An Approach to
Emulating Separable Graphs

Bojana Obrenié

Department of Computer Science
University of Massachusetts at Amherst

September 17, 1991

Acknowledgment of Support: This research was supported in part by NSF Grants
CCR-88-12567 and CCR-90-13184.

Author’s Address: Department of Computer Science, University of Massachusetts,
Ambherst, MA 01003; obrenic@cs.umass.edu

Remark: A preliminary version of this paper was presented at the 3rd ACM Symp. on
Parallel Algorithms and Architectures, July 22-24, 1991, in Hilton Head, S.C.

Abstract

We present an embedding technique for bounded-degree guest graphs that have sublin-
ear separators (multicolor recursive bisectors). We introduce an intermediate structure
called a cell tree, and we employ it as a generic host for bounded-degree separable graphs.
In these embeddings, the node assignment is derived from the separator-based decom-
position of guest graphs; the edge routing is achieved through the coordination of global
and local phases. Together with the embeddings, we construct communication schedules
with queue-size 1 (no dynamic congestion).

We instantiate our technique by embedding the generic hosts, cell trees, into spe-
cific host graphs. With shuffle-like hypercube-derivative networks as hosts we obtain
new embeddings of our guest graphs with constant expansion, having both dilation and
congestion logarithmic in the size of the multicolor bisector. The congestion of these em-
beddings is ezponentially smaller than previously known, thereby exponentially speeding
up the emulations of bounded-degree separable graphs by shuffle-like networks. When
applied to hypercubes as hosts our technique also produces new embeddings, whose ex-
pansion constants are better than those known so far.

1 Introduction

Motivation. The goal of this study is to understand and compare the computational
powers of processor arrays based on various interconnection topologies. We compare the
powers of processor arrays by determining how efficiently each of them can emulate the
others. To formalize our notion of emulation, we represent processor arrays by (undi-
rected) graphs, whose nodes correspond to processors and whose edges correspond to
interprocessor communication links. Emulations among processor arrays are then de-
rived from embeddings among their underlying graphs (cf. Section 1.1). An embedding
maps nodes and edges of the emulated array (guest) into nodes and paths of the emu-
lating array (host), thereby associating host processors to guest processors, and paths in
the host network to links in the guest network. The slowdown of emulations is measured
by embedding costs (cf. Section 1.1)—the slowdown grows with length of these paths
(dilation) and with number of paths contending for a single host link (congestion). Em-
ulations provide automatic, step-by-step translations of guest programs into functionally
equivalent host programs; the only cost thus incurred is the emulation slowdown. One
way to make programs more independent of the specifics of interconnection networks
is, therefore, to construct efficient emulations among broad classes of networks. In this
paper, we show how a wide class of arbitrary networks can be efficiently emulated by a
generic host; the generic host then can be efficiently emulated by a variety of networks,
as we demonstrate on two network families.

Previous results. The first efficient emulations of arbitrary bounded-degree networks
with sublinear node separators (multicolor recursive bisectors, cf. Section 2.1) appeared
in [4], where it was proved that such graphs can be embedded into butterflies with
dilation logarithmic in the size of their multicolor recursive bisectors and with constant
expansion. These embeddings essentially relied on the embedding of complete binary
trees into butterflies (with dilation 6 and expansion 8); the embeddings in [4] were actually
a composition of this embedding and embeddings of guests graphs into complete binary
trees. However, the emulations of [4] incurred slowdown as great as linear in the size of
the multicolor bisector, because the congestion of these embeddings was of that order
(cf. Sections 1.1, 2.1). This deficiency was subsequently remedied, by proving that
every embedding of a bounded-degree graph in a butterfly which has good dilation (cf.
Section 2.1) can be transformed into an embedding with simultaneous good dilation and
good congestion (details of this proof are available in [3]). Since emulation slowdown is
proportional to the sum of dilation and congestion ([13], cf. Section 1.1), these results
provided emulations of bounded-degree graphs by butterflies with slowdown logarithmic
in the size of their multicolor bisectors.

The upper bounds for emulations by butterfly networks of [3, 4] hold unchanged
for hypercubes, since hypercubes can emulate butterflies with only negligible slowdown
(10]. However, the techniques of [4] are not applicable to arbitrary host networks. In
particular, when it comes to emulations by shuffle-like networks (cf. Section 4), the
approach of [4] is not as useful as it is for butterfly-like hosts: Although it is known

1

from [4, 3] how to embed our guest graphs into complete binary trees, and although
shuffle-like graphs essentially contain like-sized complete binary trees, no way has been
found to control congestion of embeddings in shuffle-like graphs. These graphs have thus
been able to emulate bounded-degree separable graphs exponentially slower than their
butterfly relatives.

Our results. In this paper, we present a new technique for emulating bounded-degree
separable graphs. To this end we devise a notion of cell trees (cf. Section 2) which play
the part of generic hosts for these guests. It should be stressed that we do not propose
cell trees as new interconnection topologies; rather, cell trees abstract the ability of
hosts to emulate efficiently bounded-degree separable graphs; indeed cell trees are host
graphs organized to emulate these guests. Our organization is characterized by three
parameters (cell slowdown, transfer fraction, and transfer slowdown, cf. Section 2.2).
On the one hand, we show how an arbitrary bounded-degree separable graph can be
emulated by a cell tree; we express the emulation’s slowdown in terms of these three
parameters. On the other hand, we show how to compute these parameters for cell trees
constructed in specific hosts; we compute them for hypercubes (Section 3) and shuffle-like
graphs (Section 4). The upper bounds that we obtain for shuffle-like graphs match those
known for butterflies [3, 4] and provide the desired optimal speedup. The embeddings
in hypercubes that we obtain are also new and differ from those previously known by
having improved expansion constants (cf. Section 1.1).

