Real-time Learning and Control using
Asynchronous Dynamic Programming

Andrew G. Barto, Steven J. Bradtke & Satinder P. Singh

Computer Science Department
University of Massachusetts

Technical Report 91-57

August 1991

ACKNOWLEDGEMENTS:

The authors thank Richard Yee, Vijay Gullapalli, Brian Pinette, and Jonathan
Bachrach for helping to clarify the relationships between heuristic search and
control. We thank Rich Sutton, Chris Watkins, Paul Werbos, and Ron Williams
for sharing their fundamental insights into this subject through numerous dis-
cussions, and we further thank Rich Sutton for first. making us aware of Korf’s
work and for his very thoughtful comments on the manuscript. This research
was supported by grants to A.G. Barto from the National Science Foundation
(ECS-8912623) and the Air Force Office of Scientific Research, Bolling AFB
(AFOSR-89-0526).

—_—

Abstract

Learning methods based on dynamic programming (DP) are receiving increasing
attention in artificial intelligence. Researchers have argued that DP provides the appro-
priate basis for compiling planning results into reactive strategies for real-time control,
as well as for learning such strategies when the system being controlled is incompletely
known. We extend the existing theory of DP-based learning algorithms by bringing
to bear on their analysis a collection of relevant mathematical results from the the-
ory of asynchronous DP. We present convergence results for a class of DP-based algo-
rithms for real-time learning and control which generalizes Korf’s Learning-Real-Time-
A* (LRTA*) algorithm to problems involving uncertainty. We also discuss Watkins’
Q-Learning algorithm in light of asynchronous DP, as well as some of the methods
included in Sutton’s Dyna architecture. We provide an account that is more complete
than currently available of what is formally known, and what is not formally known,
about the behavior of DP-based learning algorithms. A secondary aim is to provide a
bridge between Al research on real-time planning and learning and relevant concepts
and algorithms from control theory.

1 Introduction

The increasing interest of artificial intelligence (AI) researchers in systems embedded
in environments demanding real-time performance is narrowing the gulf between problem
solving and control engineering. Similarly, machine learning techniques suited to embedded
systems are becoming more comparable to methods for adaptive control of dynamical sys-
tems. Although there continues to be substantial interest in bringing AI methods to bear
on control problems, often under the banner of “intelligent control” (e.g., ref. [55]), in this
article our interest is less in hybrids of knowledge-based systems and conventional controllers
than in the fundamental integration of certain AI and control engineering methods at the
algorithmic level. Whereas AI has focused on problems having relatively little mathemat-
ical structure, control theorists have studied more restrictive classes of problems but have
developed correspondingly more detailed theories. The algorithms described in this article
exploit the complementary properties of algorithms developed in these disciplines.

We describe the relationship between some recent developments in heuristic search and
optimal and adaptive control, and we examine the implications of this relationship, espe-
cially with respect to learning. We adopt a framework based on the theory of dynamic
programming (DP) as developed for applications in control engineering. Learning and plan-
ning methods based on DP are receiving increasing attention in Al as researchers argue that
DP provides the appropriate basis for compiling planning results into reactive strategies that
can be used for real-time control, as well as for learning such strategies when the system
being controlled is incompletely known. Watkins [67] and Werbos (72, 73| proposed using
incremental versions of DP algorithms for this purpose, and Sutton’s Dyna architecture for
learning, planning, and reacting [58, 59] is based on these principles. Although rigorous re-
sults have been developed for some of these methods, most of this research concerns methods
whose theoretical basis has not yet been fully developed.

In this article we extend the existing theory of DP-based algorithms for real-time learning
and control by bringing to bear on their analysis a collection of relevant mathematical results.
This permits us to give a more complete account of what is known formally about the
behavior of these algorithms, as well as a clear account of what is not known. A secondary
aim of this article is to provide a bridge between Al research on real-time planning and
learning and relevant concepts and algorithms from control theory. Specifically, we use the
theory of asynchronous DP developed by Bertsekas (7] and Bertsekas and Tsitsiklis [9] to
obtain convergence results for a class of algorithms for real-time learning and control. This
class of algorithms includes Korf’s [32] Learning-Real-Time-A* (LRTA*) algorithm and a
generalization of it applicable to problems involving uncertainty. Some of our theory follows
from combining Korf’s results with results from the theory of asynchronous DP. We also
discuss methods applicable when information is lacking not only about a problem’s solution,
but also about the structure of the problem itself. To use the control theorists’ terminology,
these are adaptive control problems. Although we prove no new convergence results for

algorithms applicable to this adaptive case, we precisely discuss the issues such results must
address. We discuss Watkins’ influential Q-Learning algorithm [67] in light of asynchronous
DP, as well as some of the methods included in Sutton’s Dyna architecture (58].

Because the reader is unlikely to be familiar with all of the contributing lines of research,
we provide the necessary background in Section 2, followed in Section 3 by a discussion of the
proper relationship between some concepts from Al and control theory. Development of the
theoretical material occupies Sections 4 through 9, with an introduction to conventional DP
algorithms occupying Section 5. There are two major parts to this theoretical development.
The first part (Sections 5 and 6) concerns problems in which there exists a complete and
accurate model of the problem being solved. The second part (Section 7) concerns the
additional complexity present when such a model is lacking, i.e., in the adaptive case. Despite
the generality of this theory, other learning algorithms based on DP have been studied to
which it does not apply, as discussed in Section 8. In Section 9 we discuss some of the
jssues that practical implementations of these algorithms must address. In Section 10 we
present an example problem that we use to illustrate the algorithms. Simulation results are
presented in Section 11. We conclude in Section 12 with an appraisal of the significance of
our approach to problems of learning and control and discuss some of the open problems.

2 Background

The method Samuel [47, 48] used to learn a heuristic evaluation function for the game
of checkers has been a major influence on research leading to the algorithms on which this
article focuses. His method updated board evaluations by comparing an evaluation of the
current board position with an evaluation of a board position likely to arise later in the
game:

... we are attempting to make the score, calculated for the current board position,
look like that calculated for the terminal board position of the chain of moves
which most probably occur during actual play. (Samuel {47].)

As a result of this process of “backing up” board evaluations, the evaluation function should
improve in its ability to evaluate the long-term consequences of moves. In one version of
this algorithm, Samuel represented the evaluation function as a weighted sum of numerical
features and adjusted the weights based on an error derived from comparing evaluations of
current and predicted board positions.

Because of its compatibility with connectionist learning algorithms, this approach was
refined and extended by Sutton [56, 57] and used heuristically in a number of single-agent
problem-solving tasks (e.g., Barto, Sutton, and Anderson (2], Anderson (1], and Sutton

e

[56]). The algorithm was implemented as a neuron-like connectionist element called the
Adaptive Critic Element [2]. Sutton [57] called these algorithms Temporal Difference (TD)
methods and obtained some formal results about their convergence. Following the proposals
of Klopf [30, 31], Sutton and Barto [60, 61, 62] developed these methods as models of animal
learning. Minsky [42, 43] discussed similar ideas in the context of the credit assignment
problem for reinforcement learning systems, and Hampson [21] independently developed
some of these ideas and related them to animal behavior. Holland’s [22] bucket-brigade
algorithm for assigning credit in his classifier systems is also closely related to Samuel’s
method. Researchers in machine learning and connectionism use the term reinforcement
learning to describe this general class of learning problems and algorithms. Sutton, Barto,
and Williams [63] discuss reinforcement learning from the perspective of DP and adaptive
control.

Another line of research leading to algorithms for backing up evaluations comes from the
theory of optimal control, where DP provides important solution methods. As applied to
control problems, DP (introduced in 1957 by Bellman [6]) consists of methods for successively
approximating optimal evaluation functions for both deterministic and stochastic optimal
control problems. In its most general form, DP applies to optimization problems in which
the costs of objects in the search space have a recursive structure that can be exploited to
find a minimum-cost object without performing exhaustive search. Kumar and Kanal [34]
discuss DP at this level of generality and relate it to a variety of search algorithms used in
Al However, we restrict attention to DP as it applies to problems in which the objects are
state sequences that can be generated in problem-solving or control tasks. DP algorithms
solve these optimization problems by solving recurrence relations instead of conducting a
search in the space of state sequences. Backing up state evaluations is the basic step of
iterative procedures for solving these recurrence relations.

Although DP algorithms avoid exhaustive search in the state-sequence space, they are
still exhaustive by Al standards because they require the repeated generation and expansion
of all possible states; that is, they require many explicit computational steps for every state
and its possible successor states. For this reason DP algorithms have not played a significant
role in Al Indeed, an important feature distinguishing heuristic search and DP algorithms
is that heuristic search algorithms abandon the objective of optimality in exchange for rel-
ative computational efficiency in problems with extremely large numbers of states. But DP
algorithms are relevant to learning in a way that heuristic search algorithms are not hecause
they work by updating stored evaluations of the states; in effect, they cache the results of
repeated shallow searches in a permanent data structure.

Despite their exhaustive nature, it is possible to rearrange the computational steps of DP
algorithms so that they can be applied during control or real-time problem solving. This is
the basis of the learning algorithms we describe in this article. In most cases, convergence
to an optimal evaluation function still requires multiple generation and expansion of all
possible states, but performance improves incrementally while this is being accomplished.

This perspective was taken by Werbos [70], who proposed a method similar to that used in
the Adaptive Critic Element within the framework of DP. He called this approach Heuristic
Dynamic Programming and has written extensively about it (e.g., refs. (71, 72, 73, 75]).
Related algorithms have been discussed by Witten (80, 81|, and more recently, Watkins [67]
extended Sutton’s TD algorithms and developed others by explicitly utilizing the theory of
DP. He used the term Incremental Dynamic Programming to refer to this class of algorithms
and discussed many examples. Williams and Baird [79] theoretically analyzed a variety of
additional DP-based algorithms suitable for real-time application.

Sutton [58] proposed the Dyna architecture for integrating learning and planning by
means of incremental DP algorithms. The key idea in Dyna is that one can perform the
computational steps of an incremental DP algorithm sometimes using information obtained
from state transitions actually taken by the system being controlled, and sometimes from hy-
pothetical state transitions simulated using a model of this system. This approach interleaves
phases of planning—performed using hypothetical state transitions—with the generation of
control actions in order to satisfy time constraints. The underlying DP algorithm provides
the means for compiling the resulting information into a form that can be used efficiently
for directing the course of action. Another aspect of Dyna is that the system model can be
refined through a learning process deriving training information from the state transitions
actually observed during control. Even without this on-line model refinement, however, in-
terleaving the steps of a DP algorithm with the generation of control actions has implications
for planning in Al, as discussed by Sutton in ref. [59].

Many researchers have made additional contributions to using incremental DP algorithms
for planning and control (e.g., Barto and Singh [5], Chapman and Kaelbling [12], Dayan 15,
14], Jalali and Ferguson [24], Kaelbling [26], Lin [39, 38], Moore [44, 45], Schmidhuber [49, 50],
Singh [53], Singh [54], Tan [64], Thrun and Moller [65], Utgoff and Clouse [66], Whitehead
[77], Whitehead and Ballard [78], Wixson [82]). Although this general approach can be
applied to problems involving continuous time and/or state spaces, we restrict attention to
discrete-time problems with finite sets of states and control actions because of their relative
simplicity and closer relationship to the non-numeric problems usually studied in AI. This
excludes various “differential” approaches, which make use of gradient descent and algorithms
related to the connectionist error-backpropagation algorithm (e.g., Jacobson and Mayne (23],
Jordan and Jacobs [25], Werbos [69, 74]). We do, however, include stochastic problems, i.e.,
problems involving probabilistic models of uncertainty. The stochastic generalization of
problem solving and control is important for applications, and the theory extends to the
stochastic formulation we consider with little difficulty.

To provide a rigorous theory of DP-based learning algorithms in a general setting, we
rely on the theory of asynchronous DP. Asynchronous DP does not have to proceed in
systematic exhaustive sweeps of the problem’s state set as do conventional DP algorithms.
Bertsekas (7] and Bertsekas and Tsitsiklis [9] proved general theorems about the convergence
of asynchronous DP applied to discrete-time stochastic control problems. They did not,

however, relate these results to real-time variants of DP as we do in this article. Watkins
[67) also proved a convergence result for a form of asynchronous DP, which he did relate
to real-time variants of DP, but his development of the theory is not as extensive as that
of Bertsekas and Tsitsiklis. Motivated by real-time applications, Williams and Baird [79)
proved additional results about DP algorithms that are asynchronous at a finer grain than
those studied by Bertsekas and Tsitsiklis [9]. Although the results of Williams and Baird are
relevant to the overall focus of this article, they represent a step beyond what we attempt
here.

Korf’s [32] LRTA* algorithm is a heuristic search algorithm that caches state evaluations
so that search performance improves with repeated trials. Evaluations of the states visited
by the problem solver are maintained in a hash table. Each cycle of the algorithm proceeds
by expanding the current state by generating all of its neighbors (the states reachable from
the current state by the application of some operator) and evaluating them, using previously
stored evaluations if they exist in the hash table, and otherwise using an initially given
heuristic evaluation function. Assuming the objective is to find a minimum-cost path to a
goal state, a score is computed for each neighboring state by adding to its evaluation the
cost of the edge to it from the current state. The minimum of the resulting scores becomes
the new evaluation for the current state, which is stored in the hash table.! Finally, a move
is made to this lowest-scoring neighboring state.

LRTA* therefore backs up state evaluations in much the same way as do Samuel’s al-
gorithm and DP. In fact, as we shall see in what follows, with a slight caveat, LRTA* is
the deterministic undiscounted specialization of asynchronous DP applied in real-time. It is
therefore closely related to other algorithms based on asynchronous DP. However, Korf’s con-
vergence theorem for LRTA* differs significantly from other theorems about the convergence
of asynchronous DP. Because Korf developed LRTA* as a kind of heuristic search algorithm,
his result addresses convergence to optimal evaluations only for states on optimal solution
paths. Although not emphasized by Korf, the implication of this result that is significant
from the perspective of DP is that under appropriate conditions LRTA* converges without
the repeated ezhaustive expansion of all states required for the convergence of DP algorithms,
whether they are conventional or asynchronous, in more general problems. We prove this in
a generalized form in Section 6.

3 Heuristic Search and the Control of Dynamical Systems

We begin by discussing the relationship between heuristic search, real-time heuristic
search, and control, as the latter term is used outside of Al

In Korf’s [32] closely related Real-Time A* (RTA*) algorithm, the second smallest score is stored.
Because LRTA* is more closely related to control and DP than is RTA*, we do not discuss RTA*.

3.1 Heuristic Search and System Control

Heuristic search algorithms, as they have been developed in Al, apply to state-space
search problems defined by a set of states, a set of operators that map states to states,
an initial state, and a set of goal states. The objective is to find a sequence of operators
that maps the initial state to one of the goal states and (possibly) optimizes some measure
of cost, or merit, of the solution path. These components constitute a model of some real
problem, such as solving a puzzle, proving a theorem, or planning a robot path. The term
control as used in the literature on heuristic search and problem solving means the process of
deciding what to do next in manipulating a model of the problem in question. Despite some
similarities, this is not the meaning of the term control in control theory, where it refers to
the process of manipulating the behavior of a physical system in real-time by supplying it
with appropriate input signals. In Al, control specifies the formal search process, whereas
in control theory, it steers the behavior of a physical system over time. Unlike models
manipulated by search algorithms, physical systems cannot be set immediately into arbitrary
states and do not suspend activity to await the controller’s decisions. Models formalizing
system control problems, called dynamical systems, take into account the passage of time.
In what follows, we shall use the term control as it is used in control theory.

In many applications, a symbolic representation of a sequence of operators is not the
final objective of a heuristic search algorithm. The intent may be to execute the operator
sequence to generate a time sequence of actual inputs to a physical system. Here the result
is the control engineer’s form of control, but such a control method differs substantially from
the methods addressed by most of control theory. A sequence of control actions produced in
this way through heuristic search is an open-loop control policy, meaning that it is applied
to the system without using information about the system’s actual behavior while control
is underway, i.e., without feedback. In terms of control theory, heuristic search is a control
design procedure for producing an open-loop control policy from a system model; the policy is
appropriate for the given initial state. Further, under normal circumstances, it is an off-line
design procedure because it is completed before being used to control the system, i.e, under
normal circumstances, the planning phase of the problem-solving process strictly precedes
the execution phase.

Open-loop control works fine when all of the following are true: 1) the model used
to determine the control policy is a completely accurate model of the physical system, 2)
the physical system’s initial state can be exactly determined, 3) the physical system is
deterministic, and 4) there are no unmodeled disturbances. These conditions hold for some
of the problems studied in Al, but they are not true of most realistic control problems. Any
uncertainty, either in the behavior of the physical system itself or in the process of modeling
the system, implies that closed-loop control can produce better performance. Control is
closed-loop when each control action depends on current observations of the real system,
perhaps together with past observations and other information internal to the controller.

A closed-loop control policy (also called a control rule, law, or strategy) is a rule specifying
each control action as a function of current, and possibly past, information about the behavior
of the controlled system. It closely corresponds to a “universal plan” [51] as discussed,
for example, by Chapman [11], Ginsberg [17], and Schoppers [52]. In control theory, a
closed-loop control policy usually specifies each control action as a function of the controlled
system’s current state, not just the current values of observable variables (a distinction
whose significance for universal planning is discussed by Chapman [11]). Although closed-
loop control is closely associated with negative feedback, which counteracts deviations from
desired system behavior, negative feedback control is merely a special case of closed-loop
control.

When there is no uncertainty, closed-loop control is not in principle more competent than
open-loop control. For a deterministic system with no disturbances, given any closed-loop
policy and an initial state, there exists an open-loop policy that produces exactly the same
system behavior. It is the open-loop policy generated by running the system, or simulating
it with a perfect model, under control of the given closed-loop policy. But this is not true
in the stochastic case, or when there are unmodeled disturbances, because the outcome of
random and unmodeled events cannot be anticipated in designing an open-loop policy. Note
that game-playing systems always use closed-loop control for this reason. The opponent is a
disturbance, whose behavior may be inexactly accounted for by minimaxing. A game player
always uses the opponent’s actual previous moves in determining its next move. For exactly
the same reasons, closed-loop control can be better than open-loop control for single-agent
problems involving uncertainty. A corollary of this explains the almost universal use of closed-
loop control by control engineers: the system model used for designing an acceptable control
policy can be significantly less faithful to the actual system when it produces closed-loop
instead of open-loop policies. Open-loop control only becomes a practical alternative when
the cost of monitoring the controlled system’s behavior with sufficient detail is greater than
the cost of constructing a model of the system and its disturbances adequate for designing
an acceptable open-loop control policy.

Most control theory addresses the problem of designing adequate closed-loop policies off-
line when an accurate model of the system to be controlled is available. The off-line design
procedure typically yields a computationally efficient method for determining an appropriate
control action as a function of the observed system state. If it is possible to design a complete
closed-loop policy off-line, as it is in many of the control problems studied by engineers, then
it is not necessary to perform any additional re-design, i.e., re-planning, for problem instances
differing only in initial state. Changing control objectives, on the other hand, often does
require policy re-design.

