—3 — 3

T3 "3

3

The CIRCUS System as Used in MUC-3

Wendy Lehnert, Robert Williams,
Claire Cardie, Ellen Riloff and David Fisher

COINS Technical Report 91-59

Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

This report contains a technical description of a sophisticated natural language processing system de-
signed to operate on unconstrained texts describing acts of terrorism. This particular system was used
in the final evaluation of the Third Message Understanding Conference (MUC-3), where it posted the
highest recall rates and highest combined scores for recall and precision of all the systems under eval-
uation. Details are provided with respect to semantic and syntactic sentence analysis as well as the
discourse-level analysis of complete texts. Of particular interest is our ability to robustly analyze texts
using only a minimal dictionary (6,000 words), and without generating syntactic parse trees for indi-
vidual sentences. A case-based reasoning (CBR) approach to discourse analysis is also noteworthy. In
addition, this system description indicates how much domain-specific effort was needed to bring a generic
sentence analyzer up to speed for a particular information extraction application.

ACKNOWLEDGEMENTS: Our participation in MUC-3 was supported by a DARPA contract admin-
istered by Meridian Aggregates Co., Contract No. MDA903-89-C-0041, the Office of Naval Research,
under a University Research Initiative Grant, Contract No. N00014-86-K-0764 and NSF Presidential
Young Investigators Award NSFIST-8351863.

3 4

T3

|

4 T3 3 T4 Ta 1

B

3 i — 3 3

— 3

Contents

1 Introduction and Reader’s Guide

2 A Brief Overview of the MUC-3/CIRCUS System

2.1 Background and Motivation
2.2 Systemn COMPOMENES o v v ov v v v
9.2.1 Sentence Preprocessingo
2292 Lexical Analysis oo
2.2.3 Semantic and Syntactic Predictions A e
99.4 Other Problems in Sentence Analysis oo
995 Rule-Based Consolidation v
996 Case-Based Consolidation« oo oo
93 MUQC-3 Test Results« o v v oo v oo
2.4 Systemn Development oo
2.5 Domain-Independent Advanceso
2.6 Up Against the Wall: Are We There Yet? o oo e e e e e
9.7 CONCIUSIONS . - « « « v ¢ e oo e e e

3 Sentence Analysis

3.1 Preprocessing in CIRCUSo v v e
F1.l DALES . . v o e e e e
312 NUMDEIS . . . o ¢ o v o v e e
3.1.3 POSSESSIVES . . o ¢ .« it e e e e

- A |

3

3

E .

T3

T3 T3

3 3 3

S

CONTENTS
314 Punctuation e
3.1.5 Morphological Analysis and Definition Generation
3.1.6 Phrasal Substitution
3.2 Dictionary Construction
3.2.1 Word Definition for Muc-3 o0 ...
3.2.2 Word Recognition
3.2.3 AuTo-LEX: A Tool for Building Dictionaries
3.3 Concept Node Definitions
3.3.1 Differences from CIRCUS Concept Nodes
3.3.2 Concept Node Classes,
3.3.3 Defining New Concept Nodes
3.4 Prepositional Phrase Attachment
341 Examples e e e
3.5 Embedded Clauses o v v ot it e e e e
3.5.1 Triggering LICKs e e
3.6 Appositives and Conjunctions
36.1 Appositives
3.6.2 Conjunctionso
4 Discourse Analysis
41 AnOverview PO
4.1.1 Rule-Based Comsolidation,
4.1.2 Case-Based Consolidation
4.2 Rule-Based Comsolidation
4.2.1 Constructing Task-Specific Representations
422 Partitioning
4.2.3 Rule-based Merging v o v v ot
424 Normalization o v o vt i i ittt e e
4.3 Case-based Consolidation

r—-—g r-'—-g

P

r

3

r

l“"“'—g

3

,._.q r-—-a ;——-—g v——‘g r—"ﬁ |

CONTENTS
43.1 Extracting Casesfrom Texts 84
432 CaseRetrieval 89
433 UsingCases 94
44 Future Work e e 95
5 Bibliography , 97
6 Appendices 98

3 T3 T3

3

S|

T3 T3 T3

3

Preface

This technical report describes the major components of the UMass/MUC-3 system as it ran
during the official testing for the MUC-3 performance evaluation in May, 1991. Some portions
of this report also appear in the MUC-3 Conference Proceedings (soon to be published by
Morgan Kaufmann); the others have not been previously published. Everyone associated with
the UMass/MUC-3 effort contributed to this system description. Claire Cardie wrote the
sections on concept node definitions and other features of CIRCUS-based processing. Ellen
Riloff contributed the sections on rule-based consolidation. Robert Williams described the
case-based consolidation module. David Fisher supplied the sections on preprocessing, the
dictionary, and dictionary construction. We are also grateful to Priscilla Coe for assembling
this document and converting a variety of text files and figures to a common LaTex format.

In the interest of releasing a timely system description, we have not labored over the text

‘to ensure polished prose or comprehensive technical coverage. We were more concerned with

recording a system description before our thinking about these problems changed too much,
and moreover, without prolonging our collective MUC-3 mindset beyond a much-needed but
necessarily short period of recuperation.

The system described in these pages evolved from a group effort over a period of about one
year. It required constant attention, disciplined devotion, and an enthusiastic commitment from
everyone. In return, our MUC-3 efforts provided us with a stimulating intellectual challenge
that propelled us in new research directions. In the weeks that have now passed since the final
evaluation, each of us has shifted our attention to a variety of new ideas that had to be put on
the “back burner” while MUC-3 was dominating our lives. We expect additional publications
to be forthcoming from each of the individuals associated with the UMass /MUC-3 system, and
a more thorough presentation of our theoretical foundations will be made available as those
efforts materialize. In the meantime, this bare-bones system description will provide technical
details for those who need to know, and a detailed snapshot of the system that participated in
the final evaluation for MUC-3.

Wendy G. Lehnert
August 14, 1991

4 3 T3

4

3

— 4

—a 3 3

|

Chapter 1

Introduction and Reader’s Guide

Selective concept extraction is a sentence analysis technique that simulates the human ability
to skim text and extract information in a selective manner. People engage in this mode of
text comprehension when they are strongly goal-oriented and are only interested in a relatively
small proportion of the total information present in a text. For example, someone reading an
accident report may only care about the identify of the victims. Or someone reading a technical
report may only care about the way that a particular problem is handled.

We have implemented a sentence analyzer (CIRCUS) that automates selective concept extrac-
tion using computational techniques drawn from both symbolic and connectionist traditions.
It is based on a strongly predictive version of preference semantics that integrates syntactic
knowledge in a highly systematic and robust manner. CIRCUS produces case frame instanti-
ations that can be designed to accommodate any representational theory deemed desirable for
a given domain. CIRCUS does not presume complete dictionary coverage for a particular do-
main, and does not rely on the application of a formal grammar for syntactic analysis. Just as
people skip entire sections of text, CIRCUS ignores entire sentences when it does not recognize
any of the words as being relevant to its predefined expectations. More importantly, CIRCUS
can selectively analyze those portions of a sentence that are relevant to its expectations while
ignoring other parts of the sentence altogether.

The basic ideas behind CIRCUS are relatively simple and can be mastered by a bright under-
graduate within a semester. It takes considerably longer to become skilled at the knowledge
engineering required for a specific application of CIRCUS. We have conducted a very serious
knowledge engineering experiment in conjunction with CIRCUS as participants in DARPA’s
MUC-3 performance evaluation for state-of- the-art natural language processors. This tech-
nical report describes the resulting system as it ran during the final MUC-3 evaluation test.
The original MUC-3/CIRCUS system was implemented in Common LISP on a TI Explorer II
supporting 8 MB of RAM. A second Common LISP implementation has since been written for
the MAC II so the system is now available to other research labs on two platforms.

CHAPTER 1. INTRODUCTION AND READER’S GUIDE 2

Our system description has been organized to accommodate both casual readers and readers
looking for lots of technical details. For a broad overview of the system, a casual reader can
go through section II (A Brief Overview of the MUC-3/CIRCUS System) and then dip into
subsequent sections as interests dictate. More ambitious readers can continue on through all
of Chapter III (Sentence Analysis) and/or Chapter IV (Discourse Analysis) to get more details
throughout.

Although we have tried to anticipate the needs of different readers, this document is nevertheless
a technical report in the truest sense of the term. We present here a technical system description
without much historical motivation, pointers to related literature, or any attempt to lay out
theoretical claims. As such, this document is not intended to be a self-contained summary
of our MUC-3 involvement or beliefs about natural language processing. Other publications
should be read in conjunction with this report in order to provide a more satisfactory picture
of ongoing research in natural language processing at the University of Massachusetts.

For an overview of the MUC-3 text analysis performance evaluation, please refer to “A per-
formance evaluation of text processing technologies” by W. Lehnert and B. Sundheim, in the
fall 1991 issue of Al Magazine. For a more in-depth description of MUC-3, the Proceedings
for the Third Message Understanding Conference (publisher: Morgan Kaufmann, 1991) is the
definitive publication on MUC-3 containing all official test results, site reports, and system
descriptions. :

For more background on the CIRCUS sentence analyzer, the best introduction is “Symbolic/
. subsymbolic sentence analysis: Exploiting the best of two worlds” by W. Lehnert in Advances
in Connectionist and Neural Computation Theory (eds: J. Pollack and J. Barnden, 1991).
This paper is also available as a technical report from the Department of Computer Science
at the University of Massachusetts (COINS TR88-99). The CIRCUS sentence analyzer was
initially used to process citation sentences in technical literature. This earlier experiment with
selective concept extraction is described in “Analyzing research papers using citation sentences”
by W. Lehnert, C. Cardie, and E. Riloff, in the Proceedings of the Twelfth Annual Conference
of the Cognitive Science Society (1990). The LICK formalism developed to handle complex
sentences with embedded clauses is also presented in “A cognitively plausible approach to
understanding complex syntax” by C. Cardie and W. Lehnert in the Proceedings of the Ninth
National Conference on Artificial Intelligence (1991).

m!

3

Chapter 2

A Brief Overview of the
MUC-3/CIRCUS System

2.1 Background and Motivation

In 1988 Professor Wendy Lehnert completed the initial implementation of a semantically- ori-
ented sentence analyzer named CIRCUS [1]. The original design for CIRCUS was motivated
by two basic research interests: (1) we wanted to increase the level of syntactic sophistication
associated with semantically-oriented parsers, and (2) we wanted to integrate traditional sym-
bolic techniques in natural language processing with connectionist techniques in an effort to
exploit the complementary strengths of these two computational paradigms.

Shortly thereafter, two graduate students, Claire Cardie and Ellen Riloff, began to experiment
with CIRCUS as a mechanism for analyzing citation sentences in the scientific literature [2].
The key idea behind this work was to extract a relatively abstract level of information from
each sentence, using only a limited vocabulary that was hand-crafted to handle a restricted set
of target concepts. We called this mode of language processing selective concept extraction, and
the basic style of sentence analysis was a type of text skimming. This project provided us with
an opportunity to give CIRCUS a workout and determine whether or not the basic design was
working as expected.

Although CIRCUS was subject to a number of limitations, the integration of syntax and seman-
tics appeared to work very nicely. We believed we had constructed a robust text skimmer that
was semantically oriented but nevertheless able to use syntactic knowledge as needed. Projects
associated with the connectionist aspect of CIRCUS took off at about this time and carried us
in those directions for a while [3,4,5]. When an announcement for MUC-3 reached us in June
of 1990, we felt that the MUC-3 evaluation required selective concept extraction capabilities of
just the sort we had been developing. We were eager to put CIRCUS to the test.

It was clear to us that MUC-3 would require a much more ambitious and demanding appli-

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 4

cation of CIRCUS than our earlier work on citation sentences, and we fully expected to learn
a great deal from the experience. We hoped to capitalize on Cardie and Riloff’s previous ex-
perience with CIRCUS while identifying some new areas for ongoing research in sophisticated
text analysis. In September of 1990, Robert Williams joined our MUC-3 effort as a post doc
with research experience in case-based reasoning. Cardie, Riloff, and Williams provided the
technical muscle for all of our MUC-3 system development and knowledge engineering. Cardie
was primarily responsible for CIRCUS and dictionary design, Riloff developed the rule-based
consolidation component, and Williams designed the case-based reasoning consolidation compo-
nent. Although the division of labor was fairly clean, everyone worked with CIRCUS dictionary
definitions and the preprocessor at various times as needed. In January of 1991, David Fisher
joined the project as an undergraduate assistant who designed an interface for faster dictionary
development while assisting with internal testing. Professor Lehnert assumed a leadership role
but made no programming contributions to MUC-3.

2.2 System Components

Although CIRCUS was the primary workhorse underlying our MUC-3 effort, it was necessary to
augment CIRCUS with a separate component that would receive CIRCUS output and massage
that output into the final target template instantiations required for MUC-3. This phase of
our processing came to be known as consolidation, although it corresponds more generally
to what many people would call discourse analysis. We will describe both CIRCUS and our
consolidation processing with examples from TST1-MUC3-0099.

TST1-MUC3-0099

(S1) LIMA, 25 OCT 89 (EFE) - [TEXT]} POLICE HAVE REPORTED THAT TERRORISTS TONIGHT
BOMBED THE EMBASSIES OF THE PRC AND THE SOVIET UNION.

(S2) THE BOMBS CAUSED DAMAGE BUT NO INJURIES.

(S3) A CAR-BOMB EXPLODED IN FRONT OF THE PRC EMBASSY, WHICH IS IN THE LIMA
RESIDENTIAL DISTRICT OF SAN ISIDRO.

(S4) MEANWHILE, TWO BOMBS WERE THROWN AT A USSR EMBASSY VEHICLE THAT
WAS PARKED IN FRONT OF THE EMBASSY LOCATED IN ORRANTIA DISTRICT, NEAR SAN
ISIDRO.

(S5) POLICE SAID THE ATTACKS WERE CARRIED OUT ALMOST SIMULTANEOUSLY AND
THAT THE BOMBS BROKE WINDOWS AND DESTROYED THE TWO VEHICLES.

(S6) NO ONE HAS CLAIMED RESPONSIBILITY FOR THE ATTACKS SO FAR.

(S7) POLICE SOURCES, HOWEVER, HAVE SAID THE ATTACKS COULD HAVE BEEN CAR-
RIED OUT BY THE MAOIST “SHINING PATH” GROUP OR THE GUEVARIST “TUPAC AMARU
REVOLUTIONARY MOVEMENT” (MRTA) GROUP.

(S8) THE SOURCES ALSO SAID THAT THE SHINING PATH HAS ATTACKED SOVIET INTER-
ESTS IN PERU IN THE PAST.

(e

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 5
(S9) IN JULY 1989 THE SHINING PATH BOMBED A BUS CARRYING NEARLY 50 SOVIET
MARINES INTO THE .PORT OF EL CALLAO.

(S10) FIFTEEN SOVIET MARINES WERE WOUNDED.

(S11) SOME 3 YEARS AGO TWO MARINES DIED FOLLOWING A SHINING PATH BOMBING
OF A MARKET USED BY SOVIET MARINES.

(S12) IN ANOTHER INCIDENT 3 YEARS AGO, A SHINING PATH MILITANT WAS KILLED BY
SOVIET EMBASSY GUARDS INSIDE THE EMBASSY COMPOUND.

(S13) THE TERRORIST WAS CARRYING DYNAMITE.

(S14) THE ATTACKS TODAY COME AFTER SHINING PATH ATTACKS DURING WHICH LEAST
10 BUSES WERE BURNED THROUGHOUT LIMA ON 24 OCT.

Complete traces of system output for TST1-MUC3-0099 are listed in Appendices A, B, and C.

Target
Template
Instantiations
sentences f
g&w . Rule-Based
Preprocess. urse Discourse
tng Analyals - Analyets
modified sentencos I
. Semantic e Conceptual
Predl Caso-Frame
‘ / ctions Instantistions
Analysis \
Syntactic
Pnd.h’n tions

Figure 2.1: Flow Chart for the MUC-3/CIRCUS System

2.2.1 Sentence Preprocessing

To begin, each sentence is given to our preprocessor where a number of domain-specific mod-
ifications are made. (1) Dates are analyzed and translated into a canonical form. (2) Words
associated with our phrasal lexicon are connected via underscoring. (3) Punctuation marks are
translated into atoms more agreeable to LISP. For example, the first sentence (S1) reads:

S1: POLICE HAVE REPORTED THAT TERRORISTS TONIGHT BOMBED THE
EMBASSIES OF THE PRC AND THE SOVIET UNION.

After preprocessing, we have:

S1: (POLICE HAVE REPORTED THAT TERRORISTS ON OCT_25 89>C0 TONIGHT
BOMBED THE EMBASSIES OF THE PRC AND THE SOVIET_UNION >PE)

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 6

The canonical date was derived from “tonight” and the dateline of the article, “25 OCT 89.”
Most of our phrasal lexicon is devoted to proper names describing locations and terrorist or-
ganizations (831 entries). 25 additional proper names are also recognized, but not from the
phrasal lexicon.

