WORST CASE ANALYSIS FOR ON-LINE
SCHEDULING IN REAL-TIME SYSTEMS

Fuxing Wang and Decao Mao
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 91-54
June 1991

Worst Case Analysis for On-Line Scheduling in
Real-Time Systems *

Fuxing Wang Decao Mao

Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

June 1991

Abstract

On-line scheduling in real-time environments has been studied by a number of re-
searchers [8, 16, 13, 4, 10, 1]. If the system is not overloaded, there exist several optimal
uniprocessor on-line scheduling algorithms for real-time tasks, such as Earliest-Deadline-
First and Least-Laxity-First. However, it has been proven that there are no optimal
multiprocessor on-line scheduling algorithms for real-time tasks [8]. On the other hand, if
overload is allowed, no optimal on-line scheduling algorithms exist, even for uniprocessors.
Many researchers have turned to approximation algorithms [8, 16, 13, 4]. Therefore, it is
important to study the behavior of approximation algorithms.

A good on-line scheduling algorithm should have both good average performance and
good worst case performance. If we know the performance range of an on-line scheduling
algorithm, it will greatly help in designing predictable real-time systems. In this paper, we
study the performance bounds for both uniprocessor and multiprocessor on-line schedul-
ing. Specifically, we consider tasks with different values to the system and consider the
performance bound to be the ratio of the value obtained by an on-line scheduling algorithm
and the value obtained by an ideal optimal off-line “clairvoyant” algorithm.

If all tasks have the same value density, i.e. the value per unit computation time, we
show that the tight upper bound of the uniprocessor on-line scheduling problem is 1/4.
More generally, if tasks have different value densities and the ratio between the highest and
the lowest value density is 4, we show that the upper bound for the uniprocessor on-line
scheduling problem is 1/(7 + 1+ 2,/7). Two on-line scheduling algorithms, 7D, and TD;,
are presented, which can reach the two upper bounds, respectively.

*This work is part of the Spring Project at the University of Massachusetts and is funded in part by the
Office of Naval Research under contract N00014-85-K-0398 and by the National Science Foundation under grant
CDA-8922572.

1 Introduction

The problem of on-line scheduling in real-time environments is to dynamically make a sequence of
decisions by assigning system resources to real-time tasks. This decision must be made without
a priori knowledge of future tasks. System resources are processors, memory, and shared data
structures!, and the tasks are independent and preemptable, and have arbitrary arrival times,
computation times, deadlines, and importance values. Because a scheduling decision is made
without a priori knowledge, the outcome of the decision is not fully predictable. So, the objective
is to maximize the value accrued from tasks that complete on time.

With a priori knowledge of future tasks, scheduling is actually not on-line in nature, although
the decisions are made on-line. For example, if overloads are impossible, then the Earliest-
Deadline-First algorithm (EDF) can be applied, since it has beed proven that every task can
finish before its deadline [11]. Intuitively, when a task is preempted, since we have a future
knowledge that overloads will never occur, we have 100% confidence that the remaining portion
of the task can be completed before its deadline. Many real-time systems do not have future
knowledge. One example is robotics, which requires its control subsystem to adapt to a dynamic
environment. It will be too costly to assume that overload will never occur and/or inefficient
to construct a schedule a prioriin such a system. Therefore, on-line scheduling is important in
such real-time systems, and on-line scheduling is more practical than off-line scheduling because

the overload will occur in many systems. Overload happens in many practical systems because
e the environment changes;
e there is a burst of task arrivals; or
e a part of the system fails.

Hence, on-line scheduling is necessary to shed task load. Without overload, simple algorithms,
such as EDF and Least-Laxity-First (LLF), perform very well. However, with overload, it is
more difficult to construct a good on-line algorithm to compete with a clairvoyant algorithm, as
it will be clear from the following. A clairvoyant algorithm is an ideal optimal off-line algorithm
with full knowledge of task parameters.

The lower bound on the performance of an on-line scheduling algorithm, A, can be defined

in the following way: If over all task arrival sequences, the smallest value of the ratio of the

1Only processors are considered in this paper.

performance of A and that of the clairvoyant algorithm is By, then B, is the lower bound on
the performance of A. If, for a given scheduling problem, the largest value of B, for all A is B,
then B is the upper (performance) bound of the scheduling problem.

Dertouzos and Mok studied multiprocessor on-line scheduling of hard real-time tasks [8]2.
They showed that, in the case of uniprocessors, both EDF and LLF are optimal in the sense
that, for any task request pattern, if there exists one feasible schedule, both EDF and LLF
are guaranteed to find it. But both algorithms have difficulty if overloads occur. In the case
of multiprocessors, they proved that no scheduling algorithm can be optimal without a prior:
knowledge of task deadlines, computation times, and arrival times.

Locke developed an efficient approximation algorithm called Best-Effort (BE) for multipro-
cessor on-line scheduling, by using time-dependent value functions to schedule real-time tasks
[13]. For uniprocessor scheduling, BE behaves the same as EDF if the system is not overloaded.
During overload, BE sheds tasks with the Lowest Value Density First?, until the system becomes
underloaded. Although BE has been shown to have a good average performance, it does not
perform well in the worst case (see Example 1 of Section 2).

Biyabani, Stankovic, and Ramamritham proposed two on-line algorithms for uniprocessor
scheduling in a real-time distributed environment and showed that the two algorithms perform
well by simulation studies [4]. They assumed that tasks have both timing constraints and
importance values. If the system is not overload, these two algorithms behave the same as EDF.
If the system is overloaded, their algorithms shed tasks with less importance value. These two
algorithms differ only in how they remove lower importance tasks. In the first algorithm, lower
importance tasks are removed one at a time and in strict order from low to high importance.
The second algorithm also removes tasks with the lower importance value, but does not follow
the strict order found in the first algorithm. Again, the two algorithms do not perform well in
the worst case (see Example 2 of Section 2).

Recently, Koren, Mishra, Raghunathan, and Shasha have been studying the uniprocessor
on-line scheduling problem [10]*. They proposed an algorithm, D*, and showed that the D~
algorithm has the lower bound of 1/5, under the assumption that all tasks have the same value
density, which they called uniform value-density.

2Their results first appeared in 1978 [15).
3Value density is defined as the ratio between task’s value and its computation time, therefore, it measures

the value per unit computation time.
41t appears that they have an revised version which we have not seen yet.

More recently, Baruah and Rosier showed that the uniprocessor on-line scheduling problem
has a performance upper bound of 0.414 [1]. Given the results described in the following sections,
the 0.414 performance bound does not appear to be correct.

