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Abstract

In future BISDN networks, significant burdens will be placed on the processing elements in
the network since call routing and admission policies will be more computationally intensive
than those in present day networks. Thus the bottleneck in future networks is likely to shift
from the communication links to the processing elements. The processing delays at these
elements are influenced by network parameters such as routing algorithms, propagation delays,
admission control functions (due to QOS requirements), path lengths (or network topology), and
processing capacities at these elements. The goal of this paper is to characterize the influence
of these network characteristics on the call setup time and accepted call throughput. This
influence is examined with three sequential routing schemes, two flooding routing schemes and
one fast connection establishment protocol proposed in PARIS network under various network
parameters and different forms of admission control. Analytic models for different routing
algorithms are developed and are validated by simulation results. The results of our study
indicate that call processing delay associated with admission control function affect the network
performance significantly while propagation delay does not affect the performance significantly.
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1 Introduction

Advances in fiber optic communication links over the last decade have shifted the network
performance bottleneck from the communication links to the processing elements. In the case
of future broadband ISDN (BISDN) networks, further burdens will be placed on the processing
elements in the network since call routing and admission policies will be more computationally
intensive than those in present day networks (due to the need to insure that accepted calls will
be provided with a guaranteed quality of service (QOS) [1, 2]). In this paper, we thus focus
on the computational delays associated with call admission, routing and call setup in BISDN

networks.

Routing in future BISDN networks will have elements of both traditional packet-switched
and circuit-switched networks. The CCITT specifications on ATM [3] specify a cell-based,
packet-like transport mode for information within the network. However, the need to provide
a guaranteed QOS has resulted in the need for a call-level admission control mechanism and
the reservation of resources (e.g., bandwidth [4]) by a call on a link-by-link basis. In this
latter case, when a call is “offered” to a route, computation is required to determine whether
the selected route can indeed support the additional call while meeting the QOS guarantees
already made to existing calls. The manner in which calls are offered to the various routes (e.g.,
the order in which routes are attempted, the decision as to whether multiple call setup paths
will be attempted in parallel) will clearly influence the call setup time as well as the maximum
call arrival rate the network processing elements can support. Network parameters such as call
processing capacities, propagation delays, and path lengths will also influence these performance
measures. It is the influence of these routing, call setup and network characteristics on the call

setup time and call processing capacity that we seek to characterize in this paper.

We investigate six routing algorithms in this study : three well-known algorithms in the
circuit-switching literature, two controlled-flooding versions of these algorithms and one fast
connection establishment protocol proposed in [5]. Analytical models are developed to study
these six algorithms. The analysis is based on the link-decomposition method [6], a commonly-
used technique in evaluating network performance in the circuit-switching literature. The ana-
Iytical models are validated by simulations. The results of our study indicate that SOC and
Crankback routing schemes always perform better than OOC routing scheme. Two controlled-
flooding routing schemes perform better than sequential schemes only when the processing delay
is relatively small as compared to the call holding time. The fast connection establishment pro-
tocol performs best when the link-level blocking probabilities are low and the processing delays
are not very small. Moreover, we find that propagation delay is not an important performance
factor as long as the round trip propagation delay is relatively small as compared to the call
holding time. The processing delay and the call admission control function, however, play an

important role on the network performance.



In future BISDN networks, call blocking becomes an important network performance issue
because a call request may be rejected as a result of admission control. Call admission itself is a
very complicated problem and beyond the scope of this paper. In this paper, we simply assume
that admission control is some given function of the number of existing calls. In circuit-switched
networks, call blocking probability is the most important and common network performance
measure. A number of methods have been proposed for computing the end-to-end blocking
probability in the circuit-switching literature, e.g. [7, 8, 9, 10, 11, 12]. Whitt [13] also presents
a model for calculating the blocking probability in setting up virtual circuits with fixed-path
routing in packet-switched networks. All of these works, however, have focussed on computing
the blocking probability and, therefore, ignore the call set up delay. A common assumption
made by these works is that calls are either setup in zero time (if there are sufficient bandwidth)
or cleared in zero time (if blocked on some link). The focus of this paper is very different from
these works since we are particularly concerned with accurately modeling the call setup time,
and studying the effects of different call setup policies and non-zero call clearing time on the

call setup time.

One recent work which has examined the processing aspects of design and control in future
BISDN networks is [14]. In [14], the authors identify the impact of limited processor capacity on
the design and control of high-speed packet-switched networks. General guidelines for processor-
limited routing and congestion control algorithms for such networks are discussed. In our
work, we limit ourselves to the call setup problem while considering additional factors, such as

propagation delay and QOS requirements. We also provide quantitative results.

Another related work on the performance of a flooding-based routing scheme is [15]. [15]
presents an analysis for the performance of the MKS circuit-switching communication system
designed by PKI. The call setup procedure in this system makes use of a flooding scheme
to find a free path between any two subscribers (nodes). A critical quantity that must be
computed in that work is the probability that the first call setup request message received
at the destination node has followed a given path (equation 14 in that paper). The same
computation is also needed in our analysis of the two controlled-flooding routing algorithms.
[15] discusses how different assumptions can be made to make the computation tractable. To
keep the computation tractable, we assume that the total waiting times along different paths
are independent (assumption la in [15]) and that the total waiting time along a path is the

sum of threshold exponentially distributed random variables (assumption 2c in [15]).

The remainder of this paper is structured as follows. In section 2, we discuss our model of
the network. In section 3, we specify the routing mechanisms examined. Section 4 gives the
analytical models for different routing mechanisms. Analytical results and simulation results

are presented in section 5. Finally, section 6 summarizes this paper.



2 Network Models

We consider a connection-oriented high-speed network consisting of N nodes, N > 2, with each
node having some number of incoming and outgoing links. We adopt the network node structure
described in [16, 5], in which a node consists of two components: the switching subsystem (SS)
and the network control unit (NCU). The SS is a fast hardware switch with relatively limited
functionality. The NCU is a slower, but more sophisticated, processor. Packets (or cells) that
need only be relayed through the node are handled by the SS directly without the involvement
of the NCU. We further assume that control packets associated with routing are the only control
packets processed by the NCU. Each NCU is assumed to have a sufficiently large buffer to avoid

the loss of routing control packets due to buffer overflow.

External connection requests, each having an associated QOS requirement, can arrive at
any node in the network. When a call request arrives, the routing algorithm (which resides
in the NCU’s of the network nodes) chooses a path for the call from a set of possible paths
(according to the rules specified in next section) and then proceeds as follows. First, the source
node invokes the admission control function to check if the new call can be accepted on the first
link on the path. The call is accepted on the link if sufficient bandwidth is available on the link
to meet the new call’s QOS requirement, while maintaining the agreed-upon QOS for existing
calls. If the call is accepted on the link, a certain amount of the bandwidth, determined by
the QOS requirement, is reserved for the call. The source node then passes the call request
to its downstream neighbor on the chosen path. This neighbor then passes the call request
to its downstream neighbor if the QOS can also be guaranteed at the next link. This process
continues until either the request is successfully passed to the destination node or the request
cannot be passed further toward the destination node by an intermediate node on the path.
In the first case, the call is established and the resources reserved along the path during the
call set-up phase provide the guaranteed QOS required by the call. In the second case, the call
cannot be established on the path, bandwidth that has been reserved for this call is released,
and another path, if available, may then be tried.

3 Specification of Routing Algorithms

As described in section 2, the call routing algorithm residing in the NCU defines which path
should be tried first as well as which alternate paths should be tried next when a call request
is blocked on a path. We assume that for each source-destination pair, there is a predefined
routing tree available at the source node [6]. A routing tree can be viewed as a predefined set of
possible paths connecting the source and destination node. These paths will be tried in some

order defined by the routing rule to route a new call set-up. Three routing rules, which use



knowledge of the network topology but no explicit network status information such as current
link delay, traffic load, ..., etc, are studied; these rules are well-known in the circuit-switching
literature. Two controlled flooding versions based on these three rules and a fast connection
establishment protocol proposed in [5] based on the OOC control rule will also be investigated.
We identify the original three rules as sequential routing rules, the controlled flooding rules
as parallel-sequential rules (because all paths are tried in parallel but intermediate nodes on
a chosen path are checked sequentially) and the protocol introduced in [5] as the sequential-

parallel rule (because paths are tried sequentially but intermediate nodes are verified in parallel).

We first consider the three routing rules originating from circuit-switched networks. We
describe these rules by the help of augmented route tree [11] as shown in Figure 1. A call
is blocked if a so-called loss node, a node labeled by an asterisk, is reached. Paths are tried

sequentially, from top to bottom, left to right, with the following control rules.
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(a) An example network.
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(c) The augmented route tree for SOC control. (d) The augmented route tree for crankback control.

Figure 1: Augmented Route Tree for OOC, SOC and Crankback Control Rules

1. OOC control rule: According to this rule, the choice of the next path to try is always

made by source node. When a call request is rejected on a link on the chosen path, a



blocking message is returned along the path to the source node. Bandwidth reserved
previously is released and the source node sends another call request on the path to be
tried next. For example, as shown in Figure 1(b), path A — B — C — F is tried first. If it
is blocked, path A — B — E — F is then tried. If it is also blocked, path A — D — F — F
then is tried. The call is blocked if a blocked message is received on the last path, i.e.
A— D — FE — F. Note that this rule does not use any information about which link
resulted in the call being blocked on a path.

2. SOC control rule: The SOC control rule is also called progressive control, sequential
control, or spill-forward without crankback. This rule tries to improve the OOC control
rule by allowing the intermediate nodes to react to link blocking. Each intermediate node
is given a set of possible outgoing links to try. When a call request is blocked on one of
the links, instead of returning this blocking message to the source node, the intermediate
node tries to set up the call on another link from the set. If none of the possible outgoing
links at the intermediate node is able to provide the required QOS, the call is blocked.
For example, as shown in Figure 1(c), if the call request is accepted on link A — B then
node B is responsible for selecting the next link. A block on link B — C results in another
trial on link B — E. The call request is blocked at node B if link B — F rejects the request.

3. Crankback control rule: Crankback control is also called spill-forward with crankback.
It improves the SOC rule by allowing a blocked message to be sent back to upstream nodes
in the routing tree. Recall the situation described in SOC rule; in the case of Crankback,
when a call request is blocked on link B — E, a blocking message is sent back to node
A, the upstream node of node B. The call request is then tried on link A — D. The
call is blocked only when none of the paths defined in the routing tree is available. In
the example shown in Figure 1(d), the call is blocked iflink A — D, D — E,or E — F is
blocked.