2.2.2 Lexical Analysis

At this point we are ready to hand the sentence to CIRCUS for lexical processing. This is where
we search our dictionary and apply morphological analysis in an effort to recognize words in the
sentence. Any words that are not recognized receive a default tag reserved for proper nouns in
case we need to make sense out of unknown words later. In order for any semantic analysis to
take place, we need to recognize a word that operates as a trigger for a concept node definition.
If a sentence contains no concept node triggers, it is ignored by the semantic component. This is
one way that irrelevant texts can be identified: texts that trigger no concept nodes are deemed
irrelevant. Words in our dictionary are associated with a syntactic part of speech, a position
or positions within a semantic feature hierarchy, possible concept node definitions if the item
operates as a concept node trigger, and syntactic complement predictions. Concept nodes and
syntactic complement patterns will be described in the next section. An example of a dictionary
entry with all four entry types is our definition for “dead” as seen in figure 2.2.

(D-WORD DEAD
:SYNTACTIC-TYPE SPECIAL-ADJECTIVE
:SYNTACTIC-EXPECTATIONS
(((assign *np-flag* t
predicates (append *predicates* (list *word*))
part-of-speech ‘adjective
cd-form (make-special *word*)
global-cn *cd-form*)
(next-packet
((test (eq “part-of-speech* ‘noun)))
((test (eq “*part-of-speech* ‘adjective))))))
:WORD-SENSES (dead1)
:CN-DEFS ($LEFT-DEAD$ $FOUND-DEAD$ $FOUND-DEAD-PASSS))

Figure 2.2: The Dictionary Definition for “DEAD”

When morphological routines are used to strip an inflected or conjugated form back to its
root, the root-form dictionary definition is dynamically modified to reflect the morphological
information. For exampie, the root definition for “bomb” will pick up a :VERB-FORM slot
with PAST filling it when the lexical item “bombed” is encountered.

3 _ 3

2 3

-3

1

.3

3

—3

3

Td T3

3

3

3

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 7
2.2.3 Semantic and Syntactic Predictions

Words associated with concept nodes activate both syntactic and semantic predictions. In S1
the verb “bombed” activates semantic predictions.in the form of a concept node designed to
describe a bombing. Each concept node describes a semantic case frame with variable slots that

expect to be filled by specific syntactic constituents. The concept node definition activated by
“bombed” in S1 is given in Figure 2.3.

We can see from this definition that a case frame with variable slots for the actor and target
is predicted. The actor slot expects to be filled by an organization, tlie name of a recognized
terrorist or generic terrorist referent, a proper name, or any reference to a person. The target slot
expects to be filled by a physical target. We also expect to locate the actor in the sub ject of the
sentence, and the target should appear as either a direct object or the object of a prepositional

phrase containing the preposition “in.” None of these predictions will be activated unless the
current sentence is in the active voice.

;; X bombed/dynamited/blew_up
;; the bomb blew up in the building (tst1-0040) -emr
;; (if this causes trouble we can create a new cn for blew_up)
(define-word $BOMBING-3%
(CONCEPT-NODE
"NAME '$BOMBING-3%
- "TIME-LIMIT 10
"“SLOT-CONSTRAINTS ‘({(class organization *S*)(class terrorist *S*)
(class proper-name *S*)(class human *S*))
((class phys-target *DO*) (class phys-target *PP*)))
"“"VARIABLE-SLOTS *(
ACTOR (*S* 1)
TARGET (*DO* 1 *PP* (is-prep? ‘(in))))
"“CONSTANT-SLOTS (
TYPE BOMBING))
“ENABLED-BY '((active)))) -

Figure 2.3: The SBOMBING-3$ Concept Node Definition-

Syntactic complement predictions are managed by a separate mechanism that operates inde-
pendently of the concept nodes. The syntactic predictions fill syntactic constituent buffers
with appropriate sentence fragments that can be used to instantiate various concept node case
frames. Syntactic predictions are organized in decision trees using test-action pairs under a
stack-based control structure [6]. Although syntactic complements are commonly associated
with verbs (verb complements), we have found that nouns should be used to trigger syntactic
complement predictions with equal frequency. Indeed, any part of speech can trigger a concept
node and associated complement predictions as needed. As we saw in the previous section, the
aﬂjective “dead” is associated with syntactic complement predictions to facilitate noun phrase

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 8

analysis. Figure 2.4 shows the syntactic complement pattern predicted by “Bombed” once
morphology recognizes the root verb “bomb.”

(((test (second-verb-or-infinitive?)) ;; all verbs call this function .
(assign *part-of-speech* 'verb " ;; justto be sure...reset some buffers for noun phrase collection

np-flag nil *noun-group* nil *predicates* nil *entire-noun-group* nil -
determiners nil *appositive* nil *gerund* nil

;; verb assignments.
cd-form (make-verb *word*) *V* *ed-form* ”DO“"'Y}il)
(next-packet ;; next noun phrase should be the direct object

test (equal *part-of-speech* 'noun-phrase))
(Eaes.:ig(:ﬂDO"F’,’cd-forml:'):)e;a ,F: don't predict *DO* if conjunction follows the verb,
5 eg.,in“X was damaged and Y was destroyed”,
;; Y should NOT be *DO* of “damaged”
((test (equal *part-of-speech* 'conjunction))))))

Figure 2.4: The Verb Complement Pattern for “BOMBED”

Remarkably, Figure 2.4 displays all the syntactic knowledge CIRCUS needs to know about
verbs. Every verb in our dictionary references this same prediction pattern. In particular, this
means that we have found no need to distinguish transitive verbs from intransitjve verbs, since

this one piece of code handles both (if the prediction for a direct ob ject fails, the *DO* buffer
remains empty).

Once semantic and syntactic predictions have interacted to produce a set of case frame slot
fillers, we then create a frame instantiation which CIRCUS outputs in response to the input
sentence. In general, CIRCUS can.produce an arbitrary number of case frame instantiations
for a single sentence. No effort is made to integrate these into a larger structure. The concept
node instantjation created by $BOMBING-3$ in response to S1 is given in Figure 2.5.

Some case frame slots are not predicted by the concept node definition but are inserted into
the frame in a bottom-up fashion. Slots describing timeé specifications and locations are all
filled by a mechanism for bottom-up slot insertion (e.g. the REL-LINK slot in Figure 2.5 was
created in this way). Although the listing in Figure 3.5 shows only the head noun “embassies”
in the target noun group slot, the full phrase “embassies of the PRC and the Soviet Union”
has been recognized as a noun phrase and can be recovered from this case frame instantiation.
The target value “ws- diplomat-office-or-residence” is a semantic feature retrieved from our

dictionary definition for “embassy.’ No additional output is produced by CIRCUS in response
to S1.

3

3

3

3 3 3 3

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 9

S1: (POLICE HAVE REPORTED THAT TERRORISTS ON OCT_25_89 >C0 TONIGHT BOMBED THE
EMBASSIES OF THE PRC AND THE SOVIET_UNION >PE)

b TYPE = BOMBING

b ACTOR = WS-TERRORIST

e noun group = (TERRORISTS)

*** TARGET = WS-DIPLOMAT-OFFICE-OR-RESIDENCE
b noun group = (EMBASSIES)

o determiners = (THE)

e REL-LINK (TIME (OCT_25_89)))

Figure 2.5: CIRCUS Qutput for S1

It is important to understand that CIRCUS uses no sentence grammar, and does not produce
a full syntactic analysis for any sentences processed. Syntactic constitutents are utilized only
when a concept node definition asks for them. Our method of syntactic analysis operates locally,
and syntactic predictions are indexed by lexical items. We believe that this approach to syntax
is highly advantageous when dictionary coverage is sparse and large sentence fragments can be
ignored without adverse consequences. This allows us to minimize our dictionaries as well as
the amount of processing needed to handle selective concept extraction from open-ended texts.

Some concept nodes are very simple and may contain no variable slots at all. For example,

CIRCUS generates two simple frames in response to 52, neither of which contain variable slot
fillers.

Note that the output generated by CIRCUS for S2 as shown in Figure 2.6 is incomplete. There
should be a representation for the damage. This omission is the only CIRCUS failure for TST1-
MUC3-0099, and it results from a noun/verb disambiguation failure. The 14 sentences in TST1-
MUC3-0099 resulted in a total of 27 concept node instantiations describing bombings, weapons,
injuries, attacks, destruction, perpetrators, murders, arson, and new event markers.

2.2.4 Other Problems in Sentence Analysis

Special mechanisms are devoted to handling specific syntactic constructs, including appositives

and conjunctions. We will illustrate our handling of conjunctions by examining two instances
of “and” in S5:

S55: Police said the attacks were carried out almost simultaneously and
(1) that the bombs broke windows and(2) destroyed the two vehicles.

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM

9

PNV ,EWPHO

S2: (THE BOMBS CAUSED DAMAGE BUT NO INJURIES >PE)

e TYPE = WEAPON
it INSTR = BOMB (triggered by the noun “bombs”)

== TYPE = INJURY

e MODE = NEG

(triggered by the noun “injuries”)

Figure 2.6: CIRCUS Output for 52

. MESSAGE ID

. TEMPLATEID

. DATE OF INCIDENT

. TYPE OF INCIDENT

. CATEGORY OF INCIDENT

PERPETRATOR: ID OF INDIV(S)
PERPETRATOR: ID OF ORG(S) .
PERPETRATOR: CONFIDENCE

. PHYSICAL TARGET: IIXS)

PHYSICAL TARGET: TOTAL NUM

10. PHYSICAL TARGET: TYPE(S)

11. HUMAN TARGET: ID(S)

12. HUMAN TARGET: TOTAL NUM
13. HUMAN TARGET: TYPE(S)

14. TARGET: FOREIGN NATION(S)

15. INSTRUMENT: TYPE(S)
16. LOCATION OF INCIDENT

17. EFFECT ON PHYSICAL TARGET(S)

18. EFFECT ON HUMAN TARGET(S)

DEV-MUC3-0099
1.

250CT 89
BOMBING
TERRORIST ACT
“TERRORISTS”

“EMBASSIES OF THE PRC AND THE SOVIETUNION”

“PRC EMBASSY”

PLURAL

DIPLOMAT OFFICE OR RESIDENCE: “EMBASSIES OF
THE PRC AND THE SOVIET UNION”

DIPLOMAT OFFICE OR RESIDENCE: “PRC EMBASSY”

PEOPLES REP OF CHINA: “EMBASSIES OF THE PRC
AND THE SOVIET UNION”
PEOPLES REP OF CHINA: “PRC EMBASSY”

PERU: LIMA (CITY): SAN ISIDRO (NEIGHBORHOOD)

NO INJURY OR DEATH: “-

Figure 2.7: Our Output Template Representation for $1-S3

10

- I R | E |

T3

T

N |

3 3

T

|

2

——3 13

—3 13

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 11

We recognize that and(1) is not part of a noun phrase conjunction, but do nothing else with
it. A new control kernel begins after “that” and reinitializes the state of the parser. and2 is -
initially recognized as potentially joining two noun phrases — “windows” and whatever noun

-phrase follows. However, when the verb “destroyed” appears before any conjoining noun phrase

is recognized, the LICK mechanism determines that the conjunction actually joins two verbs and
begins a new clause. As a result, the subject of “broke” (i.e., “the bombs”) correctly becomes
the subject of “destroyedThe CIRCUS System as Used in MUC-3The CIRCUS System as Used
in MUC-3The CIRCUS System as Used in MUC-3The CIRCUS System as Used in MUC-3The
CIRCUS System as Used in MUC-3The CIRCUS System as Used in MUC-3 as well.

2.2.5 Rule-Based Consolidation

When an entire text has been processed by CIRCUS, the list of the resulting case frame in-
stantiations is passed to consolidation. A rule base of consolidation heuristics then attempts to
merge associated case frames and create target template instantiations that are consistent with
MUC-3 encoding guidelines. It is possible for CIRCUS output to be thrown away at this point
if consolidation does not see enough information to justify a target template instantiation. If
consolidation is not satisfied that the output produced by CIRCUS describes bonafide terrorist
incidents, consolidation can declare the text irrelevant. A great deal of domain knowledge is
needed by consolidation in order to make these determinations. For example, semantic features
associated with entities such as perpetrators, targets, and dates are checked to see which events
are consistent with encoding guidelines. In this way, consolidation operates as a strong filter for
output from CIRCUS, allowing us to concisely implement encoding guidelines independently of
our dictionary definitions.

A number of discourse-level decisions are made during consolidation, including pronoun res-
olution and reference resolution. Some references are resolved by frame merging rules. For
example, CIRCUS output from S1, $2 and S3 is merged during consolidation to produce the
target template instantiation found in Figure 2.7.

The CIRCUS output from S1 triggers a rule called create-bombing which generates a template
instantiation that eventually becomes the one in Figure 2.7. But to arrive at the final template,
we must first execute three more consolidation rules that combine the preliminary template
with output from S2 and S3. Pseudo-code for two of these three rules is given in Figure 2.8.

Note also that the location of the incident was merged into this frame from S3 which triggers
another bombing node in response to the verb “exploded” as shown in figure 2.9.

$3: (A CAR_BOMB EXPLODED IN_FRONT_OF THE PRC EMBASSY >CO IN THE LIMA
RESIDENTIAL DISTRICT OF SAN_ISIDRO >PE)

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM

MERGE-WEAPON-BOMBING

IF $weapon structure

and the weapon is an explosive

and a BOMBING or ATTEMPTED-BOMBING template is on the stack in the current family
and dates are compatible and locations are compatible

THEN
merge instruments, dates, and locations

MERGE-BOMBING-BOMBING

IF Sbombing structure
and BOMBING template is on the stack in the current family
and dates are compatible and locations are compatible

THEN :
merge perpetrators, human targets, physical targets, instruments, dates, and locations
and also ...
if there is a MURDER template with compatible victim (on the stack in the same family)
with no instruments or the instruments are explosives
then
merge perpetrators, human targets, instruments, dates, and locations with the MURDER

Figure 2.8: Two Merging Rules from Rule-Based Consolidation

b TYPE = BOMBING
s+ " INSTR =
>>> TYPE = WEAPON
>>> INSTR = CAR_BOMB
>>> REL-LINK (TARGET OBJECT (WS-DIPLOMAT-OFFICE-OR-RESIDENCE))
>>> REL-LINK (LOC2 OBJECT (WS-GENERIC-LOC))
haid noun group = (CAR_BOMB) |
hiaid determiners = (A)
hhd REL-LINK (TARGET (PRC EMBASSY)))
e REL-LINK (LOC2 (LIMA DISTRICT)))

Figure 2.9: CIRCUS Output for S3

12

3

r————a f—*—g

CHAPTER 2. A BRIEF OVERVIEW OF THE M UC-3/CIRCUS SYSTEM 13

Once again, the top-level REL-LINK for a location is printing out only a portion of the complete
noun phrase that was captured.

Although we would say that the referent to “bombs” in S2 is effectively resolved during consol-
idation, our methods are not of the type normally associated with linguistic discourse analysis.
When consolidation examines these case frames, we are manipulating information on a con-
ceptual rather than linguistic level. We need to know when two case frame descriptions are

providing information about the same event, but we aren’t worried about referents for specific
noun phrases per se.

We did reasonably well on this story. Three templates of the correct event types were generated
and no spurious templates were created by the rule base. Sentences S9 through S13 might have

generated spurious templates if we didn’t pay attention to the dates and victims. Here is how
the preprocessor handled S12:

512: IN ANOTHER INCIDENT 3 YEARS AGO, A SHINING PATH MILITANT WAS KILLED
BY SOVIET EMBASSY GUARDS INSIDE THE EMBASSY COMPOUND.

§12: (IN ANOTHER INCIDENT ON -DEC_31.80 >CO &&3 YEARS AGO >CO >CO A
SHINING_PATH MILITANT WAS KILLED BY SOVIET EMBASSY GUARDS INSIDE THE
EMBASSY COMPOUND >PE)

Whenever the preprocessor recognizes a date specification that is “out of bounds’ (at least
two months prior to the dateline), it inserts -DEC_31_80 as a flag to indicate that the events
associated with this date are irrelevant. This date specification will then be picked up by any
concept node instantiations that are triggered “clos” to the date description. In this case, the
event is irrelevant both because of the date and because of the the victim (murdered militants
arent usually relevant). Despite the fact that 510 and S13 contain no date descriptions, the case
frames generated for these sentences are merged with other frames that do carry disqualifying
dates, and are therefore handled at a higher level of consolidation. In the end, the two murders
(511 and $12) are discarded because of disqualifications on their victim slot fillers, while the
bombing (S9) was discarded because of the date specification. The injuries described by S10 are
correctly merged with output from S9, and therefore discarded because of the date disqualifier.
Likewise, the dynamite from S13 is correctly merged with the murder of the militant, and the
dynamite is subsequently discarded along with the rest of that template.