Besides the real-time on-line scheduling problem, there are many other on-line problems.
The recent theoretical development of on-line algorithms has established a Theory of On-Line
Algorithms which compares relative power of on-line and off-line (or clairvoyant) algorithms.
Sleator and Tarjan analyzed the list researching and paging problems [17]. Borodin, Linial, and
Saks studied the metrical task system problem [5]. Manasse, McGeock, and Sleator presented
results on the K-sever problem. Both the metrical task system and the K-sever are abstract
models. Other work on the theory of on-line algorithms can be found in [9, 3, 7, 2].

From the above discussion, it is clear that on-line algorithms is an important research issue.
On-line algorithms can be applied to many important applications, such as dynamic control and
operations research.

In this paper, we study on-line scheduling in a real-time environment. We consider both
uniprocessor on-line scheduling and multiprocessor on-line scheduling. Tasks have either the
same value density or different value densities, where value density is defined as the value in per
unit time, e.g., the ratio between the value of a task and its computation time.

In the case of uniprocessor on-line scheduling, if tasks have the same value density, we show
that, the performance upper bound is 1/4. Another interpretation of the result is that, in the
worst case, an on-line algorithm is only able to complete the amount of work which is 1/4 of an
amount work completed by a clairvoyant algorithm. We also show that 1/4 is a tight bound by
constructing an on-line algorithm, called Threshold-1 (T'D,) algorithm, to reach the bound. T'D,
guarantees no less than 1/4 of the value obtained by a clairvoyant algorithm for any different
kind of task request sequences. This means that 7D, has the best lower bound among all on-
line algorithms. Therefore, T'D; is an optimal on-line scheduling algorithm under overload, and
furthermore, it has the same performance as LLF and EDF in case of non-overload.

The above result can be further extended to the cases in which tasks have different value
densities. Let 4 be the ratio of the highest and lowest value densities of tasks, we prove that
the upper bound of the on-line scheduling problem is

1
y+1+2,~7

As a special case, if 7 is 1, the upper bound is 1/4, which is just the result mentioned above. If

4

7 is 2, the upper bound is 1/5.828.

In the case of multiprocessor on-line scheduling, some important observations are provided,
which will help to derive the tight bounds for more generalized on-line scheduling problem.
The main strategy used in multiprocessor on-line scheduling is the careful coordination among
processors.

The remainder of the paper is organized as follows. Section 2 presents some notations,
assumptions, and examples. Section 3 presents a brief summary on several analytical results
for the on-line scheduling problem. Section 4 presents some useful properties of a family of
integer sequences. These are useful in deriving the upper bound of on-line scheduling problem.
In Section 5 we study uniprocessor on-line scheduling by assuming that all tasks have the same
value-density. This assumption is removed in Section 6. In Section 7, we discuss some important
hints about how to derive the tight bounds for multiprocessor on-line scheduling. We conclude

the paper in Section 8.

2 Assumptions and Example

A system consists of a set P of m application processors: P = {Py, P,..., P}, which are
identical. The system serves a sequence of tasks. Let R be an arbitrarily task request sequence,

{T1,Ts,...,Tn}, where n can be arbitrarily large. Task T; is defined by (a;, ¢;, di, v;), where
e a; — its arrival time,
® ¢; — its computation time,
e d; — its deadline,

e v; — the value obtained by the system if the task completes its execution before its
deadline.

We assume tasks are aperiodic, independent, and preemptable without penalty. A preempted
task can be resumed on any available processor. We also assume that a; < a;;;, where 1 <1 < n.

Further, the system obtains a zero value from a task if it misses its deadline.

Definition 1: Let R be an arbitrary task request sequence. A is an on-line scheduling
algorithm if it knows T; only at time a;. A clairvoyant algorithm, C, is an ideal optimal
off-line scheduling algorithm, which knows all tasks in R a priori.

Definition 2: Let R be an arbitrary task request sequence, A be an on-line scheduling
algorithm, and C be a clairvoyant algorithm. V4(R) is the total value obtained by A. V¢(R)
is the total value obtained by C.

Definition 3: The lower bound, By, of an on-line scheduling algorithm, A, is defined as

Va(R)
pea— >
v (R) B,, for all R,

where B, € [0,1] because VR { V4(R) < Vc(R)}.
The tight lower bound, T B, of an on-line scheduling algorithm, A, is

T By = sup{Ba}.
The upper bound, B, of an on-line scheduling problem is defined as
B > T By, for all A.
The tight upper bound, T B, of an on-line scheduling problem is
TB = sup{TB, : for all on-line algorithms A}.

For example, if A is an on-line scheduling algorithm with a tight lower bound of 0.2. then, 0.1
is also a lower bound for A, but it is not tight. On the other hand, if we assume all on-line
scheduling algorithms have tight lower bounds in a range of [0, 0.25], then, 0.3 is an upper bound
for the on-line scheduling problem and 0.25 is the tight upper bound. In the remainder of the
paper, both the lower bound and the upper bound simply mean tight bounds. Now a couple of

examples will illustrate these terms and ideas.

Example 1: Let A be an on-line scheduling algorithm in a uniprocessor system. A uses a
simple strategy to make scheduling decisions: it nses EDF when the system is underloaded,

and it favors a task with larger value density during overload. Let
R = {le T2}1

with their parameters specified in the following table:

Tasks a; Ci d,' Vi
Ty 0 2 2 3
T, 1 100 101 100

6

At time 0, T; arrives and gets service. At time 1, T, arrives and the system is overloaded.
Algorithm A favors an task with a larger value density, which is 7;. Hence, T; is rejected
and is lost. The total value obtained by A is 3, and the total value obtained by a clairvoyant
algorithm can be 100 (vz). The performance ratio is

Va(R) 3

Ve(R) 100

If both computation time and value of T; increase at the same rate, then the ratio between

Va(R) and V¢ (R) goes to zero.