One can also design closed-loop policies on-line through repeated on-line design of open-
loop policies. This approach has been called receding horizon control [35, 40]. For each
current state, an open-loop policy is designed with the current state playing the role of the
initial state. The design procedure must terminate within the time constraints imposed

by on-line operation. This can be done by designing an optimal finite-horizon open-loop
policy, for example, by using a model for searching to a fixed depth from the current state.
After applying the first control action specified by the resulting policy, the remainder of the
policy is discarded, and the design process is repeated for the next observed state. Despite
requiring on-line design, which in AI corresponds to on-line planning through “projection”
(i.e., prediction) using a system model, receding horizon control produces a control policy
that is reactive to each current system state, i.e., a closed-loop policy. According to this
view, then, a closed-loop policy can involve explicit planning through projection, but each
planning phase has to complete in a fixed amount of time to retain the system’s reactivity to
the observed system states. In contrast to methods that design closed-loop policies off-line,
receding horizon control easily accommodates changes in control objectives.

3.2 Optimal Control

Perhaps the most familiar control objective is to control a system so that its output
matches a reference output or tracks a reference trajectory as closely as possible in the
face of disturbances. These are called regulation and tracking problems respectively. In
an optimal control problem, on the other hand, the control objective is to extremize some
function of the controlled system’s behavior, where this function need not be defined in terms
of a reference output or trajectory. A typical optimal control problem requires controlling a
system to go from an initial state to a goal state via a minimum-cost trajectory. In contrast
to tracking problems—where the desired trajectory is part of the problem specification—the
trajectory is part of the solution of this optimal control problem. Therefore, optimal control
problems such as this are closely related to the problems to which heuristic search algorithms

apply.

Specialized solution methods exist for optimal control problems involving linear systems
and quadratic cost functions, and methods based on the calculus of variations can yield
closed-form solutions for restricted classes of problems. Numerical methods applicable to
problems involving nonlinear systems and/or nonquadratic costs include gradient methods
as well as DP. Whereas gradient methods for optimal control are closely related to some of the
gradient descent methods being studied by connectionists (such as the error-backpropagation
algorithm (36, 71]), DP methods are more closely related to heuristic search. Like a heuristic
search algorithm, DP is an off-line procedure for designing an optimal control policy. How-
ever, unlike a heuristic search algorithm, DP produces an optimal closed-loop policy instead
of an open-loop policy for a given initial state.

3.3 Real-Time Heuristic Search

Algorithms for real-time heuristic search as defined by Korf [32] are applicable to state-
space search problems in which the underlying model is extended to account for the passage
of time. The model thus becomes a dynamical system. Real-time heuristic search algo-
rithms apply to state-space search problems with the additional properties that 1) at each
time there is a unique current state of the system being controlled, which is known by the
searcher/controller, 2) during each of a sequence of constant-duration time intervals the
searcher/controller must commit to a unique action, i.e., choice of operator, and 3) the sys-
tem changes state at the end of each time interval in a manner depending on its current
state and the searcher/controller’s most recent action. These factors imply that there is a
fixed upper bound on the amount of time the searcher/controller can take in deciding what
action to make if that action is to be based on the most up-to-date state information. Thus,
whereas a traditional heuristic search algorithm is a design procedure for an open-loop pol-
icy, a real-time heuristic search algorithm is a control algorithm, and it can accommodate
the possibility of closed-loop control.

Korf’s [32] LRTA* algorithm is a kind of receding horizon control because it is an on-line
method for designing a closed-loop policy. However, unlike receding horizon control as stud-
ied by control engineers, LRTA* accumulates the results of each local design procedure so
that the effectiveness of the resulting closed-loop policy tends to improve over time. It stores
information from the shallow search forward from each current state by updating the evalua-
tion function by which control decisions are made. Because these updates are the basic steps
of DP, we view LRTA* as the result of interleaving the steps of DP with the actual process
of control so that control policy design occurs concurrently with control. This approach is
advantageous when the control problem is so large and unstructured mathematically that
complete control design is not even feasible off-line. This case requires a partial closed-loop
policy, that is, a policy useful for a subregion of the problem’s state space. Designing a
partial policy on-line allows actual experience to influence the subregion of the state space
where design effort is concentrated. Design effort is not expended for parts of the state space
that are not likely to be visited during actual control. Although in general it is not possible
to design a policy that is optimal for a subset of the states unless the design procedure
considers the entire state set, this is possible under certain conditions such as those required
by Korf’s convergence theorem for LRTA*, which we discuss in Section 6.2.

3.4 Adaptive Control

Control theorists use the term adaptive control for cases in which an accurate model
of the system to be controlled is not available for designing a policy off-line. Adaptive
control algorithms design policies on-line based on information about the control problem
that accumulates over time as the controller and system interact. A distinction is sometimes

10

made between adaptive control and learning control, where only the latter takes advantage
of repetitive control experiences from which information is acquired that is useful over the
long term. Although this distinction may be useful for some types of control problems, we
think its utility is limited when applied to the kinds of problems and algorithms we consider
in this article. According to what we mean by adaptive control in this article, algorithms like
LRTA* and Samuel’s algorithm [47] are not adaptive algorithms because they assume the
existence of an accurate model of the problem being solved. However, because they cause
control performance to improve over time by caching the results of experience, they are
learning algorithms. Combining methods like these with on-line methods for constructing
system models produces learning algorithms applicable to adaptive control problems. In
Section 7 we describe several of these algorithms, as well as other algorithms for adaptive
control that do not construct explicit system models.

4 Markovian Decision Problems

The basis for our theoretical framework is a class of stochastic optimal control problems
called Markovian decision problems. This class of problems is the simplest that is general
enough to include stochastic versions of the problems to which heuristic search algorithms
apply while allowing us to borrow from a well-developed control literature. Markovian
decision problems extend the idea of an operator to that of a control action that determines
the probabilities that particular states will occur next. More complete descriptions of these
problems can be found in many books, such as those by Bertsekas [8] and Ross [46].

A Markovian decision problem is defined in terms of a discrete-time stochastic dynamical
system with finite state set S = {1,...,n}. At each discrete time step, a controller observes
the system’s current state and generates a control action, or simply an action,> which is
applied as input to the system. If i is the observed state, then the action is selected from
a finite set of admissible actions U(i). When the controller generates action u € U(z), the
system’s state at the next time step will be j with state-transition probability pi;(u). We
further assume that the application of action u in state 7 incurs an immediate cost ci(u).?
We do not discuss a significant extension of this formalism in which the controller cannot
observe the current state with complete certainty. Although this possibility has been studied
extensively and is important in practice, the complexities it introduces are beyond the scope
of this article.

2In control theory, this is simply called a control. We use the term “action” because it is the term
commonly used in Al

3To be more general, we can alternatively regard the immediate costs as random numbers depending on
states and actions. In this case, if c;(u) denotes the ezpected immediate cost of the application of action u

in state i, the theory discussed below remains unchanged.

1l

When necessary, we refer to states, actions, and immediate costs by the time step at
which they occur by using s, u, and ¢, to denote, respectively, the state, action, and
immediate cost at time step t = 0,1,..., where u, € U(s;) and ¢; = ¢c,,(u¢). In Section 6 on
real-time DP, we elaborate this abstract view by carefully considering the sequence of events
that must occur at each time step, but until then it is best to consider each time step as
an abstract instant when the controller observes a state, generates an action, and incurs a

resulting immediate cost.

A closed-loop policy specifies each action as a function of the observed state. Such a
policy is denoted g = [g(1),...,u(n)], where the controller generates action p(i) € U(3)
whenever it observes state :. This is a stationary policy because it does not change over
time. Throughout this paper, when we use the term policy, we always mean a stationary
policy. Notice that there are a finite number of policies because both the number of states
and the number of actions are finite. For any policy u, there is a function, f#, called the
evaluation function, or the cost function, corresponding to policy p. It assigns to each state
the total cost expected to accumulate over time when the controller uses the given policy
starting from the given state. Here, for any policy p and state i, we define f#(z) to be the
ezpected total infinite-horizon discounted cost that will be incurred over time given that the
controller uses policy p and ¢ is the initial state:

() = B, [iv‘ctl% - i] , (1)

t=0

where v, 0 < ¥ < 1, is a factor used to discount future immediate costs, and E, is the
expectation assuming the controller always uses policy u. We refer to f¥(?) simply as the
cost of state i under policy p. Thus, whereas the immediate cost of state i under policy
p is ci(u(i)), the cost of state i under policy u is the expected discounted sum of all the
immediate costs that will be incurred over the future starting from state ¢. Theorists study
Markovian decision problems with other types of evaluation functions, such as the function
giving average cost per-time-step, but we do not consider those formulations here.

The objective of the type of Markovian decision problem we consider is to find a policy
that minimizes the cost of each state i as defined by Equation 1. A policy that achieves this
objective is an optimal policy which, although it depends on « and is not always unique,
we denote g~ = [u*(1),...,x"(n)]. To each optimal policy corresponds the same evaluation
function, which is the optimal evaluation function, or optimal cost function, denoted f~; that
is, if p~ is any optimal policy, then f*° = f*. For each state i, f™(¢), the optimal cost of
state 1, is the least possible cost for state ¢ for any policy.

This infinite-horizon discounted version of a Markovian decision problem is the simplest
mathematically because discounting ensures that the costs of all states are finite for any pol-
icy and, further, that all optimal policies are stationary. The discount factor, 7, determines
how strongly expected future costs should influence current control decisions. When vy = 0,

12

the cost of any state is just the immediate cost of the transition from that state. This is
because 0° = 1 in Equation 1 so that f*(i) = E,[co|so = i] = c;i(u()). In this case, an
optimal policy simply selects actions to minimize the immediate cost for each state, and the
optimal evaluation function just gives these minimum immediate costs. Solving a Markovian
decision problem with 4 = 0 is much simpler than solving the same problem with v # 0
because no future consequences of actions have to be considered. As 7 increases toward one,
future costs become more significant in determining optimal actions, and solution methods
generally require more computation.

In the “undiscounted case” when v = 1, the cost of a state given by Equation 1 need not
be finite, and additional assumptions are required to produce well-defined decision problems.
We consider one set of additional assumptions for the undiscounted case because the resulting
decision problems are closely related to problems to which heuristic search techniques are
usually applied. In these problems, which we call stochastic optimal path problems after
Bertsekas and Tsitsiklis [9], there is an absorbing set of states, i.e., a set of states that once
entered is never left, and the immediate cost associated with applying an action to any of
the states in the absorbing set is zero. These assumptions imply that the infinite-horizon
evaluation function for any policy taking the system into the absorbing set assigns finite
costs to every state even when 4 = 1. This is true because all but a finite number of the
immediate costs incurred by such a policy over time must be zero. Additionally, in this case
optimal policies remain stationary. The absorbing set of states corresponds to the set of goal
states in a deterministic optimal path problem, and we call it the goal set. However, unlike
a state-space search task typically solved via heuristic search, here the objective is to find
an optimal closed-loop policy, not just an optimal path from a given initial state.

Researchers in Al studying reinforcement learning often focus on optimal path problems
in which all the immediate costs are zero until a goal state is reached, when a “reward” is
delivered to the controller and a new trial begins. Problems like this are special kinds of
stochastic optimal path problems that allow one to focus on the issue of delayed reinforcement
[56] in a particularly stark form. Rewards correspond to negative costs in the formalism we
are using. In the discounted case when all the rewards are of the same magnitude, an optimal
policy produces a shortest path to a rewarding state. Another example of a stochastic optimal
path problem receiving attention is identical to this one except that all the non-rewarding
immediate costs have the same positive value instead of zero. In this case, an optimal policy
produces a shortest path to a goal state in the undiscounted case. These latter problems are
examples of minimum-time optimal control problems. We describe an example of one such
problem in Section 10 which we use to illustrate some of the algorithms presented.

13

4.1 The Optimality Equation

To further explain Markovian decision problems and to set the stage for discussing DP,
we provide more detail about the relationship between policies and evaluation functions. The
evaluation function, f#, corresponding to policy g gives the (expected total infinite-horizon
discounted) cost for each state, assuming that the controller always uses policy x. However,
p does not necessarily select actions that lead to the best successor states as evaluated by
f*. In other words, p is not necessarily a greedy policy with respect to its own evaluation
function, f*.

To define a greedy policy in this stochastic case we use Watkins’ [67] “Q” notation
because it will play a role in the Q-learning method described in Section 7.5. Let f be a
real-valued function of the states; it may be the evaluation function for some policy, a guess
for a good evaluation function (such as a heuristic evaluation function in heuristic search),
or an arbitrary function. For each state 7 and action u € U(7), let

Q7 (i,u) = ai(u) + 7 X_ pis(w) f(4). (2)

Jjes

@7 (i,u) is the cost of action u in state ¢ as evaluated by f. It is the sum of the immediate
cost and the discounted expected value of the costs of the possible successor states under
action u. If the system’s state transitions are deterministic, then Equation 2 simplifies to

Q1 (i,u) = eilu) + 7£(4),

where j is the successor of state ¢ under action u (i.e, node j is the child of node i along
the edge corresponding to operator u). In the deterministic case, one can therefore think
of @*(i,u) as a summary of the result of a one-ply lookahead from node i along the edge
corresponding to operator u as evaluated by f. The stochastic case requires a generalization
of this view because many edges correspond to each operator, each having a different prob-
ability of being followed. If f is the evaluation function for some policy, Q7 (i,u) gives the
cost of generating action u in state z and thereafter following this policy.

Using these “Q-values,” a policy u is greedy with respect to f if for all states i, p(i) is
an action satisfying

(6, 8(3)) = min_Q4(3,u).

Qi p(d)) = min Q7(3,u)
Although there can be more than one greedy policy with respect to f if more than one action
minimizes the set of Q-values for some state, we let u/ denote any policy that is greedy with

respect to f. Note that it is also true that any policy is greedy with respect to many different
evaluation functions.

14

A key fact underlying all DP methods is that the only policies that are greedy with respect
to their own evaluation functions are optimal policies. That is, if p™ is any optimal policy,
then its evaluation function is the optimal evaluation function f*, and g~ = pf". This means
that for any state 2, p*(z) satisfies

Qi) = min @ Grw) (3)
Furthermore, any policy that is greedy with respect to f* is an optimal policy. Thus, if f*is
known, it is possible to define an optimal policy simply by defining it to satisfy Equation 3.
Due to the way the Q-values are defined (Equation 2), this generalizes to the stochastic
case the fact that an optimal policy is any policy that is best-first with respect to f~ as
determined by a one-ply search from each current state. Deeper search is never necessary
because f* already summarizes all the information that such a search would obtain.

Letting Q"(i,u) = Q**(4,u) to simplify notation, a related key fact is that a necessary
and sufficient condition for f* to be the optimal evaluation function is that for each state i
it must be true that

£(3) min Q"(i,v) (4)

uel(s)

min c;\u + s\ U *(43 .

weU(t) (u) ’Y%P:()f(7)

This is one form of the Bellman Optimality Equation which can be solved for each (i),
i € S, by a DP algorithm. It is a set of n (the number of states) simultaneous nonlinear
equations that depends on the dynamical system and the immediate costs underlying the

decision problem.

Once f* has been found, an optimal action for a state ¢ can be determined as follows.
The Q-values Q" (i, u) for all admissible actions u € U(7) are determined via Equation 2. In
general, this takes O(mn) computational steps, where n is the number of states and m is the
number of admissible actions for state i. However, if one knows which of the state-transition
probabilities from state i are zero (as one usually does in the deterministic case), then the
amount of computation can be much less (O(m) in the deterministic case). Computing these
Q-values amounts to a one-ply lookahead search from state i, which requires knowledge of
the system’s state-transition probabilities. Using these Q-values, an optimal action can be
determined via Equation 3, which takes m — 1 comparisons. The computational complexity
of finding an optimal action using this method is therefore dominated by the complexity of
finding f*, i.e., by the complexity of the DP algorithm.

15

5 Dynamic Programming

Given a complete and accurate model of a Markovian decision problem in the form of
knowledge of the state-transition probabilities, pij(u), and the immediate costs, ci(u), for
all states i and actions u € U(3), it is possible—at least in principle—to solve the decision
problem off-line by applying one of various well-known DP algorithms. We describe several
versions of a basic DP algorithm called value iteration.* There is another basic DP method
called policy iteration, but a thorough treatment of real-time algorithms based on policy
iteration is beyond the scope of this article, although we briefly discuss them in Section 8.
We treat DP as referring only to value iteration unless otherwise noted. As used for solving
Markovian decision problems, value iteration is a successive approximation procedure that
converges to the optimal evaluation function, f*. It is a successive approximation method
for solving the Bellman Optimality Equation. Its basic operation is “backing up” estimates
of the optimal state costs. Several different methods exist for organizing the computations.
We first describe the algorithm that backs up costs synchronously.

5.1 Synchronous Dynamic Programming

Let fi denote the estimate of f* available at stage k of the computation, where k =
0,1,.... At stage k, fi(i) is the estimated optimal cost of state i, which we refer to simply as
the stage-k cost of state i; similarly, we refer to f, as the stage-k evaluation function, even
though it may not actually be the evaluation function for any policy. (We use the index k
for the stages of a DP computation, whereas we use ¢ to denote the time step of the control
problem being solved.) In synchronous DP, fiy1 is defined in terms of fi as follows: for each
state? and £ =0,1,...,

ferr(d) = min |ei(u) + 7Y pis(u) fu(d) (8)

ueu(i) j€s

— ; Fr(s
= min Q"(iu).

We refer to the application of this update equation for state i as backing up ¢ ’s cost. Although
backing up costs is a common operation in a variety of search algorithms in Al, there it does
not always mean that the backed-up cost is saved for future use. Here, however, the backed-

up cost is always saved by updating the current evaluation function, which is a permanent
data structure.

The iteration defined by Equation 5 is said to be synchronous because no values of fi,,

4We should perhaps call this method cost iteration, given our problem formulation in terms of cost
minimization instead of the equivalent value maximization, but value iteration is the standard term.

16

appear on the right-hand side of the equation. If we imagine having a separate processor
associated with each state, applying Equation 5 for all states means that each processor
backs up the cost of its state at the same time, using the old costs of the other states supplied
by the other processors. This process updates all values of f; simultaneously. Alternatively,
a sequential implementation of this iteration would require temporary storage locations so
that the stage-(k + 1) costs are always computed based on the stage-k costs. The sequential
ordering of the backups is irrelevant to the result. If there are n states and m is the largest
number of admissible actions for any state, then each iteration, which consists of backing
up the cost of each state exactly once, requires at most O(mn?) operations in the stochastic
case and O(mn) operations in the deterministic case. For the large state sets typical of Al
problems and many control problems, it is not desirable to try to complete even one iteration,
let alone repeat the process until it converges to f*.

If v < 1, repeated synchronous updates produce a sequence of functions that converges to
the optimal evaluation function, f*, for any initial approximation, fo. Although the cost of
a state need not get closer to its optimal cost on each iteration, the mazimum error between
fx(2) and f~(2) over all states : must decrease. Mathematically, the synchronous iteration is
a contraction mapping with respect to the maximum norm and has f* as its unique fixed
point.

When they converge, synchronous DP and the other off-line value iteration algorithms we
discuss below generate sequences of functions that converge to f*, but they do not ezplicitly
generate sequences of policies. To each stage-k evaluation function there corresponds at least
one greedy policy, but these policies are never explicitly formed. Ideally, one would wait until
the sequence converges to f* and then form a greedy policy corresponding to f~, which would
be an optimal policy. But this is not possible in practice because value iteration converges
asymptotically. Instead, one executes value iteration until it meets a test for approximate
convergence and then forms a policy from the resulting function. Unlike value iteration,
policy iteration explicitly generates a sequence of policies, and when it converges, it does so
after a finite number of iterations because the number of policies is finite. However, policy
iteration algorithms have other shortcomings which we discuss in Section 8.

