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Abstract

Approximate processing is an approach to real-time AI problem solving in domains in which
compromise is possible between the resources required to generate a solution and the quality of
that solution. It is a satisficing approach in which the goal is to produce acceptable solutions
within the available time and computationalresource constraints. Previous work has shown how
to integrate approximate processing with the blackboard architecture[17]. However, in order to
solve real-time problems with hard deadlines using a blackboard system, we need to have: (1) a
predictable blackboard execution loop, (2) a representation of the set of current and future tasks
and their estimated durations, and (3) a model of how to modify those tasks when their deadlines
are projected to be missed, and how the modifications will affect the task durations and results.

This paper describes four components for achieving these goals in an approximate processing
blackboard system. A parameterized low-level control loop allows predictable knowledge source
execution, multiple execution channels allow dynamic control over the computation involved
in each task, a meta-controller allows a representation of the set of current and future tasks
and their estimated durations and results, and a real-time blackboard scheduler monitors and
modifies tasks during execution so that deadlines are met.

An example is given that illustrates how these components work together to construct a
satisficing solution to a time-constrained problem in the Distributed Vehicle Monitoring Testbed
(DVMT). A brief sketch is given of the implementation of the system.

1Authors are listed in alphabetical order. This work was partly supported by the Office of
Naval Research under a University Research Initiative grant number N00014-86-K-0764, NSF
contract CDA 8922572, and ONR contract N00014-89-J-1877.



1 Introduction

Approximate processing is an approach to real-time AI problem solving in which
the system reasons about tradeoffs between the time required to generate a
solution and the quality of that solution in terms of completeness, precision,
and certainty. The system attempts to generate the best possible solution in
the allowed amount of time. An alternate method for real-time AI problems is
the class of algorithms called anytime algorithms[6]. Anytime algorithms are a
subclass of approximate processing algorithms that can be terminated anytime
and produce answers that improve monotonically as the time allowed increases.
In contrast, approximate processing algorithms produce an answer anytime
after a given deadline and produce monotonically better answers as the deadline
is extended. That is, approximate processing systems take advantage of all the
time available to them to generate a solution, rather than always having one
at hand. Approximate processing works best in domains where deadlines can
be accurately estimated and where the system has sufficient advanced notice
when either a deadline will be sooner than expected, or priorities or resource
constraints have changed (probably because of an increased workload) making
the deadline unachievable under the current configuration. When these criteria
are not met, approximate processing may not generate any solution.

Approximate processing requires the problem solver to be very flexible in its
ability to represent and efficiently implement a variety of processing strategies.
With minimal overhead, the problem solver should dynamically respond to
the current situation by altering its operators and state space abstraction to
produce a range of acceptable answers[8, 17].

To achieve these goals in a blackboard system requires three key modifi-
cations. First, the opportunism inherent in the blackboard system must be
balanced by the need for predictability. Hard deadlines require bounded, pre-
dictable task times and may require opportunistic responses to be tightly con-
trolled to meet the deadlines. However, opportunistic behavior is desireable
and should be encouraged in those situations when the time available allows
it. The second modification involves the explicit representation of multiple
reasoning activities, modes of response, and resource utilization. While the
traditional blackboard model of independent knowledge sources is still useful,
careful records must be kept of how the instantiated knowledge sources (the
lowest level schedulable task unit) relate to the problem solving goals, what
types of approximations are required, and what resources (primarily computa-
tional resources) will be required. Finally, when a deadline cannot be met using
the current schedule, the schedule must be rearranged, using a combination of
techniques including postponing tasks and forcing them to use faster approxi-
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mations. The system must keep track of the new schedule, task durations, and
the effect of the new schedule on the results of problem-solving.

The entire real-time problem-solving architecture is shown in Figure 1. In
order to provide for more predictable execution of tasks we use a parameterized
low-level control loop. This extension of the traditional blackboard control loop
allows the system to dynamically control how much opportunism is permitted
within each task. This is accomplished by controlling the characteristics of the
data that will be processed, the type of knowledge that will be applied to this
data, and the granularity of the processing. Tightly constrained tasks (in terms
of their inputs, outputs, and processing algorithm) are as predictable as possible
without modification of the underlying operating system. Timing models, based
on these constraints, allow the real-time scheduler to make accurate duration
estimations.