Example 2: Let A be an on-line scheduling algorithm in a uniprocessor system. A uses a
simple strategy to make scheduling decisions: it uses EDF when the system is underloaded,

and it favors a task with larger value during overload. Let
R= {Th T]{) T2) Tz’) T3) T:;, T47 Ti’ TS) Té) TG; Tela TT; T;, T8, },

with their parameters specified in the following table:

Tasks | a; ¢ d; v; || Tasks|a; ¢ d; v
T 0 10 10 10 T, 0 9 11 9
T, 9 11 20 11 T, 9 10 21 10
Ts 19 12 31 12 T, 19 11 32 11
T, 30 13 43 13 T, |30 12 44 12
Ts |42 14 56 14 T; |42 13 57 13
Te |55 15 70 15 Te |5 14 71 14
T, (69 16 85 16 T; [69 15 86 15
Ts |8 16 100 16

Notice that the value densities of all tasks are the same, which is 1. The schedule of a

clairvoyant algorithm is simply in the following order:
(T1,) T2l7T:;:T:;) Tsl’ Té’T';: TS):

with the total value 100. The algorithm A works as follows: At time 0, the system is empty
and Ty and T] arrive. T; gets service and T is discarded because A favors the larger valued
task during overload. (A does not know that T, will arrive, otherwise it will choose 7}.) At
time 9, T, and T, arrive and the system is overloaded again, and T gets service because

it is the task with largest value among the current task sets. This pattern continues until

7

Tg arrives at time 84. The current running task is 7% with the same value as T, hence,
algorithm A does not make the switch. The total value obtained by A is 16 because only T

makes its deadline and all other tasks are lost. The performance ratio 1s

Va(R) 16

The above task pattern can be used to construct a scenario with a task arrival sequence with

an arbitrarily number of tasks, such that, the ratio between V4(R) and V¢ (R) goes to zero.

From the above examples, we can observe a phenomenon which is common in on-line schedul-
ing. That is, an on-line algorithm times makes some mistakes because it lacks a prior: knowl-
edge. This is unavoidable. However, an on-line algorithm may still provide a certain level of
predictability on its performance, which is measured by the lower bound defined above. Further,
researchers are searching for on-line scheduling algorithms with good lower bounds. The best
one can reach the upper bound of the problem. One benefit from this kind of research is that,
after we know the upper bound of the problem, we have a deeper insight into the behavior of
on-line scheduling, and we may be able to avoid the worst cases during the design of real-time

systems.

3 Overview of Results

There are three main results. The first two results concern uniprocessor on-line scheduling and
the third result is about multiprocessor on-line scheduling.
The first result is the upper bound of the uniprocessor on-line scheduling problem for tasks

with the same value density.

Theorem 1: If all tasks have the same value density, then the upper bound of uniprocessor
on-line scheduling problem is 1/4.

Note:

e The assumption of the same value density on all tasks may not be practical. Nevertheless,
it is the first step in studying the on-line scheduling problem. It provides a basis for

analyzing more sophisticated models.

e If we interpret the task’s computation time as its value, then this theorem says that, in
the worst case, any on-line algorithm can only complete 1/4 of the work completed by a

clairvoyant algorithm.

e The theorem has another implicit assumption, which is that the computation time of
tasks can be arbitrarily small or large. This may not be true in practice. We are currently
studying a case in which the ratio between the largest and the smallest computation time
is bounded. When the ratio is arbitrarily close to 1, the upper bound is also close to 1.
The upper bound decreases while the ratio increases. The upper bound converges to 1 /4,

as the ratio goes to infinity.

The next result is again about the upper bound of the uniprocessor on-line scheduling prob-
lem, except that the restriction on tasks’ value density being the same is removed. Therefore,

tasks are allowed to have arbitrary value densities.

Theorem 2: If 4 is the ratio between the highest and the lowest value density of tasks,

then the upper bound of the uniprocessor on-line scheduling problem is

1
y+1+2,7

Note:

e It is easy to verify that the upper bound is 1/4 when v is 1, which is the same as the first
result.

e When v increases, the upper bound decreases. This means that a clairvoyant algorithm
has more advantage over an on-line scheduling algorithm, because, in the worst case, the
clairvoyant algorithm works on the highest value density tasks while the on-line algorithm

works on the lowest value density tasks.

4 Constant-Ratio Sequences

In this section, we study a particular family of integer sequences, which will give us some insight
into the worst case behavior of on-line scheduling. In particular, the computations time of a

task sequence will correspond to such an integer sequence. The properties of this family are

9

used in the proof of the upper bound of on-line the scheduling problem in the next section. One

example of the sequence in this family is
1,3,8,20,48,112,--- (1)
which is defined by a recurrence relation, or difference equation:

Cr+2 = 4(Cht1 — k)
with ¢ =1 and ¢; = 3.
In general, this family of integer sequences has a generic form:
Cry2 = ,B(Ck+1 - Ck) (2)
with
co=1, and c=08-1

When 8 = 4, it gives sequence (1). This family has some interesting properties, which, to our
knowledge, have not been studied in literature, and it will be called the Constant-Ratio (CR)

sequences because of the next property:

Property 1: [Constant-Ratio Property]

Cr—1 1
= —. 3
E?:O Cj ﬁ ()
Proof.
k k
Yoei = cot+a+) Bc1—ci2)
Jj=0 ji=2
k k
= 1+(B-1)+B) ci1—B) cia
j=2 j=2
k—2 k-2
= B+Bek-1+BY ci)—(B+BY_ci)
j=1 i=1
= fPck-1.
Hence,
-1 _ 1
2?:0 CJ ﬂ

We will use a CR sequence to construct a task request pattern, such that, in the worst
case, a clairvoyant algorithm is able to obtain a value which is close to Z;?:o ¢ while an on-line
scheduling algorithm can only obtain a value ci_;. This is the main reason for studying CR
sequences.

Next, we show that a CR sequence is monotonically increasing if 8 > 4, by using a rather

standard method in the study of recurrence relations [12].

Property 2: [Monotonicity Property]

If 8> 4,
1 p-2 BHyBB-4., 1 p-2 B-yBB-4),
=Gt 2 G 2) W
Ifg =4,
k k

Proof. Given the recurrence relation (2):
Cet2 = B(Ck+1 - Ck)
the corresponding characteristic equation is
22 — Bz + P8 =0.

Part 1: When 8 > 4, the characteristic equation has two distinct roots

B+BB-9 _B—/B(B-9)
_ e}

2 2

Ty =

It follows that

Ck_A(ﬁh/ﬁ(ﬂ bea P \/ B6-4),
— A ¢

With the boundary conditions
co=1 and a=8-1,

11

the two constants can be determined as:

B—2 1 B—2

1
— and A== — —/——.
2 2,/B(B-4) 2 2/B(B-4)

Substitute A and A; into (6) deriving (4).

Ao =

Part 2: When S = 4, the characteristic equation has two identical roots:
L1 =23 = 2.
It follows that
cr = (Aok + A;)2k. (7)

With the boundary conditions
Co = 1 and = ﬁ - 1,

the two constants can be determined as:

Ao = and A1 = 1.

