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Abstract

We consider the problem of scheduling customers with deadlines in the G/M/c queue. We
assume that customer deadlines are not known but that the scheduling policy has available
to it partial information regarding stochastic relationships between the deadlines of eligible
customers. We prove three main results, 1) in the case that deadlines are until the beginning
of service, the nonpreemptive, non-idling policy that stochastically minimizes the number of
customers lost during an interval of time belongs to the class of non-idling stochastic earliest
deadline (SED) policies, 2) in the case that deadlines are until the end of service, the optimum
policy belongs to the class of SED policies, and 3) in the case of deadlines until the end of
service, the optimum non-preemptive policy belongs to the class of non-preemptive, non-idling
SED policies. The last result assumes that a customer in service that misses its deadline is
always removed and thrown away. Here a policy belongs to the class of SED policies if it never
schedules a customer whose deadline is known to be stochastically larger than that of some
other customer in the queue. We describe several applications for which these classes contain
exactly one policy. These include queues where i) deadlines are known exactly, i) deadlines
are characterized by distributions with increasing failure rate, i) deadlines are characterized by
distributions with decreasing failure rate, 7v) customers fall into several classes, each with its own
exponential deadline distribution, and ) certain combinations of the previous three applications.
The optimal policies for the first four applications are the earliest deadline first first come first
serve, last come first serve, and head of the line priority scheduling. The scheduling policy for
the last application combines elements of head of the line priority, first come first serve, and
last come first serve. The paper concludes with some generalizations to discrete time systems,
finite buffers and vacation models.
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1 Introduction and Summary

In this paper we consider the problem of scheduling customers with deadlines on multiple server
queues when there is only partial information available to the scheduling policy regarding customer
deadlines. We assume that scheduling policies do not know either future customer arrival times
or customer service times, but have available to them information regarding deadlines in the form
of an acyclic directed graph representing a partial ordering of the customers. The presence of an
edge in the graph from one customer to another indicates that the deadline of the first customer is
stochastically larger than that of the second customer. We prove that the policy that stochastically
minimizes the number of customers missing their deadlines by time ¢t never schedules a customer
which is known to have a deadline that is stochastically larger than that of another customer also

in the queue. We refer to this as the class of stochastically earliest deadline (SED) policies.

Our results hold for systems in which deadlines are until the beginning of service as well as
for systems in which deadlines are until the end of service. In the first variation, we consider non-
preemptive policies whereas in the second variation we have results for the class of policies that
allow preemption as well. Most of our results require that customer service times form an i.i.d.

sequence of r.v.’s independent of arrival times and deadlines.

If the information graph induces a total ordering among the jobs, then the optimal policy is

well defined. A total ordering occurs in five cases,

e all deadlines are known to the policy,

the distribution of relative deadlines (times from arrivals to deadlines) has increasing failure

rate (IFR),

the distribution of relative deadlines has decreasing failure rate (DFR),

e K classes of jobs, each with a relative deadline that is an exponential r.v. with a mean that

depends on the class,

e a combination of the last three.

The optimal policy in the first four cases are i) the earliest deadline scheduling policy, ) first
come first serve (FCFS), ui1) last come first serve (LCFS), and ¢v) fixed priority head of the line
(HOL) policy. The optimal policy for the last example combines features from FCFS, LCFS, and
a fixed priority HOL policy as will be explained later.

Situations in which policies do not have detailed deadline information arise in reliability pro-
blems. Here the deadline may correspond to the time that a component will fail and the servers are
responsible for performing preventive maintenance. The problem is to determine the order in which
to schedule maintenance of arriving components so as to minimize the probability of component

failure. Similar situations occur in medicine.



Several papers have considered the problem of scheduling customers with known deadlines
Panwar [5], Bhattacharya and Ephremides [2], Panwar, et al. [6] and Saito [8] in which the earliest
deadline policies have been shown to be optimal. These results are applicable to soft-real-time
computer systems and to packet switched networks carrying voice or video packets with known
time constraints. Also contained in [2] is the proof that the FCFS policy stochastically minimizes
the number of customers that miss their deadlines when deadlines are not known but the but the
distribution of the relative deadlines has IFR. This was done for the case of one server and when
deadlines are until the beginning of service. All of the above results follow as applications of the

results contained in this paper.

