; and a(0 < a < 1) is a scheduling parameter. Again when a =1,
this approximates the SSTF algorithm, and when a = 0, we obtain the
ED algorithm.

The performance of SSEDO and SSEDV algorithms is compared with
three real-time disk scheduling algorithms proposed in the literature,
ED, P-SCAN, and FD-SCAN, as well as four conventional algorithms
SSTF, SCAN, C-SCAN, and FCFS. See [7] for a full description of these
algorithms and their performance evaluation. An important aspect of the
performance study is that the evaluation is not done in isolation with
respect to the disk, but as part of an integrated collection of protocols

necessary to support a real-time transaction system. The transaction
system model was validated on RT-CARAT.

The main performance results are as follows:

e In a real-time system, I/O scheduling is an important issue with
respect to the system performance. In order to minimize transac-
tion loss probability, a good disk scheduling algorithm should take
into account not only the time constraint of a transaction, but also
the disk service time.

o The earliest deadline discipline ignores the characteristics of disk
service time, and, therefore, does not perform well except when the

I/0 load is low.

e The window algorithms SSEDV and SSEDO consider two factors:
earliest deadline and shortest seek time. The performance results
show that SSEDV consistently outperforms SSEDO; that SSEDV
can improve performance by 38% over previously-known real-time
disk scheduling algorithms; and that all of these real-time schedul-
ing algorithms are significantly better than non-real-time algo-
rithms in the sense of minimizing the transaction loss ratio. We
also showed that SSEDV algorithm performs better than SSEDO,
since SSEDV uses more knowledge concerning the time constraint.

e For the SSEDV and the SSEDO algorithms, increasing the window
size and the proper adjustment of parameters a and 8 can improve
system performance, but increasing the window size beyond a par-
ticular value results in only marginal performance improvement.



e For a transaction system, if the number of operational steps for
each transaction is known to the system as soon as a transaction
is submitted to the system, we can define step deadlines accord-
ing to the transaction’s deadline and its step number. Scheduling
by step deadlines is shown to be better than scheduling by trans-
action deadlines. This result may also have implications for cpu

scheduling of tasks with precedence constraints, but with a single
deadline.

e When transactions’ read probability or sequential access proba-
bility are high, this improves system performance. In all cases,
SSEDV and SSEDO algorithms are shown to be significantly bet-
ter than the other disk scheduling algorithms considered. This
conclusion also holds over a wide range of transaction deadline set-
tings. In addition, by properly arranging the layout of the database
on the disk, the SSEDV, SSEDQO, and ED algorithms can improve
performance to a proportionally greater degree than the other al-
gorithms.

e The average transaction response time under SSEDV and SSEDO
algorithms is higher than the SSTF and all the SCAN based algo-
rithms, but lower than FCFS and ED.

Finally, with today’s technology, the disk controller can be imple-
mented to monitor the I/0 load dynamically, and select a proper schedul-
ing algorithm accordingly. This technique can be used with our SSEDV
and SSEDO algorithms in a soft real-time environment. For example,
when the I/O queue length is less than a threshold, the ED algorithm
(window size 1 in SSEDV or SSEDO) might be used for scheduling,
otherwise the window size would be set to 3 or 4. Alternatively, we
might dynamically update the scheduling parameter o or 8 according to
a queue length threshold. Finally, almost the entire execution time cost
of executing the new algorithms can be done in parallel with disk seeks,
thereby not adversely impacting disk service time.

CONCLUSIONS

In our work we have taken an integrated approach to developing
algorithms for real-time transaction systems. We have developed new



algorithms, implemented them on an experimental testbed called RT-
CARAT, and evaluated their performance. Qur main experimental re-
sults are that: (1) real-time cpu scheduling, conflict resoultion, and disk
I/0 scheduling are the three main factors in achieving good performance,
(2) various conflict resolution protocols which directly address deadlines
and criticalness can have a important impact on performance over proto-
cols that ignore such information, (3) deadlock resolution and transaction
restart policies tailored to real-time constraints seem to have negligible
impact on overall performance, (4) optimistic concurrency control out-
performs locking except when data contention is high, (5) basic priority
inheritance should not be used in a locking-based real-time database set-
ting, (6) real-time buffer management does not provide significant gain
over typical buffer management techniques when the database is sup-
ported by local and global buffers, and (7) our new disk I/O scheduling
algorithms are much more effective than others currently available.

Many important open questions remain including:

e how can soft real-time transaction systems be interfaced to hard
real-time components?

e how can real-time transactions themselves be guaranteed to meet

hard deadlines?

e how will real-time buffering algorithms impact real-time optimistic
concurrency control?

e how will semantics-based concurrency control techniques impact
real-time performance?

e how will the algorithms and performance results be impacted when
extended to a distributed real-time system?

e how can correctness criteria other than serializability be exploited
in real-time transaction systems?

ACKNOWLEDGMENTS

We wish to thank S. Chen, J. Huang, and W. Zhao for their work on
the RT-CARAT project.