Advantages of our approach. We have divided the task of embedding bounded-degree
separable graphs into two subtasks: The first subtask is the canonical representation of
guest graphs—the bucket trees—which we construct by powerful graph decomposition
mechanisms (Section 2.1). The second subtask is organization of host graphs, which is
directed by the intermediate structure of the cell tree (Section 2.2). We find efficient
embeddings of guest graphs into cell trees, thereby reducing the original problem to an
easier one: embedding the cell tree into the host graph.

There are two major reasons that cell trees are efficient hosts for bounded-degree
separable graphs. First, cell trees fully exploit the information contained in the bucket
trees. More specifically, the bucket tree obtained via recursive decomposition of the guest
graph already determines the dilation of the embedding; the assignment of guest nodes to
cell-tree nodes derives directly from the bucket tree and honors these dilation constraints.
Second, routing within the cell tree obeys a coordinated regimen which alternates global
and local routing phases, thereby avoiding congestion.

We claim that the remaining problem of embedding cell trees into specific hosts is eas-
ier than the original problem of embedding arbitrary bounded-degree separable graphs
into the hosts. To wit, this embedding problem further reduces to efficient determin-
istic routing of a small class of specific permutations. We exhibit efficient routings of
these permutations for two sample host networks, thus producing cell trees with good
parameters for these hosts and enabling emulations much faster than previously known.

In our pursuit of topology-independent treatment of parallel architectures we recog-

nize bucket trees and cell trees as useful representations of guest and host graphs. These
representations are succint and simple as they consist of few numerical parameters; at
the same time they are rich enough to abstract the relevant graph properties.

For a given guest graph, the task of constructing a bucket tree (and of deriving its
matching cell tree) are both independent of the host. The task of embedding the cell
tree into a host is independent of the guest. The role of the cell tree is analogous to
that of the tree of meshes in [12, 8]: The efficient layout for the tree of meshes parallels
the construction of an efficient cell tree; reducing the problem of laying out an arbitrary
(bounded-degree separable) graph to the problem of laying out the tree of meshes parallels
our reducing the problem of emulating an arbitrary (bounded-degree separable) graph to
the problem of emulating the cell tree.

We review our study’s computation model in the following subsection. Section 2
presents the general technique; Sections 3 and 4 apply it to specific networks.

Conventions. We denote by |G| the number of nodes of graph G. Welet lgz =4¢ |log, z].
Z3 =aer {0, 1}; for integer k > 0, we denote by Z¥ the set of all strings of length k over Z,.
The complete binary tree T(h) of height h has node-set Up<r<n Z¥ and edges connecting
eachy € Z%,0 < k < h, to its children y0 and y1. The root of the tree T'(h) is the empty
string A; the leaves of T'(h) are all nodes y € Z¥. The 2* nodes z € Z¥, for 0 < k < A,
reside at level k.

1.1 Computation Model, Emulations, and Embeddings

Processor Arrays. We study arrays of identical processing elements, each associated
with a local memory module, connected by an interconnection network. The computa-
tion of such a processor array develops as a sequence of pulses; each pulse is either a
computation or a communication step. Computation steps involve only local memories
of processing elements; during communication steps each processing element may send a
message to its neighbor(s). As is customary, we represent processor arrays as undirected
graphs, whose nodes stand for processing elements, and whose edges stand for interpro-
cessor communication links. It is possible to (consistently) extend our interpretation so
as to allow us to view the graphs we study as dependency graphs of parallel computations;
this view gains significance when our results hold for arbitrary guest graphs.

We investigate and compare the powers of processor arrays by determining how effi-
ciently each array can emulate the other. To explain our emulation setup, we recall its
core formal notion: embedding one graph in another [14].

Embeddings. An embedding of guest graph G in host graph H comprises two mappings:
an injective assignment of the nodes of G to nodes of H, plus a routing that assigns to
each edge of G a path in H connecting the images of the edge’s endpoints. Efficiency of
an embedding is described in terms of its:

o dilation — the length of the longest path in H that routes an edge of G,

3

e congestion — the maximum number of edges of G routed over any single edge of
H,

e ezpansion — the ratio (|H|/|G|).

Emulations. In the course of an emulation, each host processor in H emulates the
guest processor which is its preimage in G; this assignment between processors is fixed
throughout the emulation. For every step of a processor in G, its image in H executes a
sequence of one or more steps. At any time, all processors of the host array emulate the
same step of the guest array; the emulation of the next guest step may begin only after
all the host sequences emulating the current guest step have ended. This correspondence
between steps in the guest computation and sequences of steps in the host computation
is also fixed: we neither allow host processors to perform any other computation nor do
we require any component of the state of any guest processor at any time to be made
available (unless mandated by the guest computation itself) to any host processor other
than one assigned to it.