A number of papers have also treated the problem of scheduling customers with deadlines in
systems where they must all be completed. Here typical results are that earliest deadline policies
minimize the job tardiness in the sense of convex ordering for single servers, multiple servers,

tandem queueing systems, and a variety of parallel processing systems Kallmes, et al. [3], Towsley
and Baccelli [10], and Baccelli, etal. [1].

The paper is organized as follows. The next section introduces our system model and our model
for partial deadline information. Section 3 includes our results for systems in which deadlines are
until the beginning of service. Section 4 deals with systems where the deadlines are until the end
of service. Last, Section 5 concludes with generalizations to discrete time systems, systems with

finite buffers, and systems in which servers take vacations.

2 Model Description

We consider a G/M/c queue in which customers have deadlines. We treat two variations, queues in
which deadlines are until the beginning of service and queues in which deadlines are until the end of
service. Let A; < Ay < --- where A; denotes the arrival time of the i-th customer, ¢;, 7 =1,---and
7; = A; — A;_1 denotes the i-th interarrival time, 7 = 1,2, - Let {Si}lgi be a sequence of random
variables where S; denotes the service time of the i-th customer Let {R(6),0 € S} be a family
of random variables parameterized by an index § € S where S is an index set. Let {G)i}lgi be a
sequence of r.v.’s where the deadline of the i-th customer is given by D; = A; + R(0;),i=1,---.
Here R(©;) is referred to as the relative deadline for customer i. When there is no ambiguity, R;
will represent R(©;).

We shall use the notation A = {4;}%;, ® = {0;}%;, § = {B;}%;, and B = (A4,0,S), In
addition, whenever we focus on a specific sample realization of the above r.v.’s, we shall use lower
case notation (i.e., a; for A;, etc ...). Furthermore, we shall let @ = {a;}1<;, 8 = {b;}1<i, 0 =

{0:}1<i- Last, let b = (a, s,8). This quantity will be referred to as the input sample.

Assumption A,: {5;}° is an independent and identically distributed (i.i.d.) sequence of r.v.’s

independent of {A;} and {0©;} and {R;}$° ts an independent sequence of r.v.’s given that ® = 6.
Assumption A,: {S;}5° is an independent and identically distributed (i.i.d.) sequence of

ezponential r.v.’s independent of {A;} and {©;} and {R;}$° is an independent sequence of r.v.’s

2



given that ® = 6.

Assumption A,: {S5;}1° is an independent and identically distributed (i.i.d.) sequence of r.v.’s,
{7} is an i.i.d. sequence of exponential r.v.’s with mean E[7], and {0;} is an i.i.d. sequence of
r.v.’s, and {R;}° is an independent sequence of r.v.’s given that ® = 6. Last, the sequences are

mutually independent.

Let us consider the deadline model more closely. Let R(6,t) denote the value of R(6) given that
it exceeds t > 0. Let Y (6,t) = R(0,t) — t. We will use the notation Y;(t) = Y (6;,t) and it should
be understood that R; = Y;(0) = R(6;,0).

Definition 1 Let X andY be real valued r.v.’s. X is stochastically larger than'Y (writtenY <, X )
if
PriX <z] <PrlY <z], —oo<z< 0.

Information regarding customer deadlines is available to a policy in the form of a partial order
between customers represented by a directed graph. Let {Hi,j}io,.}':l be a sequence of r.v.’s where
H; ; is the time at which information regarding the relationship (if any) between the i-th and j-th
customers becomes available to a scheduling policy. Specifically, whenever ¢ > H;; and either
Yi(t—Aj) <o Yi(t— A;) or Y;(t — A;) >4 Yi(t — A;) then the presence and type of this relationship

is available to the scheduling policy. The r.v. H; ; exhibits several properties,
e min(max(A;, A;), D;, D;) < H; ; < min(D;, D;),
o Hij= Hj;

In addition, we assume without loss of generality that, if H; ; = to, Hjr < to, Y;(to — A4;) <at
Yi(tg — Ai), and Yk(tg — Ak) <st Yj(tg — Aj), then H;j = to. Similarly, if H;; = to, H;r < to,
Y;(to — Aj) <a Yi(to — A;), and Yi(to — A;) <4t Yr(to — Ag), then Hy ; = to.