2.2.6 Case-Based Consolidation

The CBR component of consolidation is an optional part of our system, designed to increase
recall rates by generating additional templates to augment the output of rule-based consol-
idation. These extra templates are generated on the basis of correlations between CIRCUS
output for a given text, and the key target templates for similarly indexed texts. The CBR
component uses a case base which draws from 283 texts in the development corpus, and the 100
texts from TST1 for a total of 383 texts. We experimented with a larger case base but found
no improvement in performance. The case base contains 254 template type patterns based on

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 14

CIRCUS output for the 383 texts in the case base.

Each case in the case base associates a set of concept nodes with a template containing slot fillers
from those concept nodes. The concept nodes are generated by CIRCUS when it analyzes the
original source text. A case has two parts: (1) an incident type, and (2) a set of sentence/slot
name patterns. For example, suppose a story describes a bombing such that the perpetrator and
the target were mentioned in one sentence, and the target was mentioned again three sentences
later. The resuiting case would be generated in response to this text:

BOMBING
0: (PERP TARGET)
3: (TARGET)

The numerical indices are relative sentence positions. The same pattern could apply no matter
where the two sentences occurred in the text, as long as they were three sentences apart.

Cases are used to determine when a set of concept nodes all contribute to the same output
template. When a new text is analyzed, a probe is used to retrieve cases from the case base.
Retrieval probes are new sentence/slot name patterns extracted from the current CIRCUS
output. If the sentence/slot name pattern of a probe matches the sentence /slot name pattern

of a case in the case base, that case is retrieved, the probe has succeeded, and no further cases
are considered.

Maximal probes are constructed by grouping CIRCUS output into maximal clusters that yield
successful probes. In this way, we attempt to identify large groups of consecutive concept nodes
that all contribute to the same output template. Once a maximal probe has been identified, the
incident type of the retrieved case forms the basis for a new CBR-generated output template

whose slots are filled by concept node slot fillers according to appropriate mappings between
concept nodes and output templates.

In the case of TST1-MUC3-0099, case-based consolidation proposes hypothetical templates cor-
responding to 3 bombings, 2 murders, 1 attack, and 1 arson incident. Two of the bombings and
the arson are discarded because they were already generated by rule-based consolidation. The
two murders are discarded because of victim and target constraints, while the third bombing
is discarded because of a date constraint. The only surviving template is the attack incident,
which turns out to be spurious. It is interesting to note that for this text, the CBR compo-
nent regenerates each of the templates created by rule-based consolidation, and then discards
them for the same reasons they were discarded earlier, or because they were recognized to be
redundant against the rule-based output. We have not run any experiments to see how con-
sistently the CBR component duplicates the efforts of rule-based consolidation. While such a
study would be very interesting, we should note that the CBR. templates are generally more

limited in the number of slot fillers present, and would therefore be hard pressed to duplicate
the overall performance of rule-based consolidation.

™3 3 3

4 738 73 T3 3

3

3

~73 3

13

3 1 3

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 15

2.3 MUC-3 Test Results

We believe that the score reports we obtained for TST2 provide an accurate assessment of our
systems capabilities insofar as they are consistent with the results of our own internal tests
conducted near the end of phase 2. The required TST2 score reports indicate that our system
achieved the highest combined scores for recall (51%) and precision (62%) as well as the highest
recall score of all the MUC-3 systems under the official MATCHED/MISSING scoring profile.

We ran one optional test in addition to the required test for TST2. The optional run differs
from the required run in only one respect, an alteration to our consolidation module. The
consolidation module contains all procedures that translate parser output into target template
instantiations. The complete consolidation module includes a case-based reasoning (CBR) com-
ponent that makes predictions about the target output based on a portion of the development
corpus. For our optional run, we executed a modified version of consolidation that does not
include this CBR component. We predicted that the absence of the CBR component would
pull recall down but push precision up (looking at MATCHED/MISSING only). This trade-off
prediction was confirmed by the required and optional TST2 score reports. (Please consult
Appendix F for our required and optional test score summaries).

The source of our recall/precision trade-off can be found by examining the actual, spurious and
missing counts for template-ids. When we run with CBR, we generate 215 actual templates
as opposed to 137 actual templates without CBR. Most of these extra templates are spurious
(64), but some are correct (14). The extra CBR templates increase our recall by reducing the
number of missing templates from 16 to 6, while lowering our precision by raising the number
of spurious templates from 44 to 108. The net effect of the CBR component on TST2 is a 4%
gain in recall and a 3% loss of precision.

All of our system development and testing took place on a Texas Instruments Explorer II
workstation running Common Lisp with 8 megabytes of RAM. It took about 1.5 hours to process
the TST2 texts (without traces). No effort had been made to optimize run-time efficiency.
Shortly after the final TST2 evaluation we found a way to reduce runtimes by about 40%.

2.4 System Development

Almost all of our MUC-3 effort has been knowledge engineering in one form or another. We can
further categorize this effort in terms of (1) dictionary construction, and (2) discourse analysis.
Dictionary construction received somewhat more attention than discourse analysis, with both
relying heavily on examples from the development corpus. Overall, we estimate that roughly 30-
40% of the development corpus was analyzed for the purposes of either dictionary construction
or discourse analysis by the end of phase 2.

Because we are working with a domain-specific dictionary, we construct our lexicon on the
basis of examples in the development corpus. Virtually all of our dictionary construction is
done by hand. We examine texts from the corpus in order to identify critical verbs and nouns

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 16

that organize information relevant to the domain. Then we create syntactic and semantic
predictions based on these instances with the expectation that similar linguistic constructs will
be encountered in other texts as well. Qur dictionary is effective only to the extent that we can
extrapolate well on the basis of the examples we’ve seen.

Our TST2 dictionary contained 5407 words and 856 proper names (mostly locations and ter-
rorist organizations). 1102 dictionary entries were associated with semantic features, and 286
entries operated as concept node triggers (CIRCUS cannot produce any output unless it en-
counters at least one concept node trigger). 131 verbs and 125 nouns functioned as concept
node triggers. Our semantic feature hierarchy contained 66 semantic features. Although CIR-
CUS operates without a syntactic sentence grammar, it did exploit syntactic knowledge in the
form of 84 syntactic prediction patterns, with 12 of these doing most of the work. CIRCUS
also accessed 11 control kernels for handling embedded clause constructions (7.

Our version of discourse analysis took place during consolidation, when output from the CIR-
CUS sentence analyzer was examined and organized into target template instantiations. This
translation from CIRCUS output to MUC-3 templates was handled by a rule base containing
139 rules. Consolidation errors could effectively destroy perfectly good output at the level of
sentence analysis, so our overall performance was really only as good as our consolidation com-
ponent. One of our ongoing problems was in trying to evaluate the performance of CIRCUS
and the performance of consolidation independently. We never did manage to tease the two

apart, but we are confident that both components would benefit from additional knowledge
engineering. ‘

Serious consolidation development could not really get underway until we had a large num-
ber of texts to examine along with internal scoring runs based on the development corpus.
Although our earliest opportunity for this was November, dictionary deficiencies delayed sub-
stantial progress on consolidation until February or March. It was impossible to know how well
consolidation was operating until CIRCUS could provide consolidation with enough input to
give it a fighting chance. The consolidation rule base was generated by hand and modified upon

inspection, with rapid growth taking place during phase 2. The number of consolidation rules
almost doubled between TST1 and TST2.

We estimate that our time spent (measured in person/years) on technical development for
MUC-3 was distributed as follows:

alterations to CIRCUS .35
case-based discourse analysis .15
corpus development .25
dictionary construction .75
rule-based discourse analysis .50
test runs & other misc. technical .25

2.25 person/years

T3

S | r—

3 3

3

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM - 17

This estimate assumes that our graduate research assistants were working 30 hrs/wk on MUC-
3, although it is notoriously difficult to estimate graduate student labor. General alterations
to CIRCUS included morphological analysis, conjunction handling, noun phrase recognition,
embedded clause handling, and machinery for some special constructions like appositives. These
alterations to CIRCUS and the CBR component are all domain-independent enhancements. All
other effort should be categorized as domain-specific.

2.5 Domain-Independent Advances

Prior to MUC-3, we had no experience with consolidation-style processing, so consolidation
provided us with many opportunities to explore new problem areas. For example, we can
locate pronominal referents both within sentences and across sentence boundaries 73% of the
time (based on an analysis of pronouns in the relevant texts of the development corpus and
TST1). However, these heuristics are limited to four pronouns and there are only 130 instances
of these pronouns in the texts analyzed. We examined the role of pronoun resolution with
internal test runs, and came to the conclusion that this particular problem has little impact on
overall recall or precision.

A more compelling innovation for consolidation was first proposed in March, when we began
to experiment with the CBR component. The CBR component allows our system to augment
its final template output based on known correlations between CIRCUS output and target
template encodings found in the development corpus. It performs this analysis using a case
base of 254 template patterns drawn from the 100 TST1 texts along with 283 development
corpus texts.

Case-based consolidation generates additional templates that might have been missed or dis-
missed during the rule-based analysis, and thereby reduces the number of missing templates.
Because the CBR component effectively operates to counterbalance omissions made by rule-
based consolidation, we expect that the gain in recall due to CBR will eventually diminish as
the system becomes more comprehensive in its domain coverage. Even so, the prospects for
applying CBR techniques in NLP are open-ended, and deserve further attention. This prelim-
inary attempt to bring CBR into natural language processing is one of two original advances
made during the course of our work on MUC-3.

The other significant advance was made very early on while we were assessing the robustness
of the CIRCUS sentence analyzer and making some final adjustments to CIRCUS. We were
generally concerned about scaling up with respect to complex syntax, and thinking about ways
that CIRCUS might approach syntactically complex sentences in a principled manner. At
that time we discovered a formalism for embedded clause analysis, Lexically Indexed Control
Kernels (aka LICKs). LICKs describe syntactic and semantic interactions within CIRCUS as
it interprets embedded clauses. This formalism makes it relatively easy to see how CIRCUS
handles an embedded clause, and has made it possible for us to talk about this aspect of
CIRCUS much more effectively. In fact, a paper was written during MUC-3 relating embedded
clause analysis by CIRCUS to experimental results in psycholinguistics [7]. In that paper we

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 18

argue that CIRCUS provides a cognitively plausible approach to complex syntax.

2.6 Up Against the Wall: Are We There Yet?

The major limiting factor in our TST2 performance was time. We are confident that significant
improvements in recall could be made if we had more time to do more knowledge engineering.
We would also predict higher precision scores although our precision percentages have grown

at a much slower rate than our recall percentages, based on a comparison of official test scores
for TST1 and TST2.

We tend to think of our system in three major pieces: (1) the CIRCUS sentence analyzer, (2)
rule- based consolidation, and (3) case-based consolidation. Because the CBR component is
truly optional, the primary responsibilities fall on CIRCUS and rule-based consolidation. We
know that both of these components make mistakes, but we have not been able to separate
them well enough to say which one is the weaker one. As with all knowledge-based systems,
an assessment of these components is also confounded by the fact that we are working with
incomplete knowledge bases. Both the dictionary and the consolidation rule base incorporate
domain knowledge, and we have thus far analyzed less than 50% of the MUC-3 development
corpus in our knowledge engineering efforts.

As one might expect, our best internal test runs are those that include texts we have analyzed for
the purposes of constructing our dictionary and consolidation rules. For example, on May 13 we
ran the TST2 version of our system on TST1, and posted recall-precision scores of 66-68 running
with CBR, and 62-73 running without CBR (for MATCHED/ MISSING). It is heartening to
contrast this with our phase 1 test results for TST1 which were 28-59 (no CBR. component was
available for phase 1 testing). Roughly 20% of the TST1 texts were analyzed between February
and May, so the substantial improvement in both recall and precision on TST1 can be only
partially attributed to knowledge engineering based on the TST1 texts. A complete analysis of
all the TST1 texts would provide us with a better estimate of a performance ceiling that is not
confounded by inadequate knowledge engineering.

As far as future system development goes, we cannot conclude at this time that any one of our
system components requires redesign or major alterations. We would like to exploit more of
the corpus for the sake of knowledge engineering to get a better sense of what we can do when
incomplete knowledge is not a factor. Only then can we hope to isolate limitations that need
to be addressed by innovations in system design.

One limitation that applies more to our system development than our system itself, is the hand-
coding of dictionary definitions and consolidation rules. It would be highly advantageous for us
to automate certain aspects of this or at least design an intelligent interface to speed the work
of our knowledge engineers. We did manage to use the CBR component as a tool to direct
us to useful texts during dictionary construction, and this application of the CBR component
was both very welcome and very effective (albeit rather late in the MUC-3 timetable). In any
event, we would clearly benefit from intelligent interfaces or more ambitious machine learning

3 T3

T3

12 3 T4

3

2 3 3 4

3

3 3

CHAPTER 2. A BRIEF OVERVIEW OF THE M UC-3/CIRCUS SYSTEM 19

strategies to help facilitate the knowledge engineering effort that is so central to our whole
approach.

To sum up, we are confident that the performance of CIRCUS has not yet reached its limit.
Unfortunately, it is not possible to'say anything about where our ultimate upper bound lies.
We hope to pursue this question by participating in future performance evaluations.

2.7 Conclusions

As we explained at the beginning of this paper, CIRCUS was originally designed to investigate
the integration of connectionist and symbolic techniques for natural language processing. The
original connectionist mechanisms in CIRCUS operated to manage bottom-up slot insertion for
information found in unexpected (i.e. unpredicted) prepositional phrases. Yet when our task
orientation is selective concept extraction, the information we are trying to isolate is strongly
predicted, and therefore unlikely to surface in a bottom-up fashion. For MUC-3, we discovered
that bottom-up slot insertion was needed primarily to handle only dates and locations: virtually
all other relevant information was managed in a predictive fashion. Because dates and locations
are relatively easy to recognize, any number of techniques could be successfully employed to
handle bottom-up slot insertion for MUC-3. Although we used the numeric relaxation technique
described in [1] to handle dates and locations, we consider this mechanism to be excessively

powerful for the task at hand, and it could readily be eliminated for efficiency reasons in a
practical implementation.

Although our score reports for TST2 indicate that our system is operating at the leading edge
of overall performance for all MUC-3 systems, we nevertheless acknowledge that there are
difficulties with our approach in terms of system development. It would take us a lot of hard
work (again) to scale up to this same level of performance in a completely new domain. New and
inexperienced technical personnel would probably require about 6 months of training before they
would be prepared to attempt a technology transfer to a new domain. At that point we would
estimate that another 1.5 person/years of effort would be needed to duplicate our current lévels
of performance in a new domain. Although these investments are not prohibitive, we believe
there is room for improvement in the ways that we are engineering our dictionary entries and
rule-based consolidation components. We need to investigate strategies for deducing linguistic
regularities from texts and explore available resources that might leverage our syntactic analysis.
Similar steps should be taken with respect to semantic analysis although we are much more
skeptical about the prospects for sharable resources in this problem area.

Although we have had very little time to experiment with the CBR consolidation component,
the CBR approach is very exciting in terms of system development possibilities. While the
rule-based consolidation component had to be crafted and adjusted by hand, the case base for
the CBR component was generated automatically and required virtually no knowledge of the
domain or CIRCUS per se. In fact, our CBR module can be transported with minor modification
to any other MUC-3 system that generates case frame meaning representations for sentences.
As a discourse analysis component, this module is truly generic and could be moved into a new

CHAPTER 2. A BRIEF OVERVIEW OF THE MUC-3/CIRCUS SYSTEM 20

domain with simple adjustments. The labor needed to make the CBR. component operational
is the labor needed to create a development corpus of texts with associated target template
encodings (assuming a working sentence analyzer is already in place). It is much easier to train
people to generate target templates for texts than it is to train computer programmers in the
foundations of artificial intelligence and the design of large rule bases. And the amount of time
needed to generate a corpus from scratch is only a fraction of the time needed to scale up a
complicated rule base. So the advantages of CBR components for discourse analysis are enticing
to say the least. But much work needs to be done before we can determine the functionality of
this technology as a strategy for natural language processing.

Having survived the MUC-3 experience, we can say that we have learned a lot about CIRCUS,
the complexity of discourse analysis, and the viability of selective concept extraction as a
technique for sophisticated text analysis. We are encouraged by our success, and we are now
optimally positioned to explore exciting new research areas. Although our participation in
MUC-3 has been a thoroughly positive experience, we recognize the need to balance intensive
development efforts of this type against the somewhat riskier explorations of basic research. We
would not expect to benefit so dramatically from another intensive performance evaluation if we
couldn’t take-some time to first digest the lessons we have learned from MUC-3. Performance
evaluations can operate as an effective stimulus for research, but only if they are allowed to
accompany rather than dominate our principal research activities.

ﬂ

-

T4 T4 T3 —a "~ 31

1~

T T 3

TE

—3 3

3

—3 ~— 3 ~— 3 "~ 3

Chapter 3

Sentence Analysis

3.1 Preprocessing in CIRCUS

Before CIRCUS can process an input text it must be transformed into a form which is more
palatable to Lisp. This is done by the preprocessing component of CIRcus. In addition to

transforming the text into a list of strings to be processed, the preprocessor also performs a
number of tasks in service of parsing the sentences. These tasks include:

¢ Morphological analysis and definition generation.