The ability to dynamically modify the low-level control loop is an extension
of ideas developed originally in BB1 for dynamically specifying the predicates
used to evaluate activities on the agenda in order to impose different high-level
strategies[12]. We extend the ideas in BB1 by allowing a richer set of parame-
ters (filters, mappings, and mergings, as well as heuristics) to be dynamically
adjusted. Recent work by B. Hayes-Roth[2, 13] has also gone to a more complex
low-level control loop that has additional parameters. The idea of dynamically
adapting filters on input data for real-time systems has also been discussed
in [21]; we tie this filtering into the problem of balancing predictability and
opportunism. The low-level control loop is discussed in detail in Section 3.1.

The second component of our architecture is channels, which allow differ-
ent processing strategies to be used simultaneously. A channel is a replication
of the low-level control loop for a concurrent task. Having multiple channels
allows multiple processing strategies to occur simultaneously, and potentially
asynchronously or in parallel[7], while still providing predictable execution.
The RT-1 real-time blackboard architecture[9] used a fixed set of priority chan-
nels to partition problem-solving by event priority; in contrast, we dynamically
create task channels to partition problem-solving by task. This allows us to
clearly decide which problem-solving resources to devote to each task1. Sec-
tion 3.2 describes channels in more detail.

With these low-level architectural concerns satisfied, the next problem is the
smooth operation of the system. Control in blackboard architectures that inte-
grate multiple reasoning methods has traditionally been accomplished through
the implicit or explicit construction of an agenda rating function that allows
the scheduler to choose the “best” knowledge source instance (KSI) to execute

1A fixed set of priority channels could be built on our task channels by combining preallocated
channels (one for each priority) with heuristics that rated KSIs on their channel appropriately.
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Figure 1: The real-time blackboard architecture. Each part of this architecture is
explained in more detail in the Section 3. It consists of a channelized low-level loop
that does domain problem-solving in multiple channels with a shared domain KSI
agenda, guided by control plan and goal elements; a meta-controller that executes a
control KSI loop that constructs the control plan and goals, and modifies the parameters
of the low-level loop; and, a real-time scheduler that ensures real-time performance by
monitoring problem-solving at the channel-task level and fixing schedules that go over
time. The real-time scheduler constructs future schedules based on projected channel
tasks and fills in those channel tasks with domain KSIs as the KSIs appear on the
agenda. The dashed lines between modules indicate points of interaction.
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[3, 12, 14]. A significant amount of work has been published advocating the
use of explicit (non-procedural) control because it is conceptually clearer and
more easily modified, as well as easier to explain [10, 11, 12]. We modified the
traditional BB1-style meta-controller to operate using hierarchically organized,
explicit control goals that describe the current and predicted future behaviors
of the system. Associated with the lowest level of control goals are BB1 foci
that hold the channels mentioned earlier. The meta-controller is presented in
Section 3.3.

Finally, a real-time scheduler augments the traditional blackboard agenda
mechanism. Its job is to monitor and modify tasks during execution so that
deadlines are met. It schedules groups of KSIs associated with a task (called
channel tasks) across all active channels in fixed time slices. The real-time
scheduler can reduce the time allocated to a task, forcing it to use a different
approximation, or delay (non-critical) tasks to allow critical tasks to be com-
pleted. Much of the real-time scheduler is itself implemented using indepen-
dent blackboard knowledge sources that detect potential problems and present
alternate solutions to them. Section 3.4 describes the real-time scheduler.

In this work we have not concerned ourselves with making the low-level
control loop predictable. This has been the focus of recent work by B. Hayes-
Roth. Her work has extended the BB1 architecture to use a satisficing control
loop that replaces the previous exhaustive control loop[2, 13]. The satisficing
loop considers a limited number of events in best-first order and for each event
attempts to trigger a limited set of operation types again in best-first order. This
ordered consideration of possibilities can be interrupted at any time – either
by internal criteria or by external deadlines – and will return the best action
found so far. At this time our low-level control loop does not support this kind of
pumping of the highest priority data completely through the loop before lower
priority data is even considered. However, using similar ideas, we are able to
effectively place an upper bound on the amount of processing for each step of
the loop, thus bounding the entire control loop. We can do this by prioritizing
the outputs of each step of the loop, and only processing the priority-ordered
inputs from the previous stage until the available time is used. Note that this
is an approximate processing approach to the problem, rather than an anytime
algorithm approach. We plan to take advantage of all the time available to us,
rather than always having an answer ready.