Let 7w be a policy that determines what customer in the queue is to be executed (if any) whenever
a server is free. This policy makes its decision based on the customers that are eligible for service
as well as on the past history of the system. Policy = has no service time information available
but has information on the deadlines available in the form of a graph G(t) = (Vx(t), Ex(t)) where
Vx(t) is the set of eligible customers, i.e., the customers that have neither made nor missed their
deadlines at time £. The set of edges is defined to be

Er(t) ={(4,5) : 4,5 € Va(t); (Hi;j < t) A (Y5t = Aj) <a Vit - A))}-

This graph is updated whenever a customer arrives, completes service, misses its deadline, or
makes its deadline, or whenever the information that Y; <,; Y; is made available to the policy, i.e.,
at time H; ;, Vi, j, or whenever the information is changed thereafter. This graph satisfies several

properties.

o If (3,7),(j, k) € Ex(t) for some ¢,5,k > 1, then (i,k) € Er(t). This is because <, is a

transitive relation.



o If Vi, (t) N Vi, (t) # 0, then ¢,5 € Vi, (£) N Vi, () implies (2, ) € Er, (t) iff (§,4) € Er,(t), ie.,

all policies have the same information regarding deadlines.

We are interested in the following performance metric: L.(t), the number of customers that

miss their deadlines by time ¢ > 0 under =.

We are interested in the following classes of policies.

e Yo - the class of non-preemptive policies that operate on a system with deadlines to the
beginning of service. Policy 7 € Xy cannot use service time information but can use deadline

information found in G,(t).

e Y, - the class of preemptive policies that operate on a system with deadlines to the end
of service. Policy 7 € ¥; has no service time information available to it but has deadline
information available to it in the form of G,(t). Policies can abort customers that miss their

deadlines while in service.

e Y, - the class of non-preemptive policies that operate on a system with deadlines until the
end of sevice. Policy # € X, has no service time information available but has deadline
information available to it in the form of G,(t). Policies can abort customers that miss their

deadlines while in service.

The classes of policies B3%, 7, B% are the subsets of Xg, Xy, By, respectively, that never idle a
server while there are customers waiting for service. We are also interested in the following classes

of policies

o SEDy C X, k= 0,1,2. Policy # € SE Dy, never schedules a customer ¢; at time ¢ if there
exists a customer c; such that (i,5) € Er(t). It may choose to idle a server when there is

work in the queue.

) SEDZi C SEDy, k=0,1,2. Policy = € SED}G”' is a policy in S E Dy, that never idles a server

while there is work in the queue.
We conclude this section with a property of “<,;” that will be very useful in proving our results.

Lemma 1 (Strassen [9]) Let {X;}?; and {Y;}?, be two sequences of independent r.v.’s. If
X;<aY;, i=1,---,n, then there exist two sequences of r.v.’s {X;}*, and {Y;}2_, such that

1. both are sequences of independent r.v.’s and

2. Pr[)z'l <Y, -, Xn< 17”] = 1, almost surely.



3 Deadlines to the Beginning of Service

In this section we prove that for any policy 7 € £3* there exists a policy 7* € SE D} that performs
at least as well when deadlines are until the beginning of service. Here V(t) contains customers
that are waiting in the queue but not in service. For any policy , we define N,(t) to be the number
of occupied servers under policy 7 at time £ > 0. Without loss of generality, we assume that the

first N.(t) servers are always occupied.

Lemma 2 Let 7 € X% deviate from a SE DY policy for the first time at time to for a given input
sample b. There ezists another policy 7* € X1 that deviates from a S EDZ* policy for the first time
at t; > to and for which

Lo (t) <gt Lo(t), VE>0

under assumption A,.