We assume that processors of G and H have equal power; computation steps, there-
fore, incur no slowdown, as one host computation step is sufficient to emulate one guest
computation step. Guest communication steps are emulated by sequences of host com-
munication steps, that take messages for the guest over the paths in H that route edges of
G. The communication schedule specifies the host communication sequences by naming
the links of H that are crossed at every step of these sequences. The dynamic congestion
of the schedule is the maximum number of messages that are simultaneously waiting
to be transmitted by any node of H; the queue-size of the schedule measures the space
overhead on saving these messages. The emulation slowdown is determined by the length
of the longest communication sequence. When there is an embedding of graph G into
graph H with dilation A and congestion K, then it is straightforward to construct a
schedule with slowdown O(AK). In [13] it is shown (by a nonconstructive proof) that
communication steps can be orchestrated to produce a schedule with slowdown O(A+K).
We provide explicit constructions of our communication schedules with slowdown of the
latter order and without dynamic congestion (or additional queues).

We stress that our sole concern is the cost (in time and space) of overcoming structural
mismatches among the underlying graphs of processor arrays. To isolate this cost, we
insist that the processing power of guest and host processors must be identical. The
association between the emulated processor and its image in the emulating array thus
implies that representations of states of the two processors match exactly in structure
and size, modulo overhead on supporting the emulation, suffered by the host processor.
In particular, their (potentially unbounded) memories are in exact correspondence; the
same holds for their I/O streams. This uniform assignment, together with our emulation
algorithm, affords us uniform and automatic translation of guest program steps into
host program steps; the translation is independent of the meaning of the program and
therefore valid in general. If the assumption of equal power is relaxed, by allowing host

processors to be more powerful than those of the guest, one can define alternative notions
of emulation (cf. [11, 16]) that require more sophisticated computations by the host
processors and more complicated processor assignments (one-to-many). In this relaxed
environment there may be an efficient emulation of the guest processor array by the host
processor array even when there is no efficient embedding of the guest graph into the
host graph. The price of such relaxation is that it forces semantic restrictions on the
guest programs that can be translated for the host; e.g., the emulations of [11] are not
efficient when processor local memories are unbounded (cf. [16]), nor when processors
are allowed to perform on-line I/0.

Our emulation requires that each host processor at any communication step can
send a message to only one of its neighbors. Still, our upper bounds on communication
slowdown hold for the case where each guest processor in a single step may send a message
to all of its neighbors. This conservative assumption obviates the variations within the
standard model as to the number of communication links that may be active at any step.

2 Emulations by Cell Trees

We commence by elaborating on two structures central to our approach: guest-oriented
bucket-trees and host-oriented cell-trees.

2.1 Preliminaries on Decomposing Guest Graphs

We use two decomposition mechanisms to achieve the desired representation of our guest
graphs: the recursive decomposition into like-sized subgraphs based on node-separation,
and the decomposition into matchings via edge-coloring. We start by reviewing the more
subtle of these mechanisms, the recursive bisection.

Remark. Although we phrase our argument in terms of graph separators, it is the
balanced decomposition that is essential, not the instrument used to effect it. This means
that nothing precludes substitution of bifurcators [8] for separators, when convenient.

Definition 1 Let a be a real such that 0 < a < 1/2, and let S be a nondecreasing integer
Junction. The graph G has an a-separator function S either if |G| < 1 or there is a set

of no more than S(|G|) nodes whose removal partitions G into subgraphs, each having no
" more than (1— a)|G| nodes and the separator function S. If G has the separator function
S, then we say that S(|G|) is the size of the separator of G.

Definition 2 Let k be a positive integer and let R be a nondecreasing integer function.
The graph G has a k-color recursive bisector function R either if |G| < 1, or for
every k-coloring of the nodes of G there exists a set of no more than R(|G|) nodes whose
removal partitions G into subgraphs G, and G, each having no more than [(|G|/2)]

5

nodes and the recursive bisector function R, while |(|G%| — |G4|)| < 1, where 1 < €< k
and |G¥| is the number of nodes of the subgraph G; colored by color £. If G has the k-color
recursive bisector function R, then we say that R(|G|) is the size of the k-color recursive
bisector of G.

All graphs having a separator function have also a k-color recursive bisector function
of similar order. The proof of this fact employs the well known techniques of [8]; we just
state the fact as the following.

Proposition 1 For any integer k, any graph G that has a (1/3)-separator of size S(|G|)
has a k-color recursive bisector of size R(|G|) = O(kX; S(|G|/2*)). Therefore, R(|G|) =
O(kS(IG)1g |GI); when S(IG|) = |G|™), then R(|G]) = O(kS(|G])).

The bucket tree originates in [5]; it has been successfully used in [4, 6, 7).

Definition 3 Let graph G have mazimum degree d and a (d + 1)-color recursive bisector
function R. The bucket tree B®) for G is a complete binary tree of height lg |G|, each
of whose level-£ nodes has bucket capacity

V(€) = bR(|G|/2")

for some constant b. Nodes of B®) are called buckets.

The bucket capacity is meant to be interpreted as the number of nodes of G assigned
to the bucket by some mapping. We denote by B{") the nodes of G thus mapped to
bucket z. Where the value of the constant b is implied by the context, we write B for
B®). The role of the bucket tree becomes clear from the following fact [4].

Proposition 2 Let graph G of mazimum degree d have a (d+ 1)-color recursive bisector
function R. There ezists a bucket tree B®) for G such that the nodes of G can be mapped
to the buckets of the bucket tree B(®) while:

(a) the number of nodes mapped to each bucket equals the bucket capacity;

(b) nodes that are adjacent in G are mapped to buckets that are at most distance d
apart in the bucket tree, one of them being an ancestor of the other.