The next section of this paper describes an example real-time problem from
our application domain Section 3 discusses each component of the architecture
in more detail. Section 4 shows how the components of our architecture work
together to solve the example problem. Section 5 sketches the details of our
blackboard implementation. Finally, Section 6 summarizes the work so far and

4



describes future directions.

2 An Example Problem

Integral to our work has been the application we have used to test our ideas, the
Distributed Vehicle Monitoring Testbed (DVMT)[16]. The DVMT simulates a
network of vehicle monitoring nodes, where each node is a problem solver that
analyzes acoustically sensed data in an attempt to identify, locate, and track
patterns of vehicles moving through a two-dimensional space. Each problem
solver has a blackboard architecture with blackboard levels and domain knowl-
edge sources appropriate for vehicle monitoring. Domain knowledge sources
perform the basic problem solving tasks of extending and refining partial solu-
tions, or hypotheses. New classes of domain knowledge sources were added for
performing different approximation algorithms, such as “level-hopping” (skip-
ping some of the blackboard levels)[8]. To solve a problem, the system must
choose from among several different general strategies and fine tune them, in-
cluding the choice of different strategies for different kinds of data and different
strategies at different stages of processing.

This section describes an example problem in the domain of the DVMT. The
particular DVMT environment we will work with is shown in Figure 2. This
environment contains three objects: one fish, one duck, and one pigeon. The
large dots along the lines represent the location of the object at the sensor
time given by the adjoining number. The two large squares labelled Sensor
1 and Sensor 2 represent the ranges of the two fixed sensors associated with
this DVMT node. Sensor 2 is known to be noisy, meaning that more domain
processing is required to interpret the data from that sensor. The system knows
about two kinds of patterns among its objects: a duck attacking a fish, and a
pigeon meandering.

Sensor 1 Sensor 2
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F1

P1•

••
•

1
2

3
4

•

•

•
• • •

•
• • • • • •

2
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4
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0 1
2 3 4 5 6
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Duck
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Figure 2: Real-time example environment.
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Associated with this environment is a system goal. This goal is a complex
object encoding several pieces of information. Some of the information encoded
in the system goal includes:

Ducks attacking fish are more important than pigeons meandering.

There is a deadline that fish must be warned that they are part of a duck
attacking fish pattern within at most 6 sensor-cycles from when the later
of the two vehicles comes within sensor range.

Once a fish has been warned it may be actively ignored. Ducks must
continue to be tracked, because they can become involved in other duck
attacking fish patterns.

By default, every object should be tracked as precisely as possible.

Also part of the system goal are the heuristics that determine which approxi-
mations to use.

Another experimental variable available in the system is the sensor cycle
length. This defines the amount of time available to process data between
sensor readings — the ratio between simulated ‘real-world’ time in the outside
environment and KSI execution time at the node. Reducing the sensor cycle
length forces the real-time scheduler to use more and more approximations
and/or postponements of tasks to meet the timing constraints.

3 Architecture

The architecture can be divided into two parts: the multi-channel, parame-
terized low-level control loop that executes, stores the results of, triggers, and
evaluates the preconditions of domain KSIs; and a meta-controller that cre-
ates channels, sets parameters for the low-level control loop associated with
each channel, models the set of current and future tasks, and schedules their
execution2. One should assume that the low-level control mechanism does not
relinquish control to the meta-controller but runs asynchronously with respect
to the meta-controller3.

3.1 Parameterized Low-level Control Loop

2Dean calls this the hierarchically organized multiple controlling programs model[5].
3In fact, the low-level controller will eventually solve the problem without the meta-controller

— perhaps not withina specified time constraint, but with a structurallycorrectsolution nonethe-
less. This idea is related to Brook’s subsumption architecture idea [1] as well as functionally
accurate, cooperative distributed problem solving[15].
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Figure 3: The Parameterized Low-level Control Loop