Proof. Assume that 7 deviates from a SEDZ policy for the first time at ¢ = ¢, for some sequence
of deadlines D1, - -- by scheduling ¢; when (¢,5) € Ex(to), (j, k) € Ex(t), V& € Vz(to). We define

policy n* as follows.

e at time ¢ = tg, 7 schedules c;,
o 7" schedules ¢; whenever 7 schedules c;,

e 7* does nothing when 7 schedules a customer, say ¢; and at that time all servers are busy

under 7,

o if Vi(t) =0, Vz+(t) # 0 and a service completion occurs under both policies, then 7* schedules

an arbitrary customer from Vi« (t),

e otherwise 7* emulates .

Policy ©* can be defined in this way provided that we can couple both systems so that one of

the following four conditions is satisfied for all ¢ > ty. These are
1. Va(t) = Vax(t), Na(t) = N (2),
2. Va(t) — {c;} = V= (t) — {ci}, Na(t) = Nax(t) = ¢,
3. Va+(t) = Va(t) + {1} for some customer ¢;, Ny(t) = Ny«(t) = ¢, or
4. Vpr(t) = Va(t) = 0, Na(t) = Nos(t) — 1.

For the coupling that we will describe below, we will prove that the system always satisfies one

of these conditions by induction on the times that important events occur. These events are

o & - arrival to both systems,



e &1 - completion of a customer in either or both systems,

o & - customer missing deadline under one or both policies,

In order to guarantee that departures occur simultaneously on both systems, we find it useful
to assign fictitious customers to servers that are idle and to couple the service completions on each
server under both policies. Furthermore, whenever a customer receives service simultanously in
both systems, we assign it to the same server so that it will depart at the same time. When an
arriving customer is assigned immediately to an idle server, it is given the remaining service time
associated with that server. The assumption that times betwen service completions are exponen-
tially distributed r.v.’s guarantees that the service time received by this customer is exponentially
distributed. In addition, following the scheduling of 7 and n* at time ¢t = ¢, we invoke lemma 1 to
couple the deadlines of the customers under both policies as follows: customer ¢;, [ # 4,7 has the
same deadline, D = D; under both policies; customer ¢; under 7* has deadline D; < D;. Here
Dy denotes a deadline for the system under = and D; under #* The assumption that {R;}$° is an
independent sequence when conditioned on the values of ®; implies that this coupling can be done
without affecting either the joint statistics of R; and the deadlines for all customers other than c;

or the joint statistics of R; and the deadlines of all other customers except c¢;.

Let (%o, 00), (t1,01), - - - be the sequence of times and events that occur at those times, i.e., event

o; occurs at time t; where o; € {&, &1, E2}. We proceed with our inductive argument.
Basts Step: The hypothesis is trivially true for ¢ = to, as condition 1 holds.

Inductive Step: Assume that one of the four conditions holds for #;,---,t,. We now show that
either it or one of the other conditions will hold at ¢t = ¢,,.1. There are three cases according to the

type of event, 6,41.

Case 1 (0n41 = &): In this case, the conditions follow trivially from the inductive hypothesis.
For example, if condition 1 holds at ¢ = £,,, then it also holds at ¢ = ¢,,;1. Similarly for conditions
2 and 3. In the case of condition 4, if N.+(t,) = ¢ then condition 3 holds at ¢ = #,41; otherwise

condition 4 continues to hold.

Case 2 (opy1 = &1): Again, keeping in mind how the departures are coupled in both systems,

the conditions follow easily from the inductive hypothesis.

Case 8 (ony1 = &2): If the same customer misses a deadline under both policies, then the
conditions are easy to establish. If condition 2 holds at ¢ = ¢, and customer c; dies under 7, then
according to the way that the deadline of ¢; and ¢; are coupled, the system will satisfy condition 3
at t = t,41. If condition 3 holds and ¢; dies under 7*, then the system will satisfy condition 1 at
t=tny1.

This completes the induction portion of the proof. Clearly the number of completions by time
t and the number of customers in the system at time ¢ are each larger under 7* than under =.
Hence, since the number of customers that arrive to the system under both policies are the same,

we conclude that L.(t) > Lr+(t). This argument can be conducted on all deadline sequences for



which 7 deviates from a SEDP policy yielding the desired result. |

This lemma can be used to prove the following result.