Instead of trying downstream neighbors one at a time, the controlled-flooding versions of
these rules try all downstream neighbors simultaneously. They are referred to as controlled
flooding because call requests are sent only to neighbors that appear in the routing graph. For
the OOC control rule, only the source node sends out multiple call request messages. Controlled
flooding versions of SOC and Crankback are collapsed into one identical rule in which nodes
with more than one downstream neighbor will send out simultaneous multiple call request

messages.

In [5], the authors propose a protocol for fast connection establishment for high speed packet-
switched networks. The idea is to speed up the call set up delay by allowing the processing at
intermediate nodes be done in parallel. In this paper, we study an extreme case of the protocol

which yields the maximum speedup. The protocol works very similar to the OOC rule. The



only difference is that when the SS of an intermediate node receives a call setup message, it
relays the message to the next node on the path immediately without waiting for the result of
the admission control from the NCU. The NCU of each immediate node then sends its result to
the destination node directly. In this way, the NUC’s of all intermediate nodes will be able to
do the admission control process simultaneously. As in [5], we assume each intermediate node
can send message directly to any remote nodes. We further assume that the result sent from

NCU’s of intermediate nodes to the destination node is error free.

4 Analytical Models

In studying the influence of network characteristics such as routing algorithms, the network
performance measures in which we are interested are end-to-end call set up delay (which in-
cludes call processing delays and propagation delays) and the call blocking probability. The
influence of network characteristics on these performance metrics will be examined through
analytical models. In this section, we present the analytical models for homogeneous networks.
With the homogeneity assumption, the network topology is symmetric, every node is treated
independently, and behaves in a statistically identical manner. The same is true for the link as
well. Appendix B discusses how this methodology can be extended to heterogeneous networks.

In our analytical models, we make the following assumptions and notations.

1. External call arrivals at each node are assumed to be governed by a stationary Poisson

process with parameter A.

2. Call set-up requests (either originating at the node or being received from “upstream”

nodes) to a node are also assumed to arrive according to a Poisson process.

3. The call holding time, denoted by 7, for each call is assumed to be arbitrarily distributed

with mean 7.

4. Call request processing (service) times, denoted by T, are assumed to be exponentially
distributed with parameter 1/7.

5. Propagation delays, denoted by D,, are assumed to be constants.

6. We assume that call requests are transmitted on dedicated channels and do not contend
for transmission media. We also assume that they are not lost in the switches (or NCU’s)

and their transmission delays are negligible (due to the extremely high transmission rate).
7. Calls are blocked independently at all links [7, 8, 13].

8. The release of resources, either due to call termination or call abortion, consumes zero

processing time.



9. The network topology and routing trees are fixed.
10. Each node has M statistically identical incoming, as well as outgoing, links.

11. Let £ be the steady state blocking probability on each link. Note that £ is identical for

each link due to the homogeneity assumption.
12. Let P,; be the end-to-end call blocking probability.

13. Let Tsetup be the average end-to-end call set up delay.

Resources on the link are reserved either for the entire call holding time or a short blocked-
call-clear time, the time from when the resource is first reserved by a call until it is released, due
to the call being blocked downstream. This blocked-call-clear time includes the downstream call
processing delays and propagation delays. Unlike [7, 8, 9, 10, 11, 12], we do not assume that call
setup time and the blocked-call-clear time are negligible. Indeed, modeling these non-negligible

delays and determining their effect on call setup times is one of the goals of this research.

The design of algorithms for deciding whether to admit/reject the call on a given link is
beyond the scope of this research. However, we model the effects of such algorithms in the
following manner. From the standpoint of admission control, the number of existing connec-
tions together with their QOS requirements is the minimal information needed to make new
connection acceptance decisions. Note that these existing connections should include not only
connections already established but also connections that are in the process of being set up,
having already reserved resources on a link. In this study, we assume that the total number
of existing connections on the link is the only parameter that affects admission control. Define
By(=) as the probability that link £ cannot guarantee the QOS for a new call or for some existing
call given the addition of the new call, where z is a measure of the current number of existing
calls at link £. The rationale for such a nondeterministic “call admission function” is that ex-
ternal calls may require different amounts of resources. Thus By(z) gives the probability that
the resource requirements of an arriving call exceeds the remaining available capacity of link £,
causing the call to be blocked. Modeling the call admission control in this manner enables us
to decouple specific QOS mechanisms from the routing issues which are the main focus of this
research. Throughout the remainder of this chapter, we will assume that all links are alike and
drop the dependence on the link identity. In our numerical examples, we examine the call setup
delays and accepted call throughput associated with various routing algorithms and network

parameters when B(z) is concave, convex, or linear.

Our analytic models are based on the link-decomposition method. Similar to the original
link-decomposition method, we first decompose the overall network problem into a set of inde-

pendent link and node problems. After the performance of each link and node is computed,



the overall network performance such as end-to-end call setup delay and call blocking probabi-
lity can be recovered from the individual link- and node-performance measures such as nodal

processing delay and link blocking probability.

The difficulty with the link-decomposition method arises from the fact that the link-offered
traffic and node-offered traffic are unknown and coupled with the individual link and node
performance measures. The coupling between the link- and node-offered traffic and the link
blocking probability and the mean nodal processing delay yields a fixed point problem. That
is, to compute the link blocking probability and the mean nodal processing delay we need to

solve a set of nonlinear equations that have the following forms:

L = F(L,T)
T = FR(L,T)

Like most sets of nonlinear equations, solutions to this set of nonlinear equations can be obtained

N

L,
L,

N

only by numerical methods. The numerical method used most frequently is the so called
relaxation method. By using the relaxation method, the network-level and link/node-level
performance measures are obtained by using an iterative procedure which, at each iteration,

does the following:

Algorithm A:

1. Given the individual link-blocking probabilities (due to the admission control), compute
the traffic offered to each link and node.

2. The resulting link- and node-offered traffic in turn yield, via simple link and node models,

a new set of values for the link-blocking probabilities.

We first discuss how to calculate the nodal processing delays and link-blocking probabilities
and then show how the offered traffic to each link and node are computed for the routing
algorithms specified in the previous section. Finally, we show how the end-to-end call set up

delay and call blocking probabilities are calculated for different routing policies.

4.1 Computing Nodal Processing Delay

As discussed earlier, when a call setup request arrives at a node, a certain amount of com-
putation must be performed in order to determine whether to admit/reject the new call. We
refer to the delay associated with this computation (both waiting for processing by the NCU
as well as NCU processing itself) as the nodal processing delay, denoted by T. In addition to

assuming that exogenous call arrivals are Poisson, we further assume that the arrival process of



call setup requests to each node (NCU) is a Poisson process [7, 8, 13]. Define X to be the time
required by an NCU to process a call request (hereafter, we refer this as the call processing
time). Recall that X is an exponential random variable. Therefore, the average call processing
delay (queuing delay plus service time), T, is given by [17],

_ X

T= —
1-2X’
where X is the arrival rate and X is the mean call processing (service) time at a node. (The

notation Y will be used to represent the mean of a random variable Y throughout this chapter.)

Besides the processing delay, the end-to-end call set up delay also includes the propagation
delay on links traversed by a call request. The propagation delay will be modeled as a delay

center with a deterministic service time.

4.2 Computing Link Blocking Probability

Before we compute the link blocking probability (i.e., the probability that an arriving call cannot
obtain the link resources it needs to satisfy its QOS requirement), it is very important to clearly
make the distinction between the node-offered call-requests and link-offered call requests. The
link-offered call requests are the calls offered by call setups to the single link under consideration.
The node-offered call requests are the calls offered to any of the outgoing links of this node. In
the case of OOC and Crankback control, these call requests include the overflow call requests

from previous paths.

Let us consider a single link in isolation, as shown in Figure 2. (Note that the call setup
requests arriving at the node shown in the figure are only the requests that are intended to be
sent to the link under consideration; the call requests that come to the node to be sent out on
other outgoing links of this node are not shown.) As we will see shortly, the incoming requests
to a link can be divided into a number of distinct classes (e.g., in the case of OOC control, each
class will be distinguished by being on the ith path attempted between a source/destination
pair and being the jth link on that path). We refer to the arrival rate of class ¢ calls as 7; and
define ' = >, v;. Each class of calls can be further divided into two types. The first type

of calls, which will eventually be accepted if not blocked on the link under investigation, has

an arrival rate of 47. The second type of calls, which has an arrival rate of 'yf , will be blocked

downstream if not blocked on this link. Here, the superscripts s and f refer to whether a call

request is eventually successful on this path or fails (is blocked) downstream. Let §7 and 6Z-f
denote the mean resource holding times for the two classes of calls. Note that a busy server in
a multiserver queue shown in Figure 2 models a call that has successfully reserved resources at

this link ( these resources may be held for the duration of a call or may be released shortly if a
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Figure 2: Queueing model for processing delay and call holding times

call is blocked downstream). Since the link capacity is limited, the maximum number of such

busy servers in Figure 2 is limited and is denoted by C.

The steady state blocking probability of a link can be obtained by solving for the steady
state distribution of the number of calls that are holding resources (i.e., are resident in the
multiserver queues) on the link. For computing the steady state distribution of the number of
calls (which will eventually either be accepted or blocked downstream) on the link, the original
call blocking model shown in Figure 2 can be shown to be equivalent to the M/G/C/C queue
shown in Figure 3. The mean service time, 1/u, for this M/G/C/C queue is given by

IR R
EZE:F”Q+Z;F'ﬁ‘

=1

The arrival rate, X, for this queue is state dependent and is given by

A(#)=T-(1- B()) i=0,..,C—1.

Given the arrival rate and service rate, we can compute the steady state distribution of the
number of calls currently allocated bandwidth at this link, IT = (7o, 71, ..., 7¢) where 7, is the

steady state probability that there are z calls holding resources at this link and is given by [18]

15 (G)/m)/e!
>0 T (M) /1) /5!

Tp =

10
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Figure 3: Equivalent queueing model for processing delay and call holding times

Once II is known, the probability that an arriving call is blocked at this link due to admission

control is given by

4.3 Offered Call Requests, Call Setup Delay, and Call Blocking Probability
in Homogeneous Networks

The computation of the link- and node-offered call arrival rate is complicated and depends

heavily on the routing tree used. For ease of explanation, we show how the link- and node-

offered call arrival rates are computed in a homogeneous network.