Translation of numbers and dates to a canonical form.

Translation and definition of possessives.

Phrasal substitution.

Setting variables used by CirRcus.

Once these tasks have been completed CIRCUS can parse the input text.

3.1.1 Dates

All references to dates are transformed into a canonical form MMM_DD_YY. Phrases like today,
yesterday, and 10 days ago are converted to absolute dates with the date of the news wire text
as the base. So, if the wire date were June 1, 1990, yesterday would transform to MAY_31_90.
References to dates which are more than three months previous to the wire date are consid-
ered to be irrelevant in the Muc-3 domain, and so are transformed to the constant old date
DEC_31_80, which flags any incident which the date refers to as irrelevant. Once the date has
been transformed a definition is created for the symbol.

21

CHAPTER 3. SENTENCE ANALYSIS 22
3.1.2 Numbers

Numbers composed of digits are prefixed with “&&” and a definition is generated. This is
done to allow the definitions to be recorded. Numbers which are words, such as one, are left
unchanged.

3.1.3 Possessives

Words of the form John’s, or Munoz’, are transformed into @JOHN@S and QMUNOZQ. A possessive
definition is then generated. The at sign “@” is used to signal that the word is a possessive,
this knowledge is used during the parse of the sentence. As with the numbers, this is used to
create acceptable symbols for the definitions.

3.1.4 Punctuation

Punctuation marks are converted to LISP atoms, which are predefined in the punctuation lex-
icon. Brackets ‘[’ and ‘]’ are used as a surface cue for identifying irrelevant text. Bracketed
phrases are removed during preprocessing.

3.1.5 Morphological Analysis and Definition Generation

Each word of the input text is checked for a definition after the above transformations have
been completed. If the word does not have a definition, one is generated for it. This is done
in one of three ways. If the word has an identifiable root which has a definition, such as a
regular plural noun, a definition is generated from that root. The same is true for the verb
forms of a base verb, such as cook, where cooked, cooks, and cooking would all be derived from
the definition of cook. Gerund and adjectival forms are also derived in this fashion. If the word
does not have a defined root then a default definition is generated. The default is to use noun
for the part of speech, and ws-proper-name for the semantic features. The third alternative is
to have a definition entered interactively via the auto-lex function.

3.1.6 Phrasal Substitution

A number of phrases other than dates are transformed during preprocessing. These are pre-
dominately phrases concerning locations. The remainder are domain specific phrases which
have been identified as items which could be eliminated without altering the understanding of
the text.

|

3

-

3

3

3 3

3

—d

CHAPTER 3. SENTENCE ANALYSIS 23
| Part of Speech | Number |
Special 32
Pronoun 18
Noun 2614
Triggering Noun 132
Special Noun 3
Noun-Org 182
Adjective 1089
Special Adjective 8
Adverb 237
Special Adverb 15
Determiner 6
Preposition 44
Special Preposition 3
Auxiliary 10
Copular 8
Verb 1517
Special Verb 11
Gerund 40

Figure 3.1: Muc-3 Lexicon by Part of Speech
3.2 Dictionary Construction

3.2.1 Word Definition for MuC-3

The Muc-3 project required the engineering of a large lexicon, which included both general and
domain specific lexical items. A total of 5971 separate words were defined, with 5407 unique
(that is to say 564 words had more than one part of speech assigned). Figure 3.1 shows the
breakdown of the Muc-3 lexicon by part of speech.

What is a Word?

When CIRCUS parses a sentence, it processes a 1ist of atoms which are the words and punctu-
ation of the text. It is necessary that a word have a definition in order for CIRCUS to parse the
sentence. Words which are undefined are assigned a default definition during preprocessing.

CHAPTER 3. SENTENCE ANALYSIS 24
Phrase Recognition

CIRCUS recognizes 312 phrases, 63 of which involve transformations from one set of words to
another (possibly empty) set of words. This is used primarily for standardizing time and date
references. The remainder involve transformations of a group of words to a single unit which is
composed of the group of words connected by underscores. For example:

burned to death = burned_to_death

where the phrase burned_to_death is defined as a word. Most of the phra.ses are used for
recognizing the names of the organizations in the Muc-3 domain.

What is a Definition?

Part of Speech

Every part of speech carries with it a set of syntactic expectations. CIRCUS uses 12 basic
definitions for these expectations, each defined for a single part of speech. These are sufficient
for 99% of the MUC-3 corpus, with the remaining special words discussed in Section 2.3.1.

adjective Words like big, bigger, biggest.

adverb Words like slowly, quickly.

auxiliary The helping verbs, such as have.

copular A refinement of auxiliary, helping forms of to be.l

determiner Words like the, a, an.

gerund The “ing” words, the present participle.

noun Things.

noun-org Things which are also organizations (domain specific).
triggering-noun Things which also trigger concept nodes (domain specific).
preposition Words like of, by, to.

verb Actions.

unknown None of the above.

! Although there is a fascinating explanation for the genesis of this category name, the margin is much too
small to contain it.

T3 i —3 T3

T =

B |

g T3

-3

TR

|

Y"““‘E

T3

CHAPTER 3. SENTENCE ANALYSIS 25

(((assign *part-of-speech* ’preposition)
(next-packet
((test (equal *part-of-speech* ’gerund)))
((test (equal *part-of-speech* ’noun-phrase))
(assign *part-of-speech* ’prep-phrase
last-pp *pp*
cd-form (make-pp ’to)
gaved-word nil
PP *cd-form*))
((test (equal *part-of-speech* ’verb))
(assign *aux* nil))
((test (equal *part-of-speech* ’aux))))))

Figure 3.2: Special McEli Definition for to

Morphological Analysis

The task of building the lexicon for MUC-3 has been aided by the use of a morphological analysis
component, which identifies the root of a word, and returns the root’s definition. This allows
there to be a single definition for a regular verb, the infinitive. Each of the tenses can be derived
from the root. For example.from the verb rain the following definitions can all be derived:

e rains
e rained

o raining

The same methods allow regular plurals to be derived, such as babies from baby.

Derived definitions carry the word-senses of the root, and in some cases the concept-nodes. An
exception to this is the derivations which produce gerunds.

3.2.2 Word Recognition
Special Words

In the MUC-3 lexicon 72 words required a McEli definition be engineered specifically for them.
Figure 3.2 shows the definition for the preposition to, which can be compared with the generic
definition in Figure 3.3. These were needed to service the individual expectations of those

words.

Special words are identified through direct observation of the parser output.

CHAPTER 3. SENTENCE ANALYSIS 26

(((assign *saved-word* *word*
noun-group nil
noun-group-cns nil
predicates nil
entire-noun-group nil
determiners nil
part-of-speech ’preposition)
(next-packet
((test (equal *part-of-speech* ’noun-phrase))
(assign *part-of-speech* ’prep-phrase
last-PP *PPx*
cd-form (make-pp *saved-wordx*)
saved~word nil
PP *cd~form*))
((test (member *part-of-speech* ’(preposition prep-phrase verb)))))))

Figure 3.3: Generic McEli Definition for a Preposition

(D-WORD RIOT
+SYNTACTIC-TYPE noun
:WORD-SENSES (ws—-entity))

Figure 3.4: Simple Definition

Mundane Words

Over 90% of the Muc-3 lexicon consists of mundane words, which are defined solely for their
part of speech and word senses.

3.2.3 AUTO-LEX: A Tool for Building Dictionaries

Defining words during the preprocessing of the text has been automated, making it easier to
identify words which need to be added to the lexicon, and to enter their definitions. This has
been done via the function AUTO-LEX. The simple tvpe of definitions (Figure 3.4), anes without
syntactic-ezpectations or cn-defs, are the ones which can be created during preprocessing of the
text. Skipping a word produces the default definition of syntactic-type noun with word-senses
Ws-proper-name.

It may seem that the power of this tool would be limited, because of the kind of words which
could be defined, but recall that this kind constitutes almost 94% of the Muc-3 lexicon.

AUTO-LEX originally provided a sequence of menus, allowing the user to enter a definition for
an undefined word through the following steps:

r -—v—g -—-—g f-—? 1—-?

TR T3 e R I E - I I B |

3

CHAPTER 3. SENTENCE ANALYSIS 27

(D-WORD DEAD
:SYNTACTIC-TYPE SPECIAL-ADJECTIVE
:SYNTACTIC-EXPECTATIONS
(((assign *np-flag* t
predicates (append *predicates* (list *word#*))
part-of-speech ’adjective
cd-form (make-special *word*)
global-cn *cd-form*)
(next-packet
((test (eq *part-of-speech* ’noun)))
((test (eq *part-of-speech* ’adjective))))))
:WORD-SENSES (dead1) .
:CN-DEFS ($LEFT-DEAD$ $FOQUND-DEAD$ $FOUND-DEAD-PASS$))

Figure 3.5: Complex Definition

Enter Waord Form To Put In Lexiconi
2LTG FE [Us !
Word senses: NIL

Figure 3.6: Original Auto Lex Definition Menu

1. The first menu (Figure 3.6) displayed the word to be defined in an edit field, which allowed

the morphological root to be entered and the word-senses slot, for assigning the semantic
features.

2. The second menu presented the choices for the part-of-speech. Also present on this menu
was the option skip which caused AUTO-LEX to use the default definition.

While this did speed up the writing of the definitions, relative to the time it would take to do
them completely by hand, there were some problems to be addressed. The context in which the
word appeared was not shown, so it was necessary to find the location in the text manually in
the editor. This was necessary for disambiguating the parts of speech which the word could take.
This approach also required that the user know the complete spelling of all of the word-senses,
including words like ws-diplomatic-office-or-residence, with 66 total different word senses to be
concerned with.

To address these issues, and to provide a friendlier interface, AUTO-LEX was modified, with the
objective of allowing a maximum return on the time spent on defining new words. The great
majority of the words in the MUc-3 lexicon have definitions which are simply composed of a
part of speech and a list of word senses. Only nouns, and a few adjectives, have any word
senses in the list, and of those, most are of type entity. AUTO-LEX was modified to reflect these
properties of the domain.

CHAPTER 3. SENTENCE ANALYSIS 28

Auto lex definition in sentence: !
{THOSE WHO DECID 0O ADOPT A DEGISION >GO WHOSE SUBSEQUENT |
CONSEQUENCES THEY SHOULD HAVE ASSESSED >CO ARE THE !
ONES WHO ENDANGERED THE U.S. MILITARY AlD AND DHY D>HY

IN THE PROCESS >HY >HY WITTINGLY OR UNWITTINGLY PLAYED

INTO THE @FMLN@S >LB FARABUNDO MARTI NATIONAL LIBERATION.

Select any number of valuns:

FRONT >RB HANDS >PE)
for

Figure 3.8:
Figure 3.7: Auto Lex Definition Menu Part of Speech Selec-
tion Menu

The first issue to be addressed was that of context. The format of the function was altered
to display the undefined word and the sentence in which it occurred without any menu. The
user would then be prompted to choose whether to skip the word entirely, using the default
definition, or to go ahead and use the menus to enter a definition. This reduced the number of
times a menu had to be presented by at least half, and solved the problem of not being able to
skip a definition until the second menu. The MUc-3 domain contains over 1000 proper names,
and they were the most common type of word to be encountered when using AUTO-LEX.

Having passed the proper names, AUTO-LEX is then ready to enter a new definition. The process
requires three menus; the edit menu (Figure 3.7), the part of speech menu (Figure 3.8), and the
word sense menu (Figure 3.9). The edit menu displays the sentence in its title bar, eliminating
the need for most accesses to the editor. The procedure is as follows:

¢ Enter the morphological root in the word field, editing the original word form the sentence.

e Select the part of speech field, which presents the menu of all of the possible parts of
speech. One or more is selected.

o Complete selections and exit the menu. If the part of speech selected is noun, triggering
noun, or adjective, then the word sense menu is presented, allowing selection of one or
more word senses, with a default value of ws-entity.

With these menus it became possible to select the most specific appropriate word sense, using
the documentation of the word senses menu to guide the user up and down the hierarchy.

Having the sentence displayed at the top of the menu was generally sufficient for deciding the
appropriate part of speech and word sense for each word.

Dictionary construction is a formidable task, especially for a domain as large as MUC-3. AUTO-
LEX provides the capability to take most of the work out of defining the large percentage of
relatively unimportant (those defined just for their part of speech and word sense) words. This
allows the time to be spent on handcrafting the definitions for the special words, which don’t
conform to the generic syntactic expectations patterns, and the concept nodes themselves.

T4 T3 T3 3

T3

3

3

3 T3

|

BE

3

—3a 3

CHAPTER 3. SENTENCE ANALYSIS 29

Select the Word Senses for POPPY

WS-LOCATION

WS=ATTACK WS-MEDIA WS-HUMAN-TITLE

WS -PROPER-NAME WS-HUMAN WS-TERRORIST

WS -HUMAN=TARGET WS-=CIVILIAN WS-CLERGY

WS-OIPLOMAT WS=GOVT-CFFICIAL WS-FORMER-GOVT -OFFICIAL
{WS-FORMER-ACTIVE-MILITARY WS-LEQAL -OR-JUDICIAL WS=ACTIVE -MILITARY
'WS=POLITICIAN WS=LAW-ENFORCEMENT WS-SECURITY ~GUARD
WS-CROANIZATION WS-PHYS-TARGET WS-GENERIC-LOC

WS =TERRORIST -PHYS~TARGET WS-MILITARY ~PHYS~TARGET V/S-BUILDING

WS =CIVILIAN-RESIDENCE WS-COMMERDIAL WS-COMMUNICATIONS

WS -UIPLOMAT ~CFFICE-CR~RESIDENCE WS-FINANCIAL WS~Q0VT-CFFICE -OR-RESIDENCE
WS-LAW~ENFORCEMENT -FACILITY WS-POLITICIAN~OFFICE-OR-RESIDENCE WS -CROANIZATION=CFFICE
'WS=-SCHOOL WS-ENERGY WS~TRANSPORT ~VEHICLE
WS ~TRANSPORT ~FACILITY WS-TRANSPORT-ROUTE WS-WATER

(WS-MONEY WS-PROPERTY WS-WEAPON

WS-QUN WS-MACHINE-GUN WS-MORTAR

'WS=HANDGUN WS-RIFLE WS-EXPLOSIVE

WS-80MB ‘WS=VEHICLE-60MB WS-DYNAMITE

'WS~-MINE WS=AERIAL-B0MB WS ~GRENADE
(WS-MOLOTOV-COCKTAL WS-CUTTING-DEVICE WS-FIRE

'WS-TORTURE

Figure 3.9: Word Senses Selection Menu

3.3 Concept Node Definitions

This section first describes the differences between the original CIRCUS concept node definitions
and those used for MUC. We then discuss the five major classes of concept nodes. Each type
is discussed in more detail in a separate subsection. The section concludes with some general
hints for defining new concept nodes. Throughout the section, we assume that the reader is
familiar with the CIRCUS parser. For a basic introduction to CIRCUS, see [1].

3.3.1 Differences from CIRCUS Concept Nodes

Concept node definitions for MUC take on a slightly different form than the original CIRCUS
concept nodes. The difference is in the syntax and semantics of the soft slot constraints.
Instead of the single Lisp predicates originally used as soft constraints (e.g., fnl, fn2, fn3a,
etc.), the soft constraints for each variable slot in a MUC concept node definition consist of a
list of references to the semantic class hierarchy.? (The semantic feature hierarchy is listed in
[nlp.muc.lexicons]class-hierarchy.)

(define-word $KIDNAP-2$
(CONCEPT-NODE
’:NAME °’$KIDNAP-2$
?:TIME-LIMIT 10
’ :SLOT-CONSTRAINTS ’(((class organization *PPx*)

2 Although none of the MUC concept nodes use generic lisp functions as soft constraint predicates,there is
still a mechanism for employing this type of soft constraint. See Tony’s (Tony Reish) functions TSC-2 and
TSC-FUNC in [nlp.muc.circus]abstr.lisp.

CHAPTER 3. SENTENCE ANALYSIS 30

(class terrorist *PP*)
(class proper-name *PPx)
(class human *PP%*))
((class human *PP*)
(class proper-name *PPx)))
» : VARIABLE-SLOTS ’ (ACTOR (*PP* (is-prep? ’(by)))
VICTIM (*PPx (is-prep? ’(of))))
' :CONSTANT-SLOTS ’ (TYPE KIDNAPPING)
' :ENABLED-BY ’ ((active-or-passive)
(*S*-ig-kidnapping?))
)

In the example above, there are two references to the semantic hierarchy in the soft constraints
for the VICTIM slot. The (class human *PP*) constraint tests that at least one of the semantic
features associated with the head noun of *PP* has ws-human as an ancestor. The (class proper-
name *PP*) constraint for the VICTIM slot tests that at least one of the semantic features
associated with the head noun of *PP* has ws-proper-name as an ancestor.