Theorem 1 For any policy # € 33, there ezists a policy 7 € SEDP such that
Lo (t) <gt Lo(t), VE>0
under assumption A,.

Proof. The proof consists of considering a specific sample path and constructing a sequence of po-
licies # = mq, ™1, - -, M, - - - such that 7% = lim; o, 7; is a SE D} policy satisfying L.« (t) <. L.(t),
Yt > 0. Specifically, lemma 2 can be used to construct this sequence that exhibits the property
that the first time at which each deviates from a SE D} policy is increasing in i and that exhibit
the property that L., (t) is a stochastically nondecreasing function of ¢ V& > 0. Removal of the
conditioning on the sample path yields the desired result. |

Last, let 7.(t) denote the number of customers that complete under # € X2 by time ¢ > 0
and let 7, = limsup,_,, F[7:(t)/t] denote the throughput under policy w. We have the following
result regarding the optimality of S EDJ policies with respect to the throughput for general service

times.

Theorem 2 If SED}* contains a single policy, +, then
T,> T,

for all stationary policies ® € X, for a single server queue provided that the arrival times, service

times, and deadlines satisfy assumption A,.

Proof. As there is only one S E D policy, we shall refer to it as 4. If 7 is a stationary policy, then
the system is regenerative with regeneration points corresponding to the times that the system
empties. Let B? and M? denote the length of the n-th busy period and the number of customers
served during the n-th busy period under stationary policy 7 € X3¢, As {(B?, M?)}$° is an i.i.d.
sequence of r.v.’s, let (Br, M) be the generic r.v. having the same distribution as (BZ, MT).
Clearly E[B,| < oo and E[M,] < oo since the number of customers in the system can be easily
shown to be stochastically smaller than that of a M/G /oo system with the same arrival rate and
with service times corresponding to the relative deadlines. Hence, it follows from Ross [7, Theorem
3.6.1] that

Tr = E[Mq]/E[By].

Similarly, we have E[B,] = E[M,]E[Sx]+1/A which, when substituted into the previous expression
yields
T, = 1/E[S7r] - ()‘E[SW]E[BT])_l'
7



Hence, 7, is maximized by the policy that maximizes E[B,].

The proof of the theorem is completed by examining a single busy period under 7 and showing
that it is stochastically smaller than a busy period under v, i.e., By <5 BJ, Vn > 0. This can be
done either by using the interchange arguments used in the previous results or by using a forward

induction argument similar to the one used to prove theorem 2 in Panwar, etal. [6]. |

Remark. We conjecture that the above result holds for the more general class of nonstationary
policies.

Applications: In general, SEDY will not define a unique policy. However, there are several
interesting systems for which it does define a single unique policy. These occur when H;; =
min(max(4;, 4;), D;, D;) (i.e., the stochastic relationship between the relative deadlines of two
customers in a system is available to the scheduler as soon as the last of the two customers arrives)

and either
e S=1IR", R(A) =0, i.e., known deadlines,

e S = IRt, R(0) = R(0,0) is a random variable whose distribution has increasing failure rate
(IFR) and R(6) = R(0,0), V8 > 0, i.e., the customer have IFR deadlines and they can have

an age 6 at arrival,

e §=1IR", R(0) = R(0,0) is a random variable whose distribution has decreasing failure rate
(DFR) and R(0) = R(0,8),V60 > 0, i.e., the customer have DFR deadlines and they can have

an age 6 at arrival,

e §=1{1,2,---,K}, R(k) is exponentially distributed with parameter p1 > pa > --- > pg > 0.

In the first case, SED}* consists of the well known EDF policy. In the second case, SE D}
consists of the policy which, at time ¢, schedules the customer with the largest value of 6; + t — a;
from among all of the eligible customers. Note that if ®; only takes on value 0, then this corresponds
to the FCFS policy. In the third case SEDJ consists of the policy which, at time ¢, schedules the
customer with the smallest value of 8; + t — a; from among all of the eligible customers. This
corresponds to the LCFS policy when ©; = 0 Vi. In the last case, SEDJ consists of a head of
the line (HOL) fixed priority policy with K priority classes where the priorities are assigned in

decreasing order of the pug’s.