It is important to note that a function in the sequence of evaluation functions generated by
value iteration does not have to closely approximate f* in order for a corresponding greedy
policy to be an optimal policy. Indeed, a policy corresponding to the stage-k evaluation
function for some k may be optimal long before the algorithm converges to f*. But unaided
by other computations, value iteration cannot detect when this first happens. This fact is
an important reason that the real-time variants of value iteration we discuss in this article
can have major advantages over the off-line variants. The controller makes use of whatever
policy is defined by the current evaluation function and so can perform optimally before the
evaluation function converges.

Bertsekas [8] and Bertsekas and Tsitsiklis [9] give conditions ensuring convergence of

17

synchronous DP for stochastic optimal path problems in the undiscounted case (y = 1).
Using their terminology, a policy is proper if its use implies a nonzero probability of eventually
reaching the goal set starting from any state. Using a proper policy also implies that the
goal set will be reached eventually from any state with probability one. The existence of a
proper policy is the generalization to the stochastic case of the existence of a path from any
initial state to the goal set.

Synchronous DP converges to f™ in undiscounted stochastic optimal path problems under
the following conditions:

1. the initial cost of every goal state is zero,
2. there is at least one proper policy, and

3. all policies that are not proper incur infinite cost for at least one state.

The first condition makes intuitive sense, and the third condition ensures that every optimal
policy is proper, i.e, it rules out the possibility that a least-cost path exists that never reaches
the goal set. This third condition is true if all immediate costs for transitions from non-goal
states are positive, i.e, c;(x) > 0 for all non-goal states i and actions v € U (1).5 In the
deterministic case, the latter two conditions are satisfied if there exists at least one solution
path from each initial state and the sum of the immediate costs in every loop is positive.

5.2 Gauss-Seidel Dynamic Programming

Gauss-Seidel DP differs from the synchronous version in that the costs are backed up one
state at a time in a sequential “sweep” of all the states, with the computation for each state
using the most recent costs of the other states. If we assume that the states are numbered
in order, as we have here, and that each sweep proceeds in this order, then the result of each
iteration of Gauss-Seidel DP can be written as follows: for each state i and each k = 0,1,.. .,

fe+1(i) = min [Ci(u)+'72pa5(U)f(j)

uel(i) ey
— . f .
Zin, Q7 (i, u).

where
o fena(d) ifj<i
) = { f;:(-;) otherwise.

5This assumption of positive immediate costs can be weakened to nonnegativity, i.e., ci(u) > 0 for all
i € S and u € U(3), if there exists at least one optimal proper policy [9].

18

Unlike synchronous DP, the order in which the states’ costs are backed up influences
the computation. Nevertheless, Gauss-Seidel DP converges to f* under the same conditions
under which synchronous DP converges. When vy < 1, repeated Gauss-Seidel sweeps produce
a sequence of functions that converges to f*. The cost estimate of any individual state may
not improve on a sweep, but each sweep decreases the maximum error in the costs over all the
states. For stochastic optimal path problems with no discounting, the conditions described
above that ensure convergence of synchronous DP also ensure convergence of Gauss-Seidel
DP [9]. Because each cost backup uses the latest costs of the other states, Gauss-Seidel DP
tends to converge faster than synchronous DP. Furthermore, it should be clear that some
state orderings will produce faster convergence than others, depending on the problem. For
example, in optimal path problems, sweeping from goal states backwards along likely optimal
paths may lead to faster convergence than sweeping in the forward direction.

Although Gauss-Seidel DP is not one of the algorithms of direct interest in this article,
we used it to solve the example problem described in Section 11, and it serves as a bridge
between the usual synchronous version of DP and the asynchronous version discussed next.

5.3 Asynchronous Dynamic Programming

Asynchronous DP is similar to Gauss-Seidel DP in that it does not back up state costs
simultaneously. However, it is not organized in terms of systematic successive sweeps of the
state set. As proposed by Bertsekas [7] and further developed by Bertsekas and Tsitsiklis
(9], asynchronous DP is suitable for multi-processor systems with communication time delays
and without a common clock. For each state ¢ € S there is a separate processor dedicated
to backing up the cost of state i (more generally, each processor may be responsible for a
number of states). The times at which each processor backs up the cost of its state can be
different for each processor. To back up the cost of its state, each processor uses the costs for
other states that are available to it when it “awakens” to perform a backup. Multi-processor
implementations have obvious utility in speeding up DP and thus have practical significance
for all the algorithms we discuss below (see Lemmon [37]). However, our theoretical interest
in asynchronous DP lies in that fact that it eliminates the necessity to back up state costs in
any systematically organized fashion. We therefore describe a special case of asynchronous
DP that is more suitable for our purposes.

Although in the full asynchronous model, the notion of discrete computational stages
does not apply because a processor can awaken at any of a continuum of times, we use a
notion of stage because it will facilitate our discussion of real-time DP in the next section.
As in the other forms of DP, let f, denote the estimate of f* available at stage k& of the
computation, where k = 0,1,.... At each stage k, the costs of a subset of the states are
backed up synchronously, and the costs remain unchanged for the other states. The subset
of states whose costs are backed up changes from stage to stage, and the choice of these

19

subsets determines the precise nature of the algorithm. For each k = 0,1,...,if S C S is
the set of states whose costs are backed up at stage k, then fiy; is computed as follows:

fin(3) = { Freat i, (6)

fre(?) otherwise.

According to this algorithm, then, f.;; may differ from f, on one state, on many states, or
possibly none, depending on Si. Further, the costs of some states may be backed up several
times before the costs of others are backed up once. Asynchronous DP clearly includes the
synchronous and Gauss-Seidel algorithms as special cases: synchronous DP results if S, = S
for each k; Gauss-Seidel DP results when each Sj, consists of a single state and the collection
of Sis is defined to implement successive sweeps of the entire state set (e.g., So = {1},

Sl = {2}, c ey Sn-l = {n}, Sn = {1}, Sn+1 = {2}, .. .).

Discounted asynchronous DP converges to f* provided that the cost of each state is
backed up infinitely often, i.e., provided that each state is contained in an infinite number of
the subsets Sg, k = 0,1,.... In practice, this simply means that whatever strategy is used
to select states whose costs are to be backed up, no state should ever be completely barred
from selection in the future.

It is important to realize that a single backup of a state’s cost in asynchronous DP does
not necessarily improve it as an estimate of the state’s optimal cost; it may in fact make
it worse. However, with repeated backups, the cost of each state converges to its optimal
cost. Further, as in Gauss-Seidel DP, the order in which states’ costs are backed up can
influence the rate of convergence in a problem-dependent way. This fact underlies the utility
of various strategies for “teaching” algorithms based on asynchronous DP by supplying

experience dictating selected orderings of the backups (e.g., Lin [38], Utgoff and Clouse [66],
and Whitehead [77]).

In the undiscounted case (y = 1), additional assumptions are necessary beyond the
assumption that the cost of each state is backed up infinitely often. The simplest con-
ditions, and also the most restrictive, under which Bertsekas and Tsitsiklis [9] prove that

asynchronous DP converges to f* in undiscounted stochastic optimal path problems are the
following:

1. the initial cost for every goal state is zero, and

2. every policy is proper.

The second condition means that no matter what actions are generated, there is a nonzero
probability of eventually reaching a goal state. This is equivalent to the strong assumption
that a goal state will be reached with probability one independently of the controller’s policy.

20

In the deterministic case, this means that every path leads to a goal state. Although this
assumption might be justifiable in some problems, it does not apply to most of the optimal
path problems one would wish to consider.

However, asynchronous DP also converges for undiscounted stochastic optimal path prob-
lems under the following more satisfactory conditions:

1. the initial cost of every goal state is zero,
2. there is at least one proper policy, and

3. all immediate costs incurred by transitions from non-goal states are positive, i.e.,
- ¢;(u) > 0 for all non-goal states z and actions v € U(z).

Except for condition 3, these conditions are identical to a set of conditions enumerated in
Section 5.1 guaranteeing convergence of synchronous DP in undiscounted stochastic optimal
path problems. For the synchronous case, condition 3 is the weaker condition that all
improper policies incur infinite cost for at least one state. When there exist improper policies,
convergence of asynchronous DP requires the stronger condition of positive immediate costs.
This is illustrated by a simple example in Appendix A. Because a proof of convergence of
asynchronous DP in undiscounted stochastic optimal path problems under these conditions
does not, to the best of our knowledge, appear in the literature, we provide one in Appendix
B. Our proof is a straightforward use of the general machinery developed by Bertsekas and

Tsitsiklis [9].

6 Dynamic Programming in Real Time

The DP algorithms described above are off-line methods for solving Markovian decision
problems. Although they successively approximate the optimal evaluation function through a
sequence of computational stages, these stages are not related to the time steps of the decision
problem being solved. Here we consider algorithms in which the controller performs DP on-
line during control, with the computational steps of an off-line DP algorithm interleaved
with the generation of actions. Throughout this section we assume that there is a complete
and accurate model of the decision problem, the case Sutton [59] discusses in relation to
planning in AL The utility of performing DP on-line when there is a complete and accurate
model of the decision problem lies in the fact that the state and admissible action sets may
be so large that it is impractical to run a DP algorithm off-line until it converges to the
complete optimal evaluation function. Under these conditions, it still might be practical to
form a useful evaluation function for just some of the problem’s states. Interleaving DP with
the generation of actions allows these states to depend on the states actually visited by the

21

controller so that they are likely to be most relevant to future performance of the control
system.

Generalizing Korf’s [32] convergence theorem for LRTA*, we show that under certain
conditions this process can result in evaluation functions that are in fact optimal for a
relevant subset of states. In Section 6.3, we describe in detail how LRTA* is related to
DP. In Section 7, we discuss the adaptive case, in which we do not assume a complete and
accurate model of the decision problem. In this case, interleaving asynchronous DP stages
with control time steps produces adaptive algorithms with other computational advantages.

6.1 Interleaving DP with Control

To describe various ways of interleaving the stages of DP with control steps, we regard
the controller as performing the computational stages of DP as well as generating actions
that influence the system underlying the decision problem. The controller can perform a
certain portion of a DP algorithm between the times at which it is required to generate
actions, where the amount of DP it can perform depends on its computational resources.
Accordingly, we elaborate the abstract discrete-time formulation of a Markovian decision
problem presented in Section 4 by expanding each time step into an interval of real time
of finite duration (Figure 1). At the beginning of the interval corresponding to time step ¢,
which we call interval ¢, the controller observes state s;; it must generate an action u, € U(s,)
before the end of the interval. At the beginning of the next interval, interval ¢ + 1, the
controller observes the new state, s,,;, which has been determined by s,, u,, and the state-
transition probabilities of the system underlying the decision problem. For simplicity, and
without significant loss of generality, we assume that each action is generated at the end of
its interval and that the resulting new state is available to the controller after a negligible
delay.

Interleaving DP with on-line control means that during the time intervals of the decision
problem, the controller executes some finite number of stages of asynchronous DP as defined
by Equation 6. The results of asynchronous DP accumulate over time, as each stage begins
with the evaluation function produced by the previous stage. Control decisions are made
based on the most recent evaluation function. Equivalently, we may view this as executing
asynchronous DP concurrently with the process of controlling the system, with the controller
having available the most up-to-date evaluation function.

The asynchronous version of DP is appropriate for this role because of the flexibility with
which its stages can be defined. Not only does asynchronous DP encompass the other DP
algorithms discussed above as special cases, its stages can be defined on-line in a way that is
responsive to the observed behavior of the system being controlled. The states whose costs
are backed up in a stage can be selected so that the information gained is useful for the

22

current control task. Additionally, one can usually define the stages of asynchronous DP so
that they require as little computation as needed to meet the time constraints imposed by
on-line control.

Although it is not necessary to interleave DP stages with control steps in the strict sense
that a stage has to complete by the end of a control time interval, for simplicity, and without
significant loss of generality, we assume that no DP stage continues from one time interval
to the next, i.e., that no control action is generated while a stage is still being computed.

To make this specific, suppose that at the beginning of each interval ¢, ¢t = 0,1,..., the
controller observes state s, and has available the estimate of the optimal evaluation function
produced by all the stages of asynchronous DP already executed. Suppose this estimate is
fry, where k; > 0 is the total number of stages executed up to the beginning of interval
t. By the end of interval ¢, the controller executes n, additional stages of asynchronous
DP, resulting in updating fi, to f&,,,, where kyyy = k: + n;. The controller then generates
an action u; € U(s,) based on f,,,, which is input to the system, yielding the immediate
cost c,,(u:). The system’s state changes to s, and the process repeats for interval ¢ + 1.
This general scheme for interleaving asynchronous DP with on-line control is illustrated in
Figure 1.

time step ¢ time step t+1
- - -] | - =
/ ! \ / ! \
/ \ / \
/ \ / \
/ \ / \
/ \ 7 interval t+1

I(interval ¢ \I r \i

observe s; generate u; observe sy, , generate Uy, 4

» /1t Stages __ ny, 4 stages
fk' of asyn DP fkt+1 fkt+1 of asyn DP f ki;2

Figure 1: Interleaving Asynchronous DP with On-line Control. Each abstract time step
t of a Markovian decision problem is expanded into time interval t. At the beginning of
interval ¢, fi, is the current evaluation function, and the controller observes state s;. The
controller executes n, stages of asynchronous DP during the interval to produce evaluation
function f,,,, on whose basis action u; is generated at the interval’s end. We assume that
the controller observes the next state, s;41, some negligible time after generating u;, shown
as the gap between the intervals ¢ and ¢ + 1.

According to this notation, ko = 0, and since kyyy = ky +7n for ¢t = 0,1,..., k =

23

ng +my + ...+ ne_q. At the beginning of interval ¢, the costs of the states in the set U',:;OSI,
have been backed up at least once, where S; is the set of states whose costs are backed up at
stage k of asynchronous DP as defined by Equation 6. We will find it useful to refer to the
set of states whose costs are backed up during interval ¢. Denoting this set B, it is given by

ketn
By = Ui s15k,

fort = 0,1,.... Notice that if any state in B, is an element of more than one of the sets S,
in this union, then its cost is backed up more than once during interval ¢.

6.2 Real-Time DP

Mathematically, then, an asynchronous DP algorithm defined by the sequence of sets Sy,
k =0,1,..., is interleaved with on-line control by specifying the numbers n,, ¢ = 0,1,....
Because this does not alter the mathematical properties of the asynchronous DP algorithm,
the conditions for its convergence described in Subsection 5.3 continue to apply. We use the
term real-time DP to refer to cases in which the stages of asynchronous DP and the time
steps of on-line control are not only interleaved, but influence one another in the following
ways. First, in real-time DP, the controller always follows a policy that is greedy with respect
to the most recent estimate of f*. Because action u, is generated at the end of interval £, this
estimate is fi,,,. Moreover, any ties in selecting these actions must be resolved randomly,
or in some other way that ensures the continuing selection of all the greedy actions. Second,
in real-time DP, B,, the set of states whose costs are backed up during interval ¢, always
contains s;. In the simplest case of real-time DP, the cost of only s, is backed up at each
time step. This is the case in which n, = 1 and B, = S; = {3} for all t. More generally,
in addition to s, B; can contain any states, such as those generated by any type of off-line
lookahead search. For example, B; might consist of the states generated by an exhaustive
off-line search from s, forward to some fixed search depth, or it might consist of the states
generated by some form of best-first search according to the most recent estimate of f~.

Although these choices can greatly influence the rate at which real-time DP converges
to f*, they have no influence on whether or not it converges. Because it is a form of asyn-
chronous DP, real-time DP converges to the optimal evaluation function under the conditions
ensuring convergence of asynchronous DP. In the discounted case, the only condition neces-
sary for convergence is that no state is ever completely ruled out for having its cost backed
up. Because real-time DP always backs up the cost of the current state, one way to achieve
this is to make sure that the controller always continues to visit each state. There are several
different approaches to ensuring this.

One approach is to assume, as is often done in the engineering literature, that the Markov
process resulting from the use of any policy is ergodic. This means that all states always

24

retain a nonzero probability of being visited no matter what actions are generated. Dis-
counted real-time DP converges under this assumption. However, this assumption does not
allow proper subsets of states to be absorbing, which rules out nontrivial stochastic optimal
path problems because their goal sets must be absorbing.

A second way to ensure that each state is visited infinitely often is to use multiple ¢rials.
A trial consists of a time interval of finite duration during which real-time DP is performed
while the controller and system interact. After this interval, the system’s state is set to a new
starting state, and a new trial begins. This amounts to performing real-time DP where the
current state is sometimes determined by the controller/system interaction and sometimes
by the intervention of another process which starts a new trial. The end of a trial interrupts
the real-time DP algorithm so that the cost of the last state in a trial is not influenced by the
cost of the starting state of the next trial. This prevents the state transitions caused by the
process that initiates and terminates trials from influencing the evaluation function. If this
process initiates trials by selecting states so that every state will be selected infinitely often
in an infinite series of trials, then obviously every state will be visited infinitely often—if
only at the start of an infinite number of trials. A simple way to accomplish this is to start
each trial with a randomly selected state, where each state has a nonzero probability of
being selected. By trial-based real-time DP we mean real-time DP involving trials initiated
so that every state will be a start state infinitely often in an infinite series of trials. For the
discounted case, trial-based real-time DP is an example of a convergent asynchronous DP
algorithm, and thus it always converges to f*.°

It is natural to use trial-based real-time DP in undiscounted stochastic optimal path
problems, letting each trial continue until the system reaches a goal state.” During each trial,
the controller’s actions determine which states are visited and, hence, which states’ costs are
backed up. Consequently, trial-based real-time DP solves undiscounted stochastic optimal
path problems under the conditions enumerated in Section 5.3 guaranteeing convergence of
asynchronous DP for these problems.

Real-time DP is more interesting if we relax the requirement that it should yield a

SThis is the f* for the Markovian decision problem on which the multiple trials are imposed. It does
not reflect characteristics of the process that imposes these trials because the cost of the last state in each
trial is not backed up at the trial’s end. If real-time DP were not interrupted in this way, then the trial-
based computation would be equivalent to applying real-time DP without using multiple trials to some other
Markovian decision problem based on e different dynemical system. The trials would be part of this other
system’s behavior, and the optimal evaluation function for this different Markovian decision problem would
not necessarily equal f* of the original problem. This is why we consider using multiple trials to be an aspect
of an algorithm instead of a property of a control problem. Obviously, however, trial-based algorithms are
not applicable to control problems in which it is not possible to set the system state to selected start states.

This requires a controller that may not exist in principle or that is too difficult to design in practice.

"It is also possible to let a trial “time out” after some number of time steps. With simple modifications,
the theory can be extended to this case, but we do not address this extension here.

25

complete optimal evaluation function, from which one can determine a complete optimal
policy. Here we rely on Korf’s [32] insights as embodied in LRTA*, but we generalize them
to trial-based real-time DP applied to stochastic optimal path problems. Consider a trial-
based approach to solving undiscounted stochastic optimal path problems in which thereis a
designated subset of start states with which trials always start. Further, we restrict the task’s
objective to finding the optimal costs only for states that can be reached from a start state
when following an optimal policy. Clearly, if the set of start states contains every nongoal
state, then this is the undiscounted stochastic optimal path problem defined above. When
there are states that are neither goal nor start states, it is possible that the costs of some
of them will never be backed up, or will be backed up only a finite number of times. One
cannot be assured that the costs of such states will converge to the correct values. However,
one can give conditions ensuring that such states cannot lie on optimal trajectories from
start states. We state this as a theorem, which is a generalization of Korf’s [32] convergence
theorem for LRTA*, and our proof given in Appendix C generalizes his proof by invoking
results for asynchronous DP:

Theorem (Trial-Based Real-Time DP): In undiscounted stochastic optimal path problems,
trial-based real-time DP, with the initial state of each trial restricted to a set of start states,
ensures that the costs of all states that can be reached from any start state using an optimal
policy converge with probability one to their optimal costs under the following conditions:
1) the initial cost of every goal state is zero, 2) there is at least one proper policy, 3) all
immediate costs incurred by transitions from non-goal states are positive, i.e., ¢;(u) > 0
for all non-goal states 7 and actions v € U(z), and 4) the initial costs of all states are
non-overestimating, i.e., fo(¢) < f*(¢) for all statesz € S.