4.3.1 Sequential Routing Rules
In the following three sections (Section 4.3.1.1, 4.3.1.2, and 4.3.1.3) we show how to compute

the node- and link-offered call arrival rate, call blocking probability, and average call setup

delay for the three sequential routing rules.

4.3.1.1 OOC Routing Rule

11
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Figure 4: Augmented Route Tree for OOC Control Rules (homogeneous case).

As shown in Figure 4, we assume that there are k possible paths between each source-
destination pair, each with £;,7 = 1, ..., k, intermediate nodes. Let us begin by calculating
certain quantities that will be required in the computation of the link- and node-offered call

request rate, end-to-end call blocking probability, and mean end-to-end call setup delay.

First we define P}ail as the probability that a call fails on path i given that an attempt is

made to set the call up on that path. Under the independence assumption, we have

4
Plog = D L(1-LY,
7=0
= 1-(1- L)+ (1)

Define N; as the expected number of nodes visited along path i by a call setup message

given that it fails on the selected path. Aj is given by

_ b 1-LYc
Ni = > G+ 1)¥,
Pfaz'l

i=1

1—[(+ 1)L +1)(1 - L)s+t L

= 5 - i (2)
EPfau Pfau

Let Ni,j denote the expected number of nodes a call set up message visits after the jth node
on path 7 given that it has successfully reserved resources at the jth node and fails at some

node farther down path i. N;; is given by

Li—j n—1
_ (1- L)L
N;; = Z ey

B D ¢ 1) Loy o

12



_ 1= g)e+1a - £yt
By W GV (3)

Link-offered call requests

Let us now focus on a single link in the network. As shown in Figure 2, the incoming traffic
to a link is divided into several classes. Under OOC control, the incoming traffic to a link is
divided into % , (£; + 1) classes which will be referred to as (¢,7), ¢ = 1,...,k, 7 =0,..., 4,
representing the jth link on the ith path between all source/destination pairs. The arrival rate
of the (¢, j)th class of traffic, which is referred to as ; ;, is the total call setup traffic offered to
a link by call requests which reach this link as the jth link of path ¢ for all source/destination
pairs in the network. ;¢ can be viewed as the rate of exogenous call requests entering the
network at a node incident to this link, and being offered to this link as the first link on the
ith path from this source node. Because of the homogeneity assumption and the fact that each

node has M statistically identical outgoing links, we have the following equations for all of the

links.

A
M0 = 3 (4)
A 1:_1 .
Yio = M P;ail’ i=2,..,k, (5)
J=1
Yii = Yij—1(1—-L), j=1,..,4 i=1,.. k. (6)

Recall that each class of offered call requests to link (z, j) can be further divided into two types:

those that are eventually successful on this path and those that fail. The arrival rate of each

type of offered call requests, 7/, and 'yz-]jj respectively, and the mean call holding time, §;; and

61-{ ;» are computed as follows,
v = (1 -L)5, §=0,.,4 i=1,.,k, (7)
v = mi—
= y;(1-Q=-L)%), §=0,.,4 i=1,..,k, (8)
8; = (Li—3)x(T+Dp)+ Dp+7, (9)
8f;, = Nj(T+ D). (10)

Recall that T is the mean processing delay (queueing plus service) at each node (which is still
unknown at this point, since the overall call arrival rates are unknown), D,, is the propagation
delay and 7 is the mean call holding time. Relations (7)-(10) can be used to compute the
blocking probability on the link during an iteration of Algorithm A discussed in Section 4.2.

13



Node-offered call requests

Let us now focus on a single node in isolation. First, we assume that when a call request
is blocked on the source node’s jth outgoing link, the call request is immediately tried on the
(7 + 1)st link. The rate of call requests which reach this node as the source node is referred to
as (o, and is given by:

k—1
Go = A+ M Y 7io(Piay — L)- (11)

=1

Note that Gg includes “first tsme” exogenous call requests as well as call setup attempts which

have been previously blocked. The node-offered call request rate, GG, is then given by

k4
G = Go+ M ZZ‘)’Z'J'. (12)

=1 j5=1

Call setup delay and call blocking probability

Since a call is lost if it is blocked on all paths, the probability that a call request is rejected

is given by

k
Prej = HP}ail‘ (13)
i=1

The average call set-up delay, Tsetyp, is then computed as follows:

(1- P}ail) 1521 Pioir

T+ D
[ + P] 1— Prej

(14)

kE |i-1
Tsetup = Z IZA_[J ‘I‘ Zl —|— ]_

=1 |7=1

The term Y [N + £; + 1] in equation (14) is the expected number of nodes a call setup message
visits given that the call is successfully set up on the ith path. T + D, is the expected processing
and propagation delay. The final (fractional) term is the probability that the call is successfully
set up on path ¢ given that the call is not blocked.

4.3.1.2 SOC Routing Rule

14
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Figure 5: Routing tree for SOC and Crankback control rules (homogeneous case)

The routing tree shown in Figure 5 is shared by the SOC routing rule and the crankback
routing rule. The loss nodes in the tree are omitted. Each node in the routing tree is given a
unique label according to the following rules. The node with label (31, ...,%-1,%) is the ¢,-th
child of node (%1, ...,%—1) and has k;, _;, children labeled (i1, ..., %, 1), ..., (41, ..., %, ki, ... 5,). The
source node is labeled (0) while its children are labeled (1), (2), ..., (ko) respectively. (Note that
due to the homogeneity assumption, all O-D pairs have routing trees of the same form and each
node will be node (%1, ...,%;) in the routing tree of some O-D pair, V(1,...,%7).) The set of all
nodes that are directly connected to the destination node by a link is denoted by D. A node
n € D always tries the direct link first.

The following notation, which is a straightforward generalization of the notation used for

00QC, is used in the analyses of both SOC and Crankback.

. Pil,---ﬂ:l : the probability that a call request is blocked at node (41, ...,%7) or later given
that it has reached node (41, ..., %).

. Nil,---ﬂ:l : the expected number of nodes visited at and after node (44, ..., ¢) given that the
call request is blocked at node (41, ..., %) or later.

. -A_[il,---,iz : the expected number of nodes visited at and after node (%1, ..., %) given that the
call request is successfully set up through node (71, ..., 4;) and subsequent nodes.

o G, . i, - the offered call request rate to the node under consideration by call requests

which reach this node as the (41, ..., ;) node in the routing tree.
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® Y(i1,...i),; - the offered call request rate to the link under consideration by call requests

which reach this link as the jth outgoing link of node (%1, ..., %) in the routing tree.

. 7(51'1 i) the part of v, ... 4,),; Which will eventually be successfully set up. Recall that
the mean resource holding time for successfully setup calls is 6&.1 EANE

which will be later blocked at some node. As before, the

f
(ily"'yil)yj‘

f .
. ‘y(il,...,il),j : the part Of‘y(ily---yil)yj

mean resource holding time for calls blocked downstream is §

Let us now calculate certain quantities that will be needed in the computation of both the
link-offered call request rate, call setup delay and call blocking probability. The quantities
Pil,---,il7N7:1,---,1:l and '/\_[7:17---77:1 satisfy the following recursions. Note that the computation can

be done by scanning the routing tree only once. We first compute the probability that a call

request is blocked at node (41, ...,%) or later.
B Bi iy ' B
Pypis = [ D0 L77H L= L) Py, i) + L (15)
i=1

with P;, ;1 = 0, V(i1,...,37) € D. (Recall that (i1, ...,i,1) is the destination node.) The
term £77! in equation (15) is the probability that a call setup message is blocked at this node
on the first j — 1 outgoing links. The term (1 — L) P;

message successfully reserves bandwidth on the jth outgoing link but is blocked downstream.

j is the probability that a call setup

1yl

The final term L%z is the probability that a call setup message is blocked at this node on all

outgoing links (i.e., that none of the outgoing links to the destination can provide the requested

QOS).

For N;, .. i,, we have

kiy iy piq =
- L7 =LY, i~
Ni.i, = ( Z ( = )i lJNil,...,il,j) +1 (16)

with N;, . ;,1 =0, V(i1,...,5) € D. The first (fractional) term in equation (16) is the proba-
bility that a call setup message successfully reserves bandwidth on the jth outgoing link but
fails downstream given that it is eventually blocked. The term “1” accounts for the visit to the
current node. Note that, as we assumed in the OOC rule, a call request blocked on the jth

outgoing link is immediately tried on the (j + 1)st link.
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Similarly, the expected number of nodes visited at and after node (1, ..., is) given that the

call request is successfully set up through node (41, ...,%;) and subsequent nodes is given by

TR Y)

ki iy pi_1 5
- L1 =LY =Py, ,5) o
Mly"'yil = ( ( 1 _)é : lJ)Mly"'yilyj) —I_ 1 (17)

with Nj,,..i,1 =0, V(é1,...,%) € D. The first (fractional) term in equation (17) is the proba-
bility that a call setup message is successfully set up through the jth child of node (41, ..., %)
given that it is successfully set up through node (31, ...,1%).

Link-offered call requests

The quantities Pil,...,il,Ni

consider link-level measures and focus on a single link in the network and compute the offered

1,yig and Mly---ﬂ:l are nodal performance measures. Now let us

call request rate at this link. The following equations are used to compute these rates and mean

resources holding times of each class of calls,

A

Yoy = Mﬁj‘l, j=1,..., ko, (18)

Yo = Y0)i(1—L),L7" i=1,.,k, j=1,..,k, (19)
Viryithi = Viryiz—)ie(L = L)LY G =1, kiy s (20)
Virring = Vinynini(l = Pitysini)s (21)
‘Y(fil,___,il),j = 7(i1,...,il),jpi1,...,z’l,j, (22)
Oy i) = Niy,.ing(T + Dp) + Dy + 7, (23)
6(12'1,---,1'1),1' = Ni...i,i(T + Dp). (24)

The term ﬁ in equation (18) is the portion of exogenous call requests offered to the link by
call requests which reach this link as the first outgoing link of the source node. (The division
by M results from the homogeneity assumption and the fact that each node has M statistically
identical outgoing links.) The final term, £7~!, in equation (18) is the probability that a call
request is blocked on the first j — 1 links. (Recall that 7(0), is the traffic offered to the link by
call requests which reach this link as the jth outgoing link of the source node.) Similarly, the
term 7(g),i(1 — £) in equation (19) is the offered call requests which reach this link as the first
outgoing link of node (%). Therefore, the right side of equation (19) gives the rate at which call
requests reach this link as the jth outgoing link of node (7). The term v, ;,);(1 — P i)
in equation (21) is the portion of the calls offered to the link by call requests which reach this
link as the jth link of node (41, ..., %) and which are eventually successfully set up if not blocked
on this link. (The reader is referred to Figure 2.)