A more complicated example can be constructed by combining the last three examples.
e §={1,2,---,K}x IR",

e Fork=1,---,K,0 €S, R((k,0)) = R((k,0),0) is a r.v. with a distribution having either
IFR or DFR, and R((k,y),0) = R((k,0),y),y € IRT, and

e inf; ur(t) > sup, pr41, k = 1,---, K — 1, where pg(t) is the failure rate of R((k,0)) at time
t>0.



The policy in this case is a fixed priority HOL policy with K priority classes. Priority is given
in decreasing value of the first coordinate of §. Within each priority class, the customer with the
largest value of y; + t — a;, where 8; = (k,y;), is used if the deadline distribution for that class
has IFR and the customer with the smallest value of y; + t — a;, where 8; = (k,y;), is used if the
deadline distribution has DFR.

We conclude this section with an additional result for the case where § = {0} and R(0) is a
r.v. with IFR. In this case, FCFS is the optimum policy from ¥g.

Theorem 3 If S = {0} and R(0) has increasing failure rate, then
LFCF,g(t) <gt L.,.-(t), Vi € Yg;t >0
under assumption A, provided that the states are the same under FCFS and .

Proof. The argument is similar to those given for lemma 2 and theorem 1. It consists of conditio-
ning on the arrival times and service times and showing that idle periods can be removed with no
decrease in the number of losses over time. The IFR property is required because it ensures that the

longer a customer is left in the queue while a server is idle, the more likely it is to miss its deadline. B

This generalizes a result in Bhattacharya and Ephremides [2] established for constant deadlines.

Remark. No such result exists if deadlines have a distribution that is DFR. This should be clear
as the situation can arise where there is one customer in the queue who has been in the system for
a long time. In this case, there may be a benefit in waiting for a customer to arrive whose deadline

may be stochastically smaller.

4 Deadlines Until the End of Service

In this section we consider systems where the deadlines are until the end of service. We state two

results for two classes of policies, those allowing preemptions and those that do not.

Preemptive policies: In this environment, V(¢) contains all customers present in the system,
both waiting in the queue as well as in service. As it is useful to distinguish between these two

types of customers, let Cr(t) be the set of all customers in service at time ¢ > 0.

First we establish that the best policies out of the class of idling policies are non-idling.
Lemma 3 For every policy © € %1, there exists a policy m* € ™ such that
L (t) <gt Lo(t), VE>0
under A,.

Proof. Condition on a single sample path. Assume that 7 idles a server at time ¢ = tg for the first

time while there are customers in the queue and schedules a customer subsequently at ¢ = t; > to.
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We construct a new policy 7’ which schedules any customer, say c; at ¢ = ¢ and from ¢ = ¢,
simulates 7 in the following way. If ¢; neither completes nor misses its deadline by ¢ = g, it is
preempted after which #’ copies = exactly. If c¢; misses its deadline by ¢ = tj, then the server
remains idle until ¢ = ¢; and 7’ copies 7 subsequently. Last, if ¢; completes by ¢ = ¢ then 7’ copies
m exactly except when 7 schedules ¢;. In this case, 7’ does nothing.

It is clear that L (t) > L. (t), V¢t > to. Furthermore, this procedure can be repeated to construct
a sequence of policies ® = mg, w1, - - - such that m; € X; and 7; idles a server while there is work in
the queue for the first time at ¢ = ¢; where ¢; is an increasing function of i. The sequence is either
finite and ©* = x,, where 7, is non-idling, or the sequence is infinite and 7* = lim;_, o, 7; which is

also non-idling.

Removal of the conditioning on the sample path yields the desired result. |

Lemma 4 Let 7 € X7 deviate from a SED?Y* policy for the first time at time to for input sample
b. There exists another policy m* € L7 that deviates from a SEDY policy for the first time at
t1 > tg and for which

Lax(t) <ot Ln(t), VE>0

under assumption A,.