Figure 3 illustrates the steps in the parameterized low-level control loop.
Within each channel, the following three classes of mechanisms are used in
the low-level control loop to control opportunism in that channel: Filters limit
the amount of data being considered to reduce overhead or distraction. Data
blocked by a filter can be stored so that when the filter changes the blocked
data may be efficiently refiltered if desired. Filters block a channel from “op-
portunistically” working on a task in another channel, or even working on less
important parts of a single task if the system is under severe time pressure.
For example, in the environment shown in Figure 2 we are able to have one
channel work on the fish and another channel work on the duck by filtering the
sensor data so that only data that could be associated with an object goes to that
object’s channel. This is accomplished by using the spatial characteristics of the
data and the expected course of the vehicle, as well as the type of the signal. Of
course, there might be some overlap if vehicles are spatially close to one another
or if the signal is ambiguous (that is, could be associated with more than one
vehicle type), but filtering greatly reduces the load on each channel. Mappings
control the general character of problem solving. For example, a hypothesis-to-
domain-goal mapping indicates what potential work a hypothesis represents.
A domain-goal-to-KS mapping represents the triggering of knowledge sources,
or what methods should be considered in attempting to achieve a domain goal4.
Obviously, one-to-one mappings provide much more predictability than one-
to-many. As an example, when we want to change a channel from complete
processing of data to level-hopping on that data we simply update the domain-

4Domain goals, historicallyoften called just ‘goals’ in DVMT literature,are a complex language
with which to trigger KSs and limit their inputs and outputs. They should not be confused with
the control goals in the meta-controller that specify what the system is trying to achieve, and
when, how, and why.
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goal-to-KS mapping for that channel to map to level-hopping KSs rather than
complete processing KSs. Mergings control the granularity or specificity of
problem solving activity. Hypotheses, domain goals, and KSIs are grouped and
merged into larger units to avoid duplication of effort or to reduce the amount
of data being considered. This process is invoked after each mapping. Merging
can increase predictability and decrease opportunism by reducing the number
of items that are considered during problem solving. An example of merging
occurs after the hyp-to-goal mapping of signal hyps. This mapping generates
one group-level goal for each signal level hyp; merging combines equivalent
group-level goals into a single goal.

Each of these mechanisms is placed between each major data structure
(the hypothesis blackboard, the domain goal blackboard, and the KSI agenda).
This low-level control loop can be characterized as evaluating the blackboard to
decide first what information to exclude from any further processing (hypothesis
filtering), then what potential work can be done (hypothesis-to-goal mapping).
The domain goals that result from this mapping are called data-directed goals.
The next step is relating potential work to existing domain goals (goal merging
and subgoaling). Two types of domain goals are merged: data-directed goals
from the hypothesis-to-goal mapping and goal-directed goals from subgoaling.
Then the low-level loop determines what domain goals are important to achieve
(goal filtering), and finally decides how to go about achieving them (goal-to-KS
mapping and KS instantiation). This produces a set of triggered KSs that may
accomplish a given goal. The preconditions of the KSs are run, which results
in a set of costs (such as estimated time) and benefits (such as an estimated
output set) for each triggered KS. KSs are chosen based on this data and
their instantiations are merged into the runnable KSI queue. A single queue
holds runnable KSIs from every active channel 5. Choosing which one of these
potential activities to execute (managing the agenda) is managed by the real-
time scheduler (Section 3.4).

3.2 Multiple Execution Channels

The parameterized control loop allows explicit, detailed control over a task.
Multiple execution channels allow this kind of predictable control over each

5We are investigating alternatives to this architectural decision, including maintaining a sep-
arate queue for every channel and either associating a processor with each queue or multiplexing
among the queues[9, 4], giving each channel a percentage of the total resources. Note that these
alternatives may also help us to more easily bound control overhead by associating control with
channels. That is, we could decide on a channel by channel basis not only how much domain pro-
cessing to perform, but also how much control processing to perform. In our current configuration
the amount of time spent in control processing is not tightly controlled.
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task separately, where a task is a unit of work that might at some point need to
have some aspect of its behavior controlled separately from other units of work.
Each channel can (and often does) have a completely different set of filters,
mappings and merge criteria from other channels, as well as different control
strategies controlling its KSI execution choices.

Channels, with their associated filters, mappings and merge criteria, are
created and modified by the meta-controller (see Section 3.3) as needed to
adequately control domain problem-solving. Channels are created to respond
to dynamically created control goals. For example, in the DVMT a channel
exists that is always looking for new vehicles to appear. The appearance of a
new vehicle will cause the creation of a control goal to identify and then track
that vehicle, which in turn will lead to the creation of a channel towork to satisfy
the control goal. Channels are modified to use various approximations by the
real-time scheduler as required to meet timing constraints. A channel is made
to use a particular approximate processing technique through the modification
of its filters, mappings and merge criteria.