The upper bounds in [4] on the cost of embedding bounded-degree separable graphs
into butterflies are obtained via a two-step algorithm. In the first step, the bucket
tree B of graph G is embedded into the complete binary tree T' of height lg|G| + 1,
with dilation O(lg R(|G|)), expansion 2, and congestion O(dR(|G|)). In the second step,
T is embedded into the butterfly with dilation 6, expansion 8, and congestion 1. The
obstructive congestion inherited from embedding B into T is removed within the butterfly
by means of the following property of butterflies [3]:

6

Given a dilation-A embedding of a graph G with maximum degree d into
the butterfly, there is an edge routing (for the same node assignment) with
simultaneous dilation O(A) and congestion O(dA).

No equivalent to this property of reducing congestion via rerouting is known for shuffle-like
graphs. Therefore, even though T’ can be embedded into shuffle-like graphs at virtually no
cost, the congestion inherited from embedding B into T' precludes emulations as efficient
as those obtained with butterflies as hosts. At this point we give up the complete binary
tree for the cell tree.

2.2 Cell Trees in Host Graphs

Cell trees capture those emulation capabilities of hosts that we deem essential for emu-
lating separable graphs. We proceed by defining cell trees.

Definition 4 Let H be a graph, c and h integer constants, and C a subset of nodes of
H. Partition C into 2h+! — 1 equal-size parts, called cells, each of cardinality c, and label
the parts by distinct names from the set of nodes of the complete binary tree T(h). The
triplet (C, h,c) is the cell tree of height h and cell capacity c in H.

Where no ambiguity may arise, we refer to the cell tree (C, k, ¢) by name of its node set
C; a cell labeled by node z of the complete binary tree T'(k) is denoted by C..

The following two definitions put forward essential parameters of cell trees; these are
the parameters that determine how successful hosts are while emulating separable guests.

Definition 5 For graph H with cell tree (C,k,c), let the set of cell permutations P
consist of the permutations of nodes of H that fix cells setwise. The cell slowdown of
cell tree (C, h,c) in H is the mazimum slowdown required to route any permutation in P.

Definition 6 For graph H with cell tree (C,h,c), and a real f < 1/2, let T(f) be the
set of all permutations of nodes of H that map at least (fc) nodes of each cell (other
than the root cell) into nodes of its parent cell. The f-transfer slowdown of cell tree
(C,h,c) in H 1is the minimum slowdown required to route some permutation in T(f).
Call the permutation for which this minimum occurs the f-transfer permutation, call
f the transfer fraction, and call the (fc) nodes in each cell mapped by the f-transfer
permutation to the parent cell the f-transfer nodes.

The rest of this Section is devoted to establishing our general result on the cost of
emulating separable graphs of bounded degree. We express the emulation slowdown
solely in terms of cell tree parameters—the cell slowdown and the f-transfer slowdown,
for some transfer fraction f. Translating this cost into measures that refer to specific
hosts requires constructing efficient cell trees in these hosts and computing cell tree
parameters. Sections 3 and 4 present examples of such translation.

7

Theorem 1 Let graph G of mazimum degree d have a (d + 1)-color recursive bisec-
tor of size R(|G|) and bucket tree B®). Let (C,h,c) be a cell tree in graph H, where
k =1g(|G|/(bR(|G]))) + 1 and c = bR(|G|). Let C have cell slowdown p and f-transfer
slowdown t. Then H can emulate G with slowdown 2(d? + d)([1/f])(2p + t), queue-size
1, and ezpansion [2(|H|/|C])].

We prove Theorem 1 by constructing the embedding of G into H, along with the
specification of a routing regimen that achieves the claimed cost. First, we assign nodes
of G to nodes of H.

Lemma 1 (Assignment Lemma) Let G be a graph of mazimum degree d, with a
(d + 1)-color recursive bisector of size R(|G|) and bucket tree B. Let (C,k,c) be a cell
tree in graph H, as in Theorem 1. Then nodes of G can be mapped into C so that nodes
adjacent in G are mapped into cells at distance at most d apart, one of these cells being
an ancestor of the other.

Proof. By Proposition 2, G can be mapped to its bucket tree B so that every edge of G
is stretched along a path between a node of B and its ancestor; no such path has more
than d edges. We prove the Lemma by showing that bucket tree B can be mapped to
cell tree C in a way that preserves the dilation of the embedding of G in its bucket tree
B.

Recall that R is sublinear. By a simple inductive argument, one verifies that bucket
capacities slowly decrease with level in the bucket tree. We have chosen b so that the cell
capacity ¢ equals the capacity of the root bucket By, which is the largest in B.

The assignment of buckets of B to cells of C is as follows:

Step 0:
assign By to Cj;
assign By to Co;
assign B to C;.

Step k: (1< k <Ig|G|)
{At this step, every bucket B, has already been
-assigned to some cell Cy, for |y| < |z| = k}.
If available capacity » of C, suffices
to receive both B, and B,
then assign Byo and By to Cy;
else assign |(r/2)] nodes of Bz to Cy;
assign |(7/2)] nodes of B,y to Cy;
assign remaining nodes of Bzo to Cyo;
assign remaining nodes of Bz; to Cy;.