L
2
Substitute Ao and A, into (7) deriving (5). Furthermore, Equation (5) is clearly monotonically
increasing while k increases. If 3 > 4, the sequence defined by (2) will increase faster than the
case in which 8 = 4. This can be seen in Figure 1. Therefore, the sequence is monotonically
increasing while k increases, when 8 > 4. This completes the proof. O

Finally, we show that a CR sequence has an oscillation property if 8 < 4.

Property 3: [Oscillation Property]
IfB <4,

where

1 [4-8

0 = tan™ "4/ —— and 0, = tan™

Proof. The corresponding characteristic equation 1s

zz—ﬂm+ﬂ=0,

12

which has two distinct roots

B+iE=p) . B-i/B4-F)
2 = 9)

21 = 2

where 1 = /—1.
It follows that

L Ao(ﬁ+z\/ﬁ(4 By aP \/ﬂ(4 By "

With the boundary conditions

Co=1 and Cl=,3—1,
we have
Ag+ A4, =1

and

Ao(ﬂ+i\/ﬁ(4—ﬂ))+A(ﬁ—i -8, _, .

2 ! 2 -

The two constants can be determined as:

26 B) RNV)

But
) 4 —
s Vﬁ =Py _ (/B)(cos k8 + i sin k6) (10)
and
—i./B(4 -
(ﬁ g(’6))’e = (/BY*(cos k6 — isin k6), (11)
where
1 (48
0 = tan 7
Substitute Ao, 4;, (10), and (11) into (9):
= (2 B2y a(cosk +isink8) + (5 + —L =2y /B)(cos kb — isin k),

2" 2./8(4-) 2" 2 /6a-5)

13

<
o
800 1—
600 +
400 1+
O=——0Q beta=6
A—A beta=5
O—2< beta=4
2001~ ¥——% beta=3.8
+=—+1 beta = 3.7
0 =
o 1 2 3 4 5§ 6 7 8 9 10 11
K
Figure 1: The Constant-Ratio Sequences.
or simply
cp = (\/E)"(cos ko + A2 sin k6).
B(4-8)
By defining
01 = tan_l_ﬂ:z_’
VB(4 - 8)
we have

¢ = \/fTﬁ.(\/b_)'=+1 cos(kf — 6s).

¢k oscillates while k increases, because there exists a factor of the cos function of k& and § while

0<fl<2n. O

Observation 1: As mentioned before, CR sequences are used to construct a task request

pattern, such that, in the worst case, a clairvoyant algorithm is able to obtain a value which

is close to 2;?:0 ¢ while an on-line scheduling algorithm can only obtain a value c,_1. The

ratio between c,_; and 2;;0 ¢k is 1/8 according to Property 1. Hence, the ratio decreases

14

while A increases. But if 8 > 4, all sequences monotonically increase, which means that
the value of tasks becomes larger and larger. An on-line scheduling algorithm will simply
make a switch every time a more valuable task arrives. The ratio is likely to be much better
than 1/8 from the on-line scheduling algorithm point of view, and the sequence keeps on to
infinity. The ratio will be much better than 1/8 because the on-line scheduling algorithm
gets the most valuable task. On the other hand, when 3 is less than 4, the sequence begins
oscillating. Whenever ¢ > cx41, the on-line scheduling algorithm can not make the switch
because it is not worth it to switch to a less valuable task. Then, Property 1 can be used
to measure the performance ratio. Intuitively, the worst case happens when g is very close
to 4. Figure 1 shows the behavior of CR sequences with the different values of 8 (beta in
Figure 1).

5 TUniprocessor On-Line Scheduling for Tasks with the
Same Value Density

In this section, we assume that the value density of all tasks is a constant, and we will simply
use the computation time of a task as its value. Under this assumption, we prove that the upper
bound of the uniprocessor on-line scheduling problem is 1/4, that is, no on-line algorithm has its
lower bound better than 1/4. Then we present a simple threshold algorithm with a guaranteed
performance ratio of at least 1/4 compared to a clairvoyant algorithm. This is the best among
all on-line scheduling algorithms with respect to the lower bound.

We first consider a general framework for studying on-line scheduling algorithms. The on-
line scheduling problem can be considered as a “game” played by a player and an adversary.
Whenever the adversary posts certain tasks, with different values and deadlines, the player
examines these tasks and makes an on-line decision by applying an on-line policy or algorithm,
A, to pick some tasks and to reject others, such that the total value obtained is as high as
possible.

To show the upper bound of the uniprocessor on-line scheduling problem, it is sometimes
necessary to consider the behavior of all algorithms on all possible input patterns according
to Definition 3. This is a very difficult job because it is not practical to scrutinize all on-line
scheduling algorithms. To avoid this, we use the following approach in our proof. We first

show that there exists a task request sequence pattern from the adversary, such that, no on-line

15

scheduling algorithm can get a performance ratio higher than 1/4. Then we show that an on-line
scheduling algorithm, T'D;, has its performance ratio at least 1/4 for all task request sequences.
Consequently, the upper bound of the uniprocessor on-line scheduling problem is 1/4 by simply

combining these two facts.

Lemma 1: There exists a task request sequence pattern, P, such that, no on-line scheduling

algorithm can get a performance ratio higher than 1/4 compared to a clairvoyant algorithm.

Proof It is enough to prove that there exists P and an arbitrarily small §, such that,

Va(R), _1

VC(R)) sgté

(VRe P VA

Let A be an arbitrary on-line scheduling algorithm used by the player of the “game”. The

adversary uses two types of tasks: 7-tasks and a-tasks with identical value density, represented
by

(arrival-time, computation-time, deadline)

as follows:

r-tasks Ty = (¢, 7, t+7),

and

a-tasks : T =(ta,t+ a),

where ¢ is time, and a and 7 are real to represent task size (computation time), while 7 can be
arbitrarily small and a will be specified in the following. These two task types have zero laxity,
so the player is forced to make a decision immediately whenever a task arrives.

At time 0, the adversary posts a T-task and an a-task:
T = (0,7,7), and T, =(0,1,1).

The player has only two choices, T or Tg. If the player chooses Ty, Tg will be lost. The adversary
will stop the game by not providing more requests. In contrast, the clairvoyant algorithm simply
chooses T}, and the ratio between the value obtained by the on-line scheduling algorithm, which
is 7, and the value obtained by the clairvoyant algorithm, which is 1, is equal to 7/1 which is
far less than 1/4.

16

If the player chooses Ty, then the adversary posts another 7-task at time 7:
TT = (r,7,27).