In the DVMT application each type of channel has various approximate
processing techniques available to it. These techniques make tradeoffs in per-
formance, certainty, precision, and completeness. By default all channels use
a complete technique that examines all possibilities carefully and fully. This
technique takes the longest time to complete, but maximizes certainty, pre-
cision, and completeness. Also available to most channels is a level-hopping
technique. This method jumps several levels of abstraction at once, rather than
advancing step by step. It has significantly improved performance, but reduces
certainty and precision. Also available is the ability to actively ignore data. In
this case the channel merely gathers and records the data that it would nor-
mally process. This reduces runtime to near zero, but has disastrous effects on
certainty and precision. Usually this technique is used only when we intend to
work on the data in more detail during a future sensor cycle. Other techniques
are described in [8]. Consistent representations of approximate data allow
the system to switch processing strategies without losing any partial results
previously obtained[8].

One example of the usefulness of channels is that they allow different ve-
hicles to be tracked using different approximate processing techniques concur-
rently. For example, we might have two vehicles in our domain, one that we
decide to track carefully and another that we decide to use level-hopping on. A
separate channel for each vehicle allows us to completely control the tracking
of each vehicle without interference.
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3.3 The Meta-Controller

The meta-controller is a collection of BB1-style control blackboards and knowl-
edge sources that are used to control the domain problem-solving going on in
each channel. Unlike BB1, the meta-controller blackboard execution cycle is
separate from the domain blackboard execution cycle. In the current single pro-
cessor DVMT the meta-controller cycle is run to quiescence after each domain
KSI execution.

Along with the traditional BB1 control-plan blackboard that contains strate-
gies, foci, and heuristics, there is a control-goal blackboard that contains the
goals the control-plan objects are working to solve. These goals specify do-
main tasks to be performed, as well as the level of certainty, precision and
completeness that is required.

Part of the definition of a problem given to the DVMT is a system goal.
This is the top-level control-goal the system is working to satisfy. Encoded in
the system goal is information about priorities among domain problem-solving
actions.

A strategy is chosen to work to satisfy the goal. This strategy in turn posts
control-goals. This form of problem decomposition continues until an initial
plan/goal hierarchy has been created. An example of such a hierarchy is given
in Figure 4.

Control Goals Control Plan

System Goal

Goal Directed Strategy

Find New
Vehicles
Goal

Identify
Possible
Pattern
Goal

Track
Vehicle
Goal

Find New
Vehicles Focus

Identify Possible
Pattern Focus

Channel 1 Channel 2

Figure 4: An example of a plan/goal hierarchy from the DVMT. The rectangles
represent control goals and the ellipses represent strategies and foci. A dashed
line rectangle represents a future control goal.

At the leaves of this hierarchy are the individual foci that actually control
the problem-solving for each channel through the use of heuristics. These
heuristics can take the form of agenda rating functions (as in normal BB1-
style heuristics), as well as modification of any of the low-level control loop
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parameters.
Channels provide one mechanism for dividing up a problem. Another di-

mension along which a problem can be divided is time. In the DVMT the most
natural time slice is the sensor cycle, the time between two readings of sensor
data. We call the work for a particular channel on the data from a particular
time slice a channel task6. Analogous to the definition of channels (tasks that
may be controlled in different ways) channel tasks are the smallest unit of work
that may have different scheduling criteria (e.g., earliest start time, deadline,
. . . ). Another way of defining a channel task is that it comprises a particular
set of domain KSIs for a particular channel. However, the real-time scheduler
schedules future channel tasks (channel tasks for future sensor cycles) before
the actual domain KSIs trigger or become executable.

Optionally associated with a channel task is a deadline. This is a sensor
cycle by which the work in that channel task (or some important subpart of it)
must be completed. A deadline defines a time by which a channel task must
have satisfied a control goal. A control goal is satisfied if the work it requires is
completed with an appropriate level of certainty, precision and completeness.
Deadlines are generated dynamically at runtime using criteria specified in the
system goal. In the DVMT example given in Section 2 there is a deadline
indicating that fish must be warned about attacking ducks within 6 sensor
cycles. Instances of this deadline will be created and dynamically reacted to
every time a duck attacking fish pattern is detected.