The following observations establish the claim about the height A of the cell tree and the
dilation of embedding G into it:

Since every bucket other than the root is smaller than the cell, no bucket can span
more than two cells. Also, a child of a bucket can be only assigned either to the same
cell as its parent, or to a child of the cell of its parent, or to both. At each step of the
procedure, one level of the bucket tree is assigned, while at most one level of the cell tree
is consumed. At most one node of C per bucket of B is left unoccupied, accounting for
the factor of 2 in the expansion. O-Lemma 1

Our next task is defining the edge routing of the embedding. We simplify this task
by appealing to the following well known result [18].

Proposition 3 Fvery graph G of mazimum degree d can be decomposed into at most
d + 1 partial subgraphs, each of mazimum degree 1.

Let Gy,...,Ga41 be the partial subgraphs resulting from decomposing G by Proposi-
tion 3. Our next step is computing the slowdown of emulating such a partial subgraph,
say G, by graph H with its cell tree (C,h,c). The slowdown of emulating the entire
graph G is then (d+ 1) times greater, since the emulation proceeds in (d+ 1)-step rounds,
one for each partial subgraph G;.

Lemma 2 (Routing Lemma) Let(C,h,c) be a cell tree in graph H, with cell slowdown
p and f-transfer slowdown t. Let G, be a graph of mazimum degree 1, whose nodes are
assigned to C so that nodes adjacent in G, are assigned to cells at distance at most d
apart, one of these cells being an ancestor of the other. Then H can emulate G, with
slowdown 2d([1/f])(2p + t) and queue-size 1.

Proof. The specification of the routing has two parts. The first part, macrorouting, is
global; it specifies only the cells that the routing paths visit. The second part, microrout-
ing, is local, it specifies paths within cells. Our task is to define both parts of the routing
and to schedule traversal of edges along the paths so as to justify the claimed cost. Qur
aim is to ensure that at every step, at each node, at most one message can be waiting
to be communicated. Through macrorouting we guarantee that the average number of
messages waiting at cell nodes is at most one, at any step. Through microrouting we
ensure that there is at most one such message at any node any time.

Macrorouting. Given an edge e, let C; and Cy be the cells (not necessarily distinct)
to which the endpoints of e are assigned. Assume that C, is m levels below C, in the
cell tree, where 0 < m < d. (Note that m = 0 just when C, = C,.) We route € via a
macropath comprising m macrolinks, each macrolink connecting two adjacent cells on the
shortest path of m macrolinks, starting at the source cell C, and ending at the destination
cell Cy. The messages with origin in C, and destination in C, are routed along the same
macropath, but they visit the macrolinks in the reversed order. The factor of 2 in the
slowdown accounts for the two directions of traversal.

All edges of G; are macrorouted by a single orchestrated regimen. The orchestration
mandates d stages. At stage j, where 1 < j < d, active macrolinks are those that are
incident in cells which are exactly d — 7 macrolinks away from the destination cell of the
macropath to which they belong. In other words, at stage 1 we cross the first macrolink
of each macropath of length d; at stage 2 we cross the second macrolink in each such
macropath, as well as the first link in each macropath of length d — 1; at stage j, we
cross the (7 — k)th macrolink in each macropath of length d — k, where 0 < k¥ < j. Our
macrorouting regimen, therefore, crosses macrolinks in the correct order.

Given a cell C,, let the macrocongestion of C, at stage 7 be the ratio of the number of
macropaths departing from C,, at stage j and the number of nodes of C,, (which is the cell
capacity c). To assess the macrocongestion of C,, at stage j, we appeal to the Assignment
Lemma. It grants that the macropaths departing from C, at stage j are just those
macropaths that end at the ancestor cell of C, which is exactly d — j macrolinks above
C,; call this ancestor C,. Since G, is of maximum degree 1, the maximum number of
macropaths whose destination is C, cannot exceed the cell capacity ¢ of C,; in particular,
at most ¢ such links can depart from C, at step j. Thus the macrocongestion of any cell
at any stage does not exceed one macropath per node of the cell.

Microrouting. First, we request that the macrolinks leaving cell C,, at stage j depart
from f-transfer nodes of C, and arrive at those nodes of the parent cell C] to which
the f-transfer permutation maps f-transfer nodes of C,. (Likewise, the macrolinks that
arrive to cell C, at stage 7 — 1 end at nodes of C, to which the f-transfer permutation
maps f-transfer nodes of children cells of C,,.)

Since the macrocongestion of cell C, at stage j is not greater than one, at most a
total of ¢ macropaths pass through C, or start at C,. Therefore, we can associate a node
in C, with each macropath that leaves C, at stage j as follows: if there is a macropath
of length d — j + 1 starting at the node, then associate that macropath with the node;
otherwise associate with the node one of the macropaths that pass through v. In such
an association, call the node the home of the macropath. At stage d, choose for home
nodes the very nodes on which macropaths end; note that home nodes chosen this way
are guaranteed to be distinct from endpoints of edges whose both endpoints reside in the
same cell, since G; is of maximum degree 1.

To arrange the microrouting with small congestion, we partition the nodes of cell
C, into (fc) transfer groups, of size [1/f] or [1/f] each, so that each group contains
exactly one f-transfer node. Furthermore, we require that every group contains at most
one node from each of the two disjoint sets of nodes to which the f-transfer permutation
maps f-transfer nodes of each of two children cells. We then associate each group with
the unique f-transfer node that it contains; call this node the leader of the group.