The semantics of the soft slot constraints has also been modified for the MUC system. A filler
satisfies the soft constraints for a slot if any predicate in the slot constraint list succeeds. A
prepositional phrase would satisfy the soft constraints of the VICTIM slot, for example, if its
head noun was either of class human or class proper-name, or was any' descendant of these

classes.

3.3.2 Concept Node Classes

MUC concept node definitions can be categorized into the following implicit taxonomy of con-
cept node types:
1. verb-triggered

(a) active
(b) passive

(c) active-or-passive
2. noun-triggered
3. adjective-triggered
4. gerund-triggered
5.

threat and attempt concept nodes

I will briefly discuss each type below, but it should be noted that the taxonomy represents
generic classes of concept node types. Most of the concept nodes created for MUC began as

T3

T3 —3 T3

CHAPTER 3. SENTENCE ANALYSIS 31

one of these generic types, but evolved over time into a concept node that looks quite different
from its original incarnation.

Active Verb-triggered Concept Nodes

Concept nodes triggered by verbs in active voice require very simple concept node definitions.
These concept nodes are triggered by the presence of a specific verb and are enabled only when
that verb is in the active voice. The concept node definition typically sets up predictions for
finding the ACTOR in *S* and the VICTIM or PHYSICAL-TARGET in *DO*. Active verb-
triggered concept node definitions exist for essentially all verbs important to the MUC domain,
e.g., kidnap, kill, murder, bomb, detonate, massacre, etc. The SKIDNAP$ concept node below
is an example of a concept node definition triggered by an active verb. It handles kidnappings
for clauses like: “The ELN guerillas kidnapped Castellar.” Both “kidnap” and “abduct” have
SKIDNAPS in the :cn-defs field of their McEl definition.

(define-word $KIDNAP$
(CONCEPT-NODE
’:NAME °’$KIDNAP$
* :TIME-LIMIT 10
’ :SLOT-CONSTRAINTS ’(((class organization *S%)
(class terrorist *S)
(class proper-name *S*)
(class human *S%))
((class human *D0x)
(class proper-name *D0%)))
? :VARIABLE-SLOTS ’(ACTOR (*S* 1)
VICTIM (*DO* 1))
? :CONSTANT-SLOTS °’ (TYPE KIDNAPPING)
> :ENABLED-BY ’((if (eq 0 (reduced-relative)) 1 0)
(active))))

This concept node definition checks that the Actor is an organization, terrorist, proper name,
or human while the Victim is expected to be a human or proper name.

In addition, note the ENABLED-BY clause. It makes two tests before enabling the concept
node. First, the parser shouldn’t be in a reduced relative clause. Second, the verb should be
in active voice. The function ACTIVE (in [nlp.muc.circus]mucsem.lisp) checks that the verb is
in active voice and also makes a series of tests on the verb phrase before enabling the concept
node. It tests, for example, that:

e the verb is in past tense (e.g., “kidnapped”)

e any auxiliary preceding the verb is of the correct form (e.g., “had kidnapped” is fine, but
“was kidnapped” indicates the passive voice and so ACTIVE should return 0)

CHAPTER 3. SENTENCE ANALYSIS 32

o the verb is not in the infinitive form (e.g., “to kidnap”)
o the verb is not preceded by “being”

¢ the sentence is not actually describing a threat or an attempt (these events trigger a
different set of concept nodes)

o the negation mode buffer (i.e., *negation*) is nil (e.g., “did not kidnap” shouldn’t trigger
a kidnapping concept node)

o the future/ sub:iunctive mode buffer (i.e., *future*) is nil (e.g., “will/would kidnap” shouldn’t

trigger a kidnapping concept node)

Each of these features was determined to be a generic requirement for enabling concept nodes
triggered by active verbs. Any of the requirements can be overridden by a keyword argu-
ment. So, for example, to allow “to kidnap” to trigger SKIDNAPS, the call to ACTIVE in the
ENABLED-BY clause should be changed from (active)to (active :check-infinitive nil :check-past
nil).

Passive Verb-triggered Concept Nodes

Almost every verb that has a concept node definition for its active form should also have a
concept node definition for its passive voice form. The passive verb-triggered concept nodes
are triggered by the presence of a specific verb and are enabled only when that verb is in the
passive voice. (There is a function called PASSIVE that is the same as ACTIVE except that it
ensures that the triggering verb and its auxiliaries are consistent with the passive voice.) These
concept node definitions typically set up predictions for finding the ACTOR in a by-*PP*
(ie., *PP* is a prepositional phrase that begins with the preposition “by”) and the VICTIM
or PHYSICAL-TARGET in *S$*. The $KILL-PASS-18 concept node below is an example of a
concept node definition triggered by a passive verb. It handles clauses like: “Castellar was killed
by ELN guerillas.” The verbs “murder,” “execute,” “kill,” “massacre,” “assassinate,” “gun,”
“gunned_down,” and “shot_to_death” all trigger this concept node because each has $KILL-
PASS-18 in the :cn-defs field of its McEli definition. It should be noted that $KILL-PASS-1$
is only enabled if *S* is not a synonym of “no one.” This prohibits sentences like “No one was
killed by the terrorists” from triggering a murder.

(define-word $KILL-PASS-1$
(CONCEPT-NODE

’:NAME ’$KILL-PASS-1$

’:TIME-LIMIT 10

? :SLOT-CONSTRAINTS °’(((class organization *PPx)
(class terrorist *PP*)
(class proper-name *PPx*)
(class human *PPx))

3 T3

|

-

3

3

T3

CHAPTER 3. SENTENCE ANALYSIS 33

((class human *S*)
(class proper-name *S%)))
*:VARIABLE-SLOTS ’ (ACTOR (*PP* (is-prep? ’(by)))
VICTIM (*S* 1))
? :CONSTANT-SLOTS ’ (TYPE MURDER)
' :ENABLED-BY ’ ((passive :check-s-no-one t))))

The passive concept nodes often look for slot fillers in more than one prepositional phrase. For
example, both the victim and the instrument may be found in prepositional phrases: “Castellar
was killed by ELN guerillas with with a knife.” Because CIRCUS only has one *PP* buffer and
because a concept node only freezes when all of its slots are filled (or at the end of a clause
or when its time limit expires), we usually create separate concept nodes for predicting each
distinct PP. For example, $KILL-PASS-2$ looks very much like $KILL-PASS-1$ above and is
responsible for picking up the instrument.

(define-word $KILL-PASS-2%
(CONCEPT-NODE

?:NAME °’$KILL-PASS-2$

’ +TIME-LIMIT 10

? :SLOT-CONSTRAINTS ’(((class human *S*)

(class proper-name *Sx))
((class weapon *PP%*)))
’ :VARIABLE-SLOTS °’(VICTIM (*Sx 1)
INSTR (*#PP* (is-prep? ’(by with))))
’ :CONSTANT-SLOTS °’ (TYPE MURDER)
’ :ENABLED-BY ’((passive :check-s-no-one t))))

Another way to handle the multiple PP problem is to create (at least) two concept nodes that
are identical except for their TIME-LIMITs. For example, we might create a $KILL-PASS-1$
and $KILL-PASS-2$ that each contain the ACTOR, VICTIM, and INST slot but have time
limits of, say, 2 and 10, respectively. In theory, SKILL-PASS-1$ would pick up the first PP
and $KILL-PASS-2$ would pick up the second PP. In practice, however, using the time limit to
control predictive prepositional phrase attachment is difficult and unreliable. Unfortunately, a

limited number of concept nodes continue to make use of this solution. They should probably
be changed.

Other Verb-triggered Concept Nodes

Occasionally, concept nodes can be triggered by verbs in either the active or passive voice.
For instance, the following concept node definition handles sentences with verbs in active voice
(e.g., “The kidnapping occurred...”) and passive voice (e.g., “The kidnapping was carried_out
..."). Creating concept nodes that look for fillers for both classes of verbs is usually dangerous,
however. It is better to create separate active and passive versions of the concept node.

CHAPTER 3. SENTENCE ANALYSIS 34

13 triggered off of verbs like OCCURRED, TOOK_PLACE, CARRIED_OUT
(define-word $KIDNAP-2%
(CONCEPT-NODE
’:NAME °’$KIDNAP-2$
? : TIME-LIMIT 10
? :SLOT-CONSTRAINTS ’(((class organization *PPx*)
(class terrorist *PPx)
(class proper-name *PP*)
(class human *PP*))
((class human *PP*)
(class proper-name *PPx)))
? :VARIABLE-SLOTS ’ (ACTOR (*PP* (is-prep? ’(by)))
VICTIM (#PP* (is-prep? ’(of))))
? :CONSTANT-SLOTS ' (TYPE KIDNAPPING)
’ :ENABLED-BY ’(;;active for occurred, took_place
; ;passive for carried_out
(active-or-passive)
(*S*~-is-kidnapping?))))

Noun-triggered Concept Nodes

Concept nodes triggered by nouns have definitions that predict slot fillers in prepositional
phrases that follow the noun. The following SMURDERS concept node definition is triggered
by the nouns “massacre,” “murder,” “death,” “murderer,” “assassination,”, “killing” (in its
gerund form), and “burial.” It looks for the Victim in an of-PP.

(define-word $MURDERS$
(CONCEPT-NODE

’ :NAME °’$MURDER$

?:TIME-LIMIT 2 ;;5 was too much (nosc42, #33)
;12 was too much for 1221 -emr
;;needed 2 for 1243

? :SLOT-CONSTRAINTS ’(((class human *PPx)

(class proper-name *PP*)))

’ :VARIABLE-SLOTS *(VICTIM (*PP* (pp-check ’(of))))

? : CONSTANT-SLOTS * (TYPE MURDER)

’ :ENABLED-BY ’ ((noun-triggered)
(not-threat-or-plot))))

Note the hard constraint associated with the Victim slot. We use PP-CHECK as a hard con-
straint to ensure that only prepositional phrases that begin with “of” and follow the triggering
noun will satisfy the hard constraint. The alternative hard constraint predicate, IS-PREP?,
does not check the position of the prepositional phrase with respect to the triggering noun.

m

—3 T3

T3

g

3

—3 3 3 T3

CHAPTER 3. SENTENCE ANALYSIS 35

As the comments next to TIME-LIMIT suggest, establishing the correct time limit in the
noun-triggered concept node definitions is often difficult. A time limit of 10 is usually a
good place to start. The function NOUN-TRIGGERED in the ENABLED-BY clause(in
[nlp.muc.circus]mucsem.lisp) performs the same function for noun-triggered concept nodes that
the ACTIVE and PASSIVE functions perform for verb-triggered concept nodes. It confirms
that some generic conditions are satisfied before a noun can enable a concept node. A call
to NOUN-TRIGGERED should be in the ENABLED-BY slot for all noun-triggered concept
nodes. The SMURDERS concept node definition shown above has an additional enabling con-
dition that disables the concept node if the sentence describes a threat or a plot (e.g., “they
planned the murder of Castellar”). This test should become part of the NOUN-TRIGGERED
function if it turns out to be a generic condition for enabling all noun-triggered concept nodes.

As described in the last section, we usually create separate concept nodes to pick up slot fillers
that require different prepositional phrases. As a result, there exists another noun-triggered
MURDER concept node definition that looks very much like the SMURDERS definition above
but picks up the Actor in a by-PP.

An important note: Be sure to create McEli definitions that have :SYNTACTIC-TYPE
triggering-noun instead of :SYNTACTIC-TYPE noun when defining nouns that trigger concept
nodes, i.e., nouns that have concept node definitions associated with them.

Adjective-triggered Concept Nodes

It is sometimes necessary to trigger concept nodes off of adjectives. We do this when the verb is
too general to make a good trigger, e.g., “Castellar was found dead.” Intuitively, we don’t want
“found” to trigger a “death” concept node because it shows up in too many other contexts.
A “death” concept node triggered by “found” would pop up too often unless we created a

very specific enabling clause to disable the concept node whenever “found” wasn’t eventually
followed by “dead.”

In the case of “found dead,” it is easier to trigger a FOUND-DEAD concept node off of the ad-
jective and then check for the presence of specific verbs (in the ENABLED-BY clause) using the
APPROPRIATE-VERB? or EXACT-VERB? functions. The following concept node definition
was created for sentences like “The officials found the mayor dead when they arrived.”

;striggered by dead.
(define-word $FOUND-DEAD$
(CONCEPT-NODE
' :NAME ’$FOUND-DEAD$
’ :TIME-LIMIT 2
* :SLOT-CONSTRAINTS ’(({(class human *D0x)
(class proper-name *D0x*)))
> :VARIABLE-SLOTS °’(VICTIM (*DO* 1))
? :CONSTANT-SLOTS °’ (TYPE FOUND-DEAD)
’ :ENABLED-BY ’((active)

CHAPTER 3. SENTENCE ANALYSIS 36

(appropriate-verb? *V* ’(found)))
))

We also trigger concept nodes off of adjectives when looking for very specific lexical items in the
vicinity of the adjective. For phrases like “20 dead” and “50 wounded”, for example, the number
preceding the adjective should fill the victim slot in either a MURDER or INJURY concept
node. Unfortunately, numbers can be either nouns or adjectives and adjectival phrases like “20
dead” and “50 wounded” can show up in any (or none) of the global syntactic buffers. As a
result, defining a concept node that looks for information from the adjectival phrase in specific
constituent buffers is very difficult. To solve this problem, we use special McEl definitions
for some triggering adjectives (e.g., “dead”). These McEli definitions store the number that
precedes the adjective in a special *NUM* buffer. We then create specialized concept nodes
that are triggered by the adjective and predict slot fillers in the *NUM* buffer. An example
of such a concept node definition is the SNUMBER-DEADS$ definition below. The enabling
conditions indicate that the concept node is only enabled if a number precedes the adjective.

;3 "...NUM DEAD..."
(define-word $NUMBER-DEADS$
(CONCEPT-NODE
 :NAME ’$NUMBER-DEAD$
' :TIME-LIMIT 1
» : SLOT-CONSTRAINTS ’(((class entity *NUMx)))
* :VARIABLE-SLOTS ’(VICTIM (*num* 1))
’ : CONSTANT-SLOTS ’ (TYPE MURDER)
» :ENABLED-BY ’((if (get-number (format nil "“A" (prev-word)))
10))))

Gerund-triggered Concept Nodes

Some concept nodes are designed specifically for picking up the noun phrases that follow
gerunds.®> We originally allowed gerunds to trigger the same concept nodes as the associ-
ated verb form, but the verb-triggered concept nodes turned out to be too general for the very
specific processing required by gerunds. For example, the gerund-triggered concept nodes often
have no enabling clause because the fact that the triggering word was parsed as a gerund is
itself a reliable enabling condition. In addition, the object of the gerund is the noun phrase
that follows it, but the actor cannot reliably be found in the *S$* buffer as it is for active
verb-triggered concept nodes.

As a result, we create special concept nodes for important gerunds like “killing,” “destroying,”
“damaging,” etc. The McEl definition for gerunds stores the noun phrase that follows the

3Gerunds are verb forms that act as nouns: e.g., The army was accused of destroying houses and damaging
buildings.

3

T3 T3

3

CHAPTER 3. SENTENCE ANALYSIS 37

gerund in *DO* and the concept node definition looks for its slot filler in that buffer. The fol-
lowing concept node definition handles phrases like “...destroying 13 business establishments...”.

(define-word $destroy-gerund$
(CONCEPT-NODE

’:NAME ’$destroy-gerund$

* :TIME-LIMIT 2

’ :SLOT-CONSTRAINTS ’(((class human *D0%)

(class proper-name *D0*)))
’ :VARIABLE-SLOTS ’ (VICTIM (*DO* (*do*-not-before-cn?)))
? :CONSTANT-SLOTS ’ (TYPE destruction
EFFECT destroyed)
> :ENABLED-BY ’()))

Note: always use *DO*-NOT-BEFORE-CN? as a hard constraint in the gerund-triggered con-
cept nodes to ensure that *DO* fills a slot in the case frame only if it follows the gerund, i.e.,

we don’t want direct objects in existence prior to the gerund to fill slots in the gerund-triggered
concept node.

Threat and Attempt Concept Nodes

THREAT and ATTEMPT concept nodes are often difficult to design because they require
enabling conditions that check for both a specific event (e.g., murder, attack, kidnapping, etc.)
and for indications that the event is a threat or attempt. One way to design these concept
node definitions is to allow the noun or verb associated with the main event type to trigger
the concept node and then create enabling conditions that look for mention of “attempts” or
“threats” in an earlier clause. The following concept node, for example, handles sentences
like “The terrorists intended to storm the embassy.” It is triggered by the verbs “attack”,
“intercept”, “derail”, and “storm”.

(define-word $attempted-attack-2$
(CONCEPT-NODE
’:NAME ’$attempted-attack-2$
’:TIME-LIMIT 5
? :SLOT-CONSTRAINTS ’(((class organization %Sx)
(class terrorist *S*)
(class proper-name *Sx)
(class human *S*))
((class human *DO%*)
(class proper-name *D0%*))
((class phys-target *D0x)))
? :VARIABLE-SLOTS ’(ACTOR (*S* 1)
VICTIM (*DO* 1)

CHAPTER 3. SENTENCE ANALYSIS 38

TARGET (*D0* 1))
’ :CONSTANT-SLOTS °’(TYPE attempted-attack)
? :ENABLED-BY ’((active :check-threat nil
:check-infinitive nil
:check-past nil)
(probably-an-attempt?))))