3.4 The Real-Time Scheduler

The real-time scheduler is the part of the meta-controller that schedules the
execution of channel tasks to ensure that all deadlines are met and efficient
use is made of all available time and resources. This real-time scheduler does
not replace the BB1-style agenda mechanism, rather it schedules at a different
level of abstraction. The real-time scheduler chooses the set of channel tasks
to execute during each sensor cycle and what approximations to use in each of
those channel tasks. This defines a set of executable domain KSIs (because each
channel task is just a grouping of domain KSIs), which are then ordered by the
BB1-style agenda mechanism for immediate execution. The BB1-style agenda
mechanism may decide to interleave the execution of KSIs from different chan-

6Note that the choice of a sensor cycle as the unit for scheduling is somewhat arbitrary. It was
chosen because it is a convenientamount of time to schedule; it is easier tobuild schedules around
intermediate sized chunks of time. In fact, the real-time scheduler is constantly monitoring
domain problem-solving activitywatching for any changes that might affect scheduling decisions.
The real-time scheduler can change channel tasks at any point during problem-solving including
after they have partially executed.
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nel tasks, or it may decide to do all the work associated with a higher priority
channel task before doing any work on a lower priority channel task. Note also
that the real-time scheduler is devising tentative schedules for future sensor
cycles, as well as the current one, while the BB1-style agenda mechanism only
schedules KSIs for immediate execution.

The real-time scheduler is implemented as BB1-style control KSs. These
KSs are constantly monitoring the domain and control blackboards watching for
situations that require rescheduling, such as the creation of a new channel or
a change in the workload of an existing channel. When the real-time scheduler
determines that a particular sensor cycle is overloaded it has to decide how
to adjust the schedule to meet the timing constraints. Two techniques are
available for repairing schedules that are estimated to exceed their time limit.
These techniques are illustrated in Figure 5.

Task 1 Task 2 Task 3 Task 4

Initial 
Task Set

Task 1 Task 2 Task 3 Task 4

Approximate
Tasks 1 and 3

Task 1 Task 2 Task 4 Task 3

Move Task 3 to
next sensor cycle

Sensor Cycle

Figure 5: The real-time scheduler fixing overtime schedules.

One technique is to change the problem-solving method of a channel task
to use a faster approximation. This approach is used in the second line of
the figure where Tasks 1 and 3 have their runtime reduced through the use
of an approximate processing technique. This reduces the total runtime of
the task set to below the amount of time available during the sensor cycle. A
disadvantage of this approach is that it reduces the certainty, precision and/or
completeness of the result which may impact on the satisfaction of the control
goal. In particular, channel tasks with close deadlines will normally only use
approximations that do not compromise their ability to meet the deadline.

The other schedule repairing technique is to postpone channel tasks until
future sensor cycles. This approach is illustrated in the third line of the figure
where Task 3 is postponed until the next sensor cycle (where presumably more
free time is available). To do this, a vestigial channel task with minimal over-
head must remain in each cycle to gather the data that will be processed when
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the main channel task is actually executed7. This approach has the advantage
of reducing the time required for the moved channel task in the overtime sensor
cycle to near zero, but the disadvantage of increasing the workload in a future
sensor cycle.

4 A Solution to the Example Problem

This section describes in detail how the components of the architecture work
together to solve the example problem given in Section 2 as the sensor cycle
length decreases. We first describe how the system works when enough time
is available for complete processing of all data, then describe how the system
modifies its behavior as the available time decreases.

Before problem solving actually begins control knowledge sources post the
system goal, which triggers the posting of a top-level strategy for meeting
that goal. In this example a goal-directed top-level strategy8 will be posted.
Additional control knowledge sources will elaborate this strategy into default
heuristics for controlling the execution of control knowledge sources and an
initial control goal of finding any new vehicles that appear. This will lead to
the creation of a find-new-vehicles channel that is constantly looking for new
vehicles that are not already being worked on by an existing channel. The
filters of this channel will be set up to capture any data that is filtered out by
all the other channels. At the beginning of problem solving this channel will
accept all data, because it is the only active channel.