Again the player has only two choices: switch or not. If the player aborts Tg for T7, the
adversary will stop the game and the ratio will be far less than 1/4. If the player keeps Ty, the
game continues.

In general, while the player serves an a-task, r-tasks will keep coming one after another.
The adversary will stop the game whenever the player aborts the current a-task for a 7-task.

Now we specify the arrival pattern of other a-tasks. The second a-task will be T3¢ at time
1 — 7. At that time, if the player does not abort the current a-task, Tg, the game stops. There
are no 7-tasks arriving after T} completes. Therefore, the player obtains the total value 1, while
the clairvoyant algorithm gets the values from T7=f and all 7-tasks between time 0 and 1 — 7.

The ratio is
1

1
i1ttt
where § is a function of 7 and €, and § goes to zero as both 7 and € go to zero. On the other
hand, if the player aborts Ty for Tf—¢, the game continues. T-tasks keep coming one after another
during the time the player serves T3 .

In general, if the player does not abort the current a-task for a 7-task or if the player aborts
the current a-task for a new a-task, the adversary will keep posting more -tasks and o-tasks.
Each 7-task follows the previous 7-task, and each a-task is posted at the time just when the

previous a-task can be completed.

The computation time of a-tasks are defined by the following recurrence relation:
Co = 1,

Cc = ﬂ -].,
k2 = Bers1 — ck),

where
B=4—c¢

and ¢ and ¢; correspond to T} and T;~f respectively.

17

According to Property 1 and Property 3, we have

Cr 1
S = 1< (12)

3=0 cJ

and

Ck = \/‘.1%(\/5)“1 cos(kd — 6,),

where 8 = 4 — ¢,

and
B -2

VB -B)

Because c;, has a factor of cos function of k and 6, and 8 # 0, 8 # 2w, therefore, there exists
k', such that

6, = tan™!

Ck! > Ck'41-

Hence, the size of a-tasks does not monotonically increase. Whenever the size of the next a-task
cri4+1 18 less than cp, the adversary changes cy1y to be the same size as cyr, and stops posting
more T-tasks and a-tasks. At this moment, the player can only choose one of the last two
a-tasks with the same size, and obtains a total value c. The clairvoyant algorithm gets the
total value of
k'
O ci) +c, — K.

=0
By Equation (12), we have

ke < Che
(2"' ¢;) + ¢, — k't (4 —€)cp, — k't

=0

<246,

!
4

where § is a function of 7 and ¢, and § goes to zero as both 7 and € go to zero.
In summary, the adversary uses a task request pattern, P, such that any on-line scheduling

algorithm used by the player has a performance ratio no more than 1/4. O

Next, we show the 1/4 bound is reachable, that is, there exists a particular on-line scheduling

18

algorithm, T'D;, which has a performance ratio at least 1/4 for all task request sequences,
including the worst case pattern we used in the proof of Lemma 1.

To introduce the T D; algorithm, we define some notation. Then we consider several examples
in order to understand the properties of TD;. Finally, we present its pseudo code in three
versions.

In the first version, we assume that all tasks have zero laxity. In the second version, we
assume that tasks may have laxities but all preempted tasks are discarded. In the last version,
the above two restrictions are removed.

Let ¢ denote current time. Let T; be an arbitrary task, T; = (a;,c;,di,v;). @i, ¢, di, and
v; are the arrival time, computation time, deadline, and value of T; respectively as defined in

Section 2. Let [; be the latest start ttme of T;:

Definition 4: A time interval, or simply interval, at ¢t is a time segment [ty,%.) which
consists of a busy subsegment [t;,%4] followed by an optional idle subsegment [ty,t.), where
ty (t < t) is the time the system transits from an idle state to a running state, t; (¢ < ty) is
the time the system transits (or is expected to transit) back from a running state to an idle

state because a task completes (or is expected to complete), and

t = max(ts, max({dldiscarded}))

where {dlg;scarded} are the deadlines of all tasks discarded during the time subsegment [ts, 4]

Definition 5: An interval is closed at ¢ whenever a task has completed in the interval,

otherwise, it is open.

Intervals may be separate, cascade, or partially overlap each other. We present two examples

to illustrate these terms and ideas.

Example 3: Figure 2 shows two intervals, one is closed and one remains open. The shad-
owed areas represent tasks which are either complete or running, and un-shadowed areas
represent tasks that missed their deadlines. There are three tasks with zero laxity. To ar-
rives at time ao and is served at once, which opens Interval 1. The interval is closed when

T, finishes at its deadline dy. So Interval 1 is [ao,dp). At tme a,, the next task Tj arrives

19

LP

[\ [}

-

Interval 1 Interval 2

Figure 2: A closed interval and an open interval.

and it is also served at once. The system opens the second interval. At time a3, T; arrives
and is rejected. At current time ¢, T is still running, so this interval remains open, and the

expected end of the interval is d;. Interval 2 immediately follows Interval 1.

Example 4: Figure 3 shows two closed intervals which partially overlap each other. In the
first interval, T} is discarded and the processor becomes idle after To finishes, so the interval
is [@o,d;). When T arrives at time a,, the system is idle, so T, gets service at once and the
second interval starts before Interval 1 ends at d; according Definition 4. The new interval,
[a2,d3),involves Ty and T3. Therefore, the second interval overlaps the idle portion of the
first interval.

In the proofs of the T D, algorithm, the following sequences are used. Let A be an arbitrary
interval. The size of A depends on the tasks involved. The arrival pattern of these involved

tasks determines how a sequence of intermediate open intervals grows to the final closed interval
A. Let

(Tayy Tagy Tagy - v Tan) (13)
be a list of n tasks considered in A by the algorithm according the time sequence and
(Agy, Dayy Ayy ooy Aay) (14)

be the corresponding interval list, where each A, is an interval when T, is considered by the

algorithm and A,, = A. Let
(T1, T3, Ts, ..., Ti) (15)

Tl
ao al do ?dl t
a . d, d,
3
k o
Interval 1 l =§
Interval 2

Figure 3: Two partially overlapping intervals.
be a list of tasks executed by the system where each T} aborts another task, 1 < <k, and
(A1, Az, Ag, , D) (16)

be the corresponding interval list. Both sequence in (14) and sequence in (16) are monotonically
increasing.

Now we are ready to describe the T'D; algorithm, which can guarantee a performance ratio of
1/4. T D, is used to prove that there is an on-line algorithm with a lower bound of 1/4, which, in
turn, is used to show that 1/4 is the tight bound of the uniprocessor on-line scheduling problem.
Hence, T D, is very simplified. But the algorithm can be easily expanded to further improve its
average performance.