17



Node-offered call requests

Let us now focus on a single node in isolation. In order to calculate the node-offered call
request rate, let us focus on the M incoming link flows. Recall that the rate at which call
requests reach this node as the (i, ..., i¢) node for all source/destination pairs in the network

is referred to as G;,,... ;,. Because of the homogeneity assumption, G;,,... ;, can be computed as

71:l

follows,
GO = A: (25)
GJ = M ‘)’(0),](1 - E), ] = ]_, ...,ko, (26)
Giyyis. = M Y(ay,.ig_1)in(1 = L). (27)

The term 7, . 1 — £) in equation (27) is the call request rate arriving at the node by

cirea)ial
call requests which reach this node as the (4o, ...,%;) node in routing tree from one incoming

link, and is multiplied by M because each node has M statistically identical incoming links.

The node-offered call request rate, G, is then given by

G = Z Giy,...iy-

The summation is for all nodes in the routing trees of all source/destination pairs in the network

except the destination node.

Call setup delay and call blocking probability

Recalling that the source node has the label “0”, the end-to-end call blocking probability is
given by

Pej = P (28)

and the average call set-up delay is given by

Tsetup = No(T + D,) (29)

4.3.1.3 Crankback Routing Rule
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The notation used in the analysis of the crankback routing rule is the same as that used
in the analysis of the SOC routing rule. Again, we begin by presenting expressions for the

quantities Pil,---,il7N7:1,---,1:l and ./\71-1,___,1- The analysis is similar to that of SOC and hence we

.
present the equations with little discussion,

k;

Loeemrig
Py i, = J[ [L+@=L)P, 5 (30)
7=1
with Pil,...,il,l =0, V(il, ...,il) €D,
ki iy —
v (A=L)Py, ini (7 L
Niyoiy = veottd (N i+ 1)+ ~
1reerbt ( = L+(1- [’)Pil,--.,il,j Lyenissd L+(1-L) it yeeerinskig oy

(31)

with Nil,...,il,l =0, V(#1,...,%4) € D. The first term corresponds to the fact that if the call is
blocked at node (%1, ..., %), it must be blocked on each outgoing link or at some “downstream”
node of this link. Also, recall that if the call blocks on the jth outgoing link, it is immediately
tried on the (j + 1)st link,

_ Ay [Hf;::l LA(1-L)P,  m)(1-L)Y 1P, 4
Koio = 1(L+(L-L) et (L - L) )

1yl

j-1 5
§ (1 B E)Pily"'yibm AT . /. ..
[(mzl L+ (1 — E)P'h,...,'il,m (N“"""Ll’m + 1)) + Ml,---,’u,J + 1] (32)

with -A_[il,...,’il,l = 0, V(’l:l, ...,’1:1) € D.

Link-offered call requests

The link-offered call request rate is computed as follows:

Yo),1 =

b

j—1

[L+(1—L)P], j=2,.. ko,
=1

<[> &>

Y©)i =

m

7(i1,...,il),1 = 7(i1,...,il_1),il(1 - E))
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2—1
Viryidi = Viryid LLE+ (U= L) Py i)y 3 =1, kiy iy
Jj=1

Vivyoie)i = 7(i1,...,il),j(1_Ph,...,il,j)a

f B _
‘y(il,.__,il),j - 7(1:1,...,il),jPil,...,il,ja
6(si1,...,il),j = N ..i,i(T + Dp)+ Dy + 7,
6({:1,...,il),j = Nil,...,il,i(T + Dp)

Node-offered call requests

The node-offered call request rate is computed as G = > Gj,,...;,- where the summation
is for all nodes in the routing trees of all source/destination pairs in the network except the

destination node and

kzl ..... il_l
Gi,.i,=M (')’(il,...,il),l + ) Yrin(l - E)Pily---ﬂ:l,j) :

i=1

Call setup delay and call blocking probability

Equations (28) and (29), used in SOC, also applies here.

4.3.2 Sequential-Parallel Routing Rules

In this section, we show how the link- and node-offered call arrival rate, call blocking probability,
and average call setup delay can be computed for the routing scheme which uses OOC control

for route selection and the protocol proposed by [5] for call establishment.

As in Section 4.3.1.1, we assume that the routing tree shown in Figure 4 is available at
each source node. Let us begin by calculating certain quantities that will be needed in later
computations. We first compute the probability that a call fails at path ¢ given that a call setup

is attempted on path ¢. The computation is the same as equation (1), i.e.,

P;ail = 1-(1-L)4" (33)

Let P(n) be the probability that the call request processed by the node under study arrives
at the destination node earlier than the first blocking message from other n nodes on the same

path. Since the processing times are i.i.d. exponential variables, P(n) is given by,

P(n) = (34)




Now let T; ; be the expected time for the jth node on path i to find out that a call request
currently being established is rejected at some other node on the path given that this call

request successfully reserves bandwidth at this node. Let us consider the situation that among

the remaining (4; — 1) nodes, the call request fails at n of them. Let T:;’LG(n) be the time for
the destination node to receive the first blocking message (from those blocked nodes) after it
has received the request from node j given that the destination node received the request from
node j given that the destination node received the request from node j first. Here T:;’LG(n)

is the minimum of n i.i.d. exponential random variables plus a constant propagation delay.

Therefore, the expection of T:;’LG(n) is given by

iy
min(n)

+ (i =3+ 1)Dy (35)

where T is the mean processing delay at each node and D, is the propagation delay on each

link. Now we can compute 7 ; as follows,

Z’L’ -1 i—l—n pn
£;—1 ( n ) (1 - E)ll ! L

Tij = 2_: 1—(1— L)kt (P(")Tiﬂn(n) +(1—-P())(t—j+ 1)D,,)
- ( t-1 ) (1—L)t-tngn
; n 7
= 2_: - (1—L)s T nmr D) | T (4 — 5+ 1)Dp (36)

The term (1 — P(n))({; — j + 1)D, accounts for the situation that the destionation node has
received a blocked message from one of thos blocked nodes when it receives the request from

node j.

Link-offered traffic

Let us now focus on a single link and compute the traffic rate offered to this link. Recall
that the incoming traffic to a link is divided into 3% (£; + 1) classes which are referred to as

Yij, t=1,...,k 5=0,..4.

A
Yo = gr (37)
Ai—l .
Yio = Mﬂlp;aﬂ i=2,...,k (38)
J:
Yii = %Yio(l1—L) i=1,..,kj=1,..,4 (39)



We can see that the only difference betwen the equations used here and equations in Section
4.3.1.1 is that the quantities of v; ;,j7 = 2, ..., {; are increased because of the parallel set up. We
also notice that the traffic offered to intermediate nodes on the same path is the same under
this rule (again, because of parallel set up). As shown in Figure 2, each class of traffic is further

divided into two types. Recall that ] ; is the arrival rate for the type of traffic which will be
successfully set up and the mean holding time for this kind of traffic is §; ;. Also recall that 'yz-]jj
is the type of traffic that will be blocked downstream and the mean holding time for this kind
of traffic is denoted by 6-{1-. giRT ‘yi{j, i}

; 74, and 61-{1- are computed as follows,

Yo = To(l-L)f, i=1,..,k, (40)

e = vip(l-(1-L)%), i=1,..,k, (41)

7’20 = 7’i,j(]—_£)ll_17 j:]-:"-az'i: 7’_17 7k7 (42)

v, = - (=LY, j=1,04, i=1, .,k (43)
L; 1 _

0 = - TH++1)Dp+7, i=1,..,k, (44)
n=1

3,0 ~ 1—(1-L)% +(;+1)Dy,, i=1,..,k, (45)
L; 1 ~
6, = (Y = |T+@-i+0)Dy+7, =1, i=1,.,k, (46)
n=2
6:?.7 = _'i,j7 J= 17 "-7£i7 1= 1, ,k (47)
(48)
The equations for ;o are different from equations for v; ;, j = 1,...,4; because a call request

must be processed by the source node before sending it to intermediate nodes in parallel.

Node-offered traffic

Let us now focus on a single node and compute the traffic rate offered to this node. The
total traffic offered to this node by call requests which reach this node as the source node is
referred to as G and is given by:

k—1 ]
Go = A+ M Y 7io(Phey — L) (49)

=1
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This is the same equation we used for sequential OOC control rule (equation 11). Recall that
Gy includes “first time” exogeneous traffic as well as call setup attempts which have been

previously blocked. The node-offered traffic, G, is then given by

kL
G = Go+M Y Y v, (50)

=1 j5=1

Network performance

Since a call is lost if it is blocked on all paths, the probability that a call request is rejected

is given by
re] H Pfazl (51)

To compute the average call setup delay, we need more notation. Let T}ail be the expected
time to know the call request fails at path ¢ given that the call request fails at this path and
Tt .. be the expected time to know the call request has been successfully set up on path i. To
compute T}ail’ we need to condition on the number of nodes that the call request fails again.
Assume there are n out of £; nodes that are blocked. Then the time for the destination node
to receive the first blocking message is the sum of the processing delay at source node, the
propagation delay on this path, and the minimum processing delay of these » nodes which is

T /n. Thus we have

+ (4 +1)D, (52)

2 (fj)(l—ﬁ)"""ﬁ"
= (1-L)|T+>

T o = :
fail
* P}ail

3|

We have the first term, (1 — £), because blocking at the outgoing link of the source node does

not cause any delay (according to our assumption).

Ti e is the expected maximum of £; i.i.d. exponential random variable plus the expeced

processing delay at the source node. That is,

Tivee = 1+Z]T+£+) (53)
7=1

The average call setup delay is then computed as follows.

= ( Pfazl) HZ ] PJa'Ll
Tsetup Z Z fail + succ 1-P ! (54)
rej

=1 j=1
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4.3.3 Parallel-Sequential Routing Rules

The analytical models for the two controlled-flooding routing rules are much more complicated

and are presented in Appendix A.