Trial-based real-time DP can therefore yield an evaluation function that is optimal only
for the states whose costs are needed to define an optimal policy in a stochastic optimal
path problem. When the set of start states is a proper subset of the non-goal states, the
controller’s policy always converges to an optimal policy without the requirement that it
back up the costs of all states infinitely often. More importantly in practice, the costs of
some states might not have to be backed up at all and may not even have to be represented.®

The significance of this result, as well as the other convergence results for real-time DP,
is that when state and action sets are too large to realistically permit the completion of
off-line DP, real-time DP can eventually yield optimal solutions even with limited compu-
tational resources. Whereas with conventional off-line DP, computational limits postpone
the commencement of control, with real-time DP, they postpone its convergence to optimal-

81f trials are allowed to time out before a goal state is reached, it is possible to eliminate the requirement
that there exist at least one proper policy. Timing out prevents getting stuck in fruitless cycles, and the
time-out period can be extended systematically to ensure that it becomes long enough to let all the optimal
paths be followed without interruption.

26

ity. Although performance is not guaranteed to improve on each time step, it is guaranteed
to improve over many time steps. When the policy does improve significantly long before
the algorithm converges, real-time DP allows the controller to automatically take advantage
of this improvement. There is no need to wait until a conventional off-line DP algorithm
satisfies a pre-determined convergence criterion. Moreover, because the stages of real-time
DP are guided by the controller’s actual experience, computational resources are focused on
regions of the state space where they are likely to be most beneficial.

Although in both discounted and undiscounted problems, the eventual convergence of
real-time DP does not depend critically on the choice of states whose costs are backed up
at each time interval, judicious selection of these states can accelerate convergence. Sophis-
ticated exploration strategies can be implemented by selecting these states based on prior
knowledge and the information contained in the current evaluation function. For example, in
a trial-based approach to a stochastic optimal path problem, guided exploration can reduce
the expected trial duration by helping the controller find goal states. It also makes sense
for real-time DP to back up the costs of states whose current costs are not yet accurate
estimates of their optimal costs but whose successor states do have accurate current costs.
Techniques for “teaching” DP-based learning systems by suggesting certain back ups over
others (refs. [38, 77, 66]) rely on the fact that the order in which the costs of states are backed
up can influence the rate of convergence of asynchronous DP, whether applied off- or on-line.
Exploration such as this—whose objective is to facilitate finding an optimal policy when
there is a complete model of the decision problem—must be distinguished from exploration
designed to facilitate learning a model of the decision problem in the adaptive case. We
discuss this latter objective for exploration in Section 7.2.

6.3 Real-Time DP and LRTA*

Real-time DP extends Korf’s [32] LRTA* algorithm in two ways: it generalizes LRTA* to
stochastic problems, and it can back up the costs of many states at each time step of on-line
control, whereas LRTA* backs up only the cost of the current state. Using our notation, the
simplest form of LRTA* operates as follows: at each time interval ¢, the controller observes
state s, and backs up its cost by setting fi11(s¢) to the minimum of the values c,,(uv)+v£:(7)
for all actions u € U(s,), where j is s;’s successor under action u and fi(j) is j’s current
cost.? The costs of all the other states remain the same. The controller then inputs this
minimizing action to the system, observes s,.,, and repeats the process.

This form of LRTA* is almost the special case of real-time DP as applied to a deterministic
problem in which B; = {s,} forallt = 0,1,.... To be exactly this special case, the controller
would have to generate the action that is optimal with respect to fi4, instead of fi, i.e., the

9Note that because n, = 1 for all ¢, k, always equals &.

27

action u € U(s,) that minimizes c,,(u) + 7fe+1(j), where j is s,’s successor under action u.
This is usually an inconsequential difference because f(j) can differ from fi11(j) only when
j = 8¢, i.e., when s; is its own successor. LRTA* saves computation by requiring only one
minimization at each time step: the minimization required to perform the backup also gives
the action. However, in the general case, when real-time DP backs up more than one state’s
cost during each time interval, it makes sense to use the latest approximation of f~ to select
an action.

An extended form of LRTA* has other similarities with real-time DP. In all of his discus-
sion, Korf [32] assumes that the cost of a state may be augmented by lookahead search. This
means that instead of using the current costs f(j) of s¢’s successor states, LTRA* performs
an off-line forward search from s; to a depth determined by the available computational
resources. It applies the current evaluation function f; to the nodes at the frontier and then
backs up these costs to s,’s immediate successors. This is done (roughly) by setting the
backed-up cost of each state generated in the forward search to the minimum of the costs of
its successors (Korf’s “minimin” procedure). These backed-up costs of the successor states
are then used to update fi(s;), as described above, but neither these costs nor the backed-up
costs of the states generated in the forward search are saved. Despite the fact that backed-up
costs for many states have been computed, the new evaluation function, fi,,, differs from
the old only for s,. In the absence of space constraints dictating that it is impractical to save
the backed-up costs of all of the states generated during LRTA* or real-time DP, it makes
sense to store backed-up costs for as many states as possible, especially when the controller
will experience multiple trials with different starting states.

The corresponding real-time DP algorithm, on the other hand, would save all of these
backed-up costs in fi,,,. In this algorithm, stages of asynchronous DP executed during
time interval ¢ back up the costs of all the states expanded in the forward search from s,.
Specifically, saving the backed-up costs produced by Korf’s minimin procedure corresponds
to executing a number of stages of asynchronous DP equal to one less than the depth of the
forward search tree. The first stage synchronously backs up the costs of all the immediate
predecessors of states on the frontier of the search tree (and thus uses the current costs of
the frontier states), the second stage backs up the costs of the states that are the immediate
predecessors of these states, etc. Then one additional stage of asynchronous DP to back
up the cost of s; completes the computation of f,,,. Not only does this also apply in
the stochastic case, it suggests that other stages of asynchronous DP might be useful as
well. These stages might back up the costs of states not in the forward search tree, or they
might back up states in this tree more than once. For example, noting that in general the
forward search might generate a graph with cycles instead of a tree, multiple backups of the
costs of these states can further improve the information contained in fj,,,. All of these
possibilities are basically different instances of real-time DP and thus converge under the
general conditions described in Section 6.2.

With repeated trials, the information accumulating in the developing estimate of the

28

optimal evaluation function improves control performance. Consequently, LRTA* and real-
time DP are indeed learning algorithms, as suggested by the name chosen by Korf. However,
they do not directly apply to adaptive control problems as this term in used in control theory.
In the next section we discuss adaptive control and describe a number of novel methods that
rely on real-time DP or closely related algorithms.

7 Adaptive Control

All of the DP algorithms described above—synchronous, Gauss-Seidel, asynchronous,
and real-time—require prior knowledge of the system underlying the Markovian decision
problem. That is, they require knowledge of the state-transition probabilities, p;;(u), for
all states 7, 7, and all actions u € U(2), and they require knowledge of the immediate costs
¢c;(u) for all states ¢ and actions v € U(z). If the system is deterministic, this means that
one must know the successor states and the immediate costs for all the admissible actions
for every state. The problem of finding, or approximating, an optimal policy when this
knowledge is not available is the adaptive variant of a Markovian decision problem. Several
different formulations of the adaptive problem have been studied. The survey by Kumar [33]
provides an overview of this large literature and conveys the subtlety of the issues as well as
the sophistication of the existing theoretical results. Our purpose here is to discuss methods
that are related to real-time DP and to provide an accurate, though non-rigorous, discussion
of some of the important issues.

Solution methods for adaptive Markovian decision problems fall into two main classes.
Bayesian methods rest on an assumption of a known a prior:i probability distribution over the
class of possible stochastic dynamical systems. As observations accumulate over time, this
distribution is successively revised via Bayes’ rule, and at each time step, an action is selected
by using DP to find a policy that minimizes the expected cost over the set of possible systems
as well as over time. To do this, DP is applied to a decision problem involving a system whose
state consists of an entire posterior distribution over the set of possible systems. Although
this approach yields insights about the optimal way to combine control with exploration,
the computations required can be prohibitive in all but the simplest cases. Non-Bayesian
approaches, in contrast, do not involve manipulating probability distributions over sets of
possible systems. Instead of attempting to define the best action at each time step on the
basis of such a distribution, a non-Bayesian method attempts to arrive at an optimal policy
asymptotically for any system within some pre-specified class of systems. Consequently,
at each time step the action may not be optimal on the basis of prior assumptions and
accumulated observations, but in the limit as experience accumulates, the policy should
approach an optimal policy. Here we restrict attention to non-Bayesian methods.

29

7.1 Indirect and Direct Adaptive Methods

Within the class of non-Bayesian methods for adaptive control, it is usual to distinguish
between indirect and direct methods. An indirect method relies on the on-line formation
of an explicit model of the dynamical system being controlled as well as estimates of the
immediate costs, if the latter are also unknown. A policy is determined by using some control
design procedure with the current model substituted for the true model of the system. This is
based on what control theorists call the certainty equivalence principle [8]. Under specialized
conditions, it makes sense to always generate the action given by the policy that is optimal
for the current model, called the certainty equivalence optimal policy. (As we discuss in
Section 7.2, however, this is not true in general.) Direct adaptive control methods, on the
other hand, determine a policy without forming an explicit system model.

More specifically, an indirect method forms a system model on-line by using observa-
tions obtained during interaction with the system. This is done by a system identification
algorithm that estimates parameters whose values determine the current model at any time
step. For a Markovian decision problem, for example, at any time step ¢, the model consists
of current estimates of the state-transition probabilities, pﬁj(u), for all states ¢, 7, and all ad-
missible actions » € U(i), and current estimates of immediate costs c;(u) for all states i and
actions u € U(3). These estimates are then treated as if they were the actual state-transition
probabilities and immediate costs, and a DP algorithm is used to obtain the evaluation func-
tion that would be optimal if this were true. We call this the certainty equivalence optimal
evaluation function, from which the action u, is determined. As we discuss in Section 7.2,
however, to allow for exploration u, should not always be the greedy action with respect to
this evaluation function. At the next time step, the system identification algorithm updates
the model parameters based on the new observations, DP is applied again, and the process
repeats.

Indirect methods, therefore, require performing control design on-line because the sys-
tem model is being updated on-line. On-line control design consists of repeatedly executing
a design procedure that is usually executed once off-line in non-adaptive problems. Conse-
quently, the computational cost of the design procedure is a significant factor in determining
the feasibility of an indirect adaptive control method. In some problems (e.g., adaptive lin-
ear regulation and tracking problems), the design procedure is not computationally complex,
whereas in other problems, its complexity is a serious impediment to applying an indirect
method. For example, most indirect methods proposed for solving adaptive Markovian de-
cision problems require running a conventional DP algorithm to a satisfactory degree of
convergence atl each time step during adaptive control. Even in the most optimistic case in
which synchronous or Gauss-Seidel DP converges in one iteration, for a system with n states
and m admissible actions for each state, at each time step of control O(mn?) operations
would be required in the stochastic case and O(mn) operations would be required in the
deterministic case. Although parallel computation can allow each iteration to be performed

30

more rapidly (see Lemmon (37]), this complexity seriously limits the utility of these methods.

In contrast to indirect methods, direct methods bypass the explicit identification of the
system being controlled. They directly estimate either a suitable policy or information other
than a system model, such as an evaluation function, from which a suitable policy can
be determined. Direct methods have the advantage of not requiring repeated application
of a control design procedure. However, as usually considered in adaptive control (e.g.,
Goodwin and Sin [19]), direct methods are possible only when the control design procedure
they replace is sufficiently simple computationally. In these cases, one can express the
adaptive changes in the policy in terms of the training information, eliminating the policy’s
dependence on an explicit system model. Unfortunately, the control design procedure for
general Markovian decision problems is some form of DP, whose complex dependence on a
system model would seem to preclude the possibility of employing direct methods for these
problems. Consequently, most approaches to solving adaptive Markovian decision problems
are indirect. However, direct methods have also been studied. Narendra and Wheeler [76]
developed a direct method that completely bypasses DP and effectively adjusts a policy
based on estimates of the costs of states obtained over extended periods of control. Other
direct methods, some of which we describe below, do utilize the principles of DP but do so
without forming explicit system models. They estimate the optimal evaluation function, f~,
by means of DP-based operations that do not rely on a system model. For these methods,
it still makes sense to use the term certainty equivalence optimal policy to refer to a policy
that is greedy with respect to the current estimate of f*.

Although systematic studies of the relative advantages of indirect and direct methods
appear to be lacking, it is clear that the results would be highly dependent on the type of
adaptive control problem under study—whether it involves tracking or optimal control—and
on its specific features determining the relative complexity of system identification compared
to the basic control problem.!® According to conventional wisdom, in adaptive regulation and
tracking problems for linear systems, it makes little difference whether the method is indirect
or direct. For general Markovian decision problems, where the control design procedure is
much more complex, only the following seems clear: Indirect methods in which DP is used
to find a certainty equivalence optimal policy every time the system model is updated scale
extremely poorly with increasing numbers of states and actions. This is the type of indirect
method that has received the most attention in the literature on adaptive Markovian decision
problems. We discuss this type of method as the generic indirect method in Section 7.3.

Other methods, based on real-time DP and Watkins’ [67] Q-learning algorithm, discussed
in Sections 7.4 and 7.5, appear to be much more practical because they interleave the stages
of DP with the time steps of control. Barto and Singh (5] discuss some of these issues and
describe comparative results for a simple adaptive Markovian decision problem. Jalali and

10Gullapalli [20] argues that in some control problems, system identification is harder than the control
problem itself, so that direct methods can be more efficient. Barto and Singh [5] discuss related issues.

31

Ferguson [24] also discuss the computational efficiency of interleaving the stages of DP with
control steps. In Section 11 we present simulation results for adaptive methods based on
real-time DP and Q-learning on a problem having such a large number of states that the
generic indirect method is decidedly impractical.

7.2 Exploration

If one can guarantee that the sequence of system models generated by an indirect adaptive
method converges to the true system, then obviously the sequence of certainty equivalence
optimal policies also converges to an optimal policy. However, such a guarantee is difficult
to provide if identification and control are to be conducted together during interaction with
the system. Even if the true system is within the class of models capable of being identified
(which is usually assumed), correct identification requires continuing exploration that is at
odds with improving control. Exploring to identify an unknown system is different than
exploring to facilitate discovering an optimal policy when the system is known as discussed
above in Section 6.2.

The conflict between identification and control is a central issue in adaptive optimal
control. How does one combine exploration sufficient to achieve model convergence with the
objective of eventually following an optimal policy? Further, what kind of performance is
achieved before the resulting sequence of policies converges? Although they do not construct
a system model, direct approaches to adaptive optimal control also require exploration and
involve these same issues. If they are to be proved to converge, adaptive optimal control
algorithms require mechanisms for resolving these problems, but no mechanism is universally
favored. Some of the approaches for which rigorous theoretical results are available are
reviewed by Kumar [33], and a variety of more heuristic approaches have been studied by
Barto and Singh (5], Kaelbling [27], Moore [44], Schmidhuber [49], Sutton [58], Watkins [67],
and Thrun and M3ller [65].

In the following subsections, we describe several non-Bayesian approaches to solving
adaptive Markovian decision problems. Although these approaches can form the basis of
algorithms that can be proved to converge to optimal policies, we do not describe the explo-
ration mechanisms with enough rigor for developing the theory in this direction. In all cases,
some way is needed to ensure that adequate exploration occurs while still allowing conver-
gence to an optimal policy. The first method we describe is the generic indirect method that
combines system identification and uses conventional DP at each time step. Although this
method’s computational complexity limits its utility, it serves as a reference point for com-
parative purposes and gives us the opportunity to describe the system identification method
that tends to be used in indirect methods for these problems. We then describe another
indirect method that is the simplest modification of the generic method employing real-time
DP. We call this method adaptive real-time DP. The third method we describe is the di-

32

rect Q-learning method of Watkins [67]. Finally, we briefly describe hybrid direct/indirect
methods.

7.3 The Generic Indirect Method

Indirect methods for adaptive Markovian decision problems explicitly estimate the un-
known state-transition probabilities and immediate costs based on the history of state tran-
sitions and immediate costs observed while the controller and system interact. The usual
approach is to define the state-transition probabilities in terms of a parameter, 6, contained
in some parameter space, ©. Thus, for each pair of states 7, j € S and each action u € U (2),
P(%,j,u,0) is the state-transition probability corresponding to parameter § € @, where the
functional dependence on 6 has a known form. Further, one assumes that there is some
6" € © that is the true parameter, so that p;;(u) = p(3, j, u, 8*). The identification task is to
estimate 6~ from experience. The usual approach takes as the estimate of 8~ at each time
step the parameter having the highest probability of generating the observed history, i.e.,
the maximum-likelihood estimate of §*.

The simplest form of this approach to identification is to assume that the unknown
parameter is simply a list of the actual transition probabilities. Then at each time step ¢ the
system model consists of the maximum-likelihood estimates, denoted pi;(u), of the unknown
state-transition probabilities of all pairs of states i,j and actions u € U(i). These estimates
are formed by keeping track over time of how frequently the various state transitions occur
when the various actions are generated. Specifically, let n};(t) be the observed number of
times before time step ¢ that action u was generated when the system was in state i and
made a transition to state j. Then n}(t) = T;csn};(t) is the number of times action u was
generated in state i. The estimates at time ¢ of the unknown state-transition probabilities,
which constitute the maximum-likelihood system model at time ¢, are

pt'j()" n:‘(t) (7)

If the immediate costs, c;(u), are also unknown, they can be determined simply by memo-
rizing them as they are observed.!! If in an infinite number of time steps each action would
be applied infinitely often in each state, then this system model will converge to the true
system. Of course, as discussed above, it is nontrivial to ensure that this occurs at the
same time the system is being controlled. Further, convergence to the true system obviously
depends critically on being able to observe and identify each state unambiguously .

111p problems in which the ezpected immediate cost is a function of the current state and action, the
maximum-likelihood estimates of an immediate cost is simply the observed average of the immediate cost

for that state and action.

33

At each time step ¢, the generic indirect method uses some (non real-time) DP algorithm
to determine the optimal evaluation function for the latest system model. Let f; denote this
optimal evaluation function. Of course, if the model were correct, then f;' would equal f~,
but this is generally not the case. A certainty equivalence optimal policy for time step ¢ is
any policy that is greedy with respect to f;'. Let p; = [p;(1),...,#;(n)] denote any such
certainty equivalence optimal policy. Then at time step ¢, p;(s,) is the certainty equivalence
optimal action. Any of the off-line DP algorithms described above can be used to determine
fr, including asynchronous DP. Here it makes sense to initialize the DP algorithm at each
time step with final estimate of f* produced by the DP algorithm completed at the previous
time step. The small change in the system model from time step ¢ to £ + 1 means that f; and
fi:1 will probably also not differ significantly so that the DP algorithm will tend to converge
after few iterations. As pointed out above, however, the computation required to perform
even one iteration can be prohibitive in problems with large numbers of states.