In the example environment ofFigure 2 three objects appear: a fish at sensor
time 0, a pigeon at sensor time 1, and a duck at sensor time 2. At sensor time 0
the find-new-vehicles channel receives the signal level hyps associated with the
fish. Hyp-to-goal mapping maps these hyps to group-level goals. Equivalent
group-level goals are merged together and the remaining group-level goals are
checked against the trigger conditions of KSs in goal-to-KSI mapping. This will
lead to a set of domain KSIs appearing on the domain KSI queue. Together
these KSIs (and the KSIs that they will trigger to continue processing the data
from sensor cycle 0 up to the track level) make up a channel task (i.e., the KSIs
associated with the find-new-vehicles channel for sensor cycle 0). The projected

7This is true both because of the limited size of the sensor buffers, which means that data
must be read before the buffers overflow, and because, if the data is not claimed by an existing
channel, the channel for finding new vehicles will attribute the data to the appearance of a new
vehicle.

8Although we have not yet implemented them, other approximate processing strategies could
be used in this example including clustering of noisy data and the skipping of data from every
other sensor cycle.
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change in the workload of the find-new-vehicles channel causes control KSs
from the real-time scheduler to trigger, estimate the total time required for the
find-new-vehicles channel task, compare this estimate against the total time
available, and, because enough time is available, schedule this channel task
for the current sensor cycle. This causes KSIs associated with this channel
task to trigger and appear on the domain agenda. At this point the BB1-style
agenda management of the meta-controller will begin scheduling domain KSIs
for immediate execution.

When the domain KSIs have processed the data up to the track level, this
satisfies the control goal of the find-new-vehicles channel (which is to recognize
when new vehicles appear and process their data for one sensor cycle). Generic
Control KSs notice when control goals are satisfied by regularly monitoring
each active control goal’s satisfaction function. Control KSs associated with
the top-level goal-directed strategy then post the next part of the control plan,
which is a control goal to identify any possible patterns the new vehicle might be
involved in. The posting of this control goal triggers a control KS which creates a
new identify-possible-patterns channel to identify any possible patterns the fish
might be involved in. The filters for this channel are configured to accept data
that is of signal types associated with the object (in this case data that could be
associated with a fish) and that is spatially within the projected course of the
object (using information about the maximum velocity and turning quickness of
the object). At this point the processing of data from sensor cycle 0 is complete.

Sensor cycle 1 contains data from two objects, the fish that has already
been tentatively identified and a newly arriving pigeon. The identify-possible-
patterns channel will accept the fish signals, because they are spatially close to
the previous fish signals and because they are of a type that is associated with
fish. However this channel will filter out the pigeon data, which will then be
picked up by the find-new-vehicles channel. Both channels will process their
respective data in the same way as in the previous cycle, with the processing
of the pigeon data resulting in a new identify-possible-patterns channel being
created to identify any patterns that the pigeon might be involved in. The
real-time scheduler will schedule both channel-tasks for immediate execution,
because enough time is available to do so. It will also tentatively schedule
channel tasks for each of the objects for future sensor cycles. Projecting into
the future the real-time scheduler will predict that the pigeon will leave sensor
range about sensor cycle 4, based on its current direction and velocity. It will
also predict that the time to process data for the fish will increase during sensor
cycles 4, as the fish enters the range of the noisy sensor.

Processing during sensor cycle 2 will proceed similarly, with processing of
fish and pigeon data continuing in their respective identify-possible-pattern’s
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channels and the find-new-vehicles channel noticing the appearance of the duck,
leading to the creation of a third identify-possible-patterns channel for the duck.
The appearance of the duck causes a deadline to be created to warn the fish
if it is involved in a duck-attacking-fish pattern by sensor-cycle 7 (because the
system goal specifies that fish must be warned within 6 sensor cycles of both
objects in the pattern coming within sensor range.)

The system goal specifies that four sensor cycles of data are required to
confirm the involvement of vehicles in a pattern. During sensor cycle 5 enough
data will have been processed to confirm that the duck and fish are involved in
a duck-attacking-fish pattern. This will be noticed by a control KS, which will
issue a warning to the fish. Processing in all channels will continue until all
available data has been processed.

As the sensor cycle length is reduced the real-time scheduler has to take ac-
tion, because not enough time is available to completely perform all tasks. The
first step the real-time scheduler will take is to modify the identify-possible-
patterns channels to use the level-hopping approximation. It does this by modi-
fying their goal-to-KSI mapping to map directly to vehicle-level KSIs, bypassing
the group-level. This will reduce the number of domain KSIs to execute, re-
ducing the time estimates associated with these channel tasks. When approx-
imating alone is not enough to allow all channel tasks to execute immediately
the real-time scheduler will look into postponing tasks. At this point the ten-
tative schedules it maintains for future sensor cycles become very important.
The scheduler knows that it has a deadline to warn the fish about the duck
by sensor cycle 7, and that processing time for the fish and duck data will be
increasing because of the noisy sensor. It also recognizes that after sensor cycle
4 the pigeon will be out of range. Combining all of this information with the
criteria defined in the system goal for making scheduling decisions, the sched-
uler decides to postpone work on the pigeon data until after the fish has been
warned about the duck during sensor cycle 5.