This concept node definition uses keyword arguments to ACTIVE so that the infinitive form of
the triggering verb will enable the concept node. The function PROBABLY-AN-ATTEMPT?
(in [nlp.muc.circusjmucsem.lisp) checks that an “attempt” word precedes the triggering verb by
less than or equal to 10 words. Clearly, this is a hack. We chose the number 10 in a case-based
fashion. For threats, we set the window to 9. Because threats and attempts occur much less
frequently than real events, this method of defining concept nodes was satisfactory.

A Note Concerning Some Injury and Damage Concept Nodes

The $INJURY-2$ and $NO-INJURY-1$ concept nodes are triggered by the same lexical items

and are designed so that only one of them will succeed for each triggering word. Unfortunately,
the enabling conditions that allow this interaction are antiquated (and very complicated). They
were designed before there was a method for checking the adjectives that precede a trigger-
ing noun. The enabling conditions of these concept nodes could now be simplified by using
the function NOT-IN-PREDICATES? (in [nlp.muc.circusjmucsem.lisp). The same is true for
$DAMAGE-NOUN-18, $SDAMAGE-NOUN-2$, and $SNO-DAMAGE-NOUN-1$.

3.3.3 Defining New Concept Nodes

There are 3 steps to defining a concept node for a new example:

1. Look for an existing concept node that picks up slots from the correct buffers and has
enabling conditions that will be satisfied by the current example.

2. If one exists, you won’t have to create a new concept node. Instead, add the name of the

existing concept node to the :CN-DEFS portion of the McEli definition of the triggering
word.

3. Otherwise, create a new concept node definition by modifying an existing one to handle
the new example. (It is best if you start out using a general concept node so that it can

be made more specialized as related examples appear in the text. Generalizing a concept
node is a more dangerous task.)

B

3

"3

3

3

3

—3 3 3

3 38

CHAPTER 3. SENTENCE ANALYSIS 39

3.4 Prepositional Phrase Attachment

The CIRCUS parser provides a network relaxation mechanism for bottom-up insertion of prepo-
sitional phrases into the semantic case frame representation. Although the mechanism is com-
pletely general, only a very restricted form of network relaxation was required for MUC. Qur
goal was to restrict the mechanism so that any prepositional phrase relevant to the MUC do-
main (mainly times and locations) would attach to ail concept nodes that occur in the clause

containing the prepositional phrase. CIRCUS’ data-driven mechanism for prepositional phrase
attachment was restricted as follows:

¢ Only nouns, verbs, and adjectives that carry concept node definitions can become at-

tachment points in the network. (In the original CIRCUS system, any noun or verb can
potentially serve as an attachment point.

e We only allow noun phrases and prepositional phrases whose head nouns are tagged with
the location word sense, the proper-name word sense, or any of the phys-target word senses
to become part of the relaxation network. All other noun and prepositional phrases are
ignored by the network construction algorithm.

e We initialize all preposition nodes without consulting any memory model. If the prepo-
sition node connects a prepositional phrase to a lexical item that carries a concept node
definition, we initialize the preposition node with a value of 6 . In all other cases, we
initialize the preposition node with a value of 0.

o We replaced CIRCUS’ MAKE-NETWORK function with a specialized MAKE-MUC-
NETWORK. This function allows prepositional phrases to attach to any noun phrase or
verb phrase in the current clause, even if the prepositional phrase occurs at the beginning
of the clause. E.g., “on 25 Jan” will be attached to the murder concept node in “On 25
Jan, Castellar was murdered”. The original MAKE-NETWORK would not have allowed
forward attachment of prepositional phrases.

¢ Instead of running the relaxation algorithm as each constituent in a sentence is recognized,
the relaxation algorithm is only run once — at the end of each clause. This restriction
merely speeds up the parser without affecting the final attachment decisions.

3.4.1 Examples

The MUC system uses the relaxation algorithm for prepositional phrase attachment of times,
locations, and physical targets. The following sections give some examples of each and list the
prepositions responsible for the attachment.*

*In CIRCUS, only prepositions that carry word senses can become part of the relaxation network. To see the
functions that define the prepositional phrase attachment constraints for each preposition in the MUC system,
see the invocations of CREATE-CONSTRAINTS at the end of [nlp.muc.circusjmucsem.lisp.

CHAPTER 3. SENTENCE ANALYSIS 40
Time Phrases

The prepositions ON and IN carry the time word sense and alert the data-driven slot insertion
mechanism to attach the time phrase that follows to all concept nodes in the clause. As indicated
in the following example, the slots inserted by this mechanism are labelled as REL-LINKs. Note
that the preprocessor has converted the phrase “last week” to a specific range of seven days
based on the date of the newswire:

MESA MENESES WAS ARRESTED ON MAR.29_90-APR_05_90 >C0 LAST WEEK >CO
BY THE ADMINISTRATIVE DEPARTMENT OF SECURITY...

*okok TYPE = PERPETRATOR

ekeok CONFIDENCE = SUSPECTED_OR_ACCUSED_BY_AUTHORITIES
Ak NEW-INFO = T

seokk PERPETRATOR = WS-PROPER-NAME

Hokok noun group = (MESA MENESES)

ek REL-LINK (TIME (MAR.29.90-APR_05_90)))

Location Phrases

There are three forms for bottom-up pp-attachment of location phrases. The prepositions IN,
NEAR, AT, and THROUGHOUT (defined with the loc2 word sense) attach the location phrase
that follows to all concept nodes in the clause as indicated in the following example:

A POWERFUL DYNAMITE_CHARGE ON DEC_20.89 >CO TODAY EXPLODED NEAR THE
AMERICAN EMBASSY IN LA_PAZ >PE

sk TYPE = WEAPON
Fokk INSTR = DYNAMITE
skokk REL-LINK (TIME (DEC.20_89)))
stk REL-LINK (L0C2 (LA_PAZ)))
ook TYPE = BOMBING
ook INSTR =

>>> TYPE = WEAPON

3

3

3

3 T3

3

CHAPTER 3. SENTENCE ANALYSIS 41

>>> INSTR = DYNAMITE
>>> " REL-LINK (TIME OBJECT (WS-TIME))
>>> REL-LINK (LOC2 OBJECT (WS-LOCATION))
ok noun group = (DYNAMITE_CHARGE)
Hokok predicates = (POWERFUL)
*okk determiners = (4)
Aeokok TARGET = WS-DIPLOMAT-OFFICE-OR-RESIDENCE
Aok noun group = (EMBASSY)
Atk predicates = (AMERICAN)
Hokk determiners = (THE)
Hkk REL-LINK (TIME (DEC.20.89)))
Aeokok REL-LINK (L0C2 (LA_PAZ)))

The second form for bottom-up pp-attachment of location phrases is slightly more complicated.
The preposition OF (defined with the loc word sense) attaches the location phrase that follows
to all concept nodes in the clause if the OF-pp was immediately preceded by an IN-pp or ON-
pp. In addition, the attachment will only occur when the head noun of the IN-pp or ON-pp is
not labelled with the time, proper-name, or generic-loc word senses. This pattern will attach
the location “San Salvador” from phrases like “in the heart of San Salvador” but not from “in
the department of San Salvador.” The loc2 word sense of IN is responsible for the attachment
in the second case — it would attach the more specific “department of San Salvador” to all
concept nodes in the clause.

. WHEN A CAR_BOMB EXPLODED ON 0CT.31.89 >CO TODAY OUTSIDE THE
OFFICES OF THE SALVADORAN WORKERS NATIONAL UNION FEDERATION IN THE
HEART OF SAN_SALVADOR >CO THE POLICE REPORTED >PE

deskek TYPE = BOMBING
ko INSTR =
>>> TYPE = WEAPON
>>> INSTR = CAR_BOMB
>>> REL-LINK (TIME OBJECT (WS-TIME))
>>> REL-LINK (LOC1 OBJECT (WS-LOCATION))
Hokok noun group = (CAR_BOMB)
*okok determiners = (A)
sokok REL-LINK (TIME (0CT_31.89)))
ok REL-LINK (LOC1 (SAN_SALVADOR)))

The third form for bottom-up pp-attachment of location phrases is responsible for insertion of
location ranges, i.e., when an event occurs between two locations. The preposition BETWEEN

CHAPTER 3. SENTENCE ANALYSIS 12

(defined with the loc-betwizt word sense) attaches the location phrase that follows (usually a
conjunction of two or more noun phrases) to all concept nodes in the clause. There is a similar
form for attaching time ranges, i.e., BETWEEN also carries the time-betwizt word sense. The
following is an example of a loc-betwizt attachment:

CASTELLAR WAS KIDNAPPED SOMEWHERE BETWEEN ACHI AND SAN_SALVADOR >PE

o o o e o e o oo e

ek TYPE = KIDNAPPING

deokok VICTIM = WS-PROPER-NAME

ok noun group = (CASTELLAR)

Rk ke REL-LINK (LOC-BETWIXT ((ACHI) (SAN_SALVADOR))))

Physical Target Phrases

Finally, we sometimes use the bottom-up attachment mechanism to locate physical targets.
The pseudo-prepositions IN.THE_BACK_OF and INFRONT_OF (defined with the target word
sense) attach the physical target that follows to all concept nodes in the clause:

ALMOST SIMULTANEOUSLY ANOTHER BOMB EXPLODED IN_FRONT_OF A BANK IN
ANOTHER PART OF CARTAGENA...

*kok TYPE = WEAPON
Rk INSTR = BOMB
*ok REL-LINK (TARGET (BANK)))
Rk REL-LINK (LOC1 (CARTAGENA)))
ook TYPE = ATTEMPTED-BOMBING
*okok INSTR =
>>> TYPE = WEAPON
>>> INSTR = BOMB
>>> REL-LINK (TARGET OBJECT (WS-FINANCIAL))
>>> REL-LINK (LOC1 OBJECT (WS-LOCATION))
ook noun group = (BOMB)
koK predicates = (ANOTHER)
Aol REL-LINK (TARGET (BANK)))
qokok REL-LINK (LOC1 (CARTAGENA)))

B

3

T3 T3 T3

3

CHAPTER 3. SENTENCE ANALYSIS 43

3.5 Embedded Clauses

The CIRCUS parser was designed to handle sentences with only one verb, e.g., John gave
Mary a kiss. Unfortunately, the MUC corpus consists mainly of very long, information-packed
sentences. Consider the following typical example:

HOWEVER, ARMED FORCES SPOKESMAN COLONEL LUIS ARTURO ISAACS SAID
THAT THE ATTACK, WHICH RESULTED IN THE DEATH OF A CIVILIAN WHO WAS
PASSING BY AT THE TIME OF THE SKIRMISH, WAS NOT AGAINST THE FARM,
AND THAT PRESIDENT CEREZO IS SAFE AND SOUND.

This sentence contains five separate clauses. Understanding each clause often requires that the
parser carry constituents from one clause to the next. For example, “attack” is the sub ject of
both “resulted” and “was,” and “civilian” is the subject/actor of “was passing by.” In other
words, the embedded clause is missing a constituent (i.e., contains a gap) and the parser has
to fill in the gap with a suitable antecedent from one of the previous clauses. At the very
least, CIRCUS has to recognize when it has entered a new clause and reinitialize its syntactic
constituent buffers. In the above sentence, for example, the third clause (with the verb phrase
“was passing by”) contains a gap in the subject position that should be filled by the phrase
“a civilian” (from the previous clause). Because approximately 75% of the sentences in the
corpus contain more than one verb phrase, it became clear that CIRCUS would require some
mechanism to systematically handle sentences with multiple clauses.

To solve this problem, we define a small number of lexically-indexed control kernels (LICKs)
for processing embedded clause constructions and allow individual words to selectively trigger
the LICK that will correctly handle the current clause. Each LICK is essentially a new parsing
environment. When we come to a subordinate clause, the top-level parsing environment (i.e.,
LICK) creates a new parsing environment that takes over to process the interior clause. In other
words, when a subordinate clause is first encountered, the parent LICK spawns a child LICK,
passes control over to the child, and later recovers control from the child when the subordinate
clause is completed.

For a full explanation of LICKs, see [7]. However, we would like to emphasize that the MUC
implementation of LICKs only simulates the LICK processing described in [7]. Instead of
using lexical closures to create a new parsing environment, we clear the McEli stack and reset
the syntactic constituent buffers. In addition, we do not incorporate the semantic representation
of the relative clause into the semantic representation of the entire sentence. Instead, we output
the case frames produced by each clause separately. The rule-based consolidation module is
then responsible for merging the concept nodes from each clause in the story into the correct
MUC template representation.

Consider the following sentence:

RICCARDO ALFONSO CASTELLAR, WHO WAS KIDNAPPED LAST WEEK BY ELN
GUERRILAS, WAS FOUND TODAY NEAR ACHI.

CHAPTER 3. SENTENCE ANALYSIS 44

CIRCUS begins parsing the sentence in the top level control kernel or environment. When it
reaches the word “who”, however, its lexicon entry indicates that processing of the main clause
should be temporarily suspended and a child LICK spawned to process the relative clause. The
lexicon entry for “who” is also responsible for initializing all syntactic constituent buffers in the
new parsing environment. Because “Riccardo Alfonso Castellar” is the antecedent of “who” and
because the antecedent of “who” always fills the subject position in the subordinate clause?,
“who” initializes the child LICK *S* buffer with “Riccardo Alfonso Castellar”® and initializes
all other constituent buffers in the child to NIL. (See the annotated trace below.)

Because the MUC implementation of LICKs only simulates the lexical closure implementation
required for real LICK processing, a special *OLD-5* buffer saves the subject of the main
clause (i.e., “castellar”) so that the main clause subject can be reinstated after processing
the wh-phrase. After initializing the child LICK buffers, the lexicon entry for “who” clears
the McEli stack.” Again, this explicit clearing of the stack is are necessary because we only
simulating the LICK mechanism in the MUC system. Finally, the next-packet of the “who”
definition initializes the McEL stack expectations for the embedded clause.® At this point,
CIRCUS begins parsing the embedded clause.

The following is an annotated trace of the LICK processing for the embedded clause in the
above sentence:

(RICCARDO ALFONSO CASTELLAR >CO WHO WAS KIDNAPPED ON

DEC_26_89-JAN_02_90 >CO LAST WEEK >C0 BY ELN GUERRILAS >CO WAS FOUND ON
JAN_09_90 >CO TODAY NEAR ACHI >PE)

Processing *START* at position 0

Processing RICCARDO at position 4

Processing ALFONSO at position 5

Processing CASTELLAR at position 6
S = CASTELLAR

Processing >C0 at position 7

Processing WHO at position 8
FROZEN-CNS = NIL

®In the general case, the antecedent of “who” can fill the subject, object, or prepositional phrase positions in
the subordinate clause. For MUC texts, however, the antecedent of “who” always becomes the subject of the
embedded clause.

® Actually, the simulation just allows Castellar to remain in *S* for the child LICK.
"This happens as a side effect of setting the *clear-stack® variable.

®Usually, the next-packet for LICK triggers like “whom”, “that”, “which”, etc., predict a subject-verb to

follow. For “who”, however, no next-packet was required since the subject of the embedded clause always acts
as the gap for sentences in the MUC corpus.

3 T3

3 3

3

CHAPTER 3. SENTENCE ANALYSIS

PART-O0F-SPEECH = RELATIVE-PRONOUN
0LD-S = CASTELLAR =====> save the current subject

----- > initialize all syntactic buffers

- e o

----- > note that *S* is not overwritten

----- > and, hence, still contains CASTELLAR
PREDICATES = NIL

*V*x = NIL
I0 = NIL
D0 = NIL
PP = NIL
AUX = NIL
CP = NIL

NEGATION = NIL
CD-FORM = NIL
GLOBAL-CN = NIL
NETWORK-HISTORY = NIL
NETWORK-F00D = NIL
FUTURE = NIL

CLAUSE = 2
APPOSITIVE = NIL
CLEAR-STACK = T =====> clear the McEli stack

s====> continue parsing the embedded clause

Processing WAS at position 9
Processing KIDNAPPED at position 10

enabling concept $KIDNAP-PASS$

Aok ok

kK
Heok
ek K

activation level = 1/2 ook ok

TYPE = KIDNAPPING
VICTIM = WS-PROPER-NAME
noun group = (RICCARDO ALFONSO CASTELLAR)

Processing BY at position 8
Processing ELN at position 9
Processing GUERRILAS at position 10

45

CIRCUS realizes that it has reached the end of the embedded clause when it sees the verb
phrase “was found.” At this point, CIRCUS exits the child LICK and returns to the main
clause LICK. Because we only simulate the movement between parsing environments for MUC,
returning to the parent LICK requires resetting the *S* buffer to the value saved in *OLD-S*

CHAPTER 3. SENTENCE ANALYSIS

and initializing other syntactic buffers.