What action should the controller generate at time t? The certainty equivalence optimal
action, u;(s:), appears to be the best based on observations up to time ¢t. Consequently, in
pursuing its objective of control, the controller should always generate this action. However,
because the current model is not necessarily correct, the controller must also pursue the
identification objective, which dictates that it must sometimes select actions other than
the certainty equivalence optimal actions. It is easy to generate examples in which always
following the current certainty equivalence optimal policy prevents convergence to a true
optimal policy due to lack of exploration (see, for example, Kumar [33]).

One of the simplest ways to induce exploratory behavior is to make the controller use
randomized policies in which actions are chosen according to probabilities that depend on the
current certainty equivalence optimal evaluation function. Each action always has a nonzero
probability of being generated, with the current certainty equivalence optimal action having
the highest probability. To facilitate comparison of algorithms in the simulations described
in Section 11, we adopt the action-selection method based on the Boltzmann distribution
that was used by Watkins [67], Lin [39], Singh [54], and Sutton [58]. This method assigns to
each admissible action for the current state a probability of its being generated, where this
probability is determined by a rating of each action’s utility. The Q-value (Equation 2) of
the action for the current state and the most recent estimate of f* provides the appropriate
rating of utility. Assuming, as in Section 6.1, that the estimate of f* has already been
updated to f;,; by the time action u, must be generated, we rate each action u € U(s,) as
follows:

r(u) = QFn (s, u).

We then transform these ratings (which can be negative and do not sum to one) into a
probability mass function over the admissible actions using the Boltzmann distribution: at

34

time step ¢, the probability that the controller generates action u € U(s,) is

e"'(u)/T

PIOb(u) - szU(u) e"’(“)/f’ (8)

where T is a positive parameter controlling how sharply these probabilities peak at the cer-
tainty equivalence optimal action, p;(s¢). As T increases, these probabilities become more
uniform, and as T decreases, the probability of generating u;(s:) approaches one, while the
probabilities of the other actions approach zero. T acts as a kind of “computational tem-
perature” as used in optimization based on simulated annealing [29] in which T is decreased
over time. Here it controls the necessary tradeoff between identification and control. At
“zero temperature” there is no exploration, and the randomized policy equals the certainty
equivalence optimal policy, whereas at “infinite temperature” there is no attempt at control.

In the simulations described in Section 11, we introduced exploratory behavior by using
the method just described for generating randomized policies, and we let T decrease over time
as learning progressed. Our choice of this method was dictated by simplicity and our desire
to illustrate algorithms that are as “generic” as possible. Without doubt, more sophisticated
means of inducing exploratory behavior, as suggested by the authors cited in Section 7.2,
would have beneficial effects on the behavior of these algorithms.

7.4 Adaptive Real-Time Dynamic Programming

The generic indirect method just presented relies on executing a non real-time DP al-
gorithm until convergence at each time step. It is straightforward to substitute real-time
DP. The result is another indirect method which we call adaptive real-time DP. Specifically,
this method is exactly the same as real-time DP as described in Section 6.2 except that
1) a system model is updated using some on-line system identification method, such as the
method given by Equation 7; 2) the current system model is used in performing the stages
of real-time DP instead of the true system model; and 3) the action at each time step is
determined by the randomized policy given by Equation 8, or by some other method that
balances the identification and control objectives.

Adaptive real-time DP is related to a number of algorithms that have been investigated by
others. Although Sutton’s Dyna architecture [58] focuses on Q-learning and methods based
on policy iteration (Section 8), it also encompasses algorithms such as adaptive real-time DP,
as he discusses in ref. [59]. Lin [39, 38] also discusses methods closely related to adaptive real-
time DP. In the field of control theory, Jalali and Ferguson [24] describe an algorithm that
is essentially adaptive real-time DP, although they focus on Markovian decision problems in
which performance is measured by the average cost per-time-step instead of the discounted
cost we have discussed.

35

Performing real-time DP concurrently with system identification, as in adaptive real-time
DP, provides an opportunity to let progress in identification influence the states whose costs
are backed up during each time interval. Sutton [58] suggested that it can be advantageous
to back up the costs of states for which there is good confidence in the accuracy of the
estimated state-transition probabilities. One can devise various measures of confidence in
these estimates and direct the algorithm to the states whose cost backups use the most
reliable state-transition information according to this confidence measure. At the same
time, it is possible to let this kind of confidence measure direct the selection of actions so
that the controller tends to visit regions of the state space where the confidence is low so
as to improve the model for these regions. This strategy produces exploration that aids
identification but can conflict with control as discussed in Section 7.2. Kaelbling [27], Lin
[39], Moore [44], Schmidhuber [49], Sutton (58], and Thrun and Méller [65] discuss these and
other possibilities.

7.5 Q-Learning

Q-learning is a method for solving adaptive Markovian decision problems proposed by
Watkins [67]. Unlike the indirect adaptive methods discussed above, it is a direct method
because it does not use an explicit model of the dynamical system underlying the decision
problem. Instead it directly estimates the optimal Q-values for all pairs of states and ad-
missible actions. Recall from Equation 3 that Q(¢,u), the optimal Q-value for state ¢ and
action u € U(i), is the cost of generating action u in state i and thereafter following an
optimal policy. Any greedy action with respect to optimal Q-values for a state is an optimal
action. Thus, if the optimal Q-values are available, an optimal policy can be determined
with little computation. Watkins [67] actually proposed a family of Q-learning methods, and
what we call Q-learning in this article is the simplest special case, which he called “one-step
Q-Learning.” Watkins observed that although Q-learning methods are based on a simple
idea, they had not been suggested previously as far as he knew. He further observed, how-
ever, that because these problems had been so intensively studied for over thirty years, it
would be surprising if no one had considered these methods earlier. We have not yet seen
discussions of them that predate his 1989 dissertation.

In our presentation of Q-learning, we depart somewhat from the view taken by Watkins
[67] and others (e.g., Sutton [58], Barto and Singh [5]) of Q-learning as a method for adaptive
on-line control. In order to take maximal advantage of the theoretical perspective adopted in
this article and to emphasize Q-learning’s relationship to asynchronous DP, we first present
the basic Q-learning algorithm as an off-line asynchronous DP method that is unique in not
requiring direct access to the state-transition probabilities of the decision problem. We then
present the more usual on-line view of Q-learning.

36

7.5.1 Off-Line Q-Learning

Off-Line Q-learning works as follows. Instead of maintaining an explicit estimate of
the optimal evaluation function, as is done by all the methods described above, Q-learning
maintains an estimate of the optimal Q-values for each state and admissible action. For any
state ¢ and action u € U(7), let Qr(?,u) be the estimate of Q*(,u) available at stage k of
the computation. Recalling that f* is the minimum of the optimal Q-values for each state
(Equation 4), we can think of the Q-values at stage k as implicitly defining fi, a stage-k
approximation of f*, which is defined for each state 7 by

£ui) = min Quli,u). ©)

Although Q-values define an evaluation function in this way, they contain more information
than the evaluation function. Unlike the complete set of Q-values for a state, the evaluation
function does not itself contain information about the costs of actions that are second best,
third best, etc.,’? information that can be useful in a variety of situations as illustrated by
Sutton [58].

Instead of having direct access to the state-transition probabilities p;;(u), for all states i,
J, and all actions u € U(2), off-line Q-learning has access only to a random function that can
generate samples according to these probabilities. Thus, if this function is given a state i
and an action u € U(%), it returns a state j with probability p;;(u). Let us call this function
successor so that j = successor(i,u). The successor function amounts to an accurate
model of the system in the form of its state-transition probabilities, but the algorithm does
not have access to the probabilities themselves.)® As we shall see below, the role of the
successor function is played by the system itself in on-line Q-learning.

At each stage k, off-line Q-learning synchronously updates the Q-values of a subset of the
state-action pairs and leaves unchanged the Q-values for the other state-action pairs. The
subset of state-action pairs whose Q-values are updated changes from stage to stage, and the
choice of these subsets determines the precise nature of the algorithm. For each £ = 0,1,.. .,
let ST C {(3,w)|i € S,u € U(i)} denote the set of state-action pairs whose Q-values are

updated at stage k. For each state-action pair in S,? , it is necessary to define a learning rate
parameter that determines how much of the new Q-value is determined by its old value and
how much by a backed-up value. Let ay(i,u), 0 < a(?,u) < 1, denote the learning rate
parameter for updating the Q-value of (3,u) at stage k. Then Q4 is computed as follows:

12Ranking actions using the evaluation function requires knowledge of the state-transition probabilities.

13Watkins [67) defined Q-learning for the case in which the immediate costs are also determined proba-
bilistically from state-action pairs. In this case, the algorithm also requires access to random samples with

expected values c;(u).

37

if (i,u) € S2 then
Qura(irw) = (1 — (i, w))Qu(i,w) + a(iy w)[es(w) + 7fu(successor(i,u))l. (10)

The Q-values for the other state-action pairs remain the same, i.e.,
Qk+l(i’u) = Qk(i:u)r

for all (3,u) € .S',? . This sequence of learning rate parameters for each (Z,) has to decrease
over the stages in a certain way for the algorithm to converge as described below. When
o(i,u) = 1, the backed-up Q-value simply replaces the old, and as ax(i,u) decreases, a
decreasing fraction of the backed-up value contributes to the update.

One can gain some insight into off-line Q-learning by relating it to asynchronous DP. The
stage-k Q-values for all relevant state-action pairs define the evaluation function f. given
by Equation 9. Thus, one can view a stage of off-line Q-learning defined by Equation 10 as
updating fi to fe+1, where for each state 1,

fk+1(i) = ulgtl;ﬁ) Qk+1(i, u).

This evaluation function update does not correspond to a stage of any of the usual DP algo-
rithms because it is based only on samples from successor for selected actions determined
by the state-action pairs in S,?. Whereas applying the current evaluation function, f, to
the sample successor state in Equation 10 produces an unbiased estimate of the expected
successor cost for the given admissible action, an asynchronous DP update (Equation 6) uses
the true expected successor costs over all admissible actions. As Watkins [67] pointed out,
this is why Q-learning can be viewed as an incremental, Monte Carlo form of DP. We can
add that it is a Monte Carlo form of asynchronous DP.

Off-line Q-learning is identical to asynchronous DP in the special case in which 1) the
problem is deterministic, and 2) S¢ consists of the pairs (i,u) for some fixed ¢ and all
u € U(3), and 3) for all k, a(3,u) = 1 for all (3,u) € S2. In this case, stage k of off-line
Q-learning uses the costs of the actual successors of state i under all the admissible actions.
The result is identical to what would be produced by stage k of asynchronous DP with
Sk = {i}. More generally, in the deterministic case, if S° consists of all the state-action
pairs for states in a set Sk, then stage k of off-line Q-learning has the same effect as the stage
of asynchronous DP using 5. Unfortunately, even with these restrictions on the sets 5,?, in

the stochastic case an update produced by off-line Q learning is not an unbiased estimate of
the corresponding asynchronous DP update.

However, Watkins [67] proved a convergence result for off-line DP. To state this result
precisely, it is necessary to place restrictions on the sequences of learning rate parameters
for each state-action pair. Because these restrictions must be stated in terms of the number

38

of times the Q-value for each state-action pair is updated, instead of the stage number, we
have to appropriately re-index the learning rate parameters. Following Watkins and Dayan
(68], let an,(?,1) denote the learning rate parameter used for updating the Q-value of (z,u)
for the &*® time. In other words, n; is the number of the stage in which the Q-value of (3, %)
is updated the k" time. Then the convergence theorem for off-line Q-learning is as follows:

Theorem (Watkins 1989): For k¥ = 0,1,... and all (,u), ¢ € S and v € U(3), if 0 <
an,(3,2) < 1, an,(3,2) — 0 as k — oo, and

éam(i,u) = oo, ,g[a,,.(i,un’ < oo,

then the sequence {Q(Z,%)} generated by the off-line Q-learning algorithm converges with
probability 1 to @"(¢,u) as k — oo.

The proof of this theorem is essentially contained in Watkins’ dissertation [67], and
Watkins and Dayan present a revised and simplified proof in ref. [68]. The conditions on
the sequences of learning rate parameters are standard conditions for related stochastic
approximation algorithms (see, e.g., Kasyap, Blaydon, and Fu {28]), and their are a number
of simple ways to satisfy them. In Appendix D we describe one method developed by
Darken and Moody [13] which we used in obtaining the results for real-time Q-learning on
our example problem presented in Section 11. Notice that like the convergence conditions
for asynchronous DP, these conditions require the Q-value for each state-action pair to be
updated infinitely often in an infinite number of stages

It is not misleading to think of off-line Q-learning as a more asynchronous version of
asynchronous DP. Asynchronous DP is asynchronous at the level of states, and the backup
operation for each selected state requires performing a minimization over all admissible
actions for that state. Off-line Q-learning, on the other hand, is asynchronous at the level
of state-action pairs.!* For each selected state-action pair, the system behavior for the other
admissible actions for the given state is not used in updating the Q-value. Although it is
still necessary to maintain the minimum of the Q-values for each sample successor state
over all the admissible actions in order to calculate (via Equation 9) fi(successor(i,u))
used in Equation 10, this can be done without explicit minimization over all the admissible
actions at each stage. Because off-line Q-learning explicitly stores Q-values for state-action
pairs, it is possible to maintain the required minima incrementally in a way that can take
many fewer operations than otherwise required.'® This advantage is offset by the increased

14Williams and Baird [79] discuss DP algorithms that are asynchronous at an even finer grain than is
Q-learning.

15This can be done as follows. Whenever a Qi (3, u) is updated, if its new value, Q1(3, u), is smaller than
fi(3), then fr41(4) is set to this smaller value. If its new value is larger than fi(d), then if fx(3) = Qu(z,u)

39

At

space complexity of Q-learning and the fact that backing up a state’s cost in asynchronous
DP and updating the Q-value of a state-action pair are not equivalent operations: One
would generally expect that many of the latter operations are required to make progress
equivalent to the progress made by one of the former. Nevertheless, this property of off-
line Q-learning can be advantageous when backups have to be accomplished quickly—as in
real-time applications—despite a large number of admissible actions.

7.5.2 Real-Time Q-Learning

One can perform off-line Q-learning on-line by interleaving its stages with control steps
in much the same way that interleaving the stages of asynchronous DP with control yields
real-time DP as discussed in Section 6. If a current system model provides an approximate
successor function, the result is an indirect adaptive method identical to adaptive real-time
DP Section 7.4 except that stages of off-line Q-learning substitute for stages of asynchronous
DP. As mentioned above, this method might have certain kinds of advantages over adaptive
real-time DP when there are a large number of admissible actions. However, we use the
term real-time Q-learning for the case originally discussed by Watkins (67] in which there is
no model of the system underlying the decision problem and the real system plays the role
of the successor function. This direct adaptive algorithm updates the Q-value for only a
single state-action pair at each time step of control, where this state-action pair consists of
the observed current state and the action actually generated.

Specifically, assume that at each time step ¢ the controller observes state s, and has
available the estimated optimal Q-values produced by all the preceding stages of on-line
Q-learning. Denote these estimates Q;(%,u) for states i and admissible actions u. Using this
information in some manner that allows for exploration, the controller generates an action
uy € U(s;), which is input to the system. The controller receives the immediate cost c,,(u,)
while the system state changes to s¢4;. Then Q. is computed as follows:

Qer1(8e,we) = (1 — el 86, we)) Qe8¢ ue) + e8¢, ue)[4, (we) + ¥ fe(8641)], (11)

where fi(8¢41) = MiNuev(ay,,) @e(Se41, %) and o4(sy, u,) is the learning rate parameter at time
step ¢ for the current state-action pair. The Q-values for all the other state-action pairs
remain the same, i.e,

Qt+1(i7 u) = Qt(iz u),

and fx(i) # Qx(3,u') for any v’ # u, then fr41(7) is found by explicitly minimizing the current Q-values
for state ¢ over the admissible actions. This is the case in which u is the sole greedy action with respect to
fx(?). Otherwise, nothing is done, i.e., fx+1(%) = fi(2). This procedure therefore computes the minimization
in Equation 9 explicitly only when updating the Q-values for state-action pairs (%, u) in which u is the sole
greedy action for i and the Q-value increases.

40

for all (,u) # (8¢, u¢). This process repeats for each time step.

Real-time Q-learning is the special case of off-line Q-learning in which 5@, the set of
state-action pairs whose Q-values are updated at each step (or stage) t, is {(s¢, u)}. Thus,
the sequence of Q-values generated by real-time Q-learning converges to the true values given
by Q" if the sequences of learning rate parameters satisfy the conditions required by the off-
line Q-learning theorem. An implication of these conditions is that in an infinite number of
control steps each admissible action must be performed in each state infinitely often. This
last condition is the same as required for convergence of the maximum likelihood model used
in the indirect adaptive methods described in Section 7.3. It is also noteworthy as pointed
out by Dayan [15], that when there is only one admissible action for each state, real-time
Q-learning reduces to the TD(0) algorithm investigated by Sutton [57).

To define a complete adaptive control algorithm making use of real-time Q-learning it is
necessary to specify how each action is generated based on the current Q-values. Convergence
to an optimal policy requires the same kind of exploration required by indirect methods to
facilitate system identification as discussed in Section 7.2. Therefore, given a method for
generating an action from a current evaluation function, such as the randomized method
described above (Equation 8), if this method leads to convergence of an indirect method, it
also leads to convergence of the corresponding direct method based real-time Q-learning.

7.5.3 Other Q-Learning Methods

In real-time Q-learning, only the real system underlying the decision problem plays the
role of the successor function. However, it is also possible to define the successor function
sometimes by the real system and sometimes by a system model. For state-action pairs actu-
ally experienced during control, the real system provides the successor function; for other
state-action pairs, a system model provides an approximate successor function. Sutton
[58] has studied this approach in an algorithm called Dyna-Q, which performs the basic Q-
learning update using both actual state transitions as well as hypothetical state transitions
simulated by a system model. Using the Q-learning update on hypothetical state transitions
amounts to running multiple stages of off-line Q-learning in the intervals between times at
which the controller generates actions. A step of real-time Q-learning is performed based on
each actual state transition. This is obviously only one of many possible ways to combine
direct and indirect adaptive methods as emphasized in Sutton’s discussion of the general
Dyna learning architecture [58]. For example, another method interleaves stages of adaptive
real-time DP with the steps of real-time Q-learning.

It is also possible to modify the basic Q-learning method in a variety of ways in order
to enhance its efficiency. For example, Lin [39] has studied a method in which real-time Q-
learning is augmented with model-based off-line Q-learning only if one action does not clearly

41

stand out as preferable according to the current Q-values. In this case, off-line Q-learning
is carried out to update the Q-values for all of the admissible actions that are “promising”
according to the latest Q-values for the current state. Watkins [67] describes a family of Q-
learning methods in which Q-values are updated based on information gained over sequences
of state transitions (although his convergence proof does not apply to these more general
algorithms). One way to implement this kind of extension is to use the “eligibility trace”
idea (refs. [2, 31, 56, 60, 57]) to update the Q-values of all the state-action pairs experienced
in the past, with the magnitudes of the updates decreasing to zero with increasing time in
the past. Sutton’s [57) TD(X) class of algorithms illustrate this idea. Attempting to present
all of the combinations and variations of Q-learning methods that have been, or could be,
described is well beyond the scope of the present article. Barto and Singh [5], Dayan (14, 15],
Lin [39, 38], and Sutton [58] present comparative empirical studies of some of the adaptive
algorithms based on Q-learning.