In the version 1 of T'D;, we assume that all tasks have zero laxity. Therefore, a scheduling
decision must be made whenever a new task arrives. Its pseudo code is shown in Figure 4, where
A, records the current interval and v,y is the value of a running task. v.un» is set to zero when
the system is idle. The correctness of the version 1 of T D, guaranteeing a performance bound
of 1/4 is based on the following lemma which shows that T'D; obtains at least 1/4 of the value

obtained by a clairvoyant algorithm in each interval.

21

whenever Th..: arrives {
update(Aryn);
if (vﬂm < Aru.n/4) { Trun = Lnezt) }

Figure 4: On-Line Scheduling Algorithm T'D; (version 1) .

Lemma 2: In any interval, the version 1 of T'D; obtains at least 1/4 of the value obtained
by a clairvoyant algorithm.

Proof. Let A be an arbitrary interval. Let sequences in (13), (14), (15), and (16) be defined as
before, where the sequence in (14) is corresponding to the values of A,y in the algorithm. We
first use mathematical induction on the number of task involved in the task sequence in (15) to

prove

ve > Ag/2. (17)

1. Basis of induction. For k = 1, it is trivial, because v; = A; (> A,/2).
2. Induction step. Assume that k =1,

v > Ai/z. (18)
Because T; is aborted by Tiyq,
v < Ai+1/4 (19)
and
Aiq < A+ v (20)

Applying (20), (19), and (18) in order,

041 > v+ (A — A)
> vy +4v — A
> v +24; — A
= vy + 4

> A

Thus the inequality (17) is true for any integer k.
To show that the version 1 of T'D; obtains at least 1/4 of the value obtained by a clairvoyant

algorithm in each interval, we consider two cases.

22

whenever (idle && not-empty(Q)) {
Tyun = dequeue(Q); p-108s = Vpun;

}
whenever (running && alarm(Q)) {

Tnect = dequeue(Q); update(Arun);
if (Vpun < (Arun + ploss)/4)
{Trun = Thest; }

Figure 5: On-Line Scheduling Algorithm T'D, (version 2).
e Case 1: T,, = Tk, which means that no other tasks arrive after Tj,. By the inequality (17),

Vi > A,,/2 = A/2 > A/4.

e Case 2: T, # Tk, which means that there are tasks arrived after T} and discarded. By
the threshold rule,
v > A, /4= A/4

0

In the next version, tasks may have laxities, but all preempted tasks are discarded. A queue,
Q, is used to hold tasks waiting for service and they are sorted by latest start times in non-
decreasing order. Figure 5 shows the pseudo code of the version 2 of TD;. Whenever a new
task arrives, it is inserted in @ first. If the system is idle, it will execute the first task in Q.
Otherwise, a scheduling decision is made when the latest start time of the first task in @ is equal
to the current time (alarm(Q) becomes true). Hence, the first task in any interval may have
laxity at the time it is started. All other tasks have zero laxity because they are decided at the
queue alarm time. If a non-zero-laxity task is completed by T'D; and some other tasks (with zero
laxity at the times they are considered) are discarded in the interval, then there exists a case
such that a clairvoyant algorithm can execute this non-zero-laxity task outside the interval and
obtain the value of other tasks by executing them inside the interval. To deal with this problem,
the algorithm uses a variable, potentialloss (p-loss), as a compensation. p.loss records the
value of the first task in any interval, which is the only task may have laxity. The correctness of
the version 2 of T D, guaranteeing a performance bound of 1/4 is based on the following lemma
which shows that T'D; obtains at least 1/4 of the value obtained by a clairvoyant algorithm in

each interval when a compensation added.

23

Lemma 3: The version 2 of T'D; obtains at least 1/4 of the value obtained by a clairvoyant

algorithm in any interval with considering the compensation.

Proof. As in the proof of lemma 2, we can show the following inequality is true by mathematical
induction in a similar way:

vi > (A + plosse)/2, (21)

We omit the detail proof here. To show that the version 2 of TD; obtains at least 1/4 of the
value obtained by a clairvoyant algorithm in each interval when a compensation is considered.

we again consider two cases.

e Case 1: T,, = T, which means that no other tasks compete with 7. By the inequality

(21),
v > (Ag + ploss)/2 = (A + ploss)/2 > (A + ploss)/4.

e Case 2: T,, # Tk, which means that some tasks compete with T} and are discarded. The

threshold rule guarantees that
vk > (Aa, + p-loss)/4.
|

It is enough to use the version 2 of T'D; to demonstrate the performance bound of 1/4 is
a tight bound for the uni-processor on-line scheduling problem. However, when it is compared
with EDF, there is still a small problem. If the system is underloaded, EDF has a performance
bound of 1 while TD; has 1/4. It is better to design an algorithm having a performance bound
of 1 under non-overloads and 1/4 under overloads. This is motivation for the design of the
version 3 of T'D;.

The new algorithm uses the Earliest Deadline First (EDF) rule under non-overloads. There-
fore, T D, guarantees a performance bound of 1 under non-overloads. Both Least Laxity First
(LLF) and Least Latest Start Time First (LLSTF) can also be used although we only consider
EDF here. A queue, Q, is used to hold tasks waiting for service and they are sorted by deadlines.
Because the EDF rule, some tasks in Q) may have been executed partially. These tasks are called
fragment tasks, while other tasks are called regular tasks. The interval definition is expanded as

following accordingly.

24

Definition 8: A time interval or simply interval at ¢ is a time segment [ts,¢.) and consists

of a busy subsegment [t;, %] followed by an optional idle subsegment [tg,2.). It satisfies all

the following conditions:

oty (t, < t) is the time the system transits from an idle state to a running state or the

time the system switches from a running task to a regular task with both tasks feasible;

oln [ty,ts], there is no such a switch from a running task to a regular task with both

tasks feasible;

ot; (t < t;)is the time the system transits (or is expected to transit) back from a running

state to an idle state, because some tasks complete (or is expected to complete);
eAll fragment tasks in @) are feasible each other if they start after t.; and

ot. = max(ty, max({d!ragment}), max({dlaiscarded})), Where {dlragment} are the deadlines
of all fragment tasks which are either discarded or completed and {dlsiscarded} are the
deadlines of all tasks discarded during the time subsegment [t;,ty].

An interval is closed when a task completes and all involved fragment tasks are either com-

pleted or discarded, otherwise it is open.