Now, let us focus on the first stage of the macrorouting, when j = 1, in cell C,. At
the first stage all macropaths departing from C, start at C,; they therefore touch C, at
their home nodes. The microrouting sequence at this stage consists of [1/f] repetitions
of a cycle of three elementary components: two spins and one transfer. A spin occurs by

10

routing paths within cells. A transfer occurs by routing paths between cells. The whole
of [1/ f] repetitions of this cycle are needed to remove congestion from f-transfer nodes:

1. First, we route one spin. This spin routes the paths from exactly one node in each
transfer group to the leader of the group. Each spin defines a permutation on nodes
of C, by defining a transposition between a node of C, and the leader of its group.
This permutation obviously fixes cells setwise, so the cost of routing a spin in all
cells simulteneously is the cell slowdown p.

2. After the first spin, we route one transfer. The transfer is the f-transfer permuta-
tion sending each leader to its matching node in the parent cell C!. The cost of
one transfer in the entire cell tree simultaneously is the transfer slowdown ¢.

3. After the transfer, we route one more spin in the parent cell C’ from destinations
of the f-transfer permutation to home nodes of stage-2 macropaths. The cost of
this spin in all cells simultaneously is again the cell slowdown p.

After [1/f] repetitions of this cycle of two spins and one transfer, all length-d
macropaths have advanced one macrolink, so that the length of the longest portion
of a macropath that has yet to be routed is d — 1; moreover, the macropaths departing
from every cell at stage 2 touch the cell at their distinct home nodes, thereby preparing
the next-stage spin. A straightforward inductive extension verifies that the following
invariant is maintained as the macropaths contract through all d stages: after stage j the
macropaths reside with their distinct stage-(j + 1) home nodes; the length of the longest
portion to be routed on any macropath is at most d — j macrolinks. The very last spin
accommodates those edges of G whose both endpoints reside in a single cell, along with
macropaths whose destinations are in that cell.

We arrive at the total emulation cost of 2d([1/f])(2p +t) after combining the cost of
d stages in each of the 2 directions, where each stage consists of [1/f] repetitions of the
cycle of 2p + t steps. O-Lemma 2

The Assignment Lemma and the Routing Lemma justify the claim of Theorem 1.

Variations. In our approach, the only properties of the host graph that are visible
to the guest graph are the host’s cell tree parameters f,¢,p. Indeed, for given cell size
and height of the cell tree (which are determined by the bucket tree) a guest cannot
distinguish between two hosts whose cell tree parameters are equal—both hosts provide
emulations with identical slowdown. Since we have expressed emulation slowdown in
terms of the three cell tree parameters, the only way to find efficient emulations by
specific host networks is to strive for good values of those parameters (smaller p or t,
or greater f). Later we indeed obtain such good values for two sample families of host
networks; the resulting emulations are known [4, 3] to be existentially optimal across
the class of bounded-degree separable graphs. The optimality of final cost leads us to
believe that our choice of parameters is good, in that the parameters fully and faithfully
represent the capability of host networks to emulate the class of arbitrary bounded- degree

11

separable graphs. We would like to know if our choice of representation parameters is
the only good choice. Within the general strategy of our approach, other formulations
are indeed possible; they may differ in inessential details, as long as they follow the same
essential rules:

To build an efficient cell tree we ought to view the host node set as a collection
of equal-size cells; we label the cells by nodes of the complete binary tree. Among all
possible communication patterns in the host we are interested in two only. These can be
visualized as mutually orthogonal: the “longitudinal” transfer pattern runs among cells
and establishes fast routes between large subsets of nodes in adjacent cells; the “radial”
spin pattern is confined within cell boundaries and connects cell nodes into constellations
closely gathered around the nodes involved in transfer routes. At any phase in a cell tree
emulation exactly one of these patterns occurs. Speeding up these two communication
patterns amounts to speeding up the emulation—parameters that quantify them are a
matter of choice.

Detailed solutions allow a lot of tuning. In the assignment stage, we note that the
bisector size of the guest graph imposes only a lower bound on the size of cells; choosing
larger cells affects slowdown and may improve expansion, but does not invalidate the
assignment. In the macrorouting stage, we note that emulations can be speeded up if we
allow messages to be queued up at the destination nodes of the f-transfer permutation.
At the cost of maintaining queues of size [1/f] at these nodes, we can dispense with
roughly half of the spins—those that route macropaths to their home nodes. Thus we
could reduce the last factor in the slowdown of the Routing Lemma from (2p+t) to (p+t).
Also, we observe that several efficient transfer permutations with various transfer rates
may exist for a given host; moreover, a many-one mapping may be employed instead of the
f-transfer permutation. In the microruting stage we could try to exploit the properties
of spins to achieve them at cost smaller than that of an arbitrary cell permutation: some
spins fix transfer groups (which are expected to be much smaller than cells) setwise; all
spins are transpositions involving exactly one tranfer node in each pair.

We are now prepared to look for efficient cell trees in hypercubes and de Bruijn
graphs. Revealing them in hypercubes is rendered simple by the hypercube’s direct-
product structure which yields an enriched tree with smaller hypercubes in its nodes.
This straightforward construction still awards us a new embedding with improved ex-
pansion constant (Section 3). Good cell trees in de Bruijn graphs are less conspicuous;
by discovering them we learn that de Bruijn graphs can successfully (and substantially
better than so far known) emulate bounded-degree separable graphs (Section 4).

3 Application to Hypercubes

The n-dimensional hypercube Q(n) is the graph whose nodes comprise the set Z} and
whose edges connect each node zf8y to node 20y, where 8 € Z, and zy € Z71.