5 Numerical Results

In this section, we first validate our analytical models by simulation results. Simulation and
analytic results are presented for the different routing mechanisms discussed in the previous
sections for both homogeneous network and heterogeneous network case. We first consider
a homhgeneous network and study the OOC and SOC routing schemes. Then we present a
heterogeneous network and study all six routing schemes discussed in previous sections. We
then study the effects of call processing delay, propagation delay and admission control function

on the call setup delay by using different sets of parameters in the heterogeneous network case.

5.1 Analytical Results versus Simulation Results
5.1.1 Homogeneous Case

A 5-node fully connected network, as shown in Figure 6(a), is studied in which each node and
link are statistically identical. We consider a traffic environment with 20 source-destination
pairs. The structure of the routing tree for each O-D pair is identical. Figure 6(b) shows
the OOC control routing tree for the O-D pair (A, B). The routing tree for SOC control
and crankback control is shown in Figure 6(c). Because of the simple topology, these two

mechanisms result in one mechanism.

The performance results obtained are based on the following settings:

e The round trip propagation delay, D,, is set to 0.2 of the per-node average call processing

time.

e The mean call holding time,1/u., is set to 1000 (measured in units of average call proces-

sing time).
e The maximum number of connections a link can accommodate at a time, C, is set to 200.

(2)*

e The admission control function is set to B(z)

Figure 7(a) and Figure 7(b) compare the analytic results with the simulation results. The
vertical lines about each point indicate the 90 percent confidence interval. We note that the

analytic and simulation results agree very closely under various traffic loads.
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(a) A 5-node fully connected network. (b) OOC routing tree.

(c) SOC/Crankback routing tree.

Figure 6: Homogeneous example: a b-node fully connected network
5.1.2 Heterogeneous Case

A 8-node hypercub network, as shown in Figure 8(a), is studied where nodes are still homo-
geneous but links are heterogeneous. Here we consider a traffic environment with 8 source-
destination pairs where the structure of routing tree for each O-D pair is identical. The nodes
are still homogeneous because each node is equally likely to be at any position in the routing
tree; thus the traffic offered to each node is statistically identical. OOC routing tree for O-D
pair (A, G) is shown in Figure 8(b). Figure 8(c) shows the routing tree for both SOC and
crankback for O-D pair (4, G). The performance results obtained are based on the same para-
meter values as in the homogeneous case except for the sequential-parallel OOC rule in which

the propagation delay is set to zero.

Figure 9 and Figure 10 compare the analytic results with the simulation results. The vertical
lines about each point indicate the 90 percent confidence interval. As before, the analytic and

simulation results agree very closely for all routing mechanisms.
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Figure 7: Homogeneous example:
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(a) An 8-node hypercube network. (b) OOC routing tree.
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(c) SOC/Crankback routing tree.

Figure 8: Heterogeneous example: a 8-node hypercube network
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5.2 Comparison of Different Policies

The performance of different routing schemes are compared in Figure 11 and Figure 12. From
Figure 11, we can see the trade-off between the call blocking probability and the call setup
delay. For a given exogenous call arrival rate, the OOC control scheme yields a lower blocking
probability but higher average call setup delay. However, for a given network throughput of
accepted calls, as we can observe in Figure 11(b) and Figure 12, the SOC and Crankback control
schemes always yield smaller average call setup delays than the OOC scheme. We also observe
that the SOC and Crankback schemes yield a higher maximum achievable throughput than
the OOC scheme. As compared to the Crankback scheme, the SOC scheme shows a slightly
smaller average call setup delay but has a lower maximum achievable throughput. (Note that
the maximum achievable throughput is the asymptotic point at which the average call setup
time goes to infinity. When the average call setup time approaches infinity, the connections
that are in the process of being setup will hold the resources that have already being reserved

for an infinite time; thus the blocking probability will approach unity.)

The intuitive explanations for this result are the following. As we compare the OOC scheme
to the SOC scheme, we know that in the OOC scheme a call is blocked only when it is blocked
on all possible paths while in the SOC scheme a call is blocked if an intermediate node is
blocked. Therefore, we would expect that for a given arrival rate, the OOC scheme should
yield a lower blocking probability because a call is given more opportunities to set up. But on
the other hand, the OOC scheme will generate more node- and link-offered traffic (because of
more retrials), this results in longer mean processing delays at the nodes and, consequently,
longer mean call set up delays. Similarly, the SOC scheme yields a lower call setup delay than
the crankback scheme because it generates less traffic than the crankback scheme. It is not so

obvious why the crankback scheme yields a higher maximum achievable throughput.

5.3 The effects of propagation delay and call processing delay

Figure 12 also shows the effects of increasing the propagation delay and the mean control
packet processing time. First, when the propagation delay is increased from 0.2 units of mean
processing time to 2 units of mean processing time, we find that increasing the propagation
delay does not affect the performance of the three sequential routing schemes significantly. (Note
that although propagation delay in high speed networks far out shadows packet transmission
and queueing delay, it is not likely that it will also dominate call setup time. For example, [5]
argues that the packet processing time is several orders of magnitude larger than the packet
switching time. We believe our results hold for the case where the propagation delay is not
significantly larger (e.g., a factor of 10) than the mean packet processing time.) However, we

do notice that the mean call setup delay of the parallel version of the OQOC control scheme is
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Figure 12: Heterogeneous example: effect of propagation delay
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significantly lower than the mean call setup delay of other schemes at low network load when
the propagation delay is high. This is due to its maximal parallelism of sending call request
messages. After all, increasing the propagation delay does not change the maximum achievable

throughput for all routing schemes.

Second, by comparing Figure 12(a) and Figure 12(c) (or Figure 12(b) and Figure 12(d)),
we can see that increasing the processing requirements for a call (i.e., increasing . from 0.001
to 0.005) does affect the performance of these five routing schemes tremendously. We know
that parallel routing schemes generate more call request messages than sequential rules. The-
refore when the processing capacity is very limited, parallel routing schemes will saturate the
processing elements very quickly. Thus, sequential schemes can offer much higher throughput.
Certainly, at very low traffic loads, we still expect to see that parallel rules can yield lower mean
call set up delays than sequential rules. This is also confirmed in the analytic results. On the
other hand, when the processing capacity is abundant and the bottleneck is the communication
bandwidth, we can see that parallel rules yield not only lower mean call setup delays but also

higher throughputs.

Similar effects are also shown in Figure 13 where the sequential OOC, the sequential-parallel
OO0C and the parallel-sequential OOC routing schemes are compared under different parameter
settings. Figure 13 also shows that the sequential-parallel OOC scheme performs better than
sequential OQOC scheme when the link-level blocking probability is low and performs better than
the parallel-sequential OOC when the processing delay is not relatively small as compared to
the call holding time. Thus we can conclude that the sequential-parallel OOC scheme performs
best when the processing capacity is very limited but the bandwidth is abundant (so that the
link-level blocking probability is low).

5.4 The effects of admission control function

As previously indicated, the proceeding results have used B(z) = z2 to model the link-level
admission control function. In Figure 14 we study the effects of different forms of admission
control. Three forms of admission control function are studied. The first one is a convex

function (B(z) = (%)?), the second one is a linear function (B(z) = %), and the last one is a

concave function (B(z) = /&). As we can see that, no matter what admission control function
is used, SOC and crankback schemes always perform better than the OOC scheme.

By comparing the graphs in Figure 14, we observe the following interesting behavior. First,
the network performance is very sensitive to the processing time requirements when the admis-
sion control function is convex. In other words, the processing capacity can easily become the

bottleneck of the network performance if the admission control function is a convex function.

As a consequence, the parallel schemes perform poorly in Figure 14(a) but perform very well in
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Figure 14(c). (As we can see in Figure 14(d), parallel schemes perform poorly when the admis-

sion control function is a concave function only when the mean processing delay is extremely

high.)

Second, with a convex admission control function, all routing schemes yield higher throug-
hput than with a concave or linear admission control function. This is because with the same
number of connections on a link, a concave admission control function and a linear admission
control function block more calls than a convex admission control function does. However,
we do see an exception. As we compare Figure 14(a) and Figure 14(b), we see that when
the throughput of the network is limited by the processing capacity instead of communication
bandwidth, parallel routing schemes with a linear admission control function can yield a higher
throughput than with a convex control function. The intuitive explanation for this exception
is that, since the communication resources are abundant, most of the flooding messages will
be successfully received by the destination node and will be discarded because of duplication.
Therefore, parallel routing schemes with convex admission control function (which implies lower
link-level blocking probability) generate more call request messages that will be discarded and

thus saturate the processing elements more quickly.

6 Summary

In this paper, six routing mechanisms for high speed network with QOS requirements were
studied for both homogeneous and heterogeneous networks; simulation and analytic models
were developed to examine the performance of these mechanisms. The effects of call processing
delays, propagation delays, admission control function (due to QOS requirements) and routing

algorithms on the call setup delay was our particular focus.

First, we find that the propagation delay does not affect the call setup delay significantly
as long as it is relatively small as compared to the call holding time. In other words, the
bandwidth held for a short amount of blocked-call-clear time due to call requests being blocked

downstream does not cause a significant degradation in network performance.

Second, we find that the call processing delay incorporated with the admission control
function affects the call setup delay significantly. In general, if call processing capacity is not the
bottleneck of the network performance, routing algorithms that make use of flooding schemes
provide not only shorter call setup delay, but also higher network throughput. However, the
shifting of the bottleneck from the link capacity to call processing capacity not only depends
on the call processing delay but also on the admission control function. If the admission
control function is convex, the call procesing capacity can easily become the bottleneck. On
the other hand, an opposite result is seen when the admission control function is a concave

function. The routing scheme that tries path sequentially but checks the bandwidth availabliity
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at intermediate nodes in parallel seems very promising for networks with very limited processing

capacity but abundant bandwidth.

Finally, in comparing different policies, we find that SOC and Crankback control schemes
show better performance than the OOC control scheme. Moreover, the SOC control scheme
yields smaller call setup delay but lower maximal achieveable throughput than the Crankback
control scheme; however, the difference is not significant. The parallel routing schemes perform
better than the sequential schemes only when call processing delay is not the bottleneck. In
most cases, the parallel version of SOC/Crankback scheme performs slightly better than the

parallel version of OOC scheme.
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Appendix

A Analytical Models for Controlled-Flooding Algorithms in
Homogeneous Networks

In this appendix, we present the computation for the link- and node-offered call arrival rate,
average call setup delay, and call blocking probability for controlled-flooding versions of QOC

routing and SOC/Crankback routing in homogeneous networks.