There are some features in the new algorithm. Whenever a task from @ starts execution,
the algorithm guarantees that remaining fragment tasks in the @ are feasible if they start after
the end point of the current interval. If an interval is underloaded, only one task is actually
involved in each interval. The tasks are completed in the order of their deadlines (the EDF rule).
An open underloaded interval may be aborted when the system switches to a new arrival task
with a smaller deadline and both tasks are feasible. The preempted task becomes a fragment
task and is put back to Q. The time consumed in the aborted interval will be counted as the
compensation in a future interval. If an interval is overloaded, there are more than one tasks
involved in the interval. Let T,,, be a running task and T,e.: be a regular task in the queue.
If l,ez¢ < tf, the algorithm makes a scheduling decision at lnez¢. Some fragment tasks, Tj.q,
may also conflict with T,.zs, which means that Ty,,, is a minimum subset of the fragment
tasks removed from @ such that the T, and the remaining fragment tasks in @ are feasible.
Therefore, the algorithm chooses either Ty, and Tj.qy or Trere based on a threshold rule. If
Taezt is discarded, the algorithm is expected to complete Ty, and T e, in the current interval.
If Teot wins, then T..,, and Ty,,, are discarded. The algorithm maintains a conflict task set,

T conflict, Which consists of all T, ., involved in the interval and they have not yet been discarded

25

choose_one(Trun, Tneat, @)

{
“compute Teonflict;”
update(p.loss); update(Arun);
if (“Rule in (22) is false”)
{ Trun = Thezts discard(Tcon,flict); }
return(Trun);
}

/* The event-triggered routines */
whenever (idle && not-empty(Q)) {
Thezt = remove edf(Q);
Trun = choose_one(Null, Tnext, Q);

}
whenever (running && alarm(Q)) {

Thest = remove_alarmed task(Q);
Trun = choose_one(Tﬂm, Tne:ch Q)l

}
whenever (finish) {

if (empty(Teonstict))
“set system state to idle”;
else Tpyn = remove_edf(Tconfiict);

whenever (arrival) {
lf((drun < darr) “ idle)
insert(Tarr, @);
else if (feasible (Trun, Tarr, “all fragments”)) {

insert(Tprun, @);
Trun = anr;
“start a new interval, Arun”;
} else
Trun = ChOOSG_OIle(Trun) Tarra Q))

Figure 6: On-Line Scheduling Algorithm T'D, (version 3).

or executed. When a running task completes, the system executes a fragment task from Teoniice
immediately if it is not empty, otherwise, the interval is closed at this moment.

Figure 6 is the pseudo code of the version 3. It applies the following threshold rule under
overloads:

9011 + Vpun + Value(Teongiict)
Arun + p-lOSS

1
> = 22
> (22

where gain is the value obtained from the tasks which have been completed in the interval,

Value(Teongiict) is the value obtained by executing Teonfiict; Arun is the current interval size,

26

and p_loss is the sum of the previously aborted intervals which relates to all involved fragment
tasks in the current interval.
The correctness of the version 3 of T'D; guaranteeing a performance bound of 1/4 under

overloads and 1 under non-overloads is based on the following lemma.

Lemma 4: In any interval, the version 3 of TD; has a performance bound 1 under non-

overloads and 1/4 under overloads with considering the compensation.

Proof. Let A be an arbitrary interval. Let sequences in (13), (14), (15), and (16) be defined
as before, where the sequence in (14) is corresponding to the values of A,y in the algorithm.
It is possible that there are more than one task completed in the task sequence in (15). We use

mathematical induction on the number of task involved in the task sequence in (15) to prove:
v > (A + p-loss) /2, (23)

1. Basis of induction. For k = 1, it is trivial, because v, = Ay + p-loss;.

2. Induction step. Assume that k =1,
v; > (A; + ploss;)/2. (24)
Because the system switches to Tiy1, the threshold rule in (22) is false, which implies:

Vi + Vigr < (Aiy1 + p-lossiya)/4, (25)
where Viy; is corresponding to Value(Teonfict) in (22). With the definition of the interval and
the property of the compensation, we have

Aip1 < Ai+vi41 + Vi (26)
and
ploss; + Viy1 > plossiyy (27)
Applying (26), (25), (24) and (27) in order,
001 > Vipr + (Aipr — A — Vi)
Vi1 + (4(vi + Vigr) — p-lossipr) — Ay — Vi

> v + 2(A; + ploss;) — plossiyy — Ay + 3Vigs
= (Ai + Vg1 + Vi+1) + Z(P-lossi + V2+1) - P-1035i+1
> Ay +2plossiyy — p-lossiya

Aiyq + p-lossiys.

27

Thus the inequality (23) is true for any integer k.
To show that the version 3 of T'D; obtains at least 1/4 of the value obtained by a clairvoyant

algorithm in each interval with the compensation p_loss, we consider two cases.

e Case 1: T,, = T, which means that no other tasks arrive after T). By the inequality (23),

vg > (Ax + p-lossi)/2 > (Ax + p-lossy) /4.

e Case 2: T,, # Tk, which means that the system does not make any preemption after T} in

this interval. The performance bound of 1/4 is guaranteed by the threshold rule in (22).
a

Combining the above results, we prove Theorem 1.

Theorem 1: If all tasks have the same value density, then the upper bound of the unipro-
cessor on-line scheduling problem is 1/4.

6 Uniprocessor On-Line Scheduling for Tasks with Ar-
bitrary Value Densities

In this section, we generalize the result of the last section to the case in which tasks do not have
the same value density.

Let 4 be the ratio between the highest value density and the lowest value density of tasks.
The actual value densities of tasks can be mapped to [1,7]. As in the proof of Lemma 1 in last
section, an adversary uses both a-tasks and 7-tasks to build a worst case pattern of task request
sequence. The adversary assigns a value density 1 to all a-tasks and a value density v to all

7-tasks. The computation times of the a-tasks are defined by the following recurrence relation:

etz = (B — 7+ 1)cks1 — Bek (28)
with the boundary conditions as
=1
and
a=8-17.

The constant ratio property mentioned in Section 4 can be generalized to the following form:

28

Property 1: [Constant Ratio Property]

Ce—1

1
—_— = (29)
vy kdcitea B
Proof. We use mathematical induction to prove
k-1
7Y ¢+ e = Bek.
j=0

1. Basis of induction. For k = 1, we have

Yoo+ ¢y =+ (B —7) =8 = PBeo.