12

Theorem 2 Let graph G of mazimum degree d have a (d + 1)-color recursive bisector
of size R(|G|). Then G can be emulated by a hypecrcube with slowdown O(d?1g R(|G|)),
queue-size 1, and ezpansion 3.

Proof. We have to find a cell tree (C, k, ¢) in the hypercube and to compute its slowdown
factors.

Cells. Recall that order-n hypercube Q(n) is a direct product Q(h + 1) x Q(k) of two
hypercubes whenever n = (h+1)+k. Choose k so that ¢ = 2* nodes of Q(k) are sufficient
as cell capacity; this yields & = O(lg R(|G|)), by the Assignment Lemma. Let each cell
be an instance of Q(k) in @(n) = Q(h + 1) x Q(k). Choose the height & so that the cell
tree is large enough. It is well known (cf. [7]) that the complete binary tree T'(h) can be
embedded in Q(k + 1) with dilation 2; a witnessing embedding assigns node z of T'(h) to
node z10"~*l of Q(# + 1). Label each cell, that is each instance of Q(k) in Q(n), by the
name of the node of T'(h) which is assigned to the node of Q(h + 1) associated with that
instance of Q(k) in the product Q(n) = Q(k + 1) x Q(k). We thus define the cell C, as
the following subset of nodes of Q(n) = Q(k + 1) x Q(k).

C. = {(z10*7 Pl y) | y € 2§}

One node of @(h + 1) remains unoccupied by this assignment, thus giving rise to the
small increase in expansion over that coming from embedding the bucket tree into the
cell tree C.

Given a non-root cell C,, which is an instance of Q(k) in Q(n) = Q(k + 1) x Q(k),
let C,, be the parent cell of C,, so that u = u,§, for some ¢ € Z,.

Cell slowdown. Within each cell, that is within each instance of @Q(k) in Q(n), cell
permutations can be routed with cell slowdown p = 2k — 1 = O(lg R(|G|)) (<f. [2]).

Transfer fraction. f =1/2.

(1/2)-transfer nodes. In cell C, ¢, we define the set F(u;€) of (1/2)-transfer nodes
as the half of cell nodes which have £ in the leftmost bit position of their second, k-bit
component.

F(ui€) = {(w€10°11 £2) | 2 € 2577}

(1/2)-transfer groups in cell C,,¢ consist of pairs of nodes, each pair comprising the
leader (u £10%-1u11=1 £2), for some z € Z5~', and node (u,£10%-1#11-1 €2} which differs
from its leader only in the leftmost bit of its second, k-bit component.

(1/2)-transfer permutation. The (1/2)-transfer permutation is the map
(€107~ 111=1 £2) s (wy10R 1l £2),

where z € Z771.

(1/2)-transfer slowdown. Q(k + 1) can emulate the tree T'(h) with slowdown 2; note
that the (1/2)-transfer permutation is effected by traversing a subset of tree-edges of the
embedded T'(k) x Q(k), so t = 2 is the required (1/2)-transfer slowdown.

13

The claim follows from Theorem 1, instantiated with the f, p and ¢ that we have just
computed. O

The expansion of Theorem 2 should be compared with expansion-16 embedding of
separable graphs into hypercubes, derived from their embedding into butterflies in [4, 3].

4 Application to de Bruijn Graphs

The order-n de Bruijn graph D(n) [9] has node-set Z7; each node Bz, where B € Z, and
z e Zyt, _is connected by the shuffle edge to nod_e zf3, and by the shuffle-exchange edge
to node z03. Let S(By) =aer ¥B and E(PBy) =aer 8.

Theorem 3 Let graph G of mazimum degree d have a (d + 1)-color recursive bisector of
size R(|G|). Then G can be emulated by a de Bruijn graph with slowdown O(d?1g R(|G|)),

queue-size 1, and expansion 3.

Proof. Identifying a cell tree (C,k,c) in the de Bruijn graph is just a little bit more
involved than in the hypercube. Consider a host de Bruijn graph of order n = A + k + 1.

Cells. Choose k so that ¢ = 2* nodes are sufficient as cell capacity; this yields k =
O(lg R(|G|)), by the Assignment Lemma. Choose height h so that the cell tree is large
enough. Given tree node z € ZJ, 0 < j < h, we define its cell as the following subset of
c = 2* nodes of D(n).

C. = {eR10"*-1iy | y € 24}
where string =® is the reversal of z. So, all ¢ = 2* nodes in cell C, are equal in their
first h + 1 = n — k bits, and have distinct k-bit suffixes. Note that ¢ nodes of D(n) of

the form 0"~*y, y € Z¥ do not belong to any cell, thus giving rise to the small increase
in expansion over that imposed by embedding the bucket tree into the cell tree.

Cell slowdown. Every cell permutation in D(n) can be routed with slowdown p = 2k
[1].
Transfer fraction. f = 1/2.

(1/2)-transfer nodes. In cell C,, we define the set F(u) of (1/2)-transfer nodes as the
half of cell nodes which have 0 in the leftmost bit position of their k-bit suffix.

F(u) = {uf10"*-1-lloz | z € 251}

(1/2)-transfer groups in cell C, consist of pairs of nodes, each pair comprising the
leader uR10"*-1-lulQz, for some z € Z¥~!, and node uR10"*-1-I*l1; which differs from
its leader only in the leftmost bit of its k-bit suffix.