8 Methods based on Explicit Policy Representations

All of the DP-based learning algorithms described above, for both non-adaptive and adap-
tive problems, use an explicit representation of either an evaluation function or a function
giving the Q-values of state-action pairs. These functions are used in computing the action at
each time step, but the policy so defined is not explicitly stored. There are a number of other
real-time learning and control methods based on DP in which policies as well as evaluation
functions are stored and updated at each time step of control. Unlike the methods addressed
in this article, these methods are based on the policy iteration DP algorithm rather than
on the value iteration algorithm discussed in Section 5. Policy iteration (see, e.g., Bertsekas
[8]) alternates two basic stages in which 1) the evaluation function for the current policy is
determined (either by a successive approximation method similar to value iteration but not
requiring its minimization step, or by matrix inversion), and 2) the current policy is updated
to be a greedy policy with respect to the current evaluation function. Real-time algorithms
based on policy iteration work by interleaving the computations involved in these stages with
each other and with the generation of control actions. They interleave stages in which 1) the
current evaluation function is updated to better approximate the evaluation function for the
current policy, 2) the current policy is updated to select actions that are better according to
the current evaluation function, and 3) an action for the current state is generated based on
the current policy. Unlike the usual policy iteration algorithm, real-time algorithms based
on policy iteration do not completely determine the evaluation function for each new policy
before they update that policy.

Examples of such methods appear in the pole-balancing system of Barto, Sutton, and
Anderson (2, 56] (also refs. [1, 56]) and the Dyna-PI method of Sutton [58] (where PI means
Policy Iteration). Barto, Sutton, and Watkins [4, 3] discuss the connection between these

42

methods and policy iteration in detail. In this article we do not discuss real-time algorithms
based on policy iteration because their theory is not yet as well understood as is the theory of
real-time algorithms based on asynchronous value iteration. However, Williams and Baird
[79] have made a valuable contribution to this theory by addressing DP algorithms that
are asynchronous at a finer grain than asynchronous DP and Q-learning. These algorithms
include both value iteration and policy iteration as special cases. Integrating their theory
with that presented here is beyond the scope of this article.

9 Storing Evaluation Functions

An issue of great practical importance in implementing any of the algorithms described
in this article is how evaluation functions are represented and stored.!® All of the theoretical
results we have described assume that the cost of each state is ezplicitly stored. We refer
to this as the lookup-table representation, which—at least in principle—is always possible
when there are a finite number of states and actions, as assumed throughout this article.
In applying conventional DP to problems involving continuous states and/or actions, the
usual practice is to discretize the ranges of the continuous state variables and then use the
lookup-table representation (cf. the “boxes” representation used by Michie and Chambers
[41) and Barto, Sutton, and Anderson [2]). This leads to space complexity exponential in
the number of state variables, the situation prompting Bellman [6] to coin the phrase “curse
of dimensionality.” The methods described in this article based on asynchronous DP and
Q-learning do not escape this problem.

A number of methods exist for making the lookup-table representation more efficient
when it is not necessary to store the costs of all possible states. Hash table methods, as
assumed by Korf [32] for LRTA*, permit efficient storage and retrieval when the costs of
a small subset of the possible states need to be stored. Similarly, using the kd-iree data
structure to store state costs, as explored by Moore [44, 45|, can provide efficient storage
and retrieval of the costs of a finite set of states from a k-dimensional state space. The
theoretical results described in this article extend to this method because it preserves the
integrity of each stored cost. These results also extend to the hash table method under the
condition that no hash collisions occur. Methods such as these are particularly appropriate
for problems, such as the example problem described in the next section, in which real-time
algorithms focus on increasingly small subsets of states. Stored cost estimates for states
rarely visited after the early stages of learning can be over-written by cost estimates of
states on which the algorithm focuses in later stages.

Other approaches to storing evaluation functions use parametric function approximation
methods. For example, in Samuel’s [47] application of a method similar to real-time DP to

16411 of our comments here also apply to storing the Q-values of admissible state-action pairs.

43

the game of checkers, the evaluation function was approximated as a weighted sum of the
values of a set of features describing checkerboard configurations. The basic backup operation
was performed on the weights, not on the state costs themselves. The parameters specifying
the approximate evaluation function, that is, the weights, were adjusted to reduce to the
discrepancy between the current cost of a state and its backed-up cost obtained by applying
the current evaluation function to the successor states. This approach inspired a variety of
more recent studies using parameterized function approximations. The discrepancy supplies
the error for any error-correction procedure that approximates functions based on a training
set of function samples. This is a form of supervised learning, or learning from examples,
and provides the natural way to make use of connectionist networks as shown, for example,
by Anderson [1]. Parametric approximations of evaluation functions are useful because they
can generalize beyond the training data to supply cost estimates for states that have never
before been visited, an important factor for large state sets. Combining DP and parametric
function approximation is discussed by Barto, Sutton, and Watkins [4] and Watkins [67).

In fact, almost any supervised learning method, and its associated manner of representing
hypotheses, can be adapted for approximating evaluation functions. This includes symbolic
methods for learning from examples. These methods also generalize beyond the training
information, which is derived from the back-up operations of the various DP-based algorithms
we have described. For example, Chapman and Kaelbling [12] and Tan [64] adapt decision-
tree methods for learning evaluation functions.

Despite the large number of studies in which the principles of DP have been combined
with generalizing methods for approximating evaluation functions, the theoretical results
presented in this article do not automatically extend to these approaches. Although gener-
alization can be helpful in approximating the optimal evaluation function, it is often detri-
mental to the convergence of the underlying asynchronous DP algorithm, as pointed out
by Watkins [67]. Even if a function approximation scheme can adequately represent the
optimal evaluation function when trained on samples from this function, it does not follow
that an adequate representation will result from an iterative DP method that uses such an
approximation scheme at each stage. The issues are much the same as those that arise in the
numerical solution of differential equations.!” The objective of these problems is to approxi-
mate the function that is the solution of a differential equation for given boundary conditions
in the absence of training examples drawn from the unknown true solution. In other words,
the objective is to solve approzimately the differential equation, not just to approximate its
solution. Here, we are interested in approximately solving the Bellman Optimality Equation
and not merely in approximating a given solution.

There is an extensive literature on numerical approximation methods applied to optimal

17Indeed, in the case of continuous time and continuous state space, the optimal evaluation function is the
solution of a partial differential equation (known as the Hamilton-Jacobi-Bellman Equation) which is the
counterpart of the Bellman Optimality Equation (Equation 4).

44

control, such as finite element methods and methods using orthogonal polynomials (e.g.,
Boudarel et al. [10] and Gonzalez and Rofman [18]). However, most of this literature is
devoted to off-line algorithms for approximating optimal evaluation functions defined on
infinite state spaces when there is a complete model of the decision problem. Borrowing
techniques from this literature to produce approximation methods for real-time DP in both
adaptive and non-adaptive problems is a challenge for future research.

To the best of our knowledge, the only theoretical results directly relevant to using
generalizing methods with adaptive real-time algorithms based on DP are those of Sutton
[57), which apply when states are represented by a linearly independent set of vectors. These
results concern the trial-based solution to the problem of using a TD method to approximate
the evaluation function of a fixed policy as a linear function of the vectors representing the
states. Dayan [15] generalized this result to a more general class of TD methods. Much
more research is needed to provide a better understanding of how function approximation
methods can be used effectively with the algorithms described in this article.

10 The Race Track Problem

To illustrate the algorithms discussed above we applied them to a game described by
Martin Gardner [16] called Race Track, which simulates automobile racing. We chose this
game because it is an interesting optimal control problem that is easy to describe and has
finite state and action sets. We modified the game as described by Gardner by considering
only a single car, making it probabilistic, bounding the velocities, and handling collisions
with the track boundaries differently.

A race track of any length and shape is drawn on graph paper, with a starting line at
one end and a finish line at the other consisting of designated squares. Each square within
the boundary of the track is a possible location of the car. At the start of each trial, the car
is placed on the starting line, and moves are made in which the car attempts to move down
the track toward the finish line. Acceleration and deceleration are simulated as follows. If
in the previous move the car moved h squares horizontally and v squares vertically, then the
present move can be A’ squares vertically and v’ squares horizontally, where the difference
between k' and his —1, 0, or 1, and the difference between v’ and vis —1, 0, or 1. This means
that the car can maintain its speed in either direction, or it can slow down or speed up in
either direction by one square per move. However, to make the problem have a finite number
of states, we imposed a speed limit L on the car: its speed in any direction cannot exceed
L. To impose this limit, we modified the above acceleration rule so that if the magnitude of
h' (or v') as computed above exceeds L, then k' (or v') is changed so that its magnitude is
L (and its sign is unchanged). The objective is to cross the finish line in as few moves as
possible.

45

We made the problem probabilistic by making the effect of the car’s acceleration depend
on a random factor. At each move, the intended acceleration in either the horizontal or
vertical directions can be —1, 0, or 1. With a probability p, the actual accelerations at each
move are zero independently of the intended accelerations. Thus, 1 — p is the probability
that the controller’s intended actions are executed. One might think of this as simulating
driving on a track that is unpredictably slippery so that sometimes braking and throttling

up have no effect on the car’s velocity.

Collisions with the track boundaries are handled as follows. If the projected path of the
car for a move is determined to intersect the edge of the race track at any place not on
the finish line, the car moves to that intersection point, its speed is reduced to zero in each
direction (i.e., A’ — h and v’ — v are considered to be zero), and the trial continues. This
implies that the car never leaves the track except by crossing the finish line and that it should
usually avoid collisions with the edge of the track to achieve fast finish times (although in
some cases optimal policies exist that cause collisions).

The first step in formulating this game as an example of a stochastic optimal path problem
is to define the dynamical system being controlled. The state of the car at each time step
t = 0,1,... is a quadruple of integers s; = (¢, ¥, 2, %:). The first two integers are the
horizontal and vertical coordinates of the car’s location, and the second two integers are its
speeds in the horizontal and vertical directions. That is, & = z: — @¢—1 is the horizontal
speed of the car at time step ¢; similarly 9 = ¥ — y:1 (we assume z_; = y_; = 0). Because
there are a finite number of possible locations for the car and the speed limit is strictly
enforced, the set of possible states is finite. The set of admissible actions for each state is
the set of pairs (u®, u¥), where u® and u¥ are both in the set {—1,0,1}. We let u, = (uf,uf)
denote the action at time ¢.

The following equations define the state transitions of this system. With probability p,
the state at time step £ + 1 is

Tepr = Tet+ D

Yerr = Yo+ U

:bt+1 =

Yee1 = Yt (12)

and with probability 1 — p, the state at time step £ + 1 is

Tepy = T+ T+ up

Yer1 = Yo+ Y +ul

41 = chopy (e + uy)

Ye41 = chopp(ge + uf), (13)
46

where
-L ifz<-L
chopy(z)=4q¢ L ifz>1L
z otherwise,

imposes the speed limit of L > 0.

This assumes that the straight line joining the point (z¢,3:) to the point (@e41, Ye1) lies
entirely within the track, or intersects only the finish line. If this is not the case, then let
(c?,¢!) be the (first) point of intersection between the track boundary and line joining the
(z¢, %) and (@¢41,Ye+1), Where the latter coordinates are given by Equations 12 or 13. In
this case, the state at time ¢ + 1 is simply set to (¢f,cf,0,0) with probability one, i.e., the
car always comes to a stop exactly at the intersection. A move that takes the car across
the finish line is treated as a valid move, but we assume that the car subsequently stays in
the resulting state until a new trial begins. This method for keeping the car on the track,
together with Equations 12 and 13, define the state-transition probabilities for all states and
admissible actions.

To complete the formulation of a stochastic optimal path problem, we need to define
the set of start states, the set of goal states, and the immediate costs associated with each
action in each state. The set of start states consists of all the zero-velocity states on the
starting line, i.e., all the states (z,y,0,0) where (z,y) are coordinates of the squares making
up the starting line. The set of goal states consists of all states that can be reached in one
time step by crossing the finish line from inside the track. According to the state-transition
function defined above, this set is absorbing. The immediate cost for all non-goal states
is 1.0 independently of the action taken, i.e., c;(x) = 1.0 for all non-goal states i and all
admissible actions u. The immediate cost associated with a transition from any goal state is
0.0. According to these immediate costs, a policy that minimizes the expected total infinite-
horizon undiscounted cost is a policy by which the car crosses the finish line as quickly as
possible starting from any state. '

11 Simulation Results

To illustrate and compare their performances, we applied four DP-based algorithms to
an example of the race track problem. Gauss-Seidel DP and real-time DP apply to the non-
adaptive case; adaptive real-time DP and real-time Q-learning apply to the adaptive case.
Although real-time DP and adaptive real-time DP can back up the costs of many states at
each control step, we restricted attention to the simplest case in which they only back up
the cost of the current state at each time step. This is the case in which B, = {s:} for all ¢.

The example race track is shown in Figure 2. With the speed limit, L, set at 6, there are
8811 states, four of which are start states and 87 of which are goal states. We set p =0.1so0

. 47

that the controller’s intended actions were executed with probability 0.9. We set the problem
up to satisfy the hypotheses of the Trial-Based Real-Time DP Theorem given in Section 6.2.
It is clear that there is at least one proper policy: it is possible for the car to reach the
finish line from any initial state. Because all the immediate costs are positive, we know that
F*(i) must be non-negative for all states . Thus, setting the initial costs of all the states to
zero produces a non-overestimating initial evaluation function as required by the theorem.
We applied the real-time algorithms in a trial-based manner, starting each trial with the car
placed on the starting line with zero velocity, where each square on the starting line was
selected with equal probability, and ending each when the car reached a goal state. Thus,
real-time DP with the discount factor 4 equal to one will converge to the optimal evaluation
function with repeated trials. Gauss-Seidel DP executed off-line with 7 = 1 also converges
under these conditions.

Of the four algorithms, only Gauss-Seidel DP, by which we mean Gauss-Seidel value
iteration as defined in Section 5.2, is a deterministic off-line algorithm. Because the real-time
algorithms are stochastic, we ran each of them several times with different random number
seeds, and the results we report are typical of these runs. To monitor the improvement
in control performance produced by the three real-time algorithms, we interspersed testing
trials with training trails. Each training trial began and ended as described above, and the
algorithm was executed during each training trial to update the evaluation function. Each
testing trial was run with the evaluation function fixed at the evaluation function resulting
from the preceding training trial, i.e., learning was turned off, and the car followed the greedy
policy with respect to the current evaluation function, i.e., the random exploration used by
the adaptive algorithms was turned off. Like the training trials, each testing trial began
with the car placed at a randomly chosen state in the set of start states, but a time-out
mechanism was needed because with the evaluation function fixed and exploration turned
off the car could become trapped in a loop. A testing trial ended when the car reached a
goal state or when 500 moves had been taken since the beginning of the trial. By an epoch
we mean a sequence of trials consisting of 20 training trials followed by 500 testing trials.
The parameter settings and other details of the simulations are given in Appendix D.

Figure 2 shows results from a typical run of real-time DP (Panel A), adaptive real-time
DP (Panel B), and real-time Q-learning (Panel C). The graph in each panel shows the path
length, i.e., the number of moves required to reach the finish time, averaged over the testing
trials of each epoch as a function of the number of epochs for the corresponding algorithm.
Note that the tops of the graphs in Panels B and C have been clipped at the scale chosen.
Many of the paths generated in the testing trials of the early epochs of these runs required
considerably more than 200 moves, and many timed out at the 500 move limit. It is clear
from the graphs that in this problem, real-time DP learns faster than adaptive real-time DP,
which learns faster than real-time Q-learning, when learning rate is measured in terms of the
number actions executed. This is not surprising given the nature of the algorithms and the
differences between the non-adaptive (Panel A) and the adaptive (Panels B and C) versions

48

of the problem.

The right side of each panel of Figure 2 shows the paths followed by the car from each
start state after a number of epochs that differed for each algorithm. These paths were
generated by always applying the actions generated by the controller, instead of applying
them with probability 1 — p. The paths resulted from 150 epochs (Panel A), 400 epochs
(Panel B), and 1,000 epochs (Panel C) of learning for the corresponding algorithms. The
paths shown in Panels A and B are examples of optimal paths, while it is clear that the
paths shown in Panel C are not. Real-time Q-learning took about 2,500 epochs to produce
optimal paths.

Table 1 summarizes the results. Gauss-Seidel DP was considered to have converged to
the optimal evaluation function after 20 sweeps, which required a total of 174,480 backups.
At this point, the maximum cost change over all states between two successive sweeps was
less than 10~*. However, we also determined that the evaluation function produced after 11
sweeps, or 95,964 backups, was good enough so that the corresponding greedy policy was
an optimal policy. We did this by running testing trials after each sweep, much as we did
in testing the real-time algorithms. The optimal trajectory produced by this optimal policy,
which still varies due to the underlying stochasticity in the problem, takes an average of
12.23 moves. It is important to note, however, that this repeated testing is not a part of
the basic Gauss-Seidel DP algorithm, or of any off-line value iteration algorithm. Without
interleaved testing, there is no way to estimate when the evaluation function specifies an
optimal policy before it converges to the optimal evaluation function.!®

Of the other algorithms, real-time DP is most directly comparable to Gauss-Seidel DP.
After about 150 epochs, or 3,000 training trials, real-time DP improved control performance
to the point where a trial took an average of 12.6 moves. After this number of epochs, per-
formance continued to improve, but much more slowly (see Figure 2, Panel A). We therefore
considered the real-time algorithms to have converged when this level of performance was
reached, and we use the number of backups required to reach this level of performance as
a basis for comparing the real-time algorithms. Real-time DP performed 80,666 backups in
reaching this level of performance, about half the number required by Gauss-Seidel DP to
converge to the optimal evaluation function. This number of backups also represents some
savings over the 95,964 backups in the 11 sweeps of Gauss-Seidel DP after which the result-
ing evaluation function defines an optimal policy (although the policy formed by real-time
DP is not quite optimal at this point).

18Policy iteration algorithms address this problem by explicitly generating a sequence of improving policies,
but updating a policy requires computing its corresponding evaluation function, which is generally a time-
consuming computation. As mentioned in Section 8, real-time algorithms based on policy iteration are

beyond the scope of this article.

49

Ish Line —= |11
Starting Line Finish Line -4

1

S

Average path length
8
]

oo_'?
1
|
mLs
181
\
A
CEN

1000
Epoch number

Starting Line Finish Line —ffl:

Average path length
8
. ; ——]
=3
:"]
SEEEE
£
]
EoeE
T

i

Epoch number

| NEN

Finish Line — ﬁ
1

Average path length
8

Epoch number

Figure 2: Performance of Three Real-Time Learning Algorithms. Panel A: Real-Time DP.
Panel B: Adaptive Real-Time DP. Panel C: Real-Time Q-Learning. Each graph shows the
path length averaged over the testing trials of each epoch as a function of the number of
epochs for the corresponding algorithm. The right side of each panel shows the race track
and the paths followed by the car from each start state after a number of epochs that differed
for each algorithm. These paths were generated with random exploration turned off.

20

[Algorithm | Convergence | Number of | Ave. number of | % states backed | % stales backed |
time backups backups per epoch | up < 100 times | up < 10 times
GSDP 20 sweeps 174,480 - - -
RTDP 150 epochs 80, 666 537 99.3 86.15
ARTDP 400 epochs 456,915 1,142 91.6 11.98
RTQ 2,500 epochs | 2,356,433 | 943 40.4 0.02

Table 1: Summary of Learning Performance for Gauss-Seidel DP (GSDP), Real-Time DP
(RTDP), Adaptive Real-Time DP (ARTDP), and Real-Time Q-Learning (RTQ). See text
for explanation.