Proof. Assume that 7 deviates from a S E D policy for the first time at time ¢ = ¢, for a sequence
of deadlines D, - -- by scheduling ¢; where (¢,5) € Ex(to), (4, k) € Ex(t), Vk € Va(to). We define

policy n* as follows.

e at time ¢ = tg, 7 schedules c;,

e the first time ¢ > ¢y (if any) that (¢,7) is removed from E«(t) and ¢; and c; remain in the

system (this reflects changes in the stochastic relation between the deadlines of ¢; and ¢;), 7*

reschedules ¢; and c;, if necessary so that their status is the same under 7" as under 7.
o 7" schedules or preempts ¢; whenever 7 schedules or preempts c;,

o 7% does nothing when = schedules a customer say ¢;, and at that time all servers are busy

under 7,

o if Vi(t) — Cr(t) = 0, Var(t) — Cax(t) # 0 and a service completion occurs under the two

policies, then 7* schedules an arbitrary customer from Vi -(t),

e otherwise 7* emulates .

Policy #* can be defined in this way provided we can couple the systems under the two policies

in such a way that one of the following three conditions is satisfied for all £ > tq. These are
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2. Vi(t) — {c;} = Vax(t) — {ci}, and either Cr(t) = (t), or Cr(t) — {c;} = Crx(t) — {c;i}, and

3. Va+(t) = Va(t) 4+ {c1} for some customer ¢;, and Cr(t) = Cqr+(t) whenever |V.(t)| > c. Note
that if |Vx(¢)| < ¢, then Cr(t) = Vx(t) and Crx(t) = V(1)

We will prove that, under 7*, the system always satisfies one of these conditions by induction

on the times that important events occur. These events are

o & - arrival to both systems,
e &1 - completion of a customer in either or both systems,

o & - customer missing deadline under one or both policies,

We couple service completions in the same way that we did for lemma 2. The exponential
assumption guarantees that the service time received by the customers form an i.i.d. sequence of
exponential r.v.’s. We couple the customer deadlines in the following way. The deadlines of all
customers are the same in both systems while ¢; and ¢; are present in both systems, i.e., D; = D;.
However, if ¢; completes under = while ¢; is in the queue (and thus ¢; under 7*), then lemma 1
allows us to couple the deadlines of ¢; under 7™ and ¢; under 7 so that D] > D;. Here D; denotes
a deadline under m and D] a deadline under 7*. The assumption that {R;}{° is an independent
sequence allows us to do so without affecting the joint statistics of R; and all of the relative deadlines
for customers other than c; and the joint statistics of R; and the deadlines of all other customers
except c;.

Let (%o, 00), (t1,01), - - - be the sequence of times and events that occur at those times, i.e., event
o; occurs at time ¢; where o; € {&,&1,E}. The inductive argument is similar to that found in

lemma 2 and is omitted here.

Clearly the number of completions by time ¢ and the number of customers in the system at
time ¢ are each larger under ™ than under . Hence, since the number of customers that arrive
to the system under the two policies are the same, we conclude that L.(t) > L.+«(t). Again, the

argument can be repeated for all deadline sequences for which 7 deviates from a SED? policy to
yield the desired result. |

This lemma can be used to prove the following result.
Theorem 4 For any policy © € 3, there ezists a policy m* € SEDV such that
Lo (t) <gt Lo(t), VE>0
under assumption A,.

Proof. According to lemma 3, we need only consider # € X7. The proof consists of consi-

dering sample path b and constructing a sequence of policies ®# = mg, 7y, -, 7;,--- such that
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7% = lim;_, o 7; is a SEDT policy satisfying Lo(t) > Ln+(t), YVt > 0. Specifically, lemma 4 can be
used to construct this sequence that exhibits the property that the first time at which each deviates
from a S E D7V policy is increasing in 7 and that exhibit the property that L, (t) is a stochastically
nondecreasing function of 7 V¢ > 0. Removal of the conditioning on the sample path yields the

desired result. [ |

Nonpreemptive policies: The following result is established in exactly the same manner
as theorems 1 and 4. However it should be noted that the lemma analogous to lemmas 2 and 4
require greater care when coupling the behavior of # and 7*. In addition, it requires the following
assumption regarding the statistics of Y(6,¢), namely
Assumption B: IfY(0,t1) <, Y(a,t3), for ,a € S, t1,t3 > 0, then

Y(0,t2+ A) <y Y(a,t1 + A),A > 0.
All of the applications described in the previous section satisfy this assumption.
Theorem 5 For any policy 7 € B3, there ezists a policy 7 € SED} such that
L (t) <gt Lo(t), VE>0
under assumptions A, and B.