It implements this decision by creating new vestigial channel tasks for the
pigeon’s identify-possible-patterns channel tasks for sensor cycles 3, 4 and 5;
and moving the regular channel tasks for the pigeon for cycles 3, 4, and 5 to
cycles 6, 7 and 8 respectively. The vestigial channel tasks will capture the data
for the pigeon for each sensor cycle, but do no processing of that data. These
vestigial channel tasks are necessary to avoid having the data identified as a
new vehicle by the find-new-vehicles channel. As a last resort if the sensor cycle
length is reduced to a very short amount of time, the real-time scheduler will
turn off the find-new-vehicles channel. This will have the effect of completely
ignoring the appearance of any new vehicles, but will allow enough time for
the the deadline associated with the known vehicle data to be processed. This
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rescheduling solves the real-time problem because it reduces the workload in
each sensor cycle until it can be performed in the time available, and it meets
the required deadline.

5 Sketch of the Implementation

This section describes the status of the implementation, including a discussion
of how some aspects of this work are implemented in a blackboard architecture
and the utility of that architecture for this work.

All four components of the architecture described in this paper are imple-
mented. The channelized low-level control loop works just as described. The
meta-controller and real-time scheduler are implemented as control KSs and
are constantly evolving and improving. Most of the solution to the example
problem works as described. Deadlines are only partially implemented and the
real-time scheduler is not yet very sophisticated in its decisions about postpon-
ing tasks to the future. The code to determine when a vehicle will go out of
sensor range exists, but is not yet integrated with the rest of the DVMT.

Almost all “objects” mentioned in this paper are implemented as first-class
objects on the blackboard (e.g., channels, channel tasks, sensor cycles, control
goals, and deadlines.) Almost all knowledge described in the meta-controller
and real-time scheduler sections is implemented as knowledge sources that
monitor and manipulate these objects.

For example, the decision about how to react to excessive work in a sensor
cycle is made by triggering KSs for all of the major reactions and rating them
using heuristics that are specific to the current system goal. When the decision
is made to move a channel task (or set of channel tasks) to a future sensor cycle
or to modify a channel task to use a faster approximation these actions merely
involve changes to blackboard objects.

The blackboard architecture is a good choice for this work for several rea-
sons. One reason is that we need to combine domain and control knowledge
at multiple levels of abstraction together in a single problem-solver. We find
it very useful to have a flexible, declarative representation of knowledge that
makes adding new knowledge easier. Another reason for using a blackboard ar-
chitecture is that knowledge sources and channel tasks seem to be useful levels
of abstraction for reasoning about and controlling real-time problem-solving.
Knowledge sources are low-level enough to allow reasonably accurate estimates
of their runtime. Channel tasks are a higher level abstraction that are more
appropriate for scheduling.
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6 Summary and Future Work

This paper describes a set of components which together allow approximate pro-
cessing techniques to be used to solve real-time problems with hard deadlines.
In particular we have shown how these components lead to a predictable black-
board execution loop, a useful representation of current and future problem-
solving tasks and a model of how to modify those tasks when deadlines are
projected to be missed.

Current work is ongoing to extend these results in several ways. The Spring
scheduler[19] makes guarantees about its ability to schedule a particular task
to meet a deadline. We would like to extend our scheduler to make similar
guarantees as new tasks dynamically arrive at the system. Another extension
to our work involves taking control reasoning time into account in the real-
time scheduling. In our current system the meta-control and domain loops
are separate but synchronized. We would like to extend our system to use an
asynchronous meta-control loop and to take the time for meta-control reason-
ing into account in its time calculations. We are also investigating extending
some of the real-time reactive scheduling techniques of OPIS[18] to include ap-
proximate processing. Finally, we are examining the usefulness of the schedule
texture analysis techniques of constrained heuristic search[20] for our real-time
scheduler.
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