Processing WAS at position 11

Kok activation level = 1 ek

ook k TYPE = KIDNAPPING

seokek ACTOR = WS-TERRORIST

Aok ok noun group = (ELN GUERRILAS)

ook ke VICTIM = WS-PROPER-NAME

ook noun group = (RICCARDO ALFONSO CASTELLAR)

Freezing Concept Frame:

eokok TYPE = KIDNAPPING

koK ACTOR = WS-TERRORIST

dkk noun group = (ELN GUERRILAS)

Rekek VICTIM = WS-PROPER-NAME

kK noun group = (RICCARDO ALFONSO CASTELLAR)

Processing FOUND at position 12
S = CASTELLAR =====> reset *S* to value in *QLD-Sx*
CD-FORM = NIL
SAVED-CD-FORM = NIL
PREDICATES = NIL
QLD-S = NIL

I0 = NIL
D0 = NIL
*PP*x = NIL
*CP*x = NIL

SAVED-WORD = NIIL
ENABLED-CONCEPT-NODES = NIL
GLOBAL-CN = NIIL
CLEAR-STACK = NIL
NEGATION = NIL
NETWORK-HISTORY = NIL
NETWORK-F00D = NIL
CLEAR-STACK = T
CLAUSE = 3
PART-0F-SPEECH = VERB
NP-FLAG = NIL

T3 T3 —

—3 T3 T3

CHAPTER 3. SENTENCE ANALYSIS

NOUN-GROUP = NIL
PREDICATES = NIL
ENTIRE-NOUN-GROUP = NIL
DETERMINERS = NIL
APPOSITIVE = NIL
GERUND = NIL

CD-FORM = FOUND

V = FOUND

D0 = NIL

Processing DEAD at position 13

enabling concept $FOUND-DEAD-PASS$

ok activation level = 1 Aok

ook TYPE = FOUND-DEAD

ok ok VICTIM = WS-PROPER-NAME

oKk noun group = (RICCARDO ALFONSO CASTELLAR)

Freezing Concept Frame:

ko TYPE = FOUND-DEAD
sAookok VICTIM = WS-PROPER-NAME
Kook noun group = (RICCARDO ALFONSO CASTELLAR)

Processing ON at position 14
Processing JAN_09_90 at position 15
Processing >C0 at position 16
Processing TODAY at position 17
Processing NEAR at position 18
Processing ACHI at position 19
Processing >PE at position 20

. Parse completed. The final representation =

*okok TYPE = KIDNAPPING
okeok ACTOR = WS-TERRORIST
AHk noun group = (ELN GUERRILAS)

47

CHAPTER 3. SENTENCE ANALYSIS 48
kK VICTIM = WS-PROPER-NAME

Aol noun group = (RICCARDO ALFONSO CASTELLAR)

- TYPE = FOUND-DEAD

Hokeok VICTIM = WS-PROPER-NAME

e noun group = (RICCARDO ALFONSO CASTELLAR)

ok REL-LINK (TIME (JAN_09_90)))

e REL-LINK (L0C2 (ACHI)))

NIL

3.5.1 Triggering LICKs

As shown in the previous example, LICKs can be triggered in two ways. First, the McEl
definition of individual lexical items may indicate that the previous clause should be suspended
and a child LICK spawned. The following words spawn LICKs using this method: after,
because_of, before, because, but, if, that, when, where, whether, which, while, who, whom, since,
though, and although. The McEli definitions of these words are responsible for clearing the stack,
finding the antecedent of the triggering word (if there is one), initializing syntactic constituents
in the child LICK, and initializing the McEl predictions to be in effect at the onset of the
embedded clause. The following is an annotated example of the McEli definition for “but”. (If
the real LICK mechanism had been used, the McEli definition would simply contain a pointer
to a “new-clause-LICK”.)

(d-word but

:syntactic-type special

:syntactic-expectations

(((assign
:: freeze all current concept nodes and save them
;3 in *frozen-cnsx*.

xfrozen-cns* (freeze-concept-nodes)

;; initialize constituents in child LICK --- note that
;; we carry *S* from the parent to *S* in the child.
part-of-speech ’connective
xpredicates* ’()
*Sk *Sx

3

3

—3 3 "3

CHAPTER 3. SENTENCE ANALYSIS 49

0LD-S ()
*Tx 2 ()
*I0% * ()
D0 ()
PP ’ ()
AUX ()
*CPx * ()

negation ’()
xcd-form ’ ()
global-cn ’ ()
network-history ’()
network-food ’()
future ’()

clause (1+ *clausex)
*appositivex ’()

;;clear the McEli stack
clear-stack t)

;3 set up stack in child LICK --- predict a subject
(next-packet
((test
(and (equal *part-of-speech* ’'noun-phrase)
cd-form
(not (member ’ws-time
(np-record-word-senses *cd-form*)))

(null *V*)))

(assign *S* *cd-formx*))))))

There is a second, more general mechanism for creating a child LICK. Every time a verb is
recognized by the McEli component, we check to see whether it is the first verb found for the
current clause. If it is, we continue parsing in the current LICK. However, if the current clause
already has a verb (i.e., *V* is not null), we assume that we have entered a new clause and
create a child LICK to process it. The LICK spawned at “was found” in the example above
was triggered by this second method.

The function SECOND-VERB-OR-INFINITIVE? (in [nlp.muc.circus|changes.lisp) is responsi-
ble for triggering this second class of LICKs. SECOND-VERB-OR-INFINITIVE? is called in
the TEST clause of the generic McEli VERB definition. See the VERB portion of GET-SYN-
DEF below:

(((test (second-verb-or-infinitive?))
(assign *part-of-speech* ’verb
np-flag nil

CHAPTER 3. SENTENCE ANALYSIS 50

noun-group nil

predicates nil

entire-noun-group nil

determiners nil

appositive nil

garund nil

cd-form (make-verb *word*)

V kcd-form*

do nil)

(next-packet
((test (equal *part-of-speech* ’noun-phrase))

(assign *DO* *cd-form*)) ‘

((test (equal *part-of-speech* ’conjunction))))))

SECOND-VERB-OR-INFINITIVE? is called purely for its side effects and always returns true.
Depending on the state of the parser, it spawns one of several different child LICKs to handle the
embedded clause. It can also opt to remain in the current LICK if the current verb is the first
verb in the clause. Below is code for one of the cases in SECOND-VERB-OR-INFINITIVE? ?
This case recognizes and handles infinitive complements.

((or (equal (prev-word) ’to)
(and (equal (nth (~ *pos* 2) *sentence*) ’to)
;312-17-90 story 287 :
; ; (added *pos* clause 1-25-91 for #78)
(equal *part-of-speech* ’adverb)))

(freeze-concept-nodes)

; iset *S* for embedded clause
(cond ((human-np? #*s*)) ;carry over human *Sx*
; 4-18-91 (ctc) #6514
((np-record-p *cd-form*) (reassign ’#*S* ’%cd-form*))
((and (pp-record-p *cd-form*)
(np-record-p (pp-record-np *cd-formx)))
(reassign ’*S* ’(pp-record-np *cd-form*)))
(t nil))

;;clear all other buffers
(if (get-verb-syn-node (nth (- *pos* 2) *sentencex))

°This function was originally designed to handle a small number of cases. Over time, however, it has become
a bit unwieldy. It now contains some very specific code and should probably be reexamined [rewritten to handle
more general cases as originally intended.

3 3 83 3

3

CHAPTER 3. SENTENCE ANALYSIS

(clear-all-buffers :exceptions ’(*Sx *AUX*))
(clear-all-buffers :exceptions ’(*Sx)))

; yincrement clause count
(reassign ’*clause* ’(1+ *clausex*)))

3.6 Appositives and Conjunctions

51

Appositives and conjunctions are handled in two phases. First, we rely on Tony Reish’s code
to produce *NP-HIST*, a semi-linked list of the np-records for all noun phrases that occur
in a clause. In theory, *NP-HIST* uses apposition links to connect the np-records of all noun
phrases that occur in apposition to one another. It also uses conjunction links to connect the np-
records of all noun phrases that occur as part of a conjunction. The following example shows
the portion of *NP-HIST* that represents the appositive in “The terrorists killed Castellar,
the mayor of Achi.” The np-record for “Castellar” is linked via its RELATED-NP slot to the
np-record for “mayor”. In addition, this relationship is labelled as an appositive, i.e., the
RELATED-NP-TYPE slot contains the atom APP.

TIME-STAMP: -
NGP-VALUE:
WORD-SENSES:
CN-LIST:
HEAD-NOUN:

ENTIRE-NOUN-GROUP:
RELATED-NP-TYPE:
RELATED-NP:

#1=#S (NP-RECORD

.#1=#<NP-RECORD 45341071> is a structure of type NP-RECORD

1853

(CASTELLAR)
(WS-PROPER-NAME)
NIL

CASTELLAR

(CASTELLAR)
APP

:TIME-STAMP 1854

:NGP-VALUE (MAYOR)

:WORD-SENSES (WS-GOVT-OFFICIAL)
:CN-LIST NIL

:HEAD-NOUN MAYOR

:ENTIRE-NOUN-GROUP (MAYOR)
:RELATED-NP-TYPE NIL
:RELATED-NP NIL

:0F-WHAT

#2=#S (NP-RECORD :TIME-STAMP 1855

CHAPTER 3. SENTENCE ANALYSIS 52

:NGP-VALUE (ACHI)
ve)
o)

In contrast, note the portion of *NP-HIST* below that represents the conjunction in “The
terrorists killed Castellar, his son, and two officers.” The np-record for “Castellar” is linked via
its RELATED-NP slot to the np-record for “his son”. The np-record for “his son” is, in turn,
linked via its RELATED-NP slot to the np-record for “two officers”. In the case of conjunctions,
however, the RELATED-NP-TYPE slot in each np-record contains the atom CONJ noting that
the three noun phrases should be combined as a conjunction.

#1=#<NP-RECORD 27767754> is a structure of type NP-RECORD

TIME-STAMP: 2861

NGP-VALUE: (CASTELLAR)
WORD-SENSES: (WS-PROPER-NAME)
CN-LIST: NIL

HEAD-NOUN: CASTELLAR
ENTIRE-NOUN-GROUP: (CASTELLAR)
RELATED-NP-TYPE: conNJ
REEATED-NP:

#S(NP-RECORD :TIME-STAMP 2862
:NGP-VALUE (SON)
:WORD-SENSES (WS-HUMAN)
:CN-LIST NIL
:HEAD-NOUN SON

:ENTIRE-NOUN-GROUP (SON)

:RELATED-NP-TYPE CONJ

+RELATED-NP

#S (NP-RECORD :TIME-STAMP 2863

:NGP-VALUE (OFFICERS)
:WORD-SENSES (WS-ACTIVE-MILITARY)
:CN-LIST NIL
:HEAD-NOUN OFFICERS

:ENTIRE-NOUN-GROUP (&&2 OFFICERS)
:RELATED-NP-TYPE NIL
:RELATED-NP NIL

.

™y

3 T3

3

3 3 13

— 3

CHAPTER 3. SENTENCE ANALYSIS 53

In practice, understanding appositives and conjunctions and distinguishing them from one an-
other requires more than the syntactic analysis represented in *NP-HIST*. Phase 2 of appos-
itive and conjunction processing uses semantic knowledge as well as specific syntactic cues to
modify the appositives and conjunctions hypothesized in *NP-HIST*. The function PROCESS-
APPOSITIVES-AND-CONJUNCTIONS contains the code for this phase of processing. It is
invoked by PARSE after an entire sentence has been processed.!® Phase 2 first finds and
processes the appositives in *NP-HIST* and then processes any conjunctions in *NP-HIST*.
We will discuss the phase 2 processing for appositives and conjunctions in the following two
subsections.

3.6.1 Appositives

We will use the terms NP1 and NP2 to refer to the first and second noun phrases in an
appositive. For example, in the appositive “Castellar, the mayor of Achi,” NP1 = Castellar
and NP2 = the mayor. Phase 2 appositive processing performs four main actions:

1. Find the full form of NP2. (E.g., NP2 should be “the mayor of Achi” instead of “the
mayor”)

2. Insert NP2 into the np-record for NP1 and include a marker indicating its appositive
class.

3. Update the word senses of the head noun of NP1 to include information from NP2. (E.g.,
“Castellar” becomes a ws-govt-official as well as a proper-name.)

4. Save the appositive in the global variable *all-appositives*.
We currently recognize 3 (semantic) classes of appositives:

titles “Castellar, the mayor...” (marked with >APP)
names “his son, Kirby,...” (marked with >NAME)

locations “in Lima, Peru...” (marked with >LOC)

The following example walks through phase 2 processing for a sentence containing a “title
appositive”. Processing for the other classes of appositive proceeds in a similar fashion.

THE TERRORISTS KILLED CASTELLAR, THE MAYOR OF ACHL
As shown above, *NP-HIST* for this sentence indicates that the noun phrases “Castellar” (NP1)
and “Mayor” (NP2) are in apposition to one another. The function PROCESS-APPOSITIVE
(called by PROCESS-APPOSITIVES-AND-CONJ UNCTIONS to handle appositives) first tries
to match the appositive against one of the expected appositive patterns. Each appositive pattern

1971 fact, we only invoke the code for sentences that generate at least one concept node.

CHAPTER 3. SENTENCE ANALYSIS 54

describes characteristics of NP1 and NP2. If the appositive matches none of the patterns, then
it is ignored. In this case, however, the appositive matches the pattern that expects NP1 to be
a human or proper name and NP2 to be a noun phrase that is not a number and is not tagged
with the ws-organization or ws-entity word senses. As a result, we update the word sense of
Castellar from ws-proper-name to ws-govt-official and call EXTRACT-APPOSITIVE-TEXT
to find the full form of NP2.}! For this example, EXTRACT-APPOSITIVE-TEXT correctly
returns the string “Mayor of Achi” as the full text form of NP2. Next, this full form of NP2
is inserted directly into the np-record for Castellar. It is marked with the >APP marker to
indicate that this is appositive is a title.!? As a side.effect, this changes the MURDER concept
node from

Rk TYPE = MURDER

ook ACTOR = WS-TERRORIST

ok noun group = (TERRORISTS)
Ao determiners = (THE)

HKK VICTIM = WS-PROPER-NAME
koK noun group = (CASTELLAR)
to

KKK TYPE = MURDER

ok K ACTOR = WS-TERRORIST

Hokok noun group = (TERRORISTS)
*kok determiners = (THE)

ek VICTIM = WS-PROPER-NAME
ko noun group = (CASTELLAR >APP MAYOR OF ACHI)

e e

Finally, PROCESS-APPOSITIVE saves the entire appositive in the global variable *ALL-
APPOSITIVES*. For this example, we add (APP (CASTELLAR) (MAYOR OF ACHI)) to

"In theory, we just have to extract all of the text from NP2 until the next comma. In practice, we can’t rely

on commas to set off the appositive, so EXTRACT-APPOSITIVE-TEXT contains a set of heuristics for locating
the end of the appositive.

2T be consistent, we should probably use a >TITLE marker, but originally this was the only kind of appositive
in MUC; hence, the > APP marker.

3

3

T3

BN |

3 T3

—3 —31 3

CHAPTER 3. SENTENCE ANALYSIS 55

?‘ALL-APPOSITIVES*. This variable stores all of the appositives recognized by the parser dur-
ing the current newswire. Although this variable is currently unused, rule-based consolidation
could use it to augment title and location information.