A.1 OOC Routing Rule

One recent work which also studies the performance of a flooding algorithm is [15]. In [15], the
author presents an analysis for the performance of the MKS circuit-switching communication
system designed by PKI. The call setup procedure in this system makes use of a flooding
scheme to find a free path between any two subscribers (nodes). The quantity of interest in
[15] is the probability that the first call setup request message received at the destination node
has followed a given path. As discussed in [15], an exact way of evaluating this probability
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is very hard. However, by assuming the waiting times along different paths are statistically
independent, we are able to compute the quantity we need. Our analysis differs from [15] by
the fact that we have a predefined routing tree for each O-D pair. This simplifies our analysis

and enables us to obtain close form expressions.

In the analyses of flooding algorithms, a critical quantity that must be computed is the
probability that a call request received by the destination node is a duplicated request. In
the following analysis, we thus focus on the computation of this probability. Note that the
notation and assumptions used in Chapter 3.3 are also adopted here. To be consistent with the
sequential routing algorithms, we also assume that the destination node discards the duplicated

request in zero time.

Let Pgyp(%) be the probability that a call request received through path ¢ is duplicated. To
compute Pgyp,(%), we need to introduce some more notation. Let T; be the total waiting time
(processing delay + round trip propagation delay) along path ¢ given that the call request is
successfully received through path i. We assume that processing delay (queueing + service)
is exponentially distributed with mean 1/u. The sum of processing delay through £; nodes is
then given as an Erlang-{; random variable. The sum of propagation delays is a deterministic

random variable with value £;D,. The CDF and pdf of T; can be expressed as:

£;—1 . ;
FTi(t) =1— e—ﬂ(t—liDp)(Z (,u(t Z’LDP)) ), t> Z'L’Dpa

1
=0 v

w(p(t — 4;D £i—1o—p(t—4;Dp)
fr,(t) = (i (5))_ 1)! » £ 24Dy

To compute Pgypy(2), let us consider the situation where call requests are successfully set-up
on paths #y,...,4,, and 4, the one under consideration. Let § be a set of paths such that

S = {41,...,im}. Let the random variable T; be the total waiting time on path j and the

random variable T, be the time for the destination node to receive the first call request from

min

one of the paths in S. If {T}};cs is a sequence of independent random variables, TS. is given

by the following equation.

Fps (t)=1- [J[1 - Fr,(¢)).

min "
jES

Pgyp(t) is then given by

$Es

where S is the set of all possible sets of paths between the same O-D pair of path ¢ and Py is
the probability that the call request are successfully set-up only on paths in S given that the
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call request is successfully set-up on path i.

Ps = I = Praat(5)) JI Prar(s)-
Jj€S eS| J{i}

Link-offered call requests

The offered call request rate of each class of calls at the link under consideration is computed

as follows. The reader is referred to Section 4.3 for the definition of notations used.

Yio = M: 7':17' 7k7
Yij = Yij-1(1—-L),
A .
= —(1-L) =1 L
M( )7 ] bl b)

Each class of calls can then be divided into three types. The arrival rate of the first type of
call, which will eventually be accepted if not blocked on the link under investigation, is referred

to as 4/ ;; the arrival rate of the second type of calls, which will be blocked downstream if not
blocked on this link, is referred to as 'yz-]jj; the third type of calls, which has arrival rate 'y;l,?p,
will eventually be rejected not because it is blocked on some downstream link but because it is

a duplicated request for the same call. The arrival rates and call holding times for these types

of traffic are given by:

¥ = V(1= L1 = Pap(d)), i=1,.k j=0,1,...4;,
v, = v - (-0, i=1,.,ki=0,1,..4

751;? = 4 (1= L) Pap(i), i=1,....k 5=0,1,....4,

§;, = (li—3)*x(T+ Dp)+ Dp+7,

8§, = Nij(T+ Dp),

id
§82 = (4 —j) % (T + D,) + D,.

1’7-7

Recall that N; ; is the expected number of nodes a call setup message visits after the jth
node on path ¢ given that it has successfully reserved resources at the jth node and fails at

some node further down path i. N; ; is given by equation (3).

Node-offered call requests
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The aggregated rate of offered calls to a node is computed as follows,

k4
G=A+M ZZ‘)’Z'J'.

=1 j5=1

Call setup delay and call blocking probability

Recall that
Prait(d) =1 — (1 — £)5T1

and the end-to-end call blocking probability is

k
Prej = [] Prair()-
=1

To compute the average call setup time, let 7.5, be the call setup time given that call requests

in

are successfully set up on paths in § C 8. T?. can be obtained by computing the Laplace

min

transform of frs (t). The average call set-up delay can then be computed as follows.

Tsetup = Z P.S'Triin
scs
where Pg is the probability that the call request are successfully set up only on paths in S given
that at least one call request is successfully set up,
[Lies(l = Prar(5)) [Ligs Praul(d)

Pg = .
s ]-_Prej

A.2 SOC/Crankback Routing Rule

The fact that a call request received by the destination node can be a duplicate request makes

the analysis much more complicated. We first introduce some additional notations:

e 7, i Let T;  ; be the delay of the first call request sent by node (%1, ...,%) to the

destination given that at least one call request originated from node (i1, ..., ;) is received

1,

successfully by the destination node. 7;, . ;, is approximated by following:

1yeeey

T; = Ty,..iy+Dp+T (55)

1yl

where random variable T is the processing delay required at node (i1, ..., ;) and random

variable D, is the propagation delay. Til,---,il is the time from a call request being succes-

sfully forwarded to node (41, ...,%)’s children in the routing tree until the call request is
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received by the destination node. Thus Til,---,il = 0if (¢1, ..., %) is label for the destination

node. Otherwise, let m be a subset of the children of node (¢4, ..., 7). The CDF of Til,...
is then given by:

Tip., (B = Y. PuFrm (1) (56)

where M;,  ;,y is the set of all possible subsets of the children of node (%1,...,%¢). The

term P, in equation (56) is the probability that the call requests sent to the nodes in m

are eventually received by the destination node.

iy, iniyem(L — L£)(1 — Pil,---,’il,j)_l_[(il,...,il,j’)gm(ﬁ +(1—L)P;, i)

Pn =
1- P

TR Y)

(57)

The term Pil,---ﬂ:l in equation (57) is the probability that a call request is blocked at node
(%1, ...,%¢) or later. The computation of this probability is the same as in the sequential
crankback routing rule.

The random variable 177, in equation (56) is the time from the call request is successfully
forwarded by node (1, ..., 4¢) until the call request first received by the destination node

given that only call requests forwarded by nodes in m are successfully received. Thus

™m

o is the minimum of 7;, . ;, ;’s, for all (41, ...,%,7) € m; i.e.,

(21,..20,7)EM 1y-ens2] ( )
The distribution of min(7;, . ;, ;) can be computed as in the case of parallel OOC routing

rule.

BT;, ...i,: the delay until node (41, ...,%s) determines that all of the call requests that it

forwarded are rejected given that they are rejected. It is defined as,

BT; max (BTil,...,il,j) + T+ Dp. (59)

13--252¢ 1§j§k,’1

BT;,...i, = 0if (41, ...,%) is label for the destination node.

Paup((%1, ---,%4),7): Let Pgyp((41,...,%),7) be the probability that a call request sent by
node (41, ..., %¢) on its jth outgoing link is a duplicated request given that the call request is
eventually successfully received by the destination node. Let us denote the jth outgoing
link of node (¢1,...,3,) by £. For ease of explanation, let us introduce some additional

notations.
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— Let & be the set of all possible paths between the O-D pair under consideration.

Note that different paths may share common nodes and links.
— Let 5S4 be the set of paths which contain link £. That is, Vp € Sy, £ € p.
— Denote the complement of set § by S. That is, S|US = S.

— Let A(£) be the event that at least one call setup message is successfully received
through a path in Sy (i.e., at least one successfully received message has successfully

reserved some resource on link £.)

— Let Afs'l,Sz be the event that call setup messages through paths in 5; |J S92 are suc-
cessfully received and messages through paths in S; (] S are blocked, where S; C S
and Sy C §.

— Let Z(£) be the set of nodes between and including the source node and node
(i1, ...,30). That is, Z(£) = {(0), (41), (41, %2); -y (1, -, i) }-

— Let 9(S, a) be a subset of § such that Vp € ¥(S,a),a € p.

— Let x(a, S), where Vp € S,a € p, be the time between when node a sends messages

and the destination node receives the first message given that messages sent through

paths in § are all successfully received.

For a given event A% ., a successfully received message through link £ is a duplicated
1,22
request if at least one message sent through a path in 55 is received first by the destination

node. Thus, Pdup(£|Alsl,Sz) is given by

Pup(l145,5,) = 1-P( N\ x(a,51) < x(a,%(S>,a))). (60)
acZ(L)

Therefore, Pgyup(£) is given by

Pap(f) = D Y P(A% 5,|A(0)) Paup(€l 45, s,) (61)
51C854 8,CS,
S1#0

where P(A§1,52|A(Z)) is the conditional probability for event Afs'l,Sz given event A({).
Clearly, the computation is combinatorial and is very cumbersome. As noted in [15],
approximation techniques are needed for general large networks. However, for the sparse

network such as NSFNET we study in our numerical example, the computation is still
tractable.

Pil,---ﬂ:l : the probability that a call request is blocked at node (41, ...,%7) or later given
that it has reached node (41, ...,%¢). This probability is computed as we did in analysis of

the crankback routing rule.
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Link-offered call requests

The equations used to compute the rate of link-offered calls are presented without further

discussion.