Assumption B is required because, unlike a preemptive policy, a non-preemptive policy is unable
to change its decision if the relationship between the deadlines of two customers change. Hence,

the optimality of SE D% policies requires that this relationship not change.

In general, neither SED7P nor SEDY will define unique policies. However they do each define

a unique policy for the applications given in the previous section.

5 Generalizations of the Results

In this section we describe a number of ways that the results can be generalized to classes of policies
that may idle while there is work in the queue, discrete time systems, systems in which servers take

vacations, and systems with finite buffers.

Idling Policies: Almost all of our results regarding the optimality of nonpreemptive policies

are restricted to non-idling policies. It is possible to show

1. V& € Xy, there exists 7* € SEDg such that L« (t) <s; Lr(t), t > 0 under assumption A,.

2. Vm € Xy, there exists 7 € SE Dy such that L.«(t) < L.(t), t > 0 under assumption A,.

Discrete time systems: Consider a discrete time multiple server queue where customers

arrive in batches during each time unit and the service times consist of an integer multiple of time
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units that are given by geometric r.v.’s with identical means. Similar results to those given in the
previous sections can be proven for this system, i.e., that the best policies are contained in §E D},
SEDT, SED%. This model is of particular use in data communications in the case that the service
time is always a single time unit. It forms the basis of many models of statistical multiplexers Oie
et al. [4]. In the case that customers require a single time unit of service, there is no distinction
between preemptive and non-preemptive systems. Furthermore, there is no distinction between
systems in which customers must meet their deadlines either by the time service begins or by the

time service completes.

Vacation Models: Theorem 5 can be generalized to include systems in which servers take
vacations. This is of interest for at least two reasons. First, vacations can be used to represent
server failures. Second, systems in which servers take vacations can be used to model real-time
systems with two or more classes of customers. For example, one class of customers may be
unable to tolerate missed deadlines. The second class of customers may be able to tolerate some
missed deadlines. If the customers in the first class are well understood (i.e., known service times,
arrival times), they can be given higher priority than the second class of customers and scheduled
independently of the second class. Customers from the second class are like the customers that we

have considered in our model.

Let {U; ;,W; }i=1,.., 7 = 1,2,---,c be families of r.v.’s such that U, ; is the length of the ¢-th
time interval during which the j-th server is available for service and W; ; is the length of the i-th
time interval during which the j-th server is on vacation (unavailable for service). We state the

following result.

Theorem 6 For any 7 € X1, there exists a policy 7* € SEDY such that
L(t) >4 Lo (t), VE>0

under assumption A, and the assumption that {U; ;, W, ;j}i=1,.., 7 = 1,2,---,c is independent of
{4}, {5}, {0:}

Finite buffer systems: Consider our system now with a maximum queue size B. When a
customer arrives to a full queue, a decision must be made as to whether to reject that customer,
or to admit him and remove some other customer already in the queue. This decision is made by
a buffer overflow policy. Most work has centered around the buffer overflow policy that always
rejects the arriving customer. However, if we define SEDB buffer overflow policies similar to the
scheduling policies, i.e., the customer stochastically closest to its deadline is removed from the set
of customers in that system that have not missed their deadlines (incl. the arrival), then we have
results analogous to theorems 1, 2, 4, 5 where for any combination of scheduling/buffer overflow
policy there is a combined policy that belongs to the family of SED}/SEDB, SEDY/SEDB,
or SED}*/SEDB policies which performs at least as well as the arbitrary policy in a stochastic

sense.
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