(1/2)-transfer permutation is the map =z — S(z). To verify that it indeed takes
(1/2)-transfer nodes to their parent cell, let z € F(u) be a (1/2)-transfer node in cell C,

14

and let C,, be the parent cell of C,, so that u = u; ¢, uf = £ull, for some ¢ € Z,. Note
that the k-bit suffix of z is of the form 0z for some z € Z¥~!. Then

z = wf1gn*-1-loz = guf1gnk-1-o,
S(z) = ulo*-1-l-tlze € €,

(1/2)-transfer slowdown. Since the (1/2)-transfer permutation amounts to crossing
shuffle edges, the (1/2)-transfer slowdown is ¢ = 1.

The claim follows from Theorem 1, instantiated with the f, p and ¢ that we have just
computed. O

The expansion of Theorem 3 should be compared with expansion-16 embedding of
separable graphs into butterflies in [4, 3].

Theorem 3 extends directly to hypercube-derivative relatives of de Bruijn graphs: to
the closely related shuffle-exchange graphs (cf. [17]), and to product-shuffle graphs [15],
as these graphs can emulate equal-sized de Bruijn graphs with slowdown 2.

5 Conclusion

We have presented the cell tree as an intermediate structure in a general technique for
emulating arbitrary bounded-degree separable graphs. Its role in emulating the class
of bounded-degree separable graphs is analogous to the role of the tree of meshes [8]
in VLSI layouts of the same class of graphs. We have thus reduced the problem of
emulating arbitrary bounded-degree separable graphs to the problem of emulating their
generic host, the cell tree. By exhibiting efficient emulations of cell trees by hypercubes
and de Bruijn graphs we have instantiated our technique for these two host families and
obtained two new emulations of bounded-degree separable graphs. The emulations by
de Bruijn graphs are exponentially faster than previously known, while the emulations
by hypercubes achieve smaller expansion constants.

We are interested in the structure of underlying graphs of interconnection networks.
For this particular problem we have succeeded in summarizing the relevant network
properties using only a few numerical parameters: the cell tree parameters of the host
graph and the bucket tree parameters of the guest graph. Our numerical representa-
tion is topology-independent and amenable to analysis and design, yet it captures those
capabilities of parallel architectures that are of interest in our approach.

Acknowledgment. The author is greatly indebted to her research advisor Arnold L.
Rosenberg for proposing the problem and for supplying many valuable comments and
suggestions during the development of the solution and the preparation of the paper, and
to Joyce Gastel and Antony L. Hosking for their helpful comments on the presentation.

15

References

[1] F.S. Annexstein (1989): Fault tolerance in hypercube-derivative networks. 1st ACM
Symp. on Parallel Algorithms and Architectures, 179-188.

[2) M. Baumslag and F.S. Annexstein (1990): A unified approach to global permu-
tation routing on parallel networks. 2nd ACM Symp. on Parallel Algorithms and
Architectures, 398-406. Math. Syst. Th., to appear.

[3] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obreni¢, A.L. Rosenberg,
E.J. Schwabe (1991): Optimal emulations by butterfly-like networks. Tech. Rpt. 90-
108, Univ. Massachusetts; J. ACM, to appear.

(4] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1988): Op-
timal simulations by butterfly networks. 20th ACM Symp. on Theory of Computing,
92-104.

[5] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1986): Optimal simu-
lations of tree machines. 27th IEEE Symp. on Foundations of Computer Science,
274-282.

(6] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1989): Universal graphs
for bounded-degree trees and planar graphs. SIAM J. Discrete Math. 2, 145-155.

[7] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1991): Efficient embed-
dings of trees in hypercubes. SIAM J. Comput., to appear.

[8] S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph layout
problems. J. Comp. Syst. Sci. 28, 300-343.

[9] N.G. de Bruijn (1946): A combinatorial problem. Proc. Koninklijke Nederlandsche
Akademie van Wetenschappen (A) 49, Part 2, 758-764.

(10] D.S. Greenberg, L.S. Heath and A.L. Rosenberg (1990): Optimal embeddings of
butterfly-like graphs in the hypercube. Math. Syst. Th. 23, 61-77.

[11] R. Koch, F.T. Leighton, B. Maggs, S. Rao, A.L. Rosenberg, E.J. Schwabe (1990):
Work-preserving emulations of fixed-connection networks. Submitted for publication;
see also, 21st ACM Symp. on Theory of Computing, 227-240.

[12) F.T. Leighton (1983): Complexity Issues in VLSI: Optimal Layouts for the Shuffle-
Ezchange Graph and Other Networks. MIT Press, Cambridge, Mass.

(13] F.T. Leighton, B. Maggs, S. Rao (1988): Universal packet routing algorithms. 29th
IEEE Symp. on Foundations of Computer Science, 256-269.

16

[14) A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-Theoretic
Concepts in Computer Science: Proceedings of the International Wkshp. WG80 (H.
Noltemeier, ed.) Lecture Notes in Computer Science 1 00, Springer-Verlag, N.Y.,

150-176.

[15] A.L. Rosenberg (1991): Product-shuffle networks: toward reconciling shuffles and
butterflies. Discr. Appl. Math., to appear.

[16] E.J. Schwabe (1991): Efficient Embeddings and Simulations for Hypercubic Net-
works. Ph.D. Thesis, MIT.

[17) H. Stone (1971): Parallel processing with the perfect shuffle. IEEE Trans. Comp.,
C-20, 153-161.

[18] V.G. Vizing (1964): On an estimate of the chromatic class of a p-graph (in Russian).
Diskret. Analiz 3, 25-30.

17