A .
Y(0),; = M i=1,.., ko,
Y6 = ‘)’(0),1'(1 — [,), i=1,.., ko, 7=1,..,k;,

‘Y(il,...,il),j = 7(1:1,...,1:1_1),1:1(1 - E)’ ] = 17 R kil,---ﬂ:l7

Vitri)i = Vinrin)d(L = Pirpeing) (1 = Paup((21, -, 8), 7)),

Ylisyorie)i = 'Y(il,...,il),jpil,...,z’l,j:

‘Yéifﬁ__,il),j = Y(ir,i)i(1 = Piy,.ini) Paup((31, -+, 50), 7,
8 ing = Tiyinit Do+ 7,

6({:1,___,il),j = BTi,.. i,;+ Dy,

5&?{’___,1-1),1- = Ty, isi+ Do

(62)

Node-offered call requests

Recall that Gj, .. ;, is the rate at which call requests reach this node as the (41, ..., 7) node

for all source/destination pairs in the network. G;,, . ;,’s can be easily computed by
Go = A,
Gi = XN1-L), i=1,..., ko,
7:17---71:1 - Gil,...,il_l(l - E))
= AN1-L)%

The node-offered call request rate, G, is then given by

G = Z Giy,...iy-

V(i1,.e0r2)

Call setup delay and call blocking probability

Recall that the source node has the label “0”. Thus the end-to-end call blocking probability

is given by



and the average call set-up delay is given by

Tsetup - %

B Analytical Models for Heterogeneous Networks

With the same analytical technique, the analytical model can be extended to heterogeneous

networks. In this Appendix, we show how the homogeneous assumption can be relaxed.

Without the homogeneity assumption, each O-D pair has its own routing tree, each node
may have a different processing delay, each link may have a different blocking probability and

propagation delay. Thus we need to introduce some new notation:

e W: the set of all O-D pairs, W = {w}.

e R,: the routing tree of O-D pair w.

Aw: the external call arrival rate for O-D pair w.

T,: the average processing delay through node z.

L; ;): the steady state blocking probability of link (3, 7).

D(; j): the propagation of link (3, 7).

The network performance is obtained by examining every O-D pair. In the following ana-

lysis, we focus on an arbitrary O-D pair w.

B.1 Sequential Rules
B.1.1 OOC Routing Rule

Assume that there are k,, paths in the routing tree R,,. R, is an ordered set of paths, that is,

R’w = (R'}U7R121)7"'7R1]i)w)7
R = (@15 s By i fi 11)5

where Rfu is the ith path in routing tree R,, with qu — 1 intermediate nodes, a,, ;1 is the source

node and a 41 is the destination node (V).

w,i,Ly,

The following notation is used for the analysis of OOC routing rule:
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e U.: the set of paths which consists of node z,
¥, ={R! |z c R}
o U(, ) the set of paths which consists of link (z,y),
B(oy) = LRLI(2,) € D(RE)}.

e L(r): a function yields the set of links on route r. For example, Let r = (a1, az, ..., 7).

L(r), the set of links in route r, is
L(r) = {(a1, a2), (a2, as), ..., (ar—1, ar)}
e Sub(r,i,7): a sub-vector of r defined by
SU’b(r7i7j) = (aiaai-l-l: "'7a’j)7 1<:<3< L.
. P;f’a’:.'l: the probability that a call request is blocked on the ith path of R,,.

.« T,

successfully received by the destination node given that the call request will be eventually

i.i: the delay from the time a call request is sent by the jth node of path RZ, until it is

successfully received.

° BTR

it is blocked at some node downstream given that the call request will be blocked some

E the delay from the time a call request is sent by the jth node of path R! until

node later on.

The computation is very similar to homogeneous case, we, thus, present the equations

without further discussion.

£,
Poa = ZEL(sub(Riw,j,jJrl))[ II (1= Lap)l
j=1 (a,b)€L(Sub(Ri, 1,5))
Tpis = 3 T, + > D(ap)
a€Sub(Ri,,j+1,6,) (a,b)€L(Sub(Ri,.j.ti,+1))
BTpi = > [ > Ta + > D(a b)) Ppisim]
n=j+1 acSub(R%,j+1,n) (a,b)EL(Sub(R%,,5,m))

where PRi,j,n is the probability that it is blocked at nth node given that it is blocked at some
node after jth node on path R: .

P (e p)er(sub(iit1,m)(1 ~ L(ap)NEL(Sub(R,mn11))

Ry £,
> omeit1 ] (ap)er(sub(Ri, i+1,m) (1 = L(ap)))LL(Sub(Ri,m,m+1))
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Node-offered call requests

Consider the node z which is reached as the jth node of path ¢ in route tree R,,. Let g, pi
be the call requests offered to node z from path R,. 9z Ri, is given by:

Au[ITE2 P}‘;ZL](P}‘;’:I_l — L isup(riz 1,2))) z is the source node of R,,
9=,Ri, —

w

Mﬂrl-ﬂmnnwmawww%uﬂl—ﬁ@M]Omﬂm“-

The aggregated traflic offered to node z, G, is then given by

G:D = Z gz,Ri,‘

Ri,c¥,

Link-offered call requests

Now consider the link (z,y) which is reached as the jth link of path R:,. Let Y(=,y),Ri, Pe
the traffic offered to this link from path RZ,.

2—1
Vaw)hi, = Ml [T Praill II (1= Liaw)]
m=1 (a,b)EL(Sub(Rij,l,j))

As in homogeneous, the link-offered traffic is further classified into two traffic streams:

° 'y(‘m,y),R,-w: the traffic which will be successfully set up,

7(8‘”71‘/)7}2%1 - H Pff”l fazl)

The mean call holding time, 6& V)R, is given by

6(smyy)7Ri1 =T + TR;}] '

° 7(];,y),Riw: the traffic which will be blocked at some hop down the path,

f — . 8
‘Y(zyy)yR'iw - v(z,y),R}w - v(z,y),R’iw-

The mean call holding time, 6£ is given by

y, R,

§f

(=B, ~ DT R
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Call setup delay and call blocking probability

The end-to-end call blocking probability, P,.; is given by
ko
pei=11P fail
=1

Let TRiw be the expected time for the source node of w to receive a blocking message from path

i given that it is blocked at path <.

£y . .
T = 3 Lr(sun(r, 3.5+1) H(ap)en(oub(i, 1.5) (1~ Liap))]
“ 7j=2 P}‘;:l
[ > T+ > D(ap)]
a€Sub(Ri,,1,5) (a,b)EL(Sub(Ri,,1,5))
Finally, the average call set up delay for O-D pair w, T’;‘étup, is given by
_ R 21 _ (1- P}‘;:"l) H§;11 P}UJZI
Tsetup = Z[Z TRi, + Z Ta + Z D(a,b)] 1_ pw
i=1 j=1 a€RDj, (a,b)ERD;, rej

B.1.2 SOC Routing Rule

In the following analysis, the routing tree of each O-D pair is labeled as in the homogeneous
case. The set of all nodes that are directly connected to the destination node of O-D pair w
by a link is now denoted by D,,. We also denote the set of O-D pairs which has node z in its
routing tree by ¥,:

U, = {w|z € Ry}

And the set of O-D pairs which has link (z,y) in its routing tree is denoted by iz
Uiz = {wl(z,y) € L(Ry)}-
where L(R,,) is the set of links in routing tree R,,.

Now we define some notation that will be used in the analysis of SOC as well as Crankback

routing rules.

e P¥ .. the probability that a call request is blocked at node (i1, ...,4s) or later in tree

21 y.eny28 "

R,
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e BT, . : the expected time for node (iy,...,4s) to know that a call request is blocked

1:1 YA

given that the call request is blocked at node (41, ...,1%) or later.

° ']_;’1",___,1-1: the expected time for node (41, ...,%) to know that a call request is successfully

set up given the call request is successfully set up through node (31, ...,1%).

® 9(iy,...i,)w: traffic offered to node (i, ...,%) in routing tree R,,.

° ggil,---,il),’w: the call request traffic offered from node (1, ..., %) to its jth child in routing

tree R,,.
o (G,: the aggregated traffic offered to node z.

® Y(zy)w: the call request offered traffic on link (z,y) corresponding to O-D pair w.

° 'y("m W) the portion of ¥(; ). that will be successfully set up.

° 'y(fm,y),w: the portion of ¥(; ). that will be blocked.

We also define QY as the set of outgoing links of node z in routing tree R,,. Following

recursive equations are used to compute Piqf,...,il: B_TZ’,___,Z-Z and 7_71”,,11
B kiy iy B
Pil‘fy---yil = Z ( H E(a,b))(l - E((il7'"71:1)7(1:17"'71:l7j)))Pil‘fy---yilyj] +

j=1 (a,b)GSub(ﬂ("gl

IIT  Lewy

(ab)eqy

......

with Py =0, Y(41,...,57) € Dy.

inl
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k;
BTY . = Lo

21 5--0y2g w i
7=1 2L yeen2g

(BT3, iyi + DiGrveosi)(inssinng))) T Tinseonia)

with BT}, ;1 =0, Y(i,...,i) € Dy,

Dw

1 7"'71:l7j

)

ig]
- Bt apeswiap, 151 L@ (1= LiGirnmio,finini)) (1 -
Tyeeyty v 1— pw

7=1 (3 FITONY

(7_?1”1” + Di(iy, i) (inyoing) T T(z'l,...,il)

with ;¥ ;1 =0, V(i1,..., i) € Dy.

Node-offered call requests

The call request offered to each node and link in routing tree R,, is given by

Jow = Aw:
g(J),w = Jow H E(a,b) j:]-:"':kﬂa

(a,b)ESub(ﬂ("a),l,j—l)

Iiyomis) w0 Ity in)iolL = L((rymiems) (ir,min)))>

ggil,...,il),w = g(ili"'ﬂ:l)!w H E(a7b)'
(a,b)GSub(ﬂ("gl

.....

The aggregated traffic offered to node z is given by

G: = Z Z 9(ig,enig)ywo

wev, (il,...,il)Ez

where “(41,...,44) = #” denotes node z has id (1, ...,%) in tree R,,.