Another way to compare Gauss-Seidel DP and real-time DP is to examine how the
backups they perform are distributed over the states. Whereas the cost of every state was
backed up in each sweep of Gauss-Seidel DP, real-time DP focused backups on fewer states.
For example, in the first 150 epochs, real-time DP backed up the costs of 99.3% of the states
less than 100 times and 86.15% of the states less than 10 times; the costs of 1,004 states
were backed up only once, and the costs of 185 states were not backed up at all. Although
we did not collect these statistics for real-time DP after 150 epochs, it became even more
focused on the states on optimal paths.

Not surprisingly, solving the adaptive version of the problem requires many more backups.
Adaptive real-time DP took 400 epochs, or 456,951 backups, to achieve trials averaging 12.6
moves. Real-time Q-learning took 2,500 epochs, or 2,356,433 backups, to achieve this level of
performance. Examining how these backups were distributed over states shows that adaptive
real-time DP was considerably more focused than was real-time Q-learning. In the first 400
epochs adaptive real-time DP backed up 91.6% of the states no more than 100 times and
11.98% of the states no more than 10 times. On the other hand, in 2, 500 epochs Q-learning
updated Q-values for only 40.4% of the states no more than 100 times, and the Q-values
corresponding to nearly all states were updated more than 10 times each.

Although these simulations are not definitive comparisons of the four algorithms, they
illustrate some of their general features. Whereas off-line Gauss-Seidel DP continued to
back up the costs of all the states, the real-time algorithms strongly focused on subsets
of the states that were relevant to the control objectives. This focus became increasingly
narrow as learning continued. Because the convergence theorem for trial-based real-time DP
applies to the simulations of real-time DP, we know that this algorithm eventually would
have focused only on states in optimal paths. The adaptive algorithms also focused on
progressively fewer states, although more slowly than did real-time DP. Although we did
not do so here, one can devise storage methods for state costs or Q-values that exploit the
tendency of these algorithms to focus on small subsets of states. Hash table methods would

51

be particularly appropriate as suggested by Korf [32] for LRTA*. Finally, we point out that
the amount of computation required by each of the real-time algorithms at each time step
was small enough not to have been a limiting factor in the simulations. This is in strong
contrast to the amount of computation that would have been required by the generic indirect
method, which would have performed an extensive DP iteration at each time step. For this
reason, we did not attempt to apply the generic indirect method to this problem.

12 Discussion

An early influence on the field of Al was the observation that algorithms guaranteed to
find optimal paths in state-space search require too much time and/or space to be useful
for solving important classes of problems. These problems are characterized by very large
numbers of states and not enough mathematical structure to permit analytical shortcuts.
Abandoning guaranteed optimality, heuristic search algorithms need not expand all possible
states because they explore selected solution paths. DP algorithms, developed mainly in
control theory and operations research, also avoid exhaustive enumeration of all possible
solution paths, but they still require full expansion of all possible states and the storage of
a separate cost for each state. This limits their utility for the majority of the problems of
interest to AI researchers. Nevertheless, because DP algorithms successively approximate
optimal evaluation functions, and explicitly represent each approximation, they are relevant
to learning. They effectively cache in a permanent data structure the results of repeated one-
step searches forward from each state. This information improves as the algorithm proceeds,
converging to the optimal evaluation function, from which one can determine optimal policies
with relative ease: decisions that are greedy with respect to the optimal evaluation function
are optimal decisions. The result is a closed-loop control policy that specifies an optimal
action for each state, i.e., a universal plan based on the states of the underlying dynamical
system.

Although the principles of DP are relevant to learning, traditional DP algorithms are not
themselves really learning algorithms because they operate off-line. They are not applied
during problem solving or control, whereas learning occurs as experience accumulates on-line
from actual attempts at problem solving or control. However, it is possible to interleave the
stages of an otherwise off-line DP algorithm with the steps of on-line problem solving or
control, where the stages can be influenced by the observed behavior of the system. We call
the resulting algorithm real-time DP. A special case of real-time DP coincides with Korf’s
LRTA* [32], and this general approach coincides with previous research by others in which
DP principles have been used for planning and learning (e.g., refs. [47, 58, 59, 67, 72, 73}).

Our contribution has been to bring to bear on real-time DP the theory of asynchronous
DP as presented by Bertsekas and Tsitsiklis [9] and to elaborate Korf’s theory of LRTA*
within this more general framework. Although the suitability of asynchronous DP for im-

52

plementation on multi-processor systems motivated the theory described by Bertsekas and
Tsitsiklis, we have made use of these results in 2 manner they did not discuss. Applying
these results to real-time DP, especially the results about undiscounted stochastic optimal
path problems, provides a more sound theoretical basis for DP-based learning algorithms.
Convergence results for asynchronous DP imply that real-time DP retains the competence
of conventional synchronous or Gauss-Seidel DP algorithms. Furthermore, when extended
using this theory, Korf’s LRTA* convergence theorem provides conditions under which real-
time DP avoids the exhaustive nature of off-line DP algorithms while still yielding optimal
behavior.

We used the formalism of Markovian decision problems to describe algorithms and con-
vergence results. This is the simplest formalism that includes stochastic versions of many
of the problems of interest in AI. Stochastic formulations are important due to the uncer-
tainty present in real applications and the fact that uncertainty is what gives closed-loop,
or reactive, control advantages over open-loop control. We described two variants of Marko-
vian decision tasks. The first, the non-adaptive case, occurs when there is a complete and
accurate model of the decision problem. This model forms the basis for planning, or to use
the control theory term, for the design of control policies. In the second kind of Markovian
decision task—the adaptive case—this model is lacking.

In non-adaptive problems the advantages of real-time DP arise from several factors.
Finding an optimal policy using an off-line DP algorithm may be impractical due to the
number of states and actions involved. For example, the off-line DP algorithm known as value
iteration successively approximates the optimal evaluation function by repeatedly backing up
the costs of all the states until the resulting changes are small enough. Although the estimate
of the optimal evaluation function produced at some stage before value iteration converges
may determine a good, or even an optimal, policy, the algorithm provides no way of knowing
when this occurs. One would have to repeatedly interrupt the algorithm during its progress,
evaluate the policy specified by the current evaluation function, and decide whether or not
this policy is good enough to warrant using it for control. Policy iteration, another off-line
DP algorithm (which we did not discuss in detail), explicitly produces a sequence of policies
that often converges to an optimal policy before the optimal evaluation function is found.
But policy iteration also is not practical for large problems because it requires computing the
evaluation function for each current policy, which is a costly computation requiring finding
the solution to a set of n simultaneous linear equations, where n is the number of states.

Real-time DP is the result of executing an off-line DP algorithm concurrently with the
process of control, where the controller uses the most recent estimate of the optimal evalu-
ation function in deciding on each action. This makes sense when the cost of not acting is
higher than the cost of acting suboptimally. As the evaluation function improves over time,
the controller automatically makes use of this improving control information. Although each
new action taken in a state is not guaranteed to be better than the previous action taken
in that state, the overall policy will converge to an optimal policy under the conditions we

53

have given.

Further, the convergence results for asynchronous DP imply that the states whose costs
are backed up by real-time DP can be chosen freely to facilitate the gathering of control infor-
mation. In particular, the choice of these states can be responsive to the current demands of
control. A consequence of this is that computational resources can focus on states for which
control information is likely to be most important for control performance. Real-time DP
is compatible with any exploration scheme designed to facilitate meeting control objectives,
such as finding goal states in stochastic optimal path problems. The convergence theorem
for trial-based real-time DP as applied to stochastic optimal path problems, which extends
Korf’s [32] convergence theorem for LRTA* to Markovian decision problems, specifies con-
ditions under which real-time DP focuses on states that are on optimal paths—eventually
abandoning all the other states—to produce an optimal partial policy without continuing to
back up the costs of all the states, and possibly without backing up the costs of some states
even once.

Real-time DP is a learning algorithm despite the fact that it requires an accurate model
of the decision problem, as emphasized by Korf’s [32] choice of the name Learning RTA*.
Real-time DP accumulates knowledge on-line during interaction between the controller and
the controlled system that improves control performance over time. Samuel’s famous learning
program for the game of checkers [47, 48], for example, improved its play by using a form of
real-time DP based on a complete and accurate model of the game of checkers. However, we
also devoted considerable attention to the adaptive version of Markovian decision problems
in which an accurate model is not available. We described indirect and direct approaches to
these problems. The method we called the generic indirect method is representative of the
majority of algorithms described in the control theory literature. A system identification
algorithm improves a system model on-line during control, and the controller determines
each of its actions by executing a conventional DP algorithm at each time step based on the
current system model. Although this approach is theoretically convenient, it is much too
costly to apply to any but the smallest problems.

Adaptive real-time DP results from substituting real-time DP for conventional DP in the
generic indirect method. This means that real-time DP is executed using the most recent
system model generated by the system identification algorithm. Adaptive real-time DP can
be tailored for the available computational resources by adjusting the number of DP stages it
executes at each time step. Due to the additional uncertainty in the adaptive case, learning
is necessarily slower than in the non-adaptive case when measured by the number of actions
required. However, the amount of computation required to decide on each control action is
roughly the same. This means that it is practical to apply adaptive real-time DP to problems
that are much larger than those for which it is practical to apply methods, like the generic
indirect method, that repeatedly execute a costly control design procedure.

In addition to indirect adaptive methods, we discussed direct adaptive methods. Direct

54

methods do not form explicit models of the system underlying the decision problem. We
described Watkin’s [67] Q-learning algorithm, which approximates the optimal evaluation
function without forming estimates of state-transition probabilities. Q-learning uses sample
state transitions, either generated by a system model or observed in real-time, to produce a
kind of Monte Carlo asynchronous DP. Following the logic by which we viewed asynchronous
DP as an off-line DP algorithm whose stages are interleaved with control steps to produce
real-time DP, we first presented Q-learning as an off-line algorithm.

Q-learning is a DP algorithm that is asynchronous at a finer grain than is asynchronous
DP. Whereas the basic operation of asynchronous DP is backing up the cost of a state, which
always requires minimizing over all admissible actions, the basic operation of Q-learning is
updating the Q-value of a state-action pair, a computation less dependent on the number of
admissible actions. The fine grain of the basic Q-learning update allows real-time Q-learning
to focus on selected actions in addition to selected states in a way that is responsive to the
observed behavior of the controlled system. The cost of this flexibility is the increased space
complexity of Q-learning compared to adaptive real-time DP and the fact that the basic
Q-learning update does not gather as much information as does backing up a state’s cost
when the state-transition probabilities are known, or good estimates are available.

Sophisticated exploration strategies are important in both non-adaptive and adaptive
Markovian decision problems. In the non-adaptive case, an exploration strategy can improve
control performance by decreasing the time required to reach goal states or, in the case of real-
time DP, by focusing DP stages on states from which information most useful for improving
the evaluation function is likely to be gained. Knowledgeable choice of the ordering of back
ups can accelerate convergence of asynchronous DP, whether applied off- or on-line. In the
adaptive case, exploration is also useful for these reasons, but exploration strategies must
also address the necessity to gather information about the unknown structure of the system
being controlled. Unlike exploration in the non-adaptive case, which can be conducted off-
line based on the system model, this kind of exploration must be conducted on-line. We
discussed how exploration performed for this reason conflicts with the performance objective
of control, at least on a short-term basis, and that the controller should not always generate
the actions that appear to be the best based on its current evaluation function.

Although we did not use sophisticated exploration strategies in our simulations of the race
track problem, and we made no attempt in this article to analyze the difficult issues pertinent
to exploration, sophisticated exploration strategies will play an essential role in making DP-
based learning methods practical for larger problems. From what we did mention, however,
it should be clear that it is not easy to devise a consistent set of desiderata for exploration
strategies. For example, researchers have argued that an exploration strategy should 1) visit
states in regions of the state space where information about the system is of low quality (to
learn more about these regions), 2) visit states in regions of the state space where information
about the system is of high quality (so that the back-up operation uses accurate estimates of
the state-transition probabilities), or 3) visit states having successors whose costs are close to

55

their optimal costs (so that the back-up operation efficiently propagates cost information).
Each of these suggestions makes sense in the proper context, but it is not clear how to
design a strategy that best incorporates all of them. It is encouraging, however, that the
convergence results we have presented in this article are compatible with a wide range of
exploration strategies.

Also critical in making these methods practical for large problems will be means for effi-
ciently storing state costs or Q-values. Much of the research on DP-based learning methods
has made use of storage schemes that do not use the simple lookup-table representation
to which we have restricted attention. In problems in which DP-based learning algorithms
focus on increasingly small subsets of states, as illustrated in our simulations of the race
track problem, data structures such as hash tables and kd-trees can allow the algorithms to
perform well despite the reduced space available. One can also adapt supervised learning
procedures to use each back-up operation of a DP-based learning method to provide training
information. If these methods can generalize adequately from the training data, they can
provide efficient means for storing evaluation functions. Although some success has been
achieved with methods that can generalize, such as connectionist networks, the theory we
have presented in this article does not automatically extend to these cases. Generalization
can disrupt the convergence of asynchronous DP. Additional research is needed to to under-
stand how one can effectively combine function approximation methods with asynchronous

DP.

Throughout this article we have assumed that the states of the system being controlled
are completely and unambiguously observable by the controller. Although this assumption is
critical to the theory and operation of all the algorithms we discussed, it can be very difficult
to satisfy in practice. For example, the current state of a robot’s world is vastly different from
a list of the robot’s current “sensations.” On the positive side, effective closed-loop control
policies do not have to distinguish between all possible sensations. However, exploiting this
fact requires the ability to recognize states in the complex flow of sensations. Although the
problem of state identification has been the subject of research in a variety of disciplines,
and many approaches have been studied under many guises, it remains a critical factor in
extending the applicability of DP-based learning methods. Any widely applicable approach
to this problem must take the perspective that what constitutes a system’s state for purposes
of control—indeed what constitutes the system itself—is not independent of the control
objectives. The framework adopted in this article in which a “dynamical system underlies a
decision problem” is misleading in suggesting the existence of a single definitive grain with
which to delineate events and to mark their passage. In actuality, control objectives dictate
what is important in the flow of the controller’s sensations, and multiple models at different
levels of abstraction may be needed to achieve these objectives. If this caution is recognized,
however, the algorithms described in this article should find wide application as components
of sophisticated learning control systems.

56

Appendices

A Undiscounted Stochastic Optimal Path Problems with Im-
proper Policies

A simple example shows that if there is an improper policy in a stochastic optimal path
problem, then convergence of asynchronous DP requires the immediate costs to be positive.
The example also illustrates some of the differences between synchronous and asynchronous
DP. Figure 3 shows two states that are isolated from other states under some improper
policy. This policy causes the transitions among these states shown by the arrows in the
figure; state transitions for any other possible policies are not shown. The immediate costs
for these states and the actions specified by the improper policy are the numbers on the
arrows. The evaluation function for this improper policy is unbounded for states @ and b
because the net cost each time around the loop is +1. The undiscounted sum of these costs
is infinite. Hence, if this improper policy were optimal, the stage-k costs fi(a) and fi(b)
would grow without bound as k increases in undiscounted synchronous DP. But this cannot
happen when a proper policy exists because synchronous DP will eventually find that the
actions given by the proper policy yield lower costs than those given by the improper policy.
Thus, synchronous DP will never converge to an improper policy when there is a proper
policy, even if the immediate costs are not all positive.

© (&)

Figure 3: Two States Isolated Under Some Improper Policy. The immediate costs of these
states and the actions specified by the improper policy are the numbers on the arrows.
Synchronous and asynchronous DP can yield different costs for these states.

This need not be true for asynchronous DP. For example, suppose the asynchronous
algorithm backs up a’s cost exactly twice between every backup of b’s cost. Then fi(b) will
never change from the initial estimate, fo(b), while fi(a) will oscillate between fo(b) — 1
and fo(b) — 2. In this case, the improper policy giving rise to these costs may appear to be
better than any proper policy so that the asynchronous algorithm will never discover the
true least-cost actions for these states. This difficulty is not present when all the immediate
costs are positive as shown in Appendix B.

57

B Asynchronous Solution of Undiscounted Stochastic Optimal
Path Problems

The Asynchronous Convergence Theorem of Bertsekas and Tsitsiklis (ref. [9], p. 431)
allows one to prove that asynchronous DP converges under quite general conditions. Spe-
cializing this theorem to the case of asynchronous DP, let T' denote the operator implemented
by a stage of the corresponding synchronous DP algorithm, that is,

Ferr = T(fi)-

We use T* to denote the operator resulting from the k-fold application of T, that is

T*(f) = T(... T(T(£)) .-),

where there are k T's on the right. Suppose there is a sequence of nonempty sets {Fi} of
possible evaluation functions satisfying the following conditions:

1. Fk+1 ng, fOI‘aHk:O,].,...,
2. T(f) € Feyq, forall f € Fy and all k=0,1,...

3. If {gr} is a sequence such that gi € Fj, for every k, then every limit point of {gi} is a
fixed point of T, and

4. for every k, there exist sets F}, in this case of real numbers, for i = 1,...,n, where n
is the number of states, such that

F.=F) x F} x...x F_.

Then, if the initial evaluation function, fo, of the asynchronous DP algorithm belongs to the
set Fy, the algorithm converges to the optimal evaluation function, f~.

 We can use this result to prove the following theorem.
Theorem: An undiscounted stochastic optimal path problem can be solved by asynchronous
DP provided that the following three conditions hold:

1. the initial cost of every goal state is zero,

2. there exists at least one proper policy, and

3. all immediate costs incurred by transitions from non-goal states are positive.

58

Proof: Define the functions f = 0 and

.~ _) 0 ifiisa goal state
7@ = { oo otherwise.

Because there exists at least one proper policy and the immediate costs are positive, we
know that f < f~ < f.1° Also observe that because all the immediate costs are positive, T
is monotonic, i.e., f < f' = T(f) < T(f').

By a convergence result for synchronous DP applied to undiscounted stochastic optimal
path problems proved by Bertsekas and Tsitsiklis (ref. [9], Proposition 3.3, p. 318), we know
that synchronous DP converges to f* under the present assumptions (positive immediate
costs imply that every improper policy must have at least one state whose cost is infinite,
as required by Proposition 3.3).

We can now show that the conditions (listed above) required by the Asynchronous Con-
vergence Theorem of Bertsekas and Tsitsiklis [9] are satisfied. Let

Fo={f|IT*® < f <THF)}.

No set F}, is empty because f* € Fy and f* is a fixed point of T. Clearly if f € F}, then
T(f) € Fi41. We also know that Fiyy C Fj by the monotonicity of 7. Because synchronous
DP converges to f*, we have that lim;,_,, T*(f) = f* and that lim;_,,, T*(f) = f=. Therefore,
if {ge} is any sequence with g, € F} for every k, then lim,_ o, gx = f~, which is the unique
fixed point of T'. Finally, note that by the definition of F,

Fy = [(T*)(0), (T*F)(0)] x [(T*)(Q), (T*F)(1)] x ... x [(T*)(n), (T*F)(n)] .

Finally, note that setting the initial cost of every goal state to zero means that f, € Fj.
Q.E.D.