3.6.2 Conjunctions

The second phase of conjunction processing is very similar to Phase 2 for appositives. The func-
tion PROCESS-APPOSITIVES-AND-CONJUNCTIONS calls PROCESS-CONJUNCTION on
each pair of noun phrases in *NP-HIST* connected via the RELATED-NP slot where the
RELATED-NP-TYPE slot is CONJ. The system essentially works on each conjunction from
right to left. For example, PROCESS-CONJUNCTION sees the hypothesized conjunction
“Castellar, his son, and two officers” in two parts. First, it tries to join “his son” and “two
officers”. If that succeeds, it then tries to join “Castellar” and the conjunction “((his son) (two
officers))”. The output of CIRCUS for the sentence “The terrorists killed Castellar, his son,
and two officers” would be:

okk TYPE = MURDER

*okek _ ACTOR = WS-TERRORIST

ook ~ noun group = (TERRORISTS)

Aokok determiners = (THE)

Heokek VICTIM = WS-PROPER-NAME

*okk noun group = ((CASTELLAR) (SON) (OFFICERS))
Aok predicates = (NIL NIL (&&2))

Aokok determiners = (NIL (HIS) NIL)

PROCESS-CONJUNCTION takes each pair of noun phrases, NP1 and NP2, and attempts to
match them against conjunction patterns. Unlike the patterns in PROCESS-APPOSITIVE,
however, the patterns in PROCESS-CONJUNCTION are more like anti-patterns. We use the
patterns to 1) delete and skip over noun phrases that were incorrectly marked as conjunctions
in *NP-HIST*, and 2) find noun phrases that should be part of the conjunction, but were
missed during Phase 1 processing. There are two main problems with the syntactic processing
in Phase 1 that cause the above errors. First, combinations of appositives and conjunctions
show up in *NP-HIST* as a single conjunction. For example, a phrase like “Oqueli, 45, and
Gilda Flores,...” shows up in *NP-HIST* as a conjunction of three NP’s: “QOqueli”, “45”,
and “Gilda Flores”. One of the patterns in PROCESS-CONJUNCTION fixes this mistake by
deleting the RELATED-NP link between “45” and “Gilda Flores” and adding one between
“Oqueli” and “Gilda Flores”. Another pattern in PROCESS-CONJUNCTION tries to detect
cases where one of the NP’s in the conjunction is actually a title appositive. This pattern,

CHAPTER 3. SENTENCE ANALYSIS 56

for example, would change the three-part conjunction “Oqueli, Leader of the ELN, and Gilda
Flores,...” in *NP-HIST* to the conjunction “Oqueli and Gilda Flores” and the appositive
“Oqueli APPLeaderofthe ELN™,

The second problem with Phase 1 processing of conjunctions is that it can’t handle any con-
junctions that contain a prepositional phrase. Consider, for example, the phrase “the men of
San Salvador, the women of Peru, and the children”. In this case, *NP-HIST* links: 1) “San
Salvador” and “the women” as appositives, and 2) “Peru” and “the children” as conjunctions.
PROCESS-CONJUNCTION attempts to locate this type of error and modify *NP-HIST* be-
fore creating the conjunction. After fixing any errors, PROCESS-CONJUNCTION combines
NP1 and NP2 into a single noun phrase record. For example, the np-record’s for “his son” (NP1
below) and “two officers” (NP2 below) in the conjunction “his son and two officers” would be
joined into a single np-record (NP3 below).

NP1:

#S(NP-RECORD :TIME-STAMP 2862
:NGP~VALUE (SON)
:WORD~-SENSES (WS-HUMAN)
:CN-LIST NIL
:HEAD-NOUN SON

:PREDICATES NIL

:DETERMINERS (HIS)

:ENTIRE-NOUN-GROUP (SON)
L)

NP2:

#S (NP-RECORD :TIME-STAMP 2863
:NGP-VALUE (OFFICERS)
:WORD-SENSES (WS-ACTIVE-MILITARY)
:CN-LIST NIL
:HEAD-NOUN OFFICERS

:PREDICATES (&&2)

:DETERMINERS NIL

:ENTIRE-NOUN-GROUP (&&2 OFFICERS)
.)

NP3:

#S(NP-RECORD :TIME-STAMP 2848
:NGP-VALUE ((SON) (OFFICERS))
:WORD-SENSES (WS-HUMAN)
:CN~LIST NIL
:HEAD-NOUN SON

!’a‘w‘.!‘

——

T3

3

3

—3 T3 T3 T3 73

CHAPTER 3. SENTENCE ANALYSIS 57

:PREDICATES (NIL (&&2))

:DETERMINERS ((HIS) NIL)

:ENTIRE-NOUN-GROUP ((SON) (&%2 OFFICERS))
.2)

The final task of PROCESS-CONJUNCTION is to notice and mark conjunctions that specify
inclusion rather than straight conjunction. For example, we need to know the difference between
S1:“The terrorists killed Castellar, his son, and two officers” and $2:“The terrorists killed two
officers, including Castellar and his son.” In the first case, there are three victims and in the
second, there are two victims. The output of S2 indicates the difference:

Hokok TYPE = MURDER

*okk ACTOR = WS-TERRORIST

koK noun group = (TERRORISTS)

kK determiners = (THE)

*kok VICTIM = WS-ACTIVE-MILITARY

Hook noun group = ((OFFICERS) <INC (CASTELLAR) (SON))
Hokok predicates = ((%&2) NIL NIL)

Ak determiners = (NIL NIL (HIS))

o o e

3 T3 73 ~3

3

© 3

3

3

Chapter 4

Discourse Analysis

4.1 An Overview

The UMass system as used for MUC-3 is composed of a conceptual sentence analyzer, CIRCUS,
and a discourse analysis component called “consolidation”. These two modules work together
in a pipelined fashion: CIRCUS generates conceptual meaning representations for individual
sentences and consolidation maps these representations onto a set of response templates. We
use two distinct methods for generating templates from parser output: rule-based consolidation
and case-based consolidation.

Our case-based reasoning (CBR) module is an optional component that may be used to augment
the output of rule-based consolidation. We used the CBR component in our official MUC-3 test
run because it increases recall by generating templates that rule-based consolidation may have
missed. However, the increased recall comes at the expense of precision because many of the
additional templates turn out to be spurious. We demonstrated this recall/precision tradeoff
by doing an optional MUC-3 test run without the CBR component; as expected, our system
had lower recall but better precision (see our site report in these proceedings).

4.1.1 Rule-Based Consolidation

Rule-based consolidation merges the meaning representations produced by CIRCUS into a set of
response templates. This process consists of 4 phases: constructing task-specific representations,
partitioning, rule-based merging, and normalization. '

The CIRCUS parser produces task-independent meaning representations (concept nodes) for in-
dividual sentences. Concept nodes are frame-like structures that are triggered by relevant words
or phrases and filled by local syntactic constituents using semantic constraints and preferences.
For example, the following concept node is generated from the sentence below it:

58

CHAPTER 4. DISCOURSE ANALYSIS 59

TYPE = MURDER
ACTOR = (FMLN commandos)
VICTIM = (Salvadoran leftist leader Hector Oqueli Colindres)

“Salvadoran leftist leader Hector Oqueli Colindres was killed by FMLN commandos.”

Consolidation, however, must be able to reason with task-specific knowledge so it immediately
converts each concept node into a task-specific knowledge structure called a c-structure.! During
this process, explicit memory objects are created for victims, physical targets, perpetrators,
dates, and locations. A simple pronoun resolution algorithm also tries to locate pronominal
referents in preceding sentences; if it succeeds then the referent is substituted for the pronoun
in the c-structure. The following c-structure is generated from the concept node above:

$MURDER
ACTOR = $Perp-1
ID = (FMLN commandos), ORG = (FMLN),
WORD-SENSES = (ws-terrorist ws-organization),
CONFIDENCE = nil, NEW-INFO = nil
VICTIM = $Victim-1

ID = (Hector Oqueli Colindres), TITLE = (Salvadoran leftist leader),
NATIONALITY = E1 Salvador, NUM = 1, TYPE = (ws-proper-name ws-politiciz

EFFECTS = (death)

The second phase of consolidation, partitioning, identifies groups of c-structures that belong to
the same incident. The c-structures are divided into partitions that reflect a weak organization
of the text. All c-structures within a single partition are assumed to refer to the same incident,
but different partitions may or may not correspond to the same incident. Partitions are created
by exploiting textual cues, including specific phrases and patterns, as well as domain-dependent
heuristics. There are four classes of textual cues: new-event-markers? introduce a new
incident (e.g. “meanwhile,”), generic-event-markers suggest a generic or irrelevant event
(e.g. “wave of”), and separate-event-markers identify references to multiple events within a
single sentence (e.g. “the day before”). Domain-dependent heuristics are also applied to infer
boundaries between multiple events. For example, if a partition contains two event types that
were not in the preceding partition then we infer that this partition refers to a new incident.
During the partitioning phase, c-structures that represent irrelevant events are discarded and
c-structures that contain certain types of summary information are removed from the merging
process and put aside to be used elsewhere.

Once the c-structures have been partitioned, they are sequentially merged into a set of response
templates. This merging process is guided by a rule base of 139 rules.® Most rules are condition-

'short for “consolidation structure”
2These include possible-new-event-markers that signal a context switch only under specific conditions.

3There is a separate subset of rules for each type of c-structure.

I'&T

——

B

a3

l_—‘“g

|

3

3 73

—3 "3

~3 —3 3

CHAPTER 4. DISCOURSE ANALYSIS 60

action pairs where the condition specifies whether a particular c-structure and template are
compatible and the action dictates how to merge the c-structure into the template. There
are also default rules and special rules to generate a new template instead of merging the c-
structure with an existing template. As templates are created, they are pushed onto a context
stack. Given a c-structure to be merged, the rules are applied to each template on the stack,
in turn, until one template is found to be compatible with the c-structure or until the stack is
exhausted. If a compatible template is found then the rule fires, merges the c-structure into
that template, and moves the template to the top of the stack.? If no compatible template is
found then default rules decide whether a new template should be created from the c-structure.

Each rule has its own criteria for judging whether a c-structure and template are compatible.
Some rules require only that the respective dates and locations are consistent whereas other
rules may also require compatible targets, victims, instruments, etc. When a rule fires, memory
objects that refer to the same entity are unified as a side effect of the merging process; this
involves proper name resolution, updating type and nationality information, etc.

Rule-based merging also involves maintaining families of events. Texts often contain information
about multiple events that were perpetrated by the same people on the same day and in the
same location. We call this a family of events. To keep these events together, each template is
tagged with a family id number. This is where the partitions come into play. All c-structures
within a partition are forced to merge with templates in the same family. For example, if
the first c-structure in a partition is merged into a template in family #2, then the remaining
c-structures in that partition must also be merged into templates in family #2. Therefore the
first c-structure in a partition effectively commits the entire group to a particular family.

The last stage of consolidation is normalization. This phase integrates summary information,
normalizes families to ensure that all incidents in the same family share perpetrators, dates,
and locations, adds default slot fillers, and discards templates that are deemed to be irrelevant.
Currently, we only deal with summary information about similar incidents that took place in
multiple locations. If the rule-based merging process has not already created templates for each
of these incidents, then the missing templates are generated.

4.1.2 Case-Based Consolidation

Our system also has an optional case-based reasoning (CBR) component that can be used
to augment the set of response templates generated by rule-based consolidation. CBR allows
us to benefit from the development corpus by examining how parser output correlated with
key templates in previous texts. The CBR module currently contains 254 cases drawn from
383 texts. A case is constructed from each key template by determining which concept nodes
contain slot fillers that belong in the key.® For example, suppose a MURDER key template

*Hence, this is not strictly a stack since templates are not always removed from top. However the templates
are checked for compatibility from top to bottom.

5The current implementation only looks at the perpetrator, human target, and physical target slots in the
key.

CHAPTER 4. DISCOURSE ANALYSIS 61

contains a perpetrator and human target that correspond to the perpetrator slot filler in a
$murder concept node from sentence 1 and a victim slot filler in a $murder concept node from
sentence 2, respectively. The following case would be constructed:

(MURDER (0 (perp)) (1 (victim)))
This case represents concept nodes in adjacent sentences that contain a perpetrator and victim,
respectively.

The concept nodes generated by the parser are compared with the cases in the case base. Some
subset® of cases will be retrieved. Each retrieved case recognizes a pattern of concept nodes that
resulted in a key template in a previous message; therefore, it recommends that this type of
template should be generated for this text. If rule-based consolidation has not already generated
such a template, then the CBR module will create one from the concept nodes that retrieved
the case. In this manner, CBR can suggest additional templates that rule-based consolidation
may have missed or incorrectly discarded.

4.2 Rule-Based Consolidation

The “consolidation” module of our system is responsible for mapping the CIRCUS output for
a text onto a set of response templates. If each text reported on a single terrorist incident,
then this task would be relatively straightforward. However, many of the MUC-3 texts contain
information about multiple terrorist activities. This aspect of the task adds another level of
complexity to the problem. The system must be able to recognize multiple events, distinguish
between them, and figure out which pieces of information belong to each event. In general, the
system must be able to freely switch between the contexts of different incidents; we will refer

to this problem as “discourse analysis”. Rule-based consolidation is the primary component
responsible for discourse analysis.

The nature of the MUC-3 texts requires the system to produce templates from information that
is usually contained in multiple sentences that may be scattered through the text. Since the
CIRCUS parser generates conceptual representations from individual sentences, consolidation
is responsible for merging these local representations into templates that represent all of the
relevant terrorist activities reported in the text. Rule-based consolidation relies on a set of
domain-specific rules to guide this merging process; textual cues and domain-specific heuristics
are used to infer boundaries between events. There are 4 phases in rule-based consolidation:
constructing task-specific representations, partitioning, rule-based merging, and normalization.
The next four sections discuss each phase in detail.

4.2.1 Constructing Task-Specific Representations

When CIRCUS has finished parsing a text, it passes along the resulting concept nodes to
consolidation. Consolidation immediately sorts the concept nodes to recover the order in which

®Possibly empty if no similar cases are retrieved

)

3

£ 3

CHAPTER 4. DISCOURSE ANALYSIS 62

they were generated by the parser.” Each concept node is then converted into a task-specific
representation called a c-structure (short for “consolidation structure”). C-structures are an
intermediate representation that allows consolidation to reason with task-specific knowledge.
For example, the victim slot in a murder concept node is filled with a generic noun phrase,
such as “Salvadoran leftist leader Hector Oqueli Colindres”. But consolidation must be able to
easily recognize the name, title, and nationality of the victim (i.e., “Hector Oqueli Colindres”,
“leftist leader”, and “Salvadoran” respectively) to compare him with another victim (e.g. “the
Salvadoran politician”). Therefore, consolidation first converts the task-independent concept
nodes produced by CIRCUS into task-dependent knowledge structures. -

There are currently 24 types of c-structures used by consolidation. Some c-structures also have
subtypes, for instance to distinguish between different types of threats, so more than 24 different
types may actually be represented. Each structure type has a different set of associated slots.8
Consolidation also creates explicit memory objects for victims, physical targets, perpetrators,
dates, and locations. These memory representations allow consolidation to use specialized
routines to compare similar objects, e.g. to decide whether two victim objects are referring
to the same individual. The procedures for instantiating these memory representations and
for recognizing and merging similar objects are discussed in the following subsections. These
sections are somewhat detailed so the reader may skip to Section 4.2.2 for a more high-level
view of consolidation.

Consolidation structures®

$arson: actor p-target effect date location

$attempted-attack actor victim p-target instr-type date location
$attack: actor victim p-target instr-type date location
$attempted-bombing: actor p-target date location effect
$attempted-kidnapping: actor victim date location effect
$attempted-murder: actor victim instr-type date location
$attempted-robbery: actor victim p-target effect date location
$bombing: actor victim p-target instr-type date location effect
$clash: actor victim date location

$destruction: actor p-target instr-type effect date location
$forced-work-stoppage: actor victim p-target instr-type date location
$hijacking: actor p-target old-dest new-dest instr-type date location

TEach concept node has a time stamp to identify exactly when it was generated by the parser.

8Qriginally, different structure types were defined because each type seemed to require a different set of slots.
Over time, however, it seems that many structures converged on a common set of slots. In retrospect, it is
probably only necessary to have a single structure to represent all types of events (with an extra type slot to
distinguish between them) and separate structures to represent items that are not events (e.g. perpetrators).
But this is just an implementation issue.

9C.gtructures also contain slots for bookkeeping information, e.g. the words that triggered the concept node
that contributed to the c-structure, whether the triggering words were plural, the sentence from which the concept
node came, whether the concept node represented summary-info, etc.

CHAPTER 4. DISCOURSE ANALYSIS 63

$injury: victim effect mode instr-type date location
$kidnapping: actor victim date location effect
$loc-val: actor object p-target date location
$location: p-target date location

$mtrans: actor to mobj date location

8murder: actor victim instr-type date location
8perpetrator: actor date location

$robbery: actor victim p-target effect date location
$shooting: actor victim instr-type date location
$threat: actor victim p-target instr-type effect date location subtype
$weapon: actor victim instr-type date location
$marker: subtype

Victim Objects

Victims are represented as structures with the following slots:

VICTIM: id title nationality num type effects
Fillers for the id, title, nationality, num, and type slots are extracted directly from the
noun phrase in the concept node’s victim slot. The effects slot is filled only during rule-
based merging (see Section 4.2.3). The procedures for instantiating victim structures are fairly
straightforward, but two subroutines are worth mentioning. '

There are two situations in which both an id and title need to be extracted from a victim slot.
The first case is when an appositive immediately follows the relevant noun phrase; CIRCUS will
then insert the appositive into the slot with an appropriate label so that consolidation will have
access to it. For example, “Hector Oqueli, leader of the National Revolutionary Movement” will
yield a concept node of the form:

$murder: victim = (hector oqueli >app leader of the national revoluationary movement)

In this case, the appositive is used as the victim’s title and the original noun phrase as the
victim’s id.1?

The second case is when there is no appositive but the noun phrase (NP) itself contains a title.

For example, “Salvadoran leftist leader Hector Oqueli Colindres”. The following procedure
separates the id from the title:

Case 1: the NP is followed by a prepositional phrase (PP) beginning with “of”
= use the entire NP as the id (assumption is that proper names shouldn’t have this attachment)

Case 2: the head noun of the NP is not a proper name
= use the entire NP as the id

'9If the appositive is a proper name and the original noun phrase refers to a generic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>