Link-offered call requests

The call requests offered to link ((71, ..., %), (21, ..., %, 7)) is given by

Y((Gareerie) (B1semsind))sw — ggil,___ﬂ-l),w
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As before, this traffic is further classified into:
° 7(8(1'1 i) (it yesinnd))w - the type of traffic that will be successfully set up,

Vs (itsing))w = V(i) Grring))w (L= P, igs)-

The mean call holding time for this type of traffic is given by

6(8(1:1,...,il),(il,...,il,j)),’w = ily---yilyj —I_ D((il,...,1:1),(1:1,...,1:1,,7’))'

° ‘Y(f(il,---,1:[),(1:1,---,il,j)),w: the type of traffic that will be blocked,

f _ DWw
V(irreoia) (irynsing))iw = V(itrernsia) (it yensitnd))sw Lt vomigs

The mean call holding time for this type of traffic is given by

8((ir,sit)(irsming))w = BT, - ini T D((irseorsia) (i1somind))-

Call setup delay and call blocking probability

The end-to-end call blocking probability for O-D pair w, P¥., is

rej?
w. _ pw.

rej

and the average call set up delay for O-D pair w, T’;‘étup, is

jtztup = jzw‘
B.1.3 Crankback Routing Rule
Similar to SOC routing rule, we compute Pi’f,___,il, BT, ., and ']_;’1",,11 by following recursive

equations. Recall that (31, ...,4, 1) is the destination node if (¢1, ..., %) € Dy.

ki iy

P’qu = H [['((z'l,...,il),(il,...,il,j)) + (1 - E((il,---77:1)7(7:17---77:lyj)))Pil‘fy---yilyj]

i=1

Wlth P?:"f,...,?:l,l = 0, V(Z.]_, ,Zl) E Dw
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k; ; Sw
T _ (L = LGirsin) (irid)V Pl i
j:]- E((il,...,il),(il,...,il,j)) —I_ (1 - E((il7---71:1)7(7:17---71:17-7')))P7:1f7---71:l7j

(B_T?:,___,il,j —I_ Til,...,il —I_ D((il,...,il),(il,...,il,j))) —I_

E((il,...,il),(il,...,il,kil _____ il)) T
L (it inomsivkiyonig) T (0= LCirynnin) Cinminikiy i) D ERD i by o,
with BT} ;1 =0, V(i1,...,it) € Dy.
kiy i j— pw
TJw . 12: ‘ Hanll [‘C((il,---,iz)y(il,---,iz,m)) + (1__ ‘C((ilv--yil),(il7---7"17"‘)))])1'17--'7il’m]
[y - 1—-P¥ .

J—]. 21 5--0y2g

(1 — E((il,__.,il),(z'l,...,z’l,j)))(l - qufzu)
j—1 1= Lors sngs s pw . _

[(Z ( ((11,...,zl),(zl,...,u,m))) 21,-.0528,M (B ;‘:,".,il,m_l_

2 L) (iniom)) T (L= L((igsia) (ityonsinm)) P iy
Tily---yil)) —I_ 7_—1:1”,,1.1,] —I_ Til,...,il]

with T
1

7"'71:l7

L =0, Y(i1,...is) € Dy.

Node-offered call requests

The traffic offered to each link in routing tree R,, is given by

gé,w = Aw,
. i_l —_
B = Mo [[ILonun+ (= L) Pyl i=2,... ko,
7=1
g%il,...,il),w = ngl,...,il_l),w[l o E((il7"'71:l—1)7(1:17---71:l))]’
i1
Iliri)w = g(lil,___,il),w LG, sinnssing)) + (U= L(Grrorin)Girrmini))) Pio . inid]
7=1
1= 17 ey k’il,...,il-

The traffic offered to node (i1, ..., 4¢) in routing tree R, is then given by

I(i1,erig)w  — g(lil,___,il),w Z ggz-l,___ﬂ-l),w(l—ﬁ((il,...,il),(z'l,...,z’l,j)))Pff,...,il,j
7=1
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The aggregated offered traffic to node z can then be computed by

Gm = Z Z I(i1,emsig)w:

wev, (il,...,il)Ez

Link-offered call requests

The call requests offered to link (i1, ..., %), (41, ..., %, 7) is
. |
7(117---77'1)(7'17---71'17-7)7"” - g(il,...,il),w'
This traffic is further classified into:
° 7(8(1'1 i) (it yesinnd))w - the type of traffic that will be successfully set up,

pDw

7(8(1:1,___,il),(il,___,il,j)),w = 7((1:1,...,il),(il,...,il,j)),’w(]‘ - Pil,...,il,j)'
The mean call holding time for this type of traffic is

6(6(1'1,...,il),(il,...,il,j)),w = 7_?1"1” + Dy ,sin) (i1,innd))-

° ‘Y(f(il,---,1:[),(1:1,---,il,j)),w: the type of traffic that will be blocked downstream,

f _ DW
Vlirseoosia) (i1ymsitng))iw = V((itersit) (ityensitnd))sw Din i

The mean call holding time for this type of traffic is
f _ pmpw
6((1'1,...,il),(il,...,il,j)),w - BTily---yilyj —I_ D((ily'"yil)y(il7---71:l7j))'

Call setup delay and call blocking probability

Equations used in SOC rule also applies here.

B.2 Controlled-Flooding Rules

Extending the analytical methodology to controlled-flooding algorithms for heterogeneous net-

works is quite straightforward. However, the computation itself is rather complicated. As stated

in Appendix A, the most difficult computation in the analysis of controlled-flooding algorithms

is the the computation of the probability that a call request received through a particular path
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is a duplicated request and the average call set up time when more than one call requests
have been received. In this section, we derive close form expressions for computing these two
quantities for OOC routing rule with the limitation that each routing tree is limited to have
at most three paths. The same technique can be applied to SOC/crankback rule. However,
the derivation of close form expressions depends heavily on the structure of the routing tree.
We are, thus, not able to show the derivation systematically. Therefore, we choose to omit the

derivation of these two quantities for SOC/crankback routing rule in this report.

B.2.1 0OOC Routing Rule

In the following, we show how to compute the probability that a call request received through a
particular path is a duplicated request and the average call set up time when more than one call
requests have been received for controlled-flooding OOC algorithm in heterogeneous networks.

The notation used in Appendix A and Appendix B.1 is also adopted here.

B.2.2 Computation of Pg,,(k)

Let us first consider the computation of the probability that a call request received through
path k is duplicated, Pgu,(k). Let Ty be the total waiting time (processing delay + round trip
propagation delay) along path k given that the call request is successfully received through
path k. We assume that there are {; intermediate nodes on path k and the processing delay
(queueing delay + service time) at each node is exponentially distributed with mean 1/u;,
1 <4 < {. Assume that p; # p;, Vi,j on path k. Then the CDF and PDF of T} is given by
19]

L
Fr) = 1= et
i1 Hj;éi(:uj — i)
Ly, n .
) = 3 L= ue-Dp),

i1 Hj;ei(,“j — i)

where Dpy, is the round trip propagation delay for the source node to receive the acknowledgment

of the call request through path k.

To compute Pg,p(k), we need to know how many call requests have been successfully recei-
ved. It is very difficult to derive a general expression for any number of call requests that are
successfully received. Here, we derive the cases of two and three successfully received call re-
quests. Let us consider the case where two call requests have been successfully received through

path a and b respectively. For easy explanation, we introduce a different notation for average
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processing delay at each node. Let 1/u,;,1 < a; < {,, be the average processing delays for
those nodes on path a. Similarly, Let 1/us,,1 < b; < £, be the average processing delays for
those nodes on path b. Let Dp, and Dpy be the propagation delay of path a and b respectively.
Assume Dp, < Dpy. Then the probability that the call request received through path b is a
duplicated request (i.e., it is received by the destination node later than the call request through
path a) given that the call requests sent through both paths are all successfully received is given
by:

e 4
,ubAzB D D
Pdu b = 1= ] ua,( Pa— Pb)

#(0) ;2; Ha; + Kb

i=1j

where
4 Wipibes _5_1,.,1,
Hj;éi(/’l’aj ~ Ha;)

B, — Mk

Hj;ei(,ub,- — ;)
The probability that the call request through path a is duplicated can easily derived by:

Paup(a) = 1— Paup(d).

Now consider the case where three call requests have been successfully received through
path a,b and ¢. Adapt similar notation as above and assume that Dp, < Dpy < Dp.. Then
Paup(a), Paup(b) and Pgyp(c) can be computed as following:

£a la &
Pdup(a) = ZAie”ai(Dpa_pr) _ Z Z :uaz—l_ ”a,’(Dpa—pr)
=1 i=1j=1 Ha; /'l’b

Lo £
1 Z zb: l‘l’azA B ﬂai(Dpa_Dpc)‘l‘Nb]-(pr_Dpc)
=1 =1 Ha + o,

(L l C
_ Z zb: Z :“azA B iCk uai(Dpa—Dpc)-I-ub]-(pr—Dpc)
i=1 j=1k= 1,ua,‘|'/1/b ‘|’,uck
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J e”ai (Dpa_pr)

Ko; A;i B; oHai(DPa—Dpe)+up; (Dpy—Dpc)
—I— a; a c j <
2;; Ka; + Hb;

b

— za: zb: zc: Me“ai(Dpa—Dpc)+”bj (Dpy—Dpc)
i=1j=1k= 1,ua,‘|',ub]-—|—,uck

a l C
P, .S 2”: PerAiBiCk _jia;(Dpa—Dpe)+un; (Dpv—Dre)
up D1 =1 k1 Mai T Bbj t e,

B.2.3 Computation of T’setup

When more than one call request are successfully received, we need to compute the time for
the first call request received. Again, let us only consider the cases where there are two or
three call requests that have been successfully received. Let us first consider the case where
two call requests through path a and b have been successfully received. Let T, and T3 be the

total waiting time along path a and b. Let the random variable T be the time for the source

node to receive the acknowledgment of the first call request. Then 7, is the minimum of T,

and Ty. The CDF and PDF of T, b 1S given by:

1— Yz, Ajemtai(t=Dra) Dpy >t > Dp,,
Frop (t) =
man 1 Efil Eﬁ'bzl AiBje”aiDpa-I—“bj pre—(ﬂai b, )t t > Dpy,
it a; AseHei (7 DPe) Dpy > t > Dpa,
fT‘“’ ( ) =
min Efi1 ﬁb +(tta; + ,ub]_)AiBjeua,-Dpa-I—ub]-pre—(uai-l—ub]- LI > Dpy,.

The expectation of T, is then given by:

1 — eta;i(Dpa—Dpy) e b 4B
Tb A;(Dpq + + _ 175 opa;(Dpa—Dpy)
" zz; i Ha; ) zz:; Jz:; Ha; + Py
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Similarly, for the case where three call requests have been successfully received, we can

derive the T’;’ff as follows:

£ _

—abe a ]_ _ e”ai (Dpa pr)
Toint = > AiDpa+ )+
i=1 Ha;

b b AB

ZZ 103 (euai(Dpa—pr) _ eﬂai(Dpa_Dpc)‘l‘ﬂb]-(pr_Dpc)) 4
i=1 j=1 Ha; + Fo;

be by L
3 Eb: 3 Meuai(Dm—Dm)ﬂw(pr—Dpc)‘
21 i1 kg Mai Ty T e,

58