C Proof of the Trial-Based Real-Time DP Theorem

Here we prove the following theorem, which extends Korf’s [32] convergence theorem for
LRTA* to stochastic optimal path problems:

Theorem (Trial-Based Real-Time DP): In undiscounted stochastic optimal path problems,
trial-based real-time DP, with the initial state of each trial restricted to a set of start states,

19For real-valued functions f and f' having the same domain S, f < f' means that for all : € S,

f(3) < f1(9).

59

ensures that the costs of all states that can be reached from any start state using an optimal
policy converge with probability one to their optimal costs under the following conditions: 1)
the initial cost of every goal state is zero, 2) there is at least one proper policy, 3) c;(u) > 0
for all non-goal states i and actions v € U(z), and 4) fo(i) < f~(2) for all states 2 € S.

Proof: We first prove the theorem for the special case in which only the cost of the current
state is backed up at each time interval, i.e., By = {s:} and k; = ¢, for ¢t = 0,1,... (see
Section 6.1). We then observe that the proof does not change when each B, is allowed to be
an arbitrary set containing s,. Let G denote the goal set and let s, , u;, and f; respectively
denote the state, action, and evaluation function at time step ¢ in an arbitrary infinite
sequence of states, actions, and evaluation functions generated by trial-based real-time DP
starting from an arbitrary start state.

First observe that the evaluation functions remain non-overestimating, i.e., at any time
t, fi(3) < f~(3) for all states 7. This is true by induction because fi11(2) = fi(7) for all 7 # s,
and if f,(j) < f*(5) for all j € G, then for all ¢

fc+1(3t) = min C,,(u)+2p,,j(U)f¢(j)]

ueU(3) jes

ca() + 3 Pa.j(u)f"(j)‘ = f(s¢),

Jj€Ss

< min
u€eU(s)

where the last equality restates the Bellman Optimality Equation (Equation 4).

Let I C S be the set of all states that appear infinitely often in this arbitrary sequence;
I must be nonempty because the state set is finite. Let A(z) € U(i) be the set of admissible
actions for state : that have zero probability of causing a transition to a state not in I, i.e.,
A(2) is the set of all actions u € U(%) such that p;;(v) = 0 for all j € (S — I). Because states
in S —I appear a finite number of times, there is a finite time Ty after which all states visited
are in . Then with probability one any action chosen an infinite number of times for any
state i that occurs after Tp must be in A(z) (or else with probability one a transition out of
I would occur), and so with probability one there must exist a time T} > T, such that for
all t > T3, we not only have that s, € I but also that u, € A(s,).

We know that at each time step ¢, real-time DP backs up the cost of s, because s; € B,.
We can write the back-up operation as follows:

ft+1(8t) = Ca.(ut)"'zpa.j(ut)ft(j)'i' Z Pa.j(ut)ft(j)- (14)

jel i€(s-I)

But for all ¢ > T), we know that s, € I and that p,,;(u;) = 0 for all j € S — I.because
us € A(s¢). Thus, for ¢ > T) the right-most summation in Equation 14 is zero. This means

60

that the costs of the states in S — I have no influence on the operation of real-time DP
after Ty. Thus, after T}, real-time DP performs asynchronous DP on a Markovian decision
problem with state set I.

If no goal states are contained in J, then all the immediate costs in this Markovian decision
problem are positive. Because there is no discounting, it can be shown that asynchronous
DP must cause the costs of the states in I to grow without bound. But this contradicts the
fact that the cost of a state can never overestimate its optimal cost, which must be finite
due to the existence of a proper policy. Thus I contains a goal state with probability one.

After T}, therefore, trial-based real-time DP performs asynchronous DP on a stochastic
optimal path problem with state set I that satisfies the conditions of the convergence theorem
for asynchronous DP applied to undiscounted stochastic optimal path problems (Bertsekas
and Tsitsiklis [9], Proposition 3.3, p. 318). Consequently, trial-based real-time DP converges
to the optimal evaluation function of this stochastic optimal path problem. We also know
that the optimal evaluation function for this problem is identical to the optimal evaluation
function for the original problem restricted to the states in J because the costs of the states
in § — I have no influence on the costs of states in I after time T}.

Furthermore, with probability one I contains the set of all states reachable from any start
state via any optimal policy. Clearly, I contains all the start states because each start state
begins an infinite number of trails. Trial-based real-time DP always executes a greedy action
with respect to the current evaluation function and breaks ties in such a way that it continues
to execute all the greedy actions. Because we know that the number of policies is finite and
that trial-based real-time DP converges to the optimal evaluation function restricted to I,
there is a time after which it continues to select all the actions that are greedy with respect
to the optimal evaluation function, i.e., all the optimal actions. Thus with probability one
I contains all the states reachable from any start state via any optimal policy.

Finally, with trivial revision the above argument holds if real-time DP backs up the costs
of states other than the current state at each time step, i.e., if each B, is an arbitrary subset

of S.
Q.E.D.

D Simulation Details

Except for the discount factor, which we set to one throughout the simulations, real-time
DP does not involve any parameters. Gauss-Seidel DP only requires specifying a state order-
ing for its sweeps. We selected an ordering without concern for any influence it might have
on convergence rate. Both adaptive real-time DP and real-time Q-learning require explo-
ration during the training trials, which we implemented using Equation 8. The parameter

61

T decreased with successive trials as follows:

T(O) = TMnx
T(k + 1) = TMin + IB(T(k) - TMln)’

where k is the trial number and 0 < 8 < 1. For both algorithms, Ty,, = 75 and 8 = 0.992.
For adaptive real-time DP, Ty, = 0.25, and for real-time Q-learning, T\, = 0.5.

Real-time Q-learning additionally requires sequences of learning rate parameters o (i,)
(Equation 11) that satisfy the hypotheses of the Q-Learning Theorem. We defined these
sequences as follows. Let (%, u) denote the learning rate parameter used when the Q-value
of the state-action pair (¢, u) is updated at time step ¢. Let n.(i,u) be the number of updates
performed on the Q-value of (¢,u) up to time step ¢. The learning rate (i, v) is defined as
follows:

QoT

(i, u) = Py

where o is the initial learning rate. We set a9 = 0.5 and 7 = 300. This equation implements
a search-then-converge schedule for each oy(i,u) as suggested by Darken and Moody [13].
They argue that such schedules can achieve good performance in stochastic optimization
tasks. It can be shown that this schedule satisfies the hypotheses of the convergence theorem
for off-line Q-Learning.

References

[1] C. W. Anderson. Strategy learning with multilayer connectionist representations. Tech-
nical Report TR87-509.3, GTE Laboratories, Incorporated, Waltham, MA, 1987. (This
is a corrected version of the report published in Proceedings of the Fourth International
Workshop on Machine Learning,103-114, 1987, San Mateo, CA: Morgan Kaufmann.).

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernet-
ics, 13:835-846, 1983. Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing:
Foundations of Research, MIT Press, Cambridge, MA, 1988.

(3] A. G. Barto, R. S. Sutton, and C. Watkins. Sequential decision problems and neu-
ral networks. In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems 2, pages 686-693, San Mateo, CA, 1990. Morgan Kaufmann.

[4] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential deci-
sion making. In M. Gabriel and J. Moore, editors, Learning and Computational Neuro-

science:Foundations of Adaptive Networks, pages 539-602. MIT Press, Cambridge, MA,
1990.

62

(5] A.G. Barto and S.P. Singh. On the computational economics of reinforcement learning.
In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Connection-
ist Models Proceedings of the 1990 Summer School, pages 35-44. Morgan Kaufmann,
San Mateo, CA, 1991.

(6] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

(7] D. P. Bertsekas. Distributed dynamic programming. IEEE Transactions on Automatic
Control, 27:610-616, 1982.

[8] D.P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-

Hall, Englewood Cliffs, NJ, 1987.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[10] R. Boundarel, J. Delmas, and P. Guichet. Dynamic Programming and its Application
to Optimal Control. Academic Press, New York, 1971.

[11] D. Chapman. Penquins can make cake. Al Magazine, 10:45-50, 1989.

[12] D. Chapman and L. P. Kaelbling. Input generalization in delayed reinforcement learning:
An algorithm and performance comparisons. In Proceedings of the 1991 International
Joint Conference on Artificial Intelligence. To appear.

(13] C. Darken and J. Moody. Note on learning rate schedule for stochastic optimization. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Infor-
mation Processing Systems 3, pages 832-838, San Mateo, CA, 1991. Morgan Kaufmann.

[14] P. Dayan. Navigating through temporal difference. In R. P. Lippmann, J. E. Moody,
and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3,
pages 464-470, San Mateo, CA, 1991. Morgan Kaufmann.

[15] P. Dayan. Reinforcing Connectionism: Learning the Statistical Way. PhD thesis, Uni-
versity of Edinburgh, 1991.

[16] M. Gardner. Mathematical games. Scientific American, 228:108, January 1973.

[17) M. L. Ginsberg. Universal planning: An (almost) universally bad idea. Al Magazine,
10:40-44, 1989.

[18] R. Gonzalez and E. Rofman. On deterministic control problems: An approximate proce-
dure for the optimal cost I. The stationary problem. SIAM J. Control and Optimization,

23:242-266, 1985.

63

(19] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control. Prentice-Hall,
Englewood Cliffs, N.J., 1984.

[20] V. Gullapalli. A comparison of supervised and reinforcement learning methods on a
reinforcement learning task. In Proceedings of the 1991 IEEE Symposium on Intelligent
Control. Arlington, VA. To appear.

[21] S. E. Hampson. Connectionist Problem Solving: Computational Aspects of Biological
Learning. Birkhauser, Boston, 1989.

[22] J. H. Holland. Escaping brittleness: The possibility of general-purpose learning algo-
rithms applied to rule-based systems. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, Volume II,
pages 593-623. Morgan Kaufmann, San Mateo, CA, 1986.

[23] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, New
York, 1970.

[24] A. Jalali and M. Ferguson. Computationally efficient adaptive control algorithms for
Markov chains. In Proceedings of the 28th Conference on Decision and Control, pages
1283-1288, Tampa, Florida, 1989.

[25] M. L. Jordan and R. A. Jacobs. Learning to control an unstable system with forward
modeling. In D. S. Touretzky, editor, Advances in Neural Information Processing Sys-
tems 2, San Mateo, CA, 1990. Morgan Kaufmann.

[26] L. P. Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford University,
Department of Computer Science, Stanford, CA, 1990. Technical Report TR-90-04.

[27] L. P. Kaelbling. Learning in Embedded Systems. MIT Press, Cambridge, MA, 1991.
Revised version of Teleos Research TR-90-04, June 1990.

[28] R. L. Kasyap, C. C. Blaydon, and K. S. Fu. Stochastic approximation. In J. M. Mendel
and K. S. Fu, editors, Adaptive, Learning, and Pattern Recognition Systems: Theory
and Applications. Academic Press, New York, 1970.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, 1983.

[30] A. H. Klopf. Brain function and adaptive systems—A heterostatic theory. Technical
Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA,
1972. A summary appears in Proceedings of the International Conference on Systems,
Man, and Cybernetics, 1974, IEEE Systems, Man, and Cybernetics Society, Dallas, TX.

[31) A. H. Klopf. The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence.
Hemishere, Washington, D.C., 1982.

64

[32] R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990.

[33] P. R. Kumar. A survey of some results in stochastic adaptive control. SIAM Journal
of Control and Optimization, 23:329-380, 1985.

(34] V. Kumar and L. N. Kanal. The CDP: A unifying formulation for heuristic search,
dynamic programming, and branch-and-bound. In L. N. Kanal and V. Kumar, editors,
Search in Artificial Intelligence, pages 1-37. Springer-Verlag, 1988.

[35) W. H. Kwon and A. E. Pearson. A modified quadratic cost problem and feedback
stabilization of a linear system. IEEE Transactions on Automatic Control, 22:838-842,
1977.

[36] Y. le Cun. A theoretical framework for back-propagation. In D. Touretzky, G. Hinton,
and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School,
pages 21-28. Morgan Kaufmann, San Mateo, CA, 1988.

[37] M. Lemmon. Real-time optimal path planning using a distributed computing paradigm.
In Proceedings of the American Control Conference, Boston, MA, 1991.

(38] Long-Ji Lin. Self-improvement based on reinforcement learning, planning and teach-
ing. In L. A. Birnbaum and G. C. Collins, editors, Maching Learning: Proceedings
of the Eighth International Workshop, pages 323-327, San Mateo, CA, 1991. Morgan
Kaufmann.

[39] Long-Ji Lin. Self-improving reactive agents: Case studies of reinforcement learning
frameworks. In From Animals to Animats: Proceedings of the First International Con-

ference on Simulation of Adaptive Behavior, pages 297-305, Cambridge, MA, 1991. MIT
Press.

[40] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. I[EEE
Transactions on Automatic Control, 35:814-824, 1990.

[41] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale
and D. Michie, editors, Machine Intelligence 2, pages 137-152. Oliver and Boyd, 1968.

[42] M. L. Minsky. Theory of Neural-Analog Reinforcement Systems and its Application to
the Brain-Model Problem. PhD thesis, Princeton University, 1954.

[43] M. L. Minsky. Steps toward artificial intelligence. Proceedings of the Institute of Radio
Engineers, 49:8-30, 1961. Reprinted in E. A. Feigenbaum and J. Feldman, editors,
Computers and Thought. McGraw-Hill, New York, 406-450, 1963.

[44] A. W. Moore. Efficient Memory-Based Learning for Robot Control. PhD thesis, Uni-
versity of Cambridge, Cambridge, UK, 1990.

65

[45] A. W. Moore. Variable resolution dynamic programming: Efficiently learning action
‘maps in multivariate real-valued state-spaces. In L. A. Birnbaum and G. C. Collins,
editors, Maching Learning: Proceedings of the Eighth International Workshop, pages
333-337, San Mateo, CA, 1991. Morgan Kaufmann.

[46] S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New York,
1983.

[47] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
on Research and Development, pages 210-229, 1959. Reprinted in E. A. Feigenbaum
and J. Feldman, editors, Computers and Thought, McGraw-Hill, New York, 1963.

[48] A. L. Samuel. Some studies in machine learning using the game of checkers. II—Recent
progress. IBM Journal on Research and Development, pages 601-617, November 1967.

[49] J. Schmidhuber. Adaptive confidence and adaptive curiosity. Technical Report FKI-149-
91, Institut fiir Informatik, Technische Universitdt Miinchen, Arcisstr. 21, 800 Miinchen
2, Germany, 1991.

[50] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In From Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behavior, pages 222-227, Cambridge, MA, 1991.
MIT Press.

[61) M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages
1039-1046, Menlo Park, CA, 1987.

[62] M. J. Schoppers. In defense of reaction plans as caches. Al Magazine, 10:51-60, 1989.

[53] S. P. Singh. Transfer of learning across compositions of sequential tasks. In L. A.
Birnbaum and G. C. Collins, editors, Maching Learning: Proceedings of the Eighth
International Workshop, pages 348-352, San Mateo, CA, 1991. Morgan Kaufmann.

[54] S.P. Singh. Transfer of learning by composing solutions for elemental sequential tasks.
Machine Learning, to appear.

[55] H. Stephanou, editor. Special Issue on Intelligent Control. IEEE Control Systems Mag-
azine, June 1991. 11.

[56] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts, Amherst, MA, 1984.

[57) R. S. Sutton. Learning to predict by the method of temporal differences. Machine
Learning, 3:9-44, 1988.

66

(58] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International Con-
ference on Machine Learning, pages 216-224, San Mateo, CA, 1990. Morgan Kaufmann.

[59] R. S. Sutton. Planning by incremental dynamic programming. In L. A. Birnbaum
and G. C. Collins, editors, Maching Learning: Proceedings of the Eighth International
Workshop, pages 353-357, San Mateo, CA, 1991. Morgan Kaufmann.

[60] R.S. Sutton and A. G. Barto. Toward a modern theory of adaptive networks: Expec-
tation and prediction. Psychological Review, 88:135-170, 1981.

[61] R. S. Sutton and A. G. Barto. A temporal-difference model of classical conditioning. In
Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Hillsdale,
NJ, 1987. Erlbaum. '

[62] R. S. Sutton and A. G. Barto. Time-derivative models of Pavlovian reinforcement. In
M. Gabriel and J. Moore, editors, Learning and Computational Neuroscience: Founda-
tions of Adaptive Networks, pages 497-537. MIT Press, Cambridge, MA, 1990.

[63] R.S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning is direct adaptive
optimal control. In Proceedings of the American Control Conference, pages 2143-2146,
Boston, MA, 1991.

[64] M. Tan. Learning a cost-sensitive internal representation for reinforcement learning. In
L. A. Birnbaum and G. C. Collins, editors, Maching Learning: Proceedings of the Eighth
International Workshop, pages 358-362, San Mateo, CA, 1991. Morgan Kaufmann.

[65] S. B. Thrun and K. Méller. Active exploration in dynamic environments. Submitted
for publication.

[66] P. E. Utgoff and J. A. Clouse. Two kinds of training information for evaluation function
learning. In Proceedings of the Ninth Annual Conference on Artificial Intelligence, pages
596-600, San Mateo, CA, 1991. Morgan Kaufmann.

[67] C.J.C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University,
Cambridge, England, 1989.

[68] C. J. C. H. Watkins and P. Dayan. Q-learning. Submitted for publication.

(69] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-
ioral Sciences. PhD thesis, Harvard University, 1974.

[70] P. J. Werbos. Advanced forecasting methods for global crisis warning and models of
intelligence. General Systems Yearbook, 22:25-38, 1977.

67

(71] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In R. F.
Drenick and F. Kosin, editors, System Modeling an Optimization. Springer-Verlag, 1982.
Proceedings of the Tenth IFIP Conference, New York, 1981.

[72] P. J. Werbos. Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEEE Transactions on Systems,
Man, and Cybernetics, 1987.

[73] P. J. Werbos. Generalization of back propagation with applications to a recurrent gas
market model. Neural Networks, 1:339-356, 1988.

[74] P. J. Werbos. Neural networks for control and system identification. In Proceedings of
the 28th Conference on Decision and Control, pages 260-265, Tampa, Florida, 1989.

[75] P. J. Werbos. Consistency of HDP applied to simple reinforcement learning problem.
Neural Networks, 3:179-189, 1990.

(76] R. M. Wheeler and K. S. Narendra. Decentralized learning in finite Markov chains.
IEEE Transactions on Automatic Control, 31:519-526, 1986.

(77] S. D. Whitehead. Complexity and cooperation in Q-learning. In L. A. Birnbaum
and G. C. Collins, editors, Maching Learning: Proceedings of the Eighth International
Workshop, pages 363-367, San Mateo, CA, 1991. Morgan Kaufmann.

(78] S. D. Whitehead and D. H. Ballard. A study of cooperative mechanisms for faster
reinforcement learning. Technical Report TR 365, University of Rochester, Computer
Science Department, 1991.

[79] R.J. Williams and L. C. Baird, III. A mathematical analysis of actor-critic architectures
for learning optimal controls through incremental dynamic programming. In Proceedings
of the Sizth Yale Workshop on Adaptive and Learning Systems, pages 96-101, New
Haven, CT, Aug 1990.

(80] I. H. Witten. An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34:286-295, 1977.

(81] I. H. Witten. Exploring, modelling and controlling discrete sequential environments.
International Journal of Man-Machine Studies, 9:715-735, 1977.

[82] L. E. Wixsom. Scaling reinforcement learning techniques via modularity. In L. A.
Birnbaum and G. C. Collins, editors, Maching Learning: Proceedings of the Fighth
International Workshop, pages 368-372, San Mateo, CA, 1991. Morgan Kaufmann.

68