2. Induction step. Assume that

k-1
72 ¢+ e = Bcr_1.

j=0

We have

k k-1
1S citean = (Y ci+ve)+((B—7+1)ex — Ber-1)

j=0 j=0

k-1
(v ¢j+ ck) + Ber — Bers

j=0
= Pcr-1+ Ber — Per
= ﬂck.

Hence, Equation (29) is true for all k > 1. O

Lemma 5: Given v, there exists task request sequence pattern, P’, such that, no on-line
scheduling algorithm can get a performance ratio higher than 1/(y + 1 +2,/7) compared to

a clairvoyant algorithm.

Proof. The adversary uses a sequence of the a-tasks defined by the recurrence relation (28) and
presents them to the on-line scheduling algorithm in the similar way as before, so that whenever
the “game” is stopped, the performance ratio will never be larger than 1/5.

The adversary wants the a-task sequence to have the following two features:

29

1. the “game” always stops; and
2. B is as large as possible.
The first feature requires that the value of the a-task sequence should oscillate. The character-
istic equation for (28) is
g’ —(B—-7+1)z+p=0.

The oscillation occurs when the characteristic roots are complex numbers, which happens if

(B-v+1)-48<0. (30)

The inequality of (30) can be written as

B-(r+14+27))B-(v+1-247)) <0,

which gives

T+1-2A<B<y+1+2\/y (31)
and

Y+1-2/7>8>7+14+2/7. (32)
(32) is a contradiction and is discarded.
Therefore the largest possible value of B is (v + 1 + 2,/7) — ¢, which will be used by the
adversary to construct the a-task sequence. Thus, the adversary has a strategy to force every

on-line algorithm to stop with a performance ratio not higher than 1/(y + 1 + 2,/7) compared

to a clairvoyant algorithm. O

Lemma 6: Given v, there exists an on-line scheduling algorithm, T'D], for all input se-
quences of tasks, it has a performance ratio at least 1/(y+142,/7) compared to a clairvoyant
algorithm.

Proof. Similar to the proofs of Lemma 2, 3, and 4 in last section, we may construct an algorithm

T D, from TD; by using a new threshold, which is

1
Y+14+2./7

Using the same argument as before, it is easy to show that TD; has the desired lower bound. O

Combining the above two lemmas, we prove Theorem 2.

30

Theorem 2: If v is the ratio between the highest and the lowest value density of tasks,

then the upper bound of the uniprocessor on-line scheduling problem is

1
y+1+2,~4

7 Multiprocessor On-Line Scheduling for Tasks with
the Same Value Density

We may further generalize the previous results from uniprocessor to multiprocessor. Some
important hints are provided in this section while the details will be report in another place.
The case for dual-processors is considered first, followed by the case for multiprocessors.

Comparing to uniprocessor on-line scheduling, dual-processor on-line scheduling is a very in-
teresting problem. The reason is that two processors can cooperate with each other to guarantee
that at least one processor does some productive work. This means that, under the coopera-
tions, the performance bound is at least 1/2, comparing 1/4 for uniprocessor, which translates
into a 200% performance bound improvement. For the designers of real-time systems, this will
be an important reason to choose a dual-processor based system instead of a uniprocessor based
system.

Turning our attention to multiprocessors, our main strategy is to group processors. If the
number of processors is even, we may simply combine every two processors to form a group..
Therefore, it is easy to see that the upper bound is the same as in dual-processor on-line
scheduling. If the number of processors is odd, one processor is left after the others are combined
into dual-processor groups. Each group can guarantee its performance bound to be 1/2. The
remaining processor is only able to guarantee its performance bound to be 1/4. The upper

bound is derived by simply combining these two facts.

8 Conclusions

In this paper we discuss the upper bound for any on-line scheduling algorithm in a real-time
environment, in which the overload must be handled quickly and effectively. If all tasks have
the same value density, the upper bound for the uniprocessor on-line scheduling problem is 1/4.
If tasks have different value densities and the ratio between the highest and the smallest value
density is , the upper bound for the uniprocessor on-line scheduling problem is 1/(y+1+2,/7).

31

We have also presented the on-line scheduling algorithms, T'D; and T D], to reach these two
upper bounds respectively. TD; and T D] use a simple threshold rule to make on-line decisions
during the system overload periods. They can be easily implemented and further optimized.
The upper bound is doubled from 1/4 in uniprocessors to 1/2 in dual-processors, which means
that, in the worst case, the value obtained from a dual-processor system is twice of the value
obtained from two separate uniprocessor systems. For the designers of real-time systems, this
will be an important reason to choose a dual-processor based system instead of a uniprocessor

based system.

References

[1] S. K. Baruah and L. E. Rosier. Limitations concerning on-line scheduling algorithms for
overloaded real-time systems. 8th IEEE Workshop on Real-Time Operating Systems and
Software, pages 128-132, 1991.

[2] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the power of
randomization in online algorithms. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, pages 379-386, 1990.

[3] M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. Online algorithms for locating
checkpoints. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pages 359-368, 1990.

[4] S. Biyabani, J. A. Stankovic, and K. Ramamritham. The integration of deadline and
criticalness in hard real-time scheduling. In Proc. Real-Time Systems Symposium, 1988.

[5] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task system.
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages 373-
382, 1987.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM J. Comput.,
12(2):202-208, 1983.

[7] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on weighted graphs,
and applications to on-line algorithms. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, pages 369-378, 1990.

[8] M. L. Dertouzos and A. K. Mok. Multiprocessor on-line scheduling of hard-real-time tasks.
IEEE Trans. on Software Engineering, SE-15(12):1497-1505, 1989.

(9] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pages 352-369, 1990.

32

[10] G. Koren, B. Mishra, A. Raghunathan, and D. Shasha. A competitive on-line algorithm
for overloaded real-time systems. Unpublished, 20 pages, March 1991.

[11] C. Liu and J. Layland. Scheduling algorithms for multi-programming in a hard-real-time
environment. J. ACM, 20:46-61, 1973.

[12] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, Inc., 1968.

[13] C. D. Locke. Best-effort decision making for real-time scheduling. PhD thesis, Carnegie
Mellon University, 1986.

[14] M. S. Manasse, L. A. McGeock, and D. Sleator. Competitive algorithms for on-line prob-
lems. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages
322-333, 1988.

[15] A.K. Mok and M. L. Dertouzos. Multiprocessor scheduling in a hard real-time environment.
In Proceedings of the Seventh Tezas Conference on Computing System, 1978.

[16] K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in distributed hard real-
time systems. IEEE Software, 1(3), July 1984.

[17] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. CACM,
28(2):202-208, 1985.

33