References

[1]

[2]

R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Trans-
actions,” ACM SIGMOD Record, March 1988.

R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions: A Performance Evaluation,” Proceedings of the 14th VLDB
Conference, 1988.

R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Trans-
actions with Disk Resident Data,” Proceedings of the 15th VLDB
Conference, 1989.

R. Agrawal, M.J. Carey and M. Livny, “Concurrency Control Per-
formance Modeling: Alternatives and Implications,” ACM Trans-
action on Database Systems, Vol.12, No.4, December 1987.

A.P. Buchmann, et. al., “Time-Critical Database Scheduling: A
Framework For Integerating Real-Time Scheduling and Concur-
rency Control,” Data Engineering Conference, February 1989.

M. J. Carey, R. Jauhari and M. Livny, “Priority in DBMS Resource
Scheduling,” Proceedings of the 15th VLDB Conference, 1989.

S. Chen, J. Stankovic, J. Kurose, and D. Towsley, “Performance
Evaluation of Two New Disk Scheduling Algorithms for Real-Time
Systems,” submitted for publication, August, 1990.

S. Chen, and D. Towsley, “Performance of a Mirrored Disk in a
Real-Time Transaction System,” to appear Proc. 1991 ACM SIG-
METRICS, May 1991.

U. Dayal, et. al., “The HiPAC Project: Combining Active
Database and Timing Constraints,” ACM SIGMOD Record, March
1988.

U. Dayal, “Active Database Management Systems,” Proceedings
of the 3rd International Conference on Data and Knowledge Man-
agement, June 1988.



[11]

[12]

[13]

[14]

[19]

W. Effelsberg and T. Haerder, “Principles of Database Buffer Man-
agement,” ACM Transactions on Database Systems, Vol.9, No.4,
December 1984.

J. R. Haritsa, M.J. Carey and M. Livny, “On Being Optimistic
about Real-Time Constraints,” PODS, 1990.

J. R. Haritsa, M.J. Carey and M. Livny, “Dynamic Real-Time
Optimistic Concurrency Control,” Proceedings of the 11th Real-
Time Systems Symposium, Dec. 1990.

M. Hsu, R. Ladin and D.R. McCarthy, “An Execution Model for
Active Database Management Systems,” Proceedings of the 3rd
International Conference on Data and Knowledge Management,
June 1988.

J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham, “Exper-
imental Evaluation of Real-Time Transaction Processing,” Proc.
Real-Time System Symposium, Dec. 1989.

J. Huang and J. Stankovic, “Real-Time Buffer Management,”

COINS TR 90-65, August 1990.

J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham, “Pri-
ority Inheritance Under Two-Phase Locking,” submitted for pub-
lication, Dec. 1990.

J. Huang and J.A. Stankovic, “Concurrency Control in Real-Time
Database Systems: Optimistic Scheme vs. Two-Phase Locking,” A
Technical Report, COINS 90-66, University of Massachusetts, July
1990.

J. Huang, J.A. Stankovic, K. Ramamritham and D. Towsley, “Per-
formance Evaluation of Real-Time Optimistic Concurrency Con-
trol Schemes,” submitted for publication VLDB, also appears as A
Technical Report, COINS 91-16, University of Massachusetts, Feb.
1991.

J. P. Kearns and S. DeFazio, “Diversity in Database Reference Be-
havior,” Performance FEvaluation Review, Vol.17, No.1, May 1989.



[21]

[28]

[29]

W. Kohler and B.P. Jenq, “CARAT: A Testbed for the Perfor-
mance Evaluation of Distributed Database Systems,” Proc. of the
Fall Joint Computer Conference, IEEE Computer Society and
ACM, Dallas Texas, November 1986.

H. T. Kung and J.T. Robinson, “On Optimistic Methods for
Concurrency Control,” ACM Transactions on Database Systems,
Vol.6, No.2, June 1981.

K. J. Lin, “Consistency Issues in Real-Time Database Systems,”
Proceedings of the 22nd Hawaii International Conference on Sys-
tem Sciences, January 1989.

C. D. Locke, “Best-Effort Decision Making for Real-Time Schedul-
ing,” Ph.D. Dissertation, Canegie-Mellon University, 1986.

G. M. Sacco and M. Schkolnick, “Buffer Management in Rela-
tional Database Systems,” ACM Transaction on Database Sys-
tems, Vol.11, No.4, December 1986.

L. Sha, R. Rajkumar and J.P. Lehoczky, “Concurrency Control for
Distributed Real-Time Databases,” ACM SIGMOD Record, March
1988.

S. H. Son, “Using Replication for High Performance Database Sup-
port in Distributed Real-Time Systems,” Proceedings of the 8th
Real-Time Systems Symposium, December 1987.

S. H. Son and C.H. Chang, “Priority-Based Scheduling in Real-
Time Database Systems,” Proceedings of the 15th VLDB Confer-
ence, 1989.

J. A. Stankovic and W. Zhao, “On Real-Time Transactions,” ACM
SIGMOD Record, March 1